Weakly hyperbolic systems with Hölder continuous coefficients

Piero D'Ancona, Tamotu Kinoshita and Sergio Spagnolo

§1. Introduction

We consider the Cauchy Problem on $[0, T] \times \mathbf{R}_{x}$

$$
\left\{\begin{array}{l}
\partial_{t} U=A(t) \partial_{x} U+B(t) U \tag{1}\\
U(0, x)=U_{0}(x)
\end{array}\right.
$$

where $A(t), B(t)$ are $m \times m$ matrices, and $A(t)$ has real eigenvalues

$$
\lambda_{1}(t) \leq \lambda_{2}(t) \leq \cdots \leq \lambda_{m}(t) .
$$

If the entries of $A(t)$ are sufficiently regular in t, say, of class C^{k} with $k \geq k(m)$, we know ([B], [K1]) that (1) is well posed in the Gevrey classes $\gamma^{s}=\gamma^{s}(\mathbf{R})$ for

$$
1 \leq s<1+1 /(m-1)
$$

[actually, using the techniques of [DS], one can reach such a conclusion assuming $\left.A(t) \in C^{2}\right]$.

When the leading coefficients are only Hölder continuous, i.e., $A(t)$ belongs to $C^{0, \alpha}([0, T])$ with $0<\alpha \leq 1$, we espect that (1) is γ^{s} well posed for $1 \leq s<\bar{s}$, for some $\bar{s}=\bar{s}(m, \alpha)>1$. The first result in this direction concerned the scalar equations of order two, i.e.,

$$
\partial_{t}^{2} u=a(t) \partial_{x}^{2} u+b(t) \partial_{x} u, \quad \text { where } \quad a(t) \geq 0, \quad a(t) \in C^{0, \alpha}([0, T]),
$$

for which the well-posedness was proved to hold for $s<1+\alpha / 2$ ([CJS]). This bound is sharp.

This result has been extended to the second order equations with coefficients depending also on $x([\mathrm{~N}])$, and then to any scalar equation of order m ([OT]). In the last case, one has γ^{s} well-posedness is

$$
1 \leq s<1+\alpha / m .
$$

The purpose of this paper is to prove the same range of Gevrey wellposedness for any $m \times m$ system of type (1), at least when $m=2$, 3 . It should be mentioned that a (partially) weaker result was proved to hold for any system of size m ([K2], see also [Y]), namely the well-posedness for $1 \leq s<1+\alpha /(m+1)$.

Our main result is the following :
Theorem 1. Let $m=2,3$, and let $T>0$. Assume that (1) is hyperbolic, i.e., the eigenvalues $\lambda_{1}(t), \cdots, \lambda_{m}(t)$ are real, with maximum multiplicity r $(1 \leq r \leq m)$, and that $A(t) \in C^{0, \alpha}([0, T]), B(t) \in L^{1}(0, T)$. Then, the Cauchy Problem (1) is well posed in γ^{s} provided

$$
1 \leq s< \begin{cases}\frac{1}{1-\alpha} & \text { if } \quad r=1 \\ 1+\frac{\alpha}{r} & \text { if } \quad r=2,3\end{cases}
$$

We also prove a result of Gevrey well-posedness for systems with arbitrary size m, under the additional assumption that the square of the matrix $A(t)$ is Hermitian. Note that if $A(t)$ is Hermitian, then (1) is a symmetric system, hence the Cauchy problem is well posed in C^{∞} no matter how regular the coefficients are. However, A^{2} may be Hermitian even if A is not: for instance, every 2×2 hyperbolic matrix A with trace zero has an Hermitian square A^{2}.

Theorem 2. Let $T>0$. Assume (1) is hyperbolic, and $A(t)$ belongs to $C^{0, \alpha}([0, T])$, while $B(t) \in L^{1}(0, T)$; also assume

$$
\begin{equation*}
A(t)^{2} \text { is Hermitian. } \tag{2}
\end{equation*}
$$

Therefore, the Cauchy Problem (1) is well posed in γ^{s} for

$$
1 \leq s<1+\frac{\alpha}{2}
$$

If, in addition, $\lambda_{1}(t)^{2}+\cdots+\lambda_{m}(t)^{2} \neq 0$ for all t, then (1) is well posed for

$$
1 \leq s<\frac{1}{1-\alpha} .
$$

REMARK 1: Thanks to (2), the condition $\sum \lambda_{j}(t)^{2} \neq 0$ is equivalent to the condition that $A(t)^{2}$ is not the zero matrix, for any t.

Remark 2: For $m=2$, Theorem 1 can be directly derived from Theorem 2: indeed, it is not restrictive to assume that the 2×2 matrix $A(t)$ has trace zero (see $\S 2$ below), which implies that $A(t)^{2}$ is Hermitian. Moreover, any 2×2 system can be viewed as a 3×3 system with maximum multiplicity $r \leq 2$, thus the case $m=2$, in Theorem, is a special case of $m=3$. However, we prefer to give here a direct proof of Theorem 1 even for $m=2$.

REmARK 3: The conclusions of Theorems 1 and 2 can be easily extended to spatial dimension $n>1$. Here, for the simplicity in the proofs, we shall consider only the one dimensional case.

The proof of Theorem 1 relies on a suitable choice of the energy function, based on an approximation of the characteristic invariants and the HamiltonCayley equation of the matrix $A(t)$. This energy is rather simple in the case $m=2$ (see $\S 3$ below), and will be proposed in a direct way, while for $m=3$ (see $\S 5$) it can be better understood in the framework of the theory of the quasi-symmetrizers ([DS], [J1], [J2]).

§2. Preliminaries

In order to prove Theorem 1, we can assume that the matrix $A(t)$ satisfies

$$
\begin{equation*}
\operatorname{tr}(A(t))=0, \quad \forall t \in[0, T] . \tag{3}
\end{equation*}
$$

Indeed, if we put $U(t, x)=\widetilde{U}\left(t, x+\int_{0}^{t} \operatorname{tr}(A(\tau)) d \tau / m\right)$, we can reduce (1) to

$$
\left\{\begin{array}{l}
\partial_{t} \widetilde{U}=\widetilde{A}(t) \partial_{x} \widetilde{U}+B(t) \widetilde{U} \\
\widetilde{U}(0, x)=U_{0}(x),
\end{array}\right.
$$

where the matrix $\widetilde{A}(t) \equiv A(t)-\{\operatorname{tr}(A(t)) / m\} I$ has trace zero. Note that, if \widetilde{U} belongs to $C^{1}\left([0, T] ; \gamma^{s}\left(\mathbf{R}_{x}\right)\right)$, then also U belongs to $C^{1}\left([0, T] ; \gamma^{s}\left(\mathbf{R}_{x}\right)\right)$.

We look for an a priori estimate for a solution $U(t, x)$ to (1), thus it is not restrictive to assume that $U(t, x)$ is a smooth function with compact support in \mathbf{R}_{x} for all $t \in[0, T]$. By Fourier transform $U(t, x) \mapsto V(t, \xi) \equiv \hat{U}(t, \xi),(1)$ is changed to the Cauchy problem on $[0, T] \times \mathbf{R}_{\xi}$

$$
\left\{\begin{array}{l}
V^{\prime}=i \xi A(t) V+B(t) V \\
V(0, \xi)=V_{0}(\xi)
\end{array}\right.
$$

Now, $U(t,$.$) belongs to \gamma^{s}\left(\mathbf{R}_{x}\right)$ if and only if its Fourier transform satisfies

$$
|V(t, \xi)| \leq C e^{-\delta|\xi|^{1 / s}} \quad \text { for }|\xi| \geq r
$$

for some $C, \delta, r>0$. Thus, in order to prove that $U \in \gamma^{s}\left(\mathbf{R}_{x}\right)$ for all $s<\sigma$, it will be sufficient to prove that

$$
\begin{equation*}
|V(t, \xi)| \leq|\xi|^{\nu}\left|V_{0}(\xi)\right| e^{C_{1}|\xi|^{1 / \sigma}} \quad \text { for }|\xi| \geq r \tag{5}
\end{equation*}
$$

Given a non-negative function $\varphi \in C_{0}^{\infty}(\mathbf{R})$ with $\int_{-\infty}^{\infty} \varphi(t) d t=1$, and $0<\varepsilon<1$, we define the mollified matrix

$$
\begin{equation*}
A_{\varepsilon}(t)=\int_{-\infty}^{\infty} A(t+\tau / \varepsilon) \varphi(\tau) d \tau \tag{6}
\end{equation*}
$$

Then, we put
$h_{A}(t)=(-1)^{m-1} \operatorname{det}(A(t)), \quad h_{A_{\varepsilon}}(t)=(-1)^{m-1} \operatorname{det}\left(A_{\varepsilon}(t)\right), \quad h_{\varepsilon}(t)=\Re h_{A_{\varepsilon}}(t)$.
Note that $h_{A} \geq 0$, since A has trace zero, whereas $h_{A_{\varepsilon}}$ is complex valued. Denoting by $\|\cdot\|$ the matrix norm, there exists a constant M for which

$$
\begin{equation*}
\left\|A_{\varepsilon}(t)\right\| \leq M, \quad\left\|A_{\varepsilon}^{\prime}(t)\right\| \leq M \varepsilon^{\alpha-1}, \quad\left\|A_{\varepsilon}(t)-A(t)\right\| \leq M \varepsilon^{\alpha}, \tag{7}
\end{equation*}
$$

for all $t \in[0, T]$. Consequently we obtain, for a possibly larger constant M,

$$
\left|h_{A_{\varepsilon}}^{\prime}(t)\right| \leq M \varepsilon^{\alpha-1}, \quad\left|h_{A_{\varepsilon}}(t)-h_{A}(t)\right| \leq M \varepsilon^{\alpha}
$$

which also gives

$$
\begin{equation*}
\left|h_{\varepsilon}^{\prime}(t)\right| \leq M \varepsilon^{\alpha-1}, \quad\left|h_{\varepsilon}(t)-h_{A}(t)\right| \leq M \varepsilon^{\alpha}, \quad\left|\Im h_{A_{\varepsilon}}(t)\right| \leq M \varepsilon^{\alpha} . \tag{8}
\end{equation*}
$$

§3. Proof of Theorem 1 in the case $m=2$

For the sake of brevity, we'll confine oourselves to the case when $B(t) \equiv 0$, the general case requiring only minor changes. By (3), the characteristic equation and the Hamilton-Cayley equality take, respectively, the following forms:

$$
\lambda^{2}-h_{A}(t)=0, \quad A(t)^{2}-h_{A}(t) I=0
$$

Since $\operatorname{tr}\left(A_{\varepsilon}(t)\right)=\operatorname{tr}(A(t))=0$, we also have

$$
\begin{equation*}
A_{\varepsilon}(t)^{2}-h_{A_{\varepsilon}}(t) I=0 \tag{9}
\end{equation*}
$$

Now, having fixed the constant M as above (see (7), (8)), we define, for any solution $V(t, \xi)$ of (4) and for any ϵ, the energy

$$
\begin{equation*}
E(t, \xi)=\left|A_{\varepsilon}(t) V\right|^{2}+\left\{h_{\varepsilon}(t)+2 M \varepsilon^{\alpha}\right\}|V|^{2} . \tag{10}
\end{equation*}
$$

By (8) we have

$$
h_{\varepsilon}(t)+2 M \varepsilon^{\alpha} \geq h_{A}(t)+M \varepsilon^{\alpha} \geq \begin{cases}c & \text { if } r=1, \\ M \varepsilon^{\alpha} & \text { if } r=2,\end{cases}
$$

since $h_{A}(t) \geq c>0$ in the strict hyperbolic case, hence

$$
M|V|^{2} \geq E(t, \xi) \geq \begin{cases}\left|A_{\varepsilon}(t) V\right|^{2}+c|V|^{2} & \text { if } r=1 \tag{11}\\ \left|A_{\varepsilon}(t) V\right|^{2}+M \varepsilon^{\alpha}|V|^{2} & \text { if } r=2\end{cases}
$$

Differentiating in time the energy, and using (4), we find the equality

$$
\begin{aligned}
E^{\prime}(t, \xi)= & 2 \Re\left(A_{\varepsilon} V^{\prime}, A_{\varepsilon} V\right)+2 \Re\left(A_{\varepsilon}^{\prime} V, A_{\varepsilon} V\right)+h_{\varepsilon}^{\prime}|V|^{2}+2\left\{h_{\varepsilon}+2 M \varepsilon^{\alpha}\right\} \Re\left(V^{\prime}, V\right) \\
= & -2 \xi \Im\left(A_{\varepsilon}^{2} V, A_{\varepsilon} V\right)-2 \xi \Im\left(A_{\varepsilon}\left\{A-A_{\varepsilon}\right\} V, A_{\varepsilon} V\right)+2 \Re\left(A_{\varepsilon}^{\prime} V, A_{\varepsilon} V\right)+h_{\varepsilon}^{\prime}|V|^{2} \\
& -2\left\{h_{\varepsilon}+2 M \varepsilon^{\alpha}\right\} \xi \Im\left(A_{\varepsilon} V, V\right)-2\left\{h_{\varepsilon}+2 M \varepsilon^{\alpha}\right\} \xi \Im\left(\left\{A-A_{\varepsilon}\right\} V, V\right) \\
\equiv & I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6} .
\end{aligned}
$$

Tking into accouny that $\Re h_{A_{\varepsilon}}=h_{\varepsilon}$, by (9) we see that

$$
\Im\left(A_{\varepsilon}^{2} V, A_{\varepsilon} V\right)=h_{\varepsilon} \Im\left(V, A_{\varepsilon} V\right)+\Im h_{A_{\varepsilon}} \Re\left(V, A_{\varepsilon} V\right),
$$

hence, by (7) and (10), we find

$$
\begin{aligned}
I_{1}+I_{5} & =-2 \xi \Im h_{A_{\varepsilon}} \Re\left(V, A_{\varepsilon} V\right)-4 M \varepsilon^{\alpha} \xi \Im\left(A_{\varepsilon} V, V\right) \leq 6 M \varepsilon^{\alpha}|\xi||V|\left|A_{\varepsilon} V\right| \\
I_{2} & \leq 2|\xi|\left\|A_{\varepsilon}\right\|\left\|A-A_{\varepsilon}\right\||V|\left|A_{\varepsilon} V\right| \leq 2 M^{2} \varepsilon^{\alpha}|\xi||V|\left|A_{\varepsilon} V\right| \\
I_{3} & \leq 2\left\|A_{\varepsilon}^{\prime}\right\|\left|V \| A_{\varepsilon} V\right| \leq 2 M \varepsilon^{\alpha-1}|V|\left|A_{\varepsilon} V\right| \\
I_{4} & \leq\left|h_{\varepsilon}^{\prime}\right||V|^{2} \leq M \varepsilon^{\alpha-1}|V|^{2} \\
I_{6} & \leq 2|\xi|\left\|A-A_{\varepsilon}\right\|\left[\left\{h_{\varepsilon}+2 M \varepsilon^{\alpha}\right\}|V|^{2}\right] \leq 2 M \varepsilon^{\alpha}|\xi| E(t, \xi) .
\end{aligned}
$$

Thus, if we choose

$$
\varepsilon= \begin{cases}|\xi|^{-1} & \text { if } r=1 \\ |\xi|^{-1 /(1+\alpha / 2)} & \text { if } r=2\end{cases}
$$

and recall (11), we get, for some constant $C=C(M)$,

$$
E^{\prime}(t, \xi) \leq \begin{cases}C E(t, \xi)\left\{\varepsilon^{\alpha}|\xi|+\varepsilon^{\alpha-1}\right\} \leq C E(t, \xi)|\xi|^{1-\alpha} & \text { if } r=1, \\ C E(t, \xi)\left\{\varepsilon^{\alpha / 2}|\xi|+\varepsilon^{-1}\right\} \leq C E(t, \xi)|\xi|^{1 /(1+\alpha / 2)} & \text { if } r=2 .\end{cases}
$$

Gronwall's inequality, together with (11), yields the apriori estimate (5) with $\sigma=1 /(1-\alpha)$, or $\sigma=1+\alpha / 2$, hence the proof of Theorem 1 for $m=2$.

§4. Proof of Theorem 2

Theorem 2 can be proved in a similar way than Theorem 1 in the case of $m=2$, but we need not suppose (3). We still assume $B \equiv 0$.

Let us first observe that $\left\|A_{\varepsilon}^{2}-A^{2}\right\| \leq\left(\left\|A_{\varepsilon}\right\|+\|A\|\right)\left\|A_{\varepsilon}-A\right\|$, thus we can take the constant M large enough to satisfy, besides (7) and (8),

$$
\begin{equation*}
\left\|A_{\varepsilon}(t)^{2}-A(t)^{2}\right\| \leq M \epsilon^{\alpha} \tag{12}
\end{equation*}
$$

Then we define, instead of (10), the following energy:

$$
E(t, \xi)=\left|A_{\varepsilon}(t) V\right|^{2}+\left(\left\{A_{\varepsilon}(t)^{2}+2 M \varepsilon^{\alpha}\right\} V, V\right)
$$

By (12) we have

$$
\left(\left\{A_{\varepsilon}(t)^{2}+2 M \varepsilon^{\alpha}\right\} V, V\right) \geq\left(A(t)^{2} V, V\right)+M \varepsilon^{\alpha}|V|^{2} .
$$

But the Hermitian matrix $A(t)^{2}$ has eigenvalues $\lambda_{j}(t)^{2} \geq 0$, hence we see that $\left(A(t)^{2} V, V\right) \geq 0$, while $\left(A(t)^{2} V, V\right)|V|^{-2} \geq c>0$ in the special case when $\sum \lambda_{j}(t)^{2} \neq 0$; thus, we obtain the estimates

$$
C(M)|V|^{2} \geq E(t, \xi) \geq \begin{cases}\left|A_{\varepsilon}(t) V\right|^{2}+c|V|^{2} & \text { if } \quad \lambda_{1}^{2}+\cdots+\lambda_{m}^{2} \neq 0 \tag{13}\\ \left|A_{\varepsilon}(t) V\right|^{2}+M \varepsilon^{\alpha}|V|^{2} & \text { if } \quad \lambda_{1}^{2}+\cdots+\lambda_{m}^{2} \geq 0\end{cases}
$$

We differentiate the energy: by (4), we get the equality

$$
\begin{aligned}
E^{\prime}(t, \xi)= & 2 \Re\left(A_{\varepsilon} V^{\prime}, A_{\varepsilon} V\right)+2 \Re\left(A_{\varepsilon}^{\prime} V, A_{\varepsilon} V\right)+\left(\left\{A_{\varepsilon}^{2}\right\}^{\prime} V, V\right)+2 \Re\left(\left\{A_{\varepsilon}^{2}+2 M \varepsilon^{\alpha}\right\} V^{\prime}, V\right) \\
= & -2 \xi \Im\left(A_{\varepsilon}^{2} V, A_{\varepsilon} V\right)-2 \xi \Im\left(A_{\varepsilon}\left\{A-A_{\varepsilon}\right\} V, A_{\varepsilon} V\right)+2 \Re\left(A_{\varepsilon}^{\prime} V, A_{\varepsilon} V\right)+\left(\left\{A_{\varepsilon}^{2}\right\}^{\prime} V, V\right) \\
& -2 \xi \Im\left(\left\{A_{\varepsilon}^{2}+2 M \varepsilon^{\alpha}\right\} A_{\varepsilon} V, V\right)-2 \xi \Im\left(\left\{A_{\varepsilon}^{2}+2 M \varepsilon^{\alpha}\right\}\left(A-A_{\varepsilon}\right) V, V\right) \\
\equiv & I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6} .
\end{aligned}
$$

Using (2) and (7), we find some constant $C=C(M)$ for which

$$
\begin{aligned}
I_{1}+I_{5} & =-2 \xi \Im\left[\left(A_{\varepsilon}^{2} V, A_{\varepsilon} V\right)+\left(A_{\varepsilon}^{3} V, V\right)\right]-4 M \varepsilon^{\alpha} \xi \Im\left(A_{\varepsilon} V, V\right)=-4 M \varepsilon^{\alpha} \xi \Im\left(A_{\varepsilon} V, V\right) \\
& \leq C \varepsilon^{\alpha}|\xi|\left|V \| A_{\varepsilon} V\right|, \\
I_{2} & \leq C \varepsilon^{\alpha}|\xi \| V|\left|A_{\varepsilon} V\right|, \quad I_{3} \leq C \varepsilon^{\alpha-1}|V|\left|A_{\varepsilon} V\right|, \quad I_{4} \leq C \varepsilon^{\alpha-1}|V|^{2}, \\
I_{6} & =-2 \xi \Im\left(\left(A-A_{\varepsilon}\right) V, A_{\varepsilon}^{2} V\right)-4 M \xi \varepsilon^{\alpha} \Im\left(\left(A-A_{\varepsilon}\right) V, V\right) \leq C \varepsilon^{\alpha}|\xi|\left|V \| A_{\varepsilon} V\right|+C \varepsilon^{2 \alpha}|\xi||V|^{2} .
\end{aligned}
$$

We have used the fact that A_{ε}^{2} is Hermitian, by (2), and that $\left|A_{\varepsilon}^{2} V\right| \leq C\left|A_{\varepsilon} V\right|$. Recalling (13), and choosing

$$
\varepsilon= \begin{cases}|\xi|^{-1} & \text { if } \quad \lambda_{1}^{2}+\cdots+\lambda_{m}^{2} \neq 0 \\ |\xi|^{-1 /(1+\alpha / 2)} & \text { if } \lambda_{1}^{2}+\cdots+\lambda_{m}^{2} \geq 0\end{cases}
$$

we find the estimate
$E^{\prime}(t) \leq \begin{cases}C E(t, \xi)\left[\varepsilon^{\alpha}|\xi|+\varepsilon^{\alpha-1}\right] \leq C E(t, \xi)|\xi|^{1-\alpha} & \text { if } \lambda_{1}^{2}+\cdots+\lambda_{m}^{2} \neq 0, \\ C E(t, \xi)\left[\varepsilon^{\alpha / 2}|\xi|+\varepsilon^{-1}\right] \leq C E(t, \xi)|\xi|^{1 /(1+\alpha / 2)} & \text { if } \lambda_{1}^{2}+\cdots+\lambda_{m}^{2} \geq 0 .\end{cases}$
which yields (5) with $\sigma=1 /(1-\alpha)$, or $\sigma=1+\alpha / 2$. Hence, the conclusion of Theorem 2 follows.
§5. Proof of Theorem 1 in the case $m=3$
By (3), the characteristic equation and the Hamilton-Cayley equality have the forms :

$$
\lambda^{3}-k_{A}(t) \lambda-h_{A}(t)=0, \quad A(t)^{3}-k_{A}(t) A(t)-h_{A}(t) I=0,
$$

where $h_{A}(t)=\operatorname{det}(A(t))=\lambda_{1}(t) \lambda_{2}(t) \lambda_{3}(t)$, while

$$
k_{A}(t)=\sum_{1 \leq i, j \leq 3}\left\{a_{i j}(t) a_{j i}(t)-a_{i i}(t) a_{j j}(t)\right\}=\frac{1}{2} \sum_{j=1}^{3} \lambda_{j}(t)^{2} .
$$

By the hyperbolicity assumption, the function $k_{A}(t)$ is non-negative, and in particular satisfies $k_{A}(t) \geq c>0$ when $r \leq 2$, moreover

$$
\triangle_{A}(t) \equiv \prod_{1 \leq i<j \leq 3}\left(\lambda_{i}(t)-\lambda_{j}(t)\right)^{2}=4 k_{A}(t)^{3}-27 h_{A}(t)^{2} \geq 0
$$

Similarly, since $\operatorname{tr}\left(A_{\varepsilon}(t)\right)=\operatorname{tr}(A(t))=0$, we see that the regularized matrix (6) satisfies the equality

$$
\begin{equation*}
A_{\varepsilon}(t)^{3}-k_{A_{\varepsilon}}(t) A_{\varepsilon}(t)-h_{A_{\varepsilon}}(t) I=0 . \tag{14}
\end{equation*}
$$

However, the eigenvalues of $A_{\varepsilon}(t)$ may be non real, thus $k_{A_{\varepsilon}}(t)$ and $h_{A_{\varepsilon}}(t)$ are complex valued. To overcome this difficulty, we introduce the real functions

$$
\begin{equation*}
h_{\varepsilon}(t)=\Re h_{A_{\varepsilon}}(t), \quad k_{\varepsilon}(t)=\left\{\left\{\Re k_{A_{\varepsilon}}(t)+M \varepsilon^{\alpha}\right\}^{3 / 2}+12 M M^{3 / 2} \varepsilon^{\alpha}\right\}^{2 / 3} . \tag{15}
\end{equation*}
$$

Here M is constant ≥ 1, which is choosen large enough to fulfil, besides (7), the following inequalities on $[0, T]$:

$$
\left\{\begin{array}{l}
\left|h_{\varepsilon}(t)-h_{A}(t)\right| \leq M \varepsilon^{\alpha}, \quad\left|\Im h_{A_{\varepsilon}}(t)\right| \leq M \varepsilon^{\alpha}, \quad\left|h_{\varepsilon}^{\prime}(t)\right| \leq M \varepsilon^{\alpha-1} \tag{16}\\
\left|k_{A_{\varepsilon}}(t)\right| \leq M, \quad\left|k_{A_{\varepsilon}}(t)-k_{A}(t)\right| \leq M \varepsilon^{\alpha}, \quad\left|k_{A_{\varepsilon}}^{\prime}(t)\right| \leq M \varepsilon^{\alpha-1}
\end{array}\right.
$$

which imply, in particular,

$$
\begin{equation*}
\left|\Re k_{A_{\varepsilon}}^{\prime}(t)\right| \leq M \varepsilon^{\alpha-1}, \quad\left|\Re k_{A_{\varepsilon}}(t)-k_{A}(t)\right| \leq M \varepsilon^{\alpha}, \quad\left|\Im k_{A_{\varepsilon}}(t)\right| \leq M \varepsilon^{\alpha} . \tag{17}
\end{equation*}
$$

We also define

$$
\begin{equation*}
\triangle_{\varepsilon}(t)=4 k_{\varepsilon}(t)^{3}-27 h_{\varepsilon}(t)^{2} . \tag{18}
\end{equation*}
$$

Next we show that $z^{3}-k_{\varepsilon}(t) z+h_{\varepsilon}(t)$ is a hyperbolic polynomial, i.e., $\triangle_{\varepsilon}(t) \geq 0$, and also prove some crucial estimates on $k_{\varepsilon}(t):$

Lemma 1. There exists a constant $C=C(M)$, and $c>0$, such that

$$
\begin{align*}
& k_{\varepsilon}(t) \geq \begin{cases}c & \text { if } r=1,2, \\
M \varepsilon^{2 \alpha / 3} & \text { if } r=3,\end{cases} \tag{19}\\
& \left|k_{\varepsilon}^{\prime}(t)\right| \leq C \varepsilon^{\alpha-1}, \quad\left|k_{\varepsilon}(t)-k_{A_{\varepsilon}}(t)\right| \leq C \varepsilon^{\alpha} k_{\varepsilon}(t)^{-1 / 2}, \tag{20}\\
& \triangle_{\varepsilon}(t) \geq \begin{cases}c & \text { if } r=1, \\
M^{3 / 2} \varepsilon^{\alpha} k_{\varepsilon}(t)^{3 / 2} & \text { if } r=2,3,\end{cases} \tag{21}\\
& \left|h_{\varepsilon}(t)\right| \leq \sqrt{\frac{4}{27}} k_{\varepsilon}(t)^{3 / 2} . \tag{22}
\end{align*}
$$

Proof: We write for brevity (15) in the form

$$
k_{\varepsilon}(t)=\left\{\widetilde{k}_{\varepsilon}(t)^{3 / 2}+12 M^{3 / 2} \varepsilon^{\alpha}\right\}^{2 / 3}, \quad \text { where } \quad \widetilde{k}_{\varepsilon}(t)=\Re k_{A_{\varepsilon}}(t)+M \varepsilon^{\alpha},
$$

and observe that, by (17),

$$
\widetilde{k}_{\varepsilon}(t)=\left\{\Re k_{A_{\varepsilon}}(t)-k_{A}(t)\right\}+k_{A}(t)+M \varepsilon^{\alpha} \geq k_{A}(t) \geq \begin{cases}c & \text { if } r=1,2 \\ 0 & \text { if } r=3\end{cases}
$$

This yelds (19). Let us prove (20): By (15) and (17) it follows

$$
\left|k_{\varepsilon}^{\prime}\right|=\left|\widetilde{k}_{\varepsilon}^{\prime}\right| \widetilde{k}_{\varepsilon}^{1 / 2}\left\{\widetilde{k}_{\varepsilon}^{3 / 2}+12 M^{3 / 2} \varepsilon^{\alpha}\right\}^{-1 / 3} \leq\left|\widetilde{k}_{\varepsilon}^{\prime}\right|=\left|\Re k_{A_{\varepsilon}}^{\prime}\right| \leq M \varepsilon^{\alpha-1} .
$$

Moreover we get, since $k_{\varepsilon}(t) \geq \widetilde{k}_{\varepsilon}(t)$, $\left|k_{\varepsilon}-\widetilde{k}_{\varepsilon}\right|=\frac{\left\{k_{\varepsilon}^{3 / 2}-\widetilde{k}_{\varepsilon}^{3 / 2}\right\}\left\{k_{\varepsilon}^{3 / 2}+\widetilde{k}_{\varepsilon}^{3 / 2}\right\}}{k_{\varepsilon}^{2}+k_{\varepsilon} \widetilde{k}_{\varepsilon}+\widetilde{k}_{\varepsilon}^{2}} \leq \frac{12 M^{3 / 2} \varepsilon^{\alpha} \cdot 2 k_{\varepsilon}^{3 / 2}}{k_{\varepsilon}^{2}}=24 M^{3 / 2} \varepsilon^{\alpha} k_{\varepsilon}^{-1 / 2}$,
and hence, using again (17),

$$
\left|k_{\varepsilon}-k_{A_{\varepsilon}}\right| \leq\left|k_{\varepsilon}(t)-\widetilde{k}_{\varepsilon}(t)\right|+\left|\widetilde{k}_{\varepsilon}(t)-\Re k_{A_{\varepsilon}}(t)\right|+\left|\Im k_{A_{\varepsilon}}(t)\right| \leq C \varepsilon^{\alpha} k_{\varepsilon}^{-1 / 2} .
$$

This completes the proof of (20).
To prove (21) we first derive, using (16), (17), and recalling that $\widetilde{k}_{\varepsilon}(t) \geq$ $k_{A}(t), M>1, \varepsilon<1$, the following estimate

$$
\begin{align*}
\left|\widetilde{k}_{\varepsilon}^{3 / 2}-k_{A}^{3 / 2}\right| & =\left|\widetilde{k}_{\varepsilon}-k_{A}\right| \cdot \frac{\widetilde{k}_{\varepsilon}+\widetilde{k}_{\varepsilon}^{1 / 2} k_{A}^{1 / 2}+k_{A}}{\widetilde{k}_{\varepsilon}^{1 / 2}+k_{A}^{1 / 2}} \leq\left\{\left|\Re k_{A_{\varepsilon}}-k_{A}\right|+M \varepsilon^{\alpha}\right\} \cdot \frac{3 \widetilde{k}_{\varepsilon}}{\widetilde{k}_{\varepsilon}^{1 / 2}} \tag{23}\\
& \leq 2 M \varepsilon^{\alpha} \cdot 3 \widetilde{k}_{\varepsilon}^{1 / 2} \leq 2 M \varepsilon^{\alpha} \cdot 3\left(\left|\Re k_{A_{\varepsilon}}\right|+M \varepsilon^{\alpha}\right)^{1 / 2} \leq 6 \sqrt{2} M^{3 / 2} \varepsilon^{\alpha}
\end{align*}
$$

Then, we write

$$
\begin{equation*}
\triangle_{\varepsilon}=4\left\{2 k_{\varepsilon}^{3 / 2}+\sqrt{27} h_{\varepsilon}\right\}\left\{2 k_{\varepsilon}^{3 / 2}-\sqrt{27} h_{\varepsilon}\right\} . \tag{24}
\end{equation*}
$$

We know that

$$
\left\{2 k_{A}^{3 / 2}+\sqrt{27} h_{A}\right\}\left\{2 k_{A}^{3 / 2}-\sqrt{27} h_{A}\right\}=\triangle_{A}(t) \geq 0, \quad \text { and } \quad k_{A}(t) \geq 0,
$$

thus

$$
\begin{equation*}
\left\{2 k_{A}(t)^{3 / 2} \pm \sqrt{27} h_{A}(t)\right\} \geq 0 \tag{25}
\end{equation*}
$$

For each fixed $t \in[0, T]$, we have either $h_{\varepsilon}(t) \geq 0$, or $h_{\varepsilon}(t) \leq 0$. In the first case, we have $\left\{2 k_{\varepsilon}(t)^{3 / 2}+\sqrt{27} h_{\varepsilon}(t)\right\} \geq k_{\varepsilon}(t)^{3 / 2}$, while, by (16), (22), (23) and (25), we obtain

$$
\begin{aligned}
\left\{2 k_{\varepsilon}(t)^{3 / 2}-\sqrt{2} 7\right. & \left.h_{\varepsilon}(t)\right\}=24 M^{3 / 2} \varepsilon^{\alpha}+\left\{2 \widetilde{k}_{\varepsilon}^{3 / 2}-\sqrt{27} h_{\varepsilon}\right\} \\
& =24 M^{3 / 2} \varepsilon^{\alpha}+2\left\{\widetilde{k}_{\varepsilon}^{3 / 2}-k_{A}^{3 / 2}\right\}+\left\{2 k_{A}^{3 / 2}-\sqrt{27} h_{A}\right\}+\sqrt{27}\left(h_{A}-h_{\varepsilon}\right) \\
& \geq 24 M^{3 / 2} \varepsilon^{\alpha}-2\left|\widetilde{k}_{A}^{3 / 2}-k_{\varepsilon}^{3 / 2}\right|+\left\{2 k_{A}^{3 / 2}-\sqrt{27} h_{A}\right\}-\sqrt{27}\left|h_{A}-h_{\varepsilon}\right| \\
& \geq[24-12 \sqrt{2}-\sqrt{27}] M^{3 / 2} \varepsilon^{\alpha}+\left\{2 k_{A}^{3 / 2}-\sqrt{27} h_{A}\right\} \\
& \geq M^{3 / 2} \varepsilon^{\alpha} .
\end{aligned}
$$

In the same way, when $h_{\varepsilon}(t) \leq 0$ we obtain

$$
\left\{2 k_{\varepsilon}^{3 / 2}-\sqrt{27} h_{\varepsilon}(t)\right\} \geq k_{\varepsilon}(t)^{3 / 2}, \quad\left\{2 k_{\varepsilon}(t)^{3 / 2}+\sqrt{27} h_{\varepsilon}(t)\right\} \geq M^{3 / 2} \varepsilon^{\alpha} .
$$

Thus, in both cases we get (see (24))

$$
\triangle_{\varepsilon}(t) \geq M^{3 / 2} \varepsilon^{\alpha} k_{\varepsilon}(t)^{3 / 2}
$$

In the special case when $r=1$, the discriminant $\triangle_{A}(t)$ is strictly positive, hence both the inequalities in (25) are strict, and we conclude that $\triangle_{\varepsilon}(t) \geq c>0$.

Finally, (22) follows directly from (21) and the definition (18) of $\triangle_{\varepsilon}(t)$.
In the following Lemma, we consider the 3×3 Sylvester matrix A_{ε}^{\sharp} which has characteristic polynomial $z^{3}-k_{\varepsilon}(t) z+h_{\varepsilon}(t)$, and exhibit an exact (but possibly non-coercive) symmetrizer for this matrix. We also prove a lower estimate of the symmetrizer.

Lemma 2. Let $A_{\varepsilon}^{\sharp}(t)$ and $Q_{\varepsilon}(t)$ be defined by

$$
A_{\varepsilon}^{\sharp}(t)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
h_{\varepsilon}(t) & k_{\varepsilon}(t) & 0
\end{array}\right), \quad Q_{\varepsilon}(t)=\left(\begin{array}{ccc}
k_{\varepsilon}(t)^{2} & 3 h_{\varepsilon}(t) & -k_{\varepsilon}(t) \\
3 h_{\varepsilon}(t) & 2 k_{\varepsilon}(t) & 0 \\
-k_{\varepsilon}(t) & 0 & 3
\end{array}\right) .
$$

Therefore, $Q_{\varepsilon}(t)$ is Hermitian and satisfies the equality

$$
\begin{equation*}
Q_{\varepsilon}(t) A_{\varepsilon}^{\sharp}(t)=A_{\varepsilon}^{\sharp}(t)^{*} Q_{\varepsilon}(t) . \tag{26}
\end{equation*}
$$

Moreover we have, for all $W \in \mathbf{C}^{3}$, and for some $c>0$,

$$
\begin{equation*}
\left(Q_{\varepsilon}(t) W, W\right) \geq c\left|L_{\varepsilon}(t) W\right|^{2} \tag{27}
\end{equation*}
$$

where

$$
L_{\varepsilon}(t)=\triangle_{\varepsilon}(t)^{1 / 2}\left(\begin{array}{ccc}
k_{\varepsilon}(t)^{-1 / 2} & 0 & 0 \\
0 & k_{\varepsilon}(t)^{-1} & 0 \\
0 & 0 & k_{\varepsilon}(t)^{-3 / 2}
\end{array}\right) .
$$

Proof: (26) follows directly from the definitions. As to (27), we observe that

$$
L_{\varepsilon}^{-1}=\left(L_{\varepsilon}^{-1}\right)^{*}=\triangle_{\varepsilon}^{-1 / 2}\left(\begin{array}{ccc}
k_{\varepsilon}^{1 / 2} & 0 & 0 \\
0 & k_{\varepsilon} & 0 \\
0 & 0 & k_{\varepsilon}^{3 / 2}
\end{array}\right)
$$

hence

$$
\begin{equation*}
\left(L_{\varepsilon}^{-1}\right)^{*} Q_{\varepsilon} L_{\varepsilon}^{-1}=\frac{k_{\varepsilon}^{3}}{\triangle_{\varepsilon}} \widetilde{Q}_{\varepsilon} \tag{28}
\end{equation*}
$$

where

$$
\widetilde{Q}_{\varepsilon}(t) \equiv\left[\widetilde{q}_{i j}(t)\right]_{1 \leq i, j \leq 3}=\left(\begin{array}{ccc}
1 & 3 h_{\varepsilon} k_{\varepsilon}^{-3 / 2} & -1 \\
3 h_{\varepsilon} k_{\varepsilon}^{-3 / 2} & 2 & 0 \\
-1 & 0 & 3
\end{array}\right) .
$$

By (22) it follows that $\left\|\widetilde{Q}_{\varepsilon}(t)\right\| \leq C$ on $[0, T]$. Moreover, by (19) and (20), we see the determinant and the minor determinants of $\widetilde{Q}_{\varepsilon}(t)$ satisfy

$$
\operatorname{det}\left(\widetilde{Q}_{\varepsilon}(t)\right)=4-\frac{27 h_{\varepsilon}^{2}}{k_{\varepsilon}^{3}}=\frac{\triangle_{\varepsilon}}{k_{\varepsilon}^{3}}>0
$$

$\left\{\widetilde{q}_{11}(t) \widetilde{q}_{22}(t)-\widetilde{q}_{12}(t) \widetilde{q}_{21}(t)\right\}=2-\frac{9 h_{\varepsilon}^{2}}{k_{\varepsilon}^{3}}=\frac{2}{3}+\frac{\triangle_{\varepsilon}}{3 k_{\varepsilon}^{3}}>0, \quad \widetilde{q}_{11}(t)=1>0$.
This implies that the eigenvalues $\mu_{1}(t), \mu_{2}(t), \mu_{3}(t)$ of $\widetilde{Q}_{\varepsilon}(t)$ are non-negative, and thus we have, for $i=1,2,3$,

$$
\mu_{i}(t)=\frac{\mu_{i}(t) \mu_{j}(t) \mu_{k}(t)}{\mu_{j}(t) \mu_{k}(t)} \geq \frac{\operatorname{det}\left(\widetilde{Q}_{\varepsilon}(t)\right)}{\left\|\widetilde{Q}_{\varepsilon}(t)\right\|^{2}} \geq c \frac{\triangle_{\varepsilon}(t)}{k_{\varepsilon}(t)^{3}} \quad(c>0)
$$

Hence we get, for all $\widetilde{W} \in \mathbf{C}^{3}$,

$$
\left(\widetilde{Q}_{\varepsilon}(t) \widetilde{W}, \widetilde{W}\right) \geq c \frac{\triangle_{\varepsilon}(t)}{k_{\varepsilon}(t)^{3}}|\widetilde{W}|^{2}
$$

and consequently, taking $W=L_{\varepsilon}(t)^{-1} \widetilde{W}$ and recalling (28),

$$
\left(Q_{\varepsilon}(t) W, W\right)=\frac{k_{\varepsilon}(t)^{3}}{\triangle_{\varepsilon}(t)}\left(\widetilde{Q}_{\varepsilon}(t) \widetilde{W}, \widetilde{W}\right) \geq c|\widetilde{W}|^{2}=c\left|L_{\varepsilon}(t) W\right|^{2}
$$

Lemma 2 applies also to the 9×9 block matrices whose blocks are 3×3 scalar matrices :

Lemma 3. Let I be the 3×3 identity matrix, and $\mathcal{A}_{\varepsilon}(t), \mathcal{Q}_{\varepsilon}(t), \mathcal{L}_{\varepsilon}(t)$ be the 9×9 matrices defined by

$$
\mathcal{A}_{\varepsilon}(t)=\left(\begin{array}{ccc}
0 & I & 0 \\
0 & 0 & I \\
h_{\varepsilon}(t) I & k_{\varepsilon}(t) I & 0
\end{array}\right), \quad \mathcal{Q}_{\varepsilon}(t)=\left(\begin{array}{ccc}
k_{\varepsilon}(t)^{2} I & 3 h_{\varepsilon}(t) I & -k_{\varepsilon}(t) I \\
3 h_{\varepsilon}(t) I & 2 k_{\varepsilon}(t) I & 0 \\
-k_{\varepsilon}(t) I & 0 & 3 I
\end{array}\right),
$$

and

$$
\mathcal{L}_{\varepsilon}(t)=\triangle_{\varepsilon}(t)^{1 / 2}\left(\begin{array}{ccc}
k_{\varepsilon}(t)^{-1 / 2} I & 0 & 0 \\
0 & k_{\varepsilon}(t)^{-1} I & 0 \\
0 & 0 & k_{\varepsilon}(t)^{-3 / 2} I
\end{array}\right) .
$$

Then $\mathcal{Q}_{\varepsilon}(t)$ is Hermitian and satisfies

$$
\begin{gather*}
\mathcal{Q}_{\varepsilon}(t) \mathcal{A}_{\varepsilon}(t)=\mathcal{A}_{\varepsilon}(t)^{*} \mathcal{Q}_{\varepsilon}(t) \tag{29}\\
\left(\mathcal{Q}_{\varepsilon}(t) \mathcal{W}, \mathcal{W}\right) \geq c\left|\mathcal{L}_{\varepsilon}(t) \mathcal{W}\right|^{2}, \quad \forall \mathcal{W} \in \mathbf{C}^{9} \tag{30}
\end{gather*}
$$

Proof: Since the 3×3 submatrices in $\mathcal{A}_{\varepsilon}(t), \mathcal{Q}_{\varepsilon}(t)$ and $\mathcal{L}_{\varepsilon}(t)$ consist of the 3×3 identity matrix I, (29) and (30) can be easily derived from (26) and (27) respectively.

Now, we transform our system (4) in a 9×9 system having for principal part the block Sylvester matrix $\mathcal{A}_{\varepsilon}(t)$ of Lemma 3. ¿From (4) we deduce that
(i) $\quad V^{\prime}=i \xi A V+B V=i \xi A_{\varepsilon} V+i \xi\left(A-A_{\varepsilon}\right) V+B V$,
(ii) $\left(A_{\varepsilon} V\right)^{\prime}=i \xi A_{\varepsilon}^{2} V+i \xi A_{\varepsilon}\left(A-A_{\varepsilon}\right) V+A_{\varepsilon}^{\prime} V+A_{\varepsilon} B V$,
(iii) $\quad\left(A_{\varepsilon}^{2} V\right)^{\prime}=i \xi A_{\varepsilon}^{3} V+i \xi A_{\varepsilon}^{2}\left(A-A_{\varepsilon}\right) V+\left(A_{\varepsilon}^{2}\right)^{\prime} V+A_{\varepsilon}^{2} B V$ $=\left[i \xi h_{\varepsilon} V+i \xi k_{\varepsilon} A_{\varepsilon} V\right]-\xi \Im h_{A_{\varepsilon}} V+i \xi\left(k_{A_{\varepsilon}}-k_{\varepsilon}\right) A_{\varepsilon} V$

$$
+i \xi A_{\varepsilon}^{2}\left(A-A_{\varepsilon}\right) V+\left(A_{\varepsilon}^{2}\right)^{\prime} V+A_{\varepsilon}^{2} B V .
$$

In the last equality, we used the Hamilton-Cayley equality (14).
If we put

$$
\mathcal{V} \equiv \mathcal{V}(t, \xi)=\left(\begin{array}{c}
V \\
A_{\varepsilon} V \\
A_{\varepsilon}^{2} V
\end{array}\right) \in \mathbf{C}^{9}
$$

we are able to combine $(i),(i i)$ and $(i i i)$, to get the following 9×9 system :

$$
\begin{equation*}
\mathcal{V}^{\prime}=i \xi \mathcal{A}_{\varepsilon}(t) \mathcal{V}+i \xi \mathcal{R}_{\varepsilon}(t) \mathcal{V}-\xi \mathcal{P}_{\varepsilon}(t) \mathcal{V}+\mathcal{D}_{\varepsilon}(t) \mathcal{V}+\mathcal{B}_{\varepsilon}(t) \mathcal{V} \tag{31}
\end{equation*}
$$

where $\mathcal{A}_{\varepsilon}(t)$ is the matrix of Lemma 3, while

$$
\begin{gathered}
\mathcal{R}_{\varepsilon}(t)=\left(\begin{array}{ccc}
A-A_{\varepsilon} & 0 & 0 \\
A_{\varepsilon}\left(A-A_{\varepsilon}\right) & 0 & 0 \\
A_{\varepsilon}^{2}\left(A-A_{\varepsilon}\right) & 0 & 0
\end{array}\right),
\end{gathered} \quad \mathcal{P}_{\varepsilon}(t)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\Im h_{A_{\varepsilon}} I & -i\left(k_{A_{\varepsilon}}-k_{\varepsilon}\right) I & 0
\end{array}\right) .
$$

Then, we define the energy:

$$
E(t, \xi)=\left(\mathcal{Q}_{\varepsilon}(t) \mathcal{V}, \mathcal{V}\right)
$$

By the definition of $\mathcal{L}_{\varepsilon}(t)$, using (19) and (21), we see that

$$
\left(\mathcal{L}_{\varepsilon}(t) \mathcal{W}, \mathcal{W}\right) \geq c_{1} \triangle_{\varepsilon}(t) k_{\varepsilon}(t)^{-1}|V|^{2} \geq c_{2} \varepsilon^{\alpha / 3}|V|^{2}
$$

hence, remarking that $\mathcal{Q}_{\varepsilon}(t)$ is bounded on $[0, T]$, we derive by (30) :

$$
\begin{equation*}
c \varepsilon^{\alpha / 3}|V|^{2} \leq E(t, \xi) \leq C|V|^{2} . \tag{32}
\end{equation*}
$$

By (29) and (31), considering that $\mathcal{Q}_{\varepsilon}$ is Hermitian, we get the equality

$$
\begin{aligned}
E^{\prime}(t, \xi)= & \left(\mathcal{Q}_{\varepsilon}^{\prime} \mathcal{V}, \mathcal{V}\right)+\left(\mathcal{Q}_{\varepsilon} \mathcal{V}^{\prime}, \mathcal{V}\right)+\left(\mathcal{Q}_{\varepsilon} \mathcal{V}, \mathcal{V}^{\prime}\right) \\
= & \left(\mathcal{Q}_{\varepsilon}^{\prime} \mathcal{V}, \mathcal{V}\right)+i \xi\left(\left\{\mathcal{Q}_{\varepsilon} \mathcal{A}_{\varepsilon}-\mathcal{A}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon}^{*}\right\} \mathcal{V}, \mathcal{V}\right) \\
& +\left(\mathcal{Q}_{\varepsilon}\left\{i \xi \mathcal{R}_{\varepsilon}-\xi \mathcal{P}_{\varepsilon}+\mathcal{D}_{\varepsilon}+\mathcal{B}_{\varepsilon}\right\} \mathcal{V}, \mathcal{V}\right)+\overline{\left(\mathcal{Q}_{\varepsilon}\left\{i \xi \mathcal{R}_{\varepsilon}-\xi \mathcal{P}_{\varepsilon}+\mathcal{D}_{\varepsilon}+\mathcal{B}_{\varepsilon}\right\} \mathcal{V}, \mathcal{V}\right)} \\
= & \left(\mathcal{Q}_{\varepsilon}^{\prime} \mathcal{V}, \mathcal{V}\right)-2 \xi \Im\left(\mathcal{Q}_{\varepsilon} \mathcal{R}_{\varepsilon} \mathcal{V}, \mathcal{V}\right)-2 \xi \Re\left(\mathcal{Q}_{\varepsilon} \mathcal{P}_{\varepsilon} \mathcal{V}, \mathcal{V}\right)+2 \Re\left(\mathcal{Q}_{\varepsilon} \mathcal{D}_{\varepsilon} \mathcal{V}, \mathcal{V}\right)+2 \Re\left(\mathcal{Q}_{\varepsilon} \mathcal{B}_{\varepsilon} \mathcal{V}, \mathcal{V}\right) .
\end{aligned}
$$

In order to prove the energy estimate, we'll use the following
Lemma 4. Let \mathcal{S} be a 9×9 matrix. Then we have, for all $\mathcal{W} \in \mathbf{C}^{9}$,

$$
\begin{align*}
(\mathcal{S W}, \mathcal{W}) & \leq C\left\|\mathcal{L}_{\varepsilon}^{-1} \mathcal{S} \mathcal{L}_{\varepsilon}^{-1}\right\|\left(\mathcal{Q}_{\varepsilon} \mathcal{W}, \mathcal{W}\right) \tag{33}\\
\left(\mathcal{Q}_{\varepsilon} \mathcal{S W}, \mathcal{W}\right) & \leq C\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{S}^{*} \mathcal{Q}_{\varepsilon} \mathcal{S}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|^{1 / 2}\left(\mathcal{Q}_{\varepsilon} \mathcal{W}, \mathcal{W}\right) \tag{34}
\end{align*}
$$

where $C=1 / c$, and $c>0$ is given by (30).
Proof: (33) follows directly from (30), noting that $\mathcal{L}_{\varepsilon}^{*}=\mathcal{L}_{\varepsilon}$, indeed:

$$
\begin{aligned}
(\mathcal{S W}, \mathcal{W}) & =\left(\mathcal{L}_{\varepsilon}^{-1} \mathcal{S} \mathcal{L}_{\varepsilon}^{-1} \mathcal{L}_{\varepsilon} \mathcal{W}, \mathcal{L}_{\varepsilon}^{*} \mathcal{W}\right) \leq\left\|\mathcal{L}_{\varepsilon}^{-1} \mathcal{S} \mathcal{L}_{\varepsilon}^{-1}\right\|\left|\mathcal{L}_{\varepsilon}(t) \mathcal{W}\right|^{2} \\
& \leq \frac{1}{c}\left\|\mathcal{L}_{\varepsilon}^{-1} \mathcal{S} \mathcal{L}_{\varepsilon}^{-1}\right\|\left(\mathcal{Q}_{\varepsilon} \mathcal{W}, \mathcal{W}\right) .
\end{aligned}
$$

To prove (34), we use the Schwarz inequality for the scalar product $\langle\mathcal{Y}, \mathcal{W}\rangle \equiv$ $\left(\mathcal{Q}_{\varepsilon} \mathcal{Y}, \mathcal{W}\right)$, and (33) with $\mathcal{S}^{*} \mathcal{Q}_{\varepsilon} \mathcal{S}$ in place of \mathcal{S}. Thus we obtain :

$$
\begin{aligned}
\left(\mathcal{Q}_{\varepsilon} \mathcal{S W}, \mathcal{W}\right) & =\left(\mathcal{Q}_{\varepsilon} \mathcal{S W}, \mathcal{S W}\right)^{1 / 2}\left(\mathcal{Q}_{\varepsilon} \mathcal{W}, \mathcal{W}\right)^{1 / 2} \\
& \leq C\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{S}^{*} \mathcal{Q}_{\varepsilon} \mathcal{S}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|^{1 / 2}\left(\mathcal{Q}_{\varepsilon} \mathcal{W}, \mathcal{W}\right)
\end{aligned}
$$

By (33) and (34), it follows

$$
\begin{aligned}
& E^{\prime}(t, \xi) \leq C E(t, \xi)\left\{\left\|\mathcal{L}_{\varepsilon}^{-1} \mathcal{Q}_{\varepsilon}^{\prime} \mathcal{L}_{\varepsilon}^{-1}\right\|+|\xi|\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{R}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{R}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|^{1 / 2}\right. \\
& \left.\quad+|\xi|\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{P}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{P}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|^{1 / 2}+\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{D}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{D}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|^{1 / 2}+\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{B}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{B}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|^{1 / 2}\right\}
\end{aligned}
$$

Now we estimate the five summands in the left side. To this end we first observe that, for any 9×9 block matrix $\mathcal{S}=\left[S_{i j}\right]_{1 \leq i, j \leq 3}$, one has

$$
\begin{equation*}
\mathcal{L}_{\varepsilon}^{-1} \mathcal{S} \mathcal{L}_{\varepsilon}^{-1}=\frac{1}{\triangle_{\varepsilon}}\left[S_{i j}\right]_{1 \leq i, j \leq 3} \tag{35}
\end{equation*}
$$

1) Estimate of $\left\|\mathcal{L}_{\varepsilon}^{-1} \mathcal{Q}_{\varepsilon}^{\prime} \mathcal{L}_{\varepsilon}^{-1}\right\|$: Using (35), we see that

$$
\mathcal{L}_{\varepsilon}^{-1} \mathcal{Q}_{\varepsilon}^{\prime} \mathcal{L}_{\varepsilon}^{-1}=\frac{k_{\varepsilon}^{3 / 2}}{\triangle_{\varepsilon}}\left(\begin{array}{ccc}
2 k_{\varepsilon}^{1 / 2} k_{\varepsilon}^{\prime} I & 3 h_{\varepsilon}^{\prime} I & -k_{\varepsilon}^{1 / 2} k_{\varepsilon}^{\prime} I \\
3 h_{\varepsilon}^{\prime} I & 2 k_{\varepsilon}^{1 / 2} k_{\varepsilon}^{\prime} I & 0 \\
-k_{\varepsilon}^{1 / 2} k_{\varepsilon}^{\prime} I & 0 & 0
\end{array}\right)
$$

thus, by (16) and (20), we get

$$
\begin{equation*}
\left\|\mathcal{L}_{\varepsilon}^{-1} \mathcal{Q}_{\varepsilon}^{\prime} \mathcal{L}_{\varepsilon}^{-1}\right\| \leq \frac{k_{\varepsilon}^{3 / 2}}{\triangle_{\varepsilon}} C\left\{k_{\varepsilon}^{1 / 2}\left|k_{\varepsilon}^{\prime}\right|+\left|h_{\varepsilon}^{\prime}\right|\right\} \leq \frac{k_{\varepsilon}^{3 / 2}}{\triangle_{\varepsilon}} C_{1} \varepsilon^{\alpha-1} \tag{36}
\end{equation*}
$$

2) Estimate of $\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{P}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{P}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|$: By the equality

$$
\left(\begin{array}{ccc}
0 & 0 & Y_{1}^{*} \\
0 & 0 & Y_{2}^{*} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
k^{2} I & 3 h I & -I \\
3 h I & 2 k I & 0 \\
-k I & 0 & 3 I
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
Y_{1} & Y_{1} & 0
\end{array}\right)=3\left(\begin{array}{ccc}
Y_{1}^{*} Y_{1} & Y_{1}^{*} Y_{2} & 0 \\
Y_{2}^{*} Y_{1} & Y_{2}^{*} Y_{2} & 0 \\
0 & 0 & 0
\end{array}\right),
$$

and by (35), we find

$$
\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{P}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{P}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}=\frac{3 k_{\varepsilon}}{\triangle_{\varepsilon}}\left(\begin{array}{ccc}
\left(\Im h_{A_{\varepsilon}}\right)^{2} I & -i k_{\varepsilon}^{1 / 2}\left(k_{A_{\varepsilon}}-k_{\varepsilon}\right) \Im h_{A_{\varepsilon}} I & 0 \\
i k_{\varepsilon}^{1 / 2}\left(\overline{k_{A_{\varepsilon}}-k_{\varepsilon}}\right) \Im h_{A_{\varepsilon}} I & k_{\varepsilon}\left|k_{A_{\varepsilon}}-k_{\varepsilon}\right|^{2} I & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Hence, by (16),
(37) $\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{P}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{P}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\| \leq \frac{k_{\varepsilon}}{\triangle_{\varepsilon}} C\left\{\varepsilon^{2 \alpha}+k_{\varepsilon}^{1 / 2}\left|k_{A_{\varepsilon}}-k_{\varepsilon}\right| \varepsilon^{\alpha}+k_{\varepsilon}\left|k_{A_{\varepsilon}}-k_{\varepsilon}\right|^{2}\right\} \leq \frac{k_{\varepsilon}}{\triangle_{\varepsilon}} C \varepsilon^{2 \alpha}$.

To compute the products $\mathcal{X}^{*} \mathcal{Q}_{\varepsilon} \mathcal{X}$ with $\mathcal{X}=\mathcal{R}_{\varepsilon}, \mathcal{D}_{\varepsilon}, \mathcal{B}_{\varepsilon}$, we note that

$$
\left(\begin{array}{ccc}
X_{1}^{*} & X_{2}^{*} & X_{3}^{*} \tag{38}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
k_{\varepsilon}^{2} I & 3 h_{\varepsilon} I & -k_{\varepsilon} I \\
3 h_{\varepsilon} I & 2 k_{\varepsilon} I & 0 \\
-k_{\varepsilon} I & 0 & 3 I
\end{array}\right)\left(\begin{array}{ccc}
X_{1} & 0 & 0 \\
X_{2} & 0 & 0 \\
X_{3} & 0 & 0
\end{array}\right)=Z_{\varepsilon} \mathcal{J}
$$

where

$$
\mathcal{J}=\left(\begin{array}{lll}
I & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and
$Z=k_{\varepsilon}^{2} X_{1}^{*} X_{1}+3 h_{\varepsilon}\left(X_{1}^{*} X_{2}+X_{2}^{*} X_{1}\right)-k_{\varepsilon}\left(X_{1}^{*} X_{3}+X_{3}^{*} X_{1}-2 X_{2}^{*} X_{2}\right)+3 X_{3}^{*} X_{3}$.
3) Estimate of $\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{R}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{R}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|$: By (38) with $X_{j}=A_{\varepsilon}^{j-1}\left(A-A_{\varepsilon}\right)$, $j=1,2,3$, recalling (35), we see that

$$
\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{R}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{R}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}=\frac{k_{\varepsilon}}{\triangle_{\varepsilon}} F_{\varepsilon} \mathcal{J}
$$

where

$$
F_{\varepsilon}=\left(A-A_{\varepsilon}\right)^{*}\left\{k_{\varepsilon}^{2} I+3 h_{\varepsilon}\left(A_{\varepsilon}+A_{\varepsilon}^{*}\right)-k_{\varepsilon}\left(A_{\varepsilon}-A_{\varepsilon}^{*}\right)^{2}+3 A_{\varepsilon}^{* 2} A_{\varepsilon}^{2}\right\}\left(A-A_{\varepsilon}\right)
$$

Hence, by (7), we get

$$
\begin{equation*}
\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{R}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{R}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\| \leq \frac{k_{\varepsilon}}{\triangle_{\varepsilon}} C\left\|A-A_{\varepsilon}\right\|^{2} \leq \frac{k_{\varepsilon}}{\triangle_{\varepsilon}} C_{2} \varepsilon^{2 \alpha} \tag{39}
\end{equation*}
$$

4) Estimate of $\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{D}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{D}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|$: By (38) with $X_{1}=0, X_{2}=A_{\varepsilon}^{\prime}$ and $X_{3}=\left(A_{\varepsilon}^{2}\right)^{\prime}$, using (35), we see that

$$
\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{D}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{D}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}=\frac{k_{\varepsilon}}{\triangle_{\varepsilon}} G_{\varepsilon} \mathcal{J}
$$

where $G_{\varepsilon}=2 k_{\varepsilon} A_{\varepsilon}^{\prime *} A_{\varepsilon}^{\prime}+3\left(A_{\varepsilon}^{2}\right)^{\prime *}\left(A_{\varepsilon}^{2}\right)^{\prime}$. Hence we get, by (7),

$$
\begin{equation*}
\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{D}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{D}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\| \leq \frac{k_{\varepsilon}}{\triangle_{\varepsilon}} C\left\|A_{\varepsilon}^{\prime}\right\|^{2} \leq \frac{k_{\varepsilon}}{\triangle_{\varepsilon}} C_{3} \varepsilon^{2(\alpha-1)} \tag{40}
\end{equation*}
$$

5) Estimate of $\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{B}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{B}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\|$: By (38) with $X_{1}=B, X_{2}=A_{\varepsilon} B$, $X_{3}=A_{\varepsilon}^{2} B$, and by (35), we see that

$$
\begin{gathered}
\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{B}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{B}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}=\frac{k_{\varepsilon}}{\triangle_{\varepsilon}} H_{\varepsilon} \mathcal{J} \\
H_{\varepsilon}=B^{*}\left\{k_{\varepsilon}^{2}+3 h_{\varepsilon}\left(A_{\varepsilon}+A_{\varepsilon}^{*}\right)-k_{\varepsilon}\left(A_{\varepsilon}-A_{\varepsilon}^{*}\right)^{2}+3 A_{\varepsilon}^{* 2} A_{\varepsilon}^{2}\right\} B
\end{gathered}
$$

Hence

$$
\begin{equation*}
\left\|\mathcal{L}_{\varepsilon}^{-1}\left(\mathcal{B}_{\varepsilon}^{*} \mathcal{Q}_{\varepsilon} \mathcal{B}_{\varepsilon}\right) \mathcal{L}_{\varepsilon}^{-1}\right\| \leq \frac{k_{\varepsilon}}{\triangle_{\varepsilon}}\left\|H_{\varepsilon}\right\| \leq C_{5} \frac{k_{\varepsilon}}{\triangle_{\varepsilon}}\|B(t)\|^{2} \tag{41}
\end{equation*}
$$

By (36), (37), (39), (40), (41), and (19), (21), recalling that $B(t)$ belongs to $L^{1}(0, T)$, and $\varepsilon<1$, we find the following estimate, for some $\beta(t) \in L^{1}(0, T)$,

$$
\begin{aligned}
E^{\prime}(t, \xi) & \leq C E \beta(t)\left[\varepsilon^{\alpha-1} \frac{k_{\varepsilon}^{3 / 2}}{\triangle_{\varepsilon}}+\varepsilon^{\alpha} \frac{k_{\varepsilon}^{1 / 2}}{\triangle_{\varepsilon}^{1 / 2}}|\xi|+\varepsilon^{\alpha-1} \frac{k_{\varepsilon}^{1 / 2}}{\triangle_{\varepsilon}^{1 / 2}}\right] \\
& \leq \begin{cases}C E \beta(t)\left[\varepsilon^{\alpha-1} k_{\varepsilon}^{3 / 2}+\varepsilon^{\alpha} k_{\varepsilon}^{1 / 2}|\xi|+\varepsilon^{\alpha-1} k_{\varepsilon}^{1 / 2}\right] & \text { if } r=1 \\
C E \beta(t)\left[\varepsilon^{-1}+\varepsilon^{\alpha / 2} k_{\varepsilon}^{-1 / 4}|\xi|+\varepsilon^{\alpha / 2-1} k_{\varepsilon}^{-1 / 4}\right] & \text { if } r=2,3\end{cases} \\
& \leq \begin{cases}C E \beta(t)\left[\varepsilon^{\alpha}|\xi|+\varepsilon^{\alpha-1}\right] \leq C E \beta(t)|\xi|^{1-\alpha} & \text { if } r=1, \\
C E \beta(t)\left[\varepsilon^{\alpha / 2}|\xi|+\varepsilon^{-1}\right] \leq C E \beta(t)|\xi|^{1 /(1+\alpha / 2)} & \text { if } r=2, \\
C E \beta(t)\left[\varepsilon^{\alpha / 3}|\xi|+\varepsilon^{-1}\right] \leq C E \beta(t)|\xi|^{1 /(1+\alpha / 3)} & \text { if } r=3\end{cases}
\end{aligned}
$$

for $|\xi|>1$, by choosing

$$
\varepsilon= \begin{cases}|\xi|^{-1} & \text { if } r=1 \\ |\xi|^{-1 /(1+\alpha / 2)} & \text { if } r=2 \\ |\xi|^{-1 /(1+\alpha / 3)} & \text { if } r=3\end{cases}
$$

Thus, by (32), we get the wished a priori estimate (5), where σ is equal, respectively, to $1 /(1-\alpha), 1+\alpha / 2,1+\alpha / 3$. This concludes the proof of Theorem 1 in the case $m=3$.

REFERENCES

[CDS] F. Colombini, E. De Giorgi and S. Spagnolo, Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Scu. Norm. Sup. Pisa, 6 (1979), 511-559.
[CJS] F. Colombini, E. Jannelli and S. Spagnolo, Wellposedness in the Gevrey classes of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on time, Ann. Scu. Norm. Sup. Pisa, 10 (1983), 291-312.
[DS] P. D'Ancona and S. Spagnolo, Quasi-symmetrization of hyperbolic systems and propagation of the analytic regularity, Boll. Un. Mat. Ital., 1-B (1998), 169185.
[J1] E. Jannelli, On the symmetrization of the principal symbol of hyperbolic equation, Comm. Part. Diff. Equat., 14 (1989), 1617-1634.
[J2] E. Jannelli, Sharp quasi-symmetrizers for hyperbolic Sylvester matrices, Lecture held in the Workshop on Hyperbolic Equations, Venice, April 2002.
[K1] K. Kajitani, Cauchy problem for non strictly hyperbolic systems in Gevrey classes, J. Math. Kyoto Univ., 23 (1983), 599-616.
[K2] K. Kajitani, The Cauchy problem for nonlinear hyperbolic systems, Bull. Sci. Math., 110 (1986), 3-48.
[OT] Y. Ohya and S. Tarama, Le problème de Cauchy à caractéristiques multiples -coefficients hölderiens en t, Proc. Taniguchi Intern. Symposium on Hyperbolic Equations and Related Topics -1984, Kinokuniya 1986, 273-306.
$[\mathrm{Y}] \quad \mathrm{Y}$. Yuzawa, preprint.

