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§1. Introduction
We consider the Cauchy Problem on [0,7] x R,
oU = A(t)o,U + B(t)U
{ U(0,2) = Up(x),

where A(t), B(t) are m x m matrices, and A(t) has real eigenvalues

If the entries of A(t) are sufficiently regular in ¢, say, of class C* with k > k(m),
we know ([B], [K1]) that (1) is well posed in the Gevrey classes v* = v*(R) for

1<s<14+1/(m—-1)

[actually, using the techniques of [DS], one can reach such a conclusion assuming

A(t) € C?).

When the leading coefficients are only Holder continuous, i.e., A(t) belongs
to C%([0,T]) with 0 < o < 1, we espect that (1) is v* well posed for 1 < s < 3,

for some § = §(m, ) > 1. The first result in this direction concerned the scalar

equations of order two, i.e.,

Ofu = a(t)0%u + b(t)Oyu, where a(t) >0, a(t) € C%*([0,T)),

for which the well-posedness was proved to hold for s < 1+ «/2 ([CJS]). This

bound is sharp.



This result has been extended to the second order equations with coefficients
depending also on z ([N]), and then to any scalar equation of order m ([OT]).

In the last case, one has v* well-posedness is
1<s<l4+a/m.

The purpose of this paper is to prove the same range of Gevrey well-
posedness for any m xm system of type (1), at least when m = 2, 3. It should be
mentioned that a (partially) weaker result was proved to hold for any system of
size m ([K2], see also [Y]), namely the well-posedness for 1 < s < 14+a/(m+1).

Our main result is the following :

Theorem 1. Let m = 2,3, and let T > 0. Assume that (1) is hyperbolic,
i.e., the eigenvalues Ay (t),---, Ay (t) are real, with maximum multiplicity r
(1 <r <m), and that A(t) € C®%([0,T]), B(t) € L*(0,T). Then, the Cauchy
Problem (1) is well posed in v* provided

1

1< s < 1_3
1+—=  if r=2.3.
r

if r=1,

We also prove a result of Gevrey well-posedness for systems with arbitrary
size m, under the additional assumption that the square of the matrix A(t) is
Hermitian. Note that if A(¢) is Hermitian, then (1) is a symmetric system, hence
the Cauchy problem is well posed in C'*° no matter how regular the coefficients
are. However, A% may be Hermitian even if A is not: for instance, every 2 x 2

hyperbolic matrix A with trace zero has an Hermitian square A2.

Theorem 2. Let T > 0. Assume (1) is hyperbolic, and A(t) belongs to
C%2(10,TY)), while B(t) € L*(0,T); also assume

A(t)? is Hermitian.
Therefore, the Cauchy Problem (1) is well posed in ~° for
«
1< 14+ —.
<s<1+ 5
If, in addition, A\1(t)% + -+ + A\ (t)? # 0 for all t, then (1) is well posed for

1<s<

l—a



REMARK 1 : Thanks to (2), the condition Y \;(¢)? # 0 is equivalent to the

condition that A(t)? is not the zero matrix, for any t.

REMARK 2 : For m = 2, Theorem 1 can be directly derived from Theorem
2: indeed, it is not restrictive to assume that the 2 x 2 matrix A(t) has trace
zero (see §2 below), which implies that A(¢)? is Hermitian. Moreover, any 2 x 2
system can be viewed as a 3 X 3 system with maximum multiplicity » < 2, thus
the case m = 2, in Theorem, is a special case of m = 3. However, we prefer to

give here a direct proof of Theorem 1 even for m = 2.

REMARK 3 : The conclusions of Theorems 1 and 2 can be easily extended to
spatial dimension n > 1. Here, for the simplicity in the proofs, we shall consider

only the one dimensional case.

The proof of Theorem 1 relies on a suitable choice of the energy function,
based on an approximation of the characteristic invariants and the Hamilton-
Cayley equation of the matrix A(¢). This energy is rather simple in the case
m = 2 (see §3 below), and will be proposed in a direct way, while for m = 3
(see §5) it can be better understood in the framework of the theory of the
quasi-symmetrizers ([DS], [J1], [J2]).

§2. Preliminaries

(3)

In order to prove Theorem 1, we can assume that the matrix A(t) satisfies
tr (A(t)) =0, vVt e [0,T].
Indeed, if we put U(t,z) = ﬁ(t,:v + f(f tr (A(7))dr/m), we can reduce (1) to
8,0 = A(t)d,U + B(t)U
{ﬁw?x) = Uo(w),
where the matrix A(t) = A(t) — {tr (A(t))/m}I has trace zero. Note that, if U
belongs to C*([0,T];v*(R,)), then also U belongs to C*([0,T];v*(R.)).

We look for an a priori estimate for a solution U (t,x) to (1), thus it is not
restrictive to assume that U(t, z) is a smooth function with compact support
in R, for all ¢ € [0,T]. By Fourier transform U(t,z) — V (¢, &) = U(t,€), (1) is
changed to the Cauchy problem on [0,7] x R

{VH:%MQV+B®V
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Now, U(t,.) belongs to v*(R;) if and only if its Fourier transform satisfies
Vol < Ce T for fg] > v,

for some C,d,7 > 0. Thus, in order to prove that U € v*(R,) for all s < o, it

will be sufficient to prove that
v 1 1/0
(5) V(E€)] < [€] [Vo(€)] el for [¢] > 7.

Given a non-negative function ¢ € C§°(R) with ffooo p(t)dt = 1, and
0 < € < 1, we define the mollified matrix

(6) A(t) = /_ T A+ 7/e)p(r)dr
Then, we put
ha(t) = (=1)"""det(A(t)), ha (t) = (—=1)"""det(Ac(t)), he(t) =Rha_(t).

Note that hy > 0, since A has trace zero, whereas h,_ is complex valued.

Denoting by || - || the matrix norm, there exists a constant M for which
(7) I A(t) 1< M, [ AL®) | < Me*™h, || Ac(t) — A(t) || < Me®,
for all ¢ € [0,T]. Consequently we obtain, for a possibly larger constant M,
Wy ()] < Me*™, |ha,(t) = ha(t)] < Me®,
which also gives

(8) [he ()] < M~ [he(t) — ha(t)] < Me®,  |Sha

63. Proof of Theorem 1 in the case m =2

For the sake of brevity, we’ll confine oourselves to the case when B(t) = 0,
the general case requiring only minor changes. By (3), the characteristic equa-

tion and the Hamilton-Cayley equality take, respectively, the following forms:
M —ha(t)=0,  A{t)* —ha(t)I =0.
Since tr (A (t)) = tr (A(¢t)) = 0, we also have

(9) A(t)* —ha ()] =0.
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Now, having fixed the constant M as above (see (7), (8)), we define, for any
solution V' (¢, &) of (4) and for any ¢, the energy

(10) E(t,&) = |Ac(t)V]* + {he(t) + 2Me* } V|2
By (8) we have
c if r=1,
he(t) +2Me® > ha(t) + Me* >
Me* if r =2,

since ha(t) > ¢ > 0 in the strict hyperbolic case, hence
A (V]2 +c |V if =1,
|[Ac(OV |2 + Me*|V]2 if r=2.
Differentiating in time the energy, and using (4), we find the equality
E'(t,&) = 2R(A V', A V) + 2R(ALV, A V) + WV + 2{h. + 2Me* }R(V', V)
= —20S(AZV,AV) — 26 S(A{A — A}V, ALV) + 2R(ALV,ALV) + K|V ?
—2{he +2Me® }¢ S(AV, V) — 2{h. + 2Me*}¢S({A - A}V, V)
= L4yt Is+ s+ I + I,

(11) M|V[? > E(t,¢) > {

Tking into accouny that Rha_ = he, by (9) we see that
S(A2V,ALV) = hS(V,AV) +Sha, R(V,AV),
hence, by (7) and (10), we find
IL+15
I
I3
14

—26Sha, R(V, AV) — 4AMeES(AV, V) < 6Me|€||V]|A V]
20€] || Az lll A= Az || [V]|A-V] < 2M2°[€]|[V][ AV

2| AL | [VI|A:V] < 2Men V|4V

BAVE < M=V

2[6 | A~ A || [{he +20=2} V2] < 2M=€|E(t, ).

[ if r=1,
£ = |§|71/(1+o¢/2) if T:2,
and recall (11), we get, for some constant C' = C(M),

. g CE(t,&){e*¢] + e*'} < CE(&)E) if r=1,
"(t
4 {0E<t,§>{s“/2|£|+e—1} < CE(t,&)[¢Y0Te2 i r=2.

INIA

IN

I

IN

Thus, if we choose

Gronwall’s inequality, together with (11), yields the apriori estimate (5) with
oc=1/(1—-a),or o =1+ «a/2, hence the proof of Theorem 1 for m = 2. O
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§4. Proof of Theorem 2

Theorem 2 can be proved in a similar way than Theorem 1 in the case of
m = 2, but we need not suppose (3). We still assume B = 0.

Let us first observe that || A2 — A2 [|< (| Ac || + | A ) || A4c — A ||, thus
we can take the constant M large enough to satisfy, besides (7) and (8),

(12) I A-(t)* = A(®)? || < Me™ .
Then we define, instead of (10), the following energy:
E(t,¢) = |[A.OV]* + ({A-(t)* + 2Me*}V, V).
By (12) we have
({A:(1)? +2Me*}V, V) > (A({t)*V,V) + Me®|V 2.

But the Hermitian matrix A(¢)? has eigenvalues \;(¢)? > 0, hence we see that
(A(t)?V,V) > 0, while (A(t)?V,V)|V|72 > ¢ > 0 in the special case when
S A (t)? # 0; thus, we obtain the estimates
A (V]2 +c|V]? if AT+ A2, #0,
(13) C(M)IV]? > E(t,€) >
AV ]2+ Me*|V]2 if AT 4+---4+ X2, >0.

We differentiate the energy: by (4), we get the equality
E'(t,§) = 2R(AV',AV) +2R(ALV,AV) + ({A?}/V, V) +2R({AZ +2Me*}V' V)
= —263(A2V, AV) — 26 S(AfA — A}V, AV) +2R(ALV, ALV) + ({ A2}V, V)
—26S({AZ+2Me*}AV, V) — 26S({AZ + 2Me*} (A — AV, V)

I+ 1o+ I3+ 1y + I + I.
Using (2) and (7), we find some constant C' = C(M) for which

L+ 15 = —26S[(A2V, AV) + (A2V, V)] —4Me“ES(AV, V) = —AMe“¢S(AV, V)
< Celg|vilAv],
I < Ce"[E][V][AV], Iy < Ce"HV]|AV], I < Ce* MV,
Is = —26S((A = AV, AZV) — AMEe*S((A — A)V, V) < Ceg|[VI[A V| + Ce*[¢|[V ]2,
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We have used the fact that A2 is Hermitian, by (2), and that |A2V| < C|A.V|.
Recalling (13), and choosing

€ if AT+ + A5, #0,

’£|—1/(1+a/2) if AT +---+ X2 >0,

we find the estimate

El(t) < CE(tag)[€a|£’+€a71j| S CE(t,§)|£|1fa 1f )\%++A72n;é0,
| CE@O[2el +e7Y] < CE(L,OIEVIFD it AZ 4402, >0,

which yields (5) with 0 = 1/(1 — «), or 0 = 1 + «/2. Hence, the conclusion of
Theorem 2 follows. [J
§5. Proof of Theorem 1 in the case m =3

By (3), the characteristic equation and the Hamilton-Cayley equality have

the forms :
X —ka(t)X —ha(t) =0, A1) — kA(H)A(t) — ha(t)I =0,
where hy(t) = det(A(t)) = A1 (t)A2(t)A3(t), while
3
ka) = Y fa(agt) —aslag (0} = 5 S A02
1<i,j<3 =1

By the hyperbolicity assumption, the function k4(f) is non-negative, and in

particular satisfies k4 (t) > ¢ > 0 when r < 2, moreover

Aalt)y = T ) = X)) = 4ka(t)® = 2Tha(t)* > 0

1<4i<5<3

Similarly, since tr (A.(t)) = tr (A(t)) = 0, we see that the regularized matrix
(6) satisfies the equality

(14) A1) —ka (1) A(t) — ha ()T = 0.

However, the eigenvalues of A.(t) may be non real, thus ka_(t) and ha_(t) are

complex valued. To overcome this difficulty, we introduce the real functions

(15)  he(t) = Rha (1),  ke(t) = {{%kAE(t)+Ms°‘}3/2+12M3/25a}2/3.
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Here M is constant > 1, which is choosen large enough to fulfil, besides (7), the

following inequalities on [0,7] :

[he(t) = ha(t)] < Me®,  [Sha ()] < Me®,  [h(t)| < M,
(16)
[ka. (O] < M, [ka (t) = ka(t)] < Me®, [ Ko ()] < M,
which imply, in particular,
(17) [ REy ()] < M, [Rba (1) — ka()] < Me®, [Ska, ()] < Me™.
We also define
(18) A(t) = 4k (t)® — 27 he(t)2.
Next we show that 23 — k.(t)z + hc(t) is a hyperbolic polynomial, i.e.,
Ac(t) > 0, and also prove some crucial estimates on k. (t) :
Lemma 1. There exists a constant C = C(M), and ¢ > 0, such that
) 0 c it r=1,2,
19 ke(t) >
: Me2e/3 if =3,
(20) K@) < Ceo7h ke(t) —Ra ()] < Ceke ()72,
(1) 0 c if r=1,
21 AL(t) >
M32 ek (£)3/2  if r=23,

(22) OTENERNOD

Proof : We write for brevity (15) in the form
ke(t) = {ke()¥2 +12M32°)* where ko(t) = Rka(t) + Me®,
and observe that, by (17),

c if r=1,2,

Ee(t) = {Rka_(t) — ka(t)} +kalt) + Me™ > ka(t) > {O & o3

This yelds (19). Let us prove (20): By (15) and (17) it follows
[ KL] = | RL| kY2 (R 4 1200320y 8 < B = |RK) | < Me*
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Moreover we get, since ke (t) > ke (t),

{2 -RPIEP 1R 1M/ ok

k. — k.| = AL <
| € €| k3+kska+kg k?

= 24 M*Pek 12

and hence, using again (17),
(ke —ka| < |ke(t) = ke(t)] + | he(t) — Rha. (t)] + | Ska.(t)] < CekV2

This completes the proof of (20).

To prove (21) we first derive, using (16), (17), and recalling that k.(t) >
ka(t), M > 1, e < 1, the following estimate
3 k.
ki

i +7€’1/2k1/2+kA
e +]{:1/2
< 2Me® - 3kL? < 2Me® 3 (|Rha | + M)/ < 6V2 M3/,

K22 =K = ke — ka| - =

- < {|§RI<;AE — k| + Me"} -

Then, we write
(24) Ao = 4{2k3? + V2T h }{2k3% — V2T h.}.
We know that
(2637 + V2T ha} {25 —=V2Tha) = Aa(t) > 0, and  ka(t) >0,
thus
(25) {2ka(t)*? £ V2Tha(t)} > 0.

For each fixed ¢t € [0,T], we have either h.(t) > 0, or h.(t) < 0. In the first
case, we have {2k.(t)3/2 + /27 h.(t)} > k-(t)3/2, while, by (16), (22), (23) and
(25), we obtain
{2k (8)%/% — V2T ho(t)} = 24 M3/ 4 {2k3/? — /27 h.)
= 24 M2 4 2{k3? — K57} + {287 — V2T ha} + V27 (ha — he)

> 24M3/25a—2}gj/2—k§/2|+{2k134/2—\/ﬁhA}—\/ﬁHLA—hJ
> [24 - 12v2 — V2T M2 4 {2k%% — V2Tha)
> M3/2g>,

In the same way, when h.(t) < 0 we obtain

{2k§/2 \/_h } > k )3/2’ {Zka‘ 3/2—|—\/_h } > M3/2 o
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Thus, in both cases we get (see (24))
A(t) > M3k (1)%/2,

In the special case when r = 1, the discriminant A 4(t) is strictly positive, hence
both the inequalities in (25) are strict, and we conclude that A.(t) > ¢ > 0.
Finally, (22) follows directly from (21) and the definition (18) of A.(¢). O
In the following Lemma, we consider the 3x 3 Sylvester matrix A? which has
characteristic polynomial 2% — k. (t)z+ h.(t), and exhibit an exact (but possibly
non-coercive) symmetrizer for this matrix. We also prove a lower estimate of

the symmetrizer.

Lemma 2. Let A%(t) and Q.(t) be defined by

0 1 0 ke(t)?  3he(t) —ke(t)
AL(t) = 0 0 1], Q@) =/[ 3nr(t) 2k(t) 0
he(t) ke(t) O —ke (1) 0 3
Therefore, Q). (t) is Hermitian and satisfies the equality
Q-(t) AL(t) = AL(t)" Q-(t).
Moreover we have, for all W € C3, and for some ¢ > 0,
(Q:(OW. W) = c|L(HW?,
where
ko(t)~1/? 0 0
Le(t) = A(t)? 0 ke(t) 0
0 0 k. (t)~3/2
Proof : (26) follows directly from the definitions. As to (27), we observe that
K200
Lot = (L7YY = AZY? 0 ko 0 |,
0o o K?
hence
(LE ) QELE - A_EEQE7
where

~ 1 3hok?? -1
Q:(t) = [Qij(t)]1§i7j§3 = Sheks 2/ 2 0
-1 0 3
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By (22) it follows that || Q-(¢) || < C' on [0,T]. Moreover, by (19) and (20), we

see the determinant and the minor determinants of Q. (t) satisty

~ 27h? A
det (Q.(t)) = 4— k; = ﬁ > 0
£ 1>
o IS 9h? 2 A _
q11(t)qa2(t) — qr2(t)gi(t) p = 2— —= = -+ > 0, qi(t) = 1> 0.
{ b=2-05 = Stae

This implies that the eigenvalues ju; (), pa(t), u3(t) of Q.(t) are non-negative,

and thus we have, for ¢ =1, 2, 3,

pOs (Ope) At (@) | A0
pi@u() T Q) |2 ke(®)?

Hence we get, for all W e C3,

(c>0).

pi(t) =

Ac(t)
k- (t)3

and consequently, taking W = Ls(t)_lw and recalling (28),

3 ~ ~ —~ —_—
(Q:omw) = S0 (@O, 1) = e = el =

(Q-)W. W) > ¢ W2,

Lemma 2 applies also to the 9 x 9 block matrices whose blocks are 3 x 3

scalar matrices :

Lemma 3. Let I be the 3 x 3 identity matrix, and A.(t), Q:(t), Lc(t) be the
9 x 9 matrices defined by

0 I 0 ke(t)2T  3h(t)I —k-(t)I
-As(t) = 0 0 1], Qs(t) = 3 s(t)l Zka(t)I 0
he(t)I k.(t)I 0 —k(t)I 0 31
and
ko(t)~Y/21 0 0
L(t) = A(t)V? 0 ko (t)~1I 0
0 0 ko(t)=3/21
Then Q. (t) is Hermitian and satisfies
(29) Q- (1) A(t) = A(t)" Qe (1),
(30) (Q-()W, W) = clL(W]?, YW e

Proof :  Since the 3 x 3 submatrices in A.(t), Q-(t) and L.(t) consist of the
3 x 3 identity matrix I, (29) and (30) can be easily derived from (26) and (27)
respectively. O
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Now, we transform our system (4) in a 9 x 9 system having for principal

part the block Sylvester matrix A.(t) of Lemma 3. ;From (4) we deduce that
(4) V! = €AV + BV = i€A.V +i€(A — AV + BV,
(1) (AV) = €AV +iA.(A— AV + ALV + A.BV,
(iii) (A2V) = €AV +i€A%(A — AV + (A2 V + A2BV
= [i€h.V + ik A V] — ESha V + i€(ka, — ko)AV
+iAZ(A — AV + (A2)'V + AZBV.

In the last equality, we used the Hamilton-Cayley equality (14).

If we put
v
V= V(t,§) = AV | e C?,
A%y
we are able to combine (7), (i7) and (i7), to get the following 9 x 9 system :
(31) V' = A1)V +iER(t)V — EP:(1)V + D:(t)V + B:(t)V,
where A.(t) is the matrix of Lemma 3, while
A— A, 0 0 0 0 0
Re(t) = A(A—-A) 0 0, P(t) = 0 0 0
A2(A-A) 0 0 Sha Il —i(ka, —ke)I 0O
0 0 O B 0 0
D.(t) = A0 o), Bt =| AB 0 0].
(A2 0 0 A2B 0 0

Then, we define the energy:
B(t,6) = (Q.(0V. V).
By the definition of £.(¢), using (19) and (21), we see that
(LW W) = e1 De(Ok(1) VP = ez |V,
hence, remarking that Q.(t) is bounded on [0, 7], we derive by (30) :
(32) ce®PlV]? < E(t,€) < C|V].
By (29) and (31), considering that Q. is Hermitian, we get the equality
E'(t,6) = (QV,V) + (QV, V) + (Q-V, V)
= (QLV,V) +i({ QA — ALQLIV, V)
+ (Qc{i€R. — EP- + Do + BV, V) + (Qe{i€R. — EP- + D + B}V, V)
= (QV,V) — 2S(QRV, V) — 26R(Q. PV, V) + 2R(Q. DV, V) + 2R(Q.B.V, V).

— 12—



In order to prove the energy estimate, we’ll use the following

Lemma 4. Let S be a 9 x 9 matrix. Then we have, for all W € C?,

(33) (SW,W) < C || £rsct || (2w, W),
(34) (Q.SW, W) < C || L2187 Q.8) Lt M2 (9w, W),
where C = 1/c , and ¢ > 0 is given by (30).
Proof : (33) follows directly from (30), noting that £ = L. , indeed :
(W W) = (LI'SLILW, LiW) < || L2MSL | 1L (W)
< L Ltset | (0w W),

To prove (34), we use the Schwarz inequality for the scalar product (Y, W) =
(QEJ/, W), and (33) with S*Q.S in place of S. Thus we obtain :

(Q:SW, W) = (Q:5W,sW)"* (., W)"/?
< O\ L2NSTQ8)Lt M2 (Q- W, W). m
By (33) and (34), it follows

Bt¢) < 0E<t,s>{u Lo1QLLT | 4 lel | £ (REQUR) LI Y2
FIE LN PrQP)LI M2+ || L2HDQD) LT |V + || £2H(BEQB) LI ||1/2}.

Now we estimate the five summands in the left side. To this end we first

observe that, for any 9 x 9 block matrix & = [Si } 1<ij<3 > One has
1
(35) LSLT = S [Sih<ig<s
g

1) Estimate of || LZ1QLL ||+ Using (35), we see that

L3/ 2P T 3T —kYPKLT
£t = - 3RT 2kMPELT 0 ,
€ 1/2,,
kKT 0 0

thus, by (16) and (20), we get

(36) H £—1Q/£—1 ” < &C{klm‘k/]—l—‘hﬂ} < k§/2cga_1
e e~e = Ag e 5 5 = As 1 .

— 13-



Lo

(37)

(38)

(39)

2) Estimate of || L1 (P:Q.P.)L || : By the equality

00 Yy k2T 3hI —I 0 0 0 Y'Y, YiYs 0
00 Yy 3hI 2kl 0 0 0 0|l=3( %Wy Y, 0],
00 0 —kI 0 3] i i 0 0 0 0

and by (35), we find

- (Sha )T —ik?(kea, — k) Sha I 0
WPIQP)L = 5| ikt P (ka, — ko) Sha,l ke |k, — ko|2T 0
° 0 0 0

Hence, by (16),

k

ke .
C{e® 4kl ka, kel +he  ha, —ke[} < 75 O™,

—1 * -1 < &
| £ (P2QPILT | < 55

To compute the products X*Q. X with X = R., D., B., we note that

X7 X5 X3 k:g[ 3h.l —k. I X; 00
0 0 0 3h.I 2k.1 0 Xo 0 0| =249
0 0 0 —k. I 0 37 X3 0 O
where
I 0 0
J = 0 0 O
0 0 0
and

7 = E2X7 X1 4+3h (X[ X0+ X3X1) — k(X7 X34+ X3X1 — 2X3X0) + 3X5 X3,
3) Estimate of || LY (REQ-R)LIY ||+ By (38) with X; = AI71(A — A),
j=1,2,3, recalling (35), we see that

LARIQRL = %FE v

where
Fo= (A= A {R2T+ 8ho(Ac + A7) = ke(A: — A2)? 3427 A2} (A = A.),

Hence, by (7), we get

ke
A,

Ke

AE 02 62a.

L RIQRIL | < = C | A-A | <
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4) Estimate of || LZY(D*Q. D)L || : By (38) with X; = 0, Xo = AL and
X3 = (A2, using (35), we see that

LNDIODIL = X g,

A

where G, = 2k.AL* AL + 3(A2)"(A?)’ . Hence we get, by (7),

(40) | LY D Q. D)L | <

ke
AR AR

ke

ClAL|? < = Ceh,

5) Estimate of || LY (B:Q.B:)L-t || : By (38) with X; = B, Xo = A.B,
X3 = A2B, and by (35), we see that

'C;l(B: QEBE)ﬁgl =

ke

A_EHEJ’

H. = B*{kg +3ho(Ae + AY) — ko(A. —A;)2+3A;2A§}B.

Hence

ke
(41) | LM B QBL || < 55 I Ho | < G5

k

g

=B |1

By (36), (37), (39), (40), (41), and (19), (21), recalling that B(t) belongs to
LY(0,T), and € < 1, we find the following estimate, for some (3(t) € L'(0,T),

1/2
Blg) < cEpof b e gy o B

<

IN

(CEB(1)

| CEB(1)
(CEB(t)

CEA(t)

| CEB(1)

for |£] > 1, by choosing

13/ 1 1/2

A A;/Q A;/Z

_€Q—1k§/2+€ak;/2|€|+€a—1k;/2i|
'5—1 +5a/2k5_1/4’f’ _|_€a/2—1k5—1/4]
el +e°1| < CEA@lE

o2+ 7| < CB A el

e 31e) + 7] < CE ()Y 0+
€)1 if r=1,
e=4 ¢V =2,

|~V (Fa/3) i =3,

— 15—

if r=1
if r=2,3
if r=1,
if r=2,
if r=3.



[CDS]

[CJS]

Thus, by (32), we get the wished a priori estimate (5), where o is equal,
respectively, to 1/(1 — «a), 1+ «/2, 1 + «/3. This concludes the proof of

Theorem 1 in the case m = 3. O
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