
A REMARK ON UNIFORMLY SYMMETRIZABLE

SYSTEMS

PIERO D’ANCONA AND SERGIO SPAGNOLO

Abstract

We prove that any first order system, in one space variable, with ana-

lytic coefficients depending only on time, is smoothly symmetrizable if

and only if it is uniformly symmetrizable. Thus any one of this condi-

tions is sufficient for the well posedness in C∞.

1. Introduction

We consider the Cauchy problem on [0, T ] × Rx

ut = A(t)ux + B(t, x)u + F (t, x) on [0, T ] × Rx(1.1)

u(0, x) = u0(x) on Rx(1.2)

in one space variable x ∈ R. System (1.1) is called uniformly sym-

metrizable if there exists an N × N matrix S(t), possibly nonsmooth
in t, such that

‖S(t)‖ + ‖S(t)−1‖ ≤ M < ∞ on [0, T ],(1.3)

S(t)A(t)S(t)−1 is Hermitian.(1.4)

Clearly this is equivalent to assume that A(t) is uniformly diagonable

with real eigenvalues, since any Hermitian matrix can be diagonal-
ized by a unitary change of basis. In particular this implies A(t) is
a (weakly) hyperbolic matrix, meaning that its eigenvalues are purely
real.

If in addition to (1.3), (1.4) one assumes S(t) is a C1 function, and
in this case the system is called smoothly symmetrizable, then it is well
known that (1.1), (1.2) is well posed in C∞. Indeed, well posedness
holds for any system

ut =
n

∑

j=1

Aj(t, x)uxj
+ B(t, x)u + F (t, x)(1.5)
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in any number of variables, provided the N × N matrix

A(t, x, ξ) =

n
∑

j=1

A(t, x)ξj

has a smooth symmetrizer S(t, x, ξ) belonging to C1([0, T ]; S0) (see e.g.
[8]).

On the other hand, when the symmetrizer is nonsmooth with respect
to t well posedness may fail to hold, as the following arguments show.

Example 1.1 (The 2 × 2 case). Tarama [7] (see also [1]) constructed
two C∞ functions a(t), b(t) on [0, T ] such that

0 < C1 ≤
a(t)

b(t)
≤ C2 on [0, T ](1.6)

and that the 2 × 2 system

ut = A(t)ux, A(t) =

(

0 a(t)
b(t) 0

)

(1.7)

is not well posed in C∞. Indeed, an easy computation shows that the
2 × 2 real valued matrix

A(t, ξ) =

(

d1(t, ξ) a(t, ξ)
b(t, ξ) d2(t, ξ)

)

is uniformly symmetrizable if and only if one of the following equivalent
conditions is fulfilled:

4ab + (d1 − d2)
2 ≥ C(a − b)2 for some C > 0,(1.8)

4ab + K(d1 − d2)
2 ≥ ǫ(a2 + b2) for some K < 1 and ǫ > 0,

(1.9)

with C, K, ǫ independent of t, ξ. In particular, when d1 − d2 = 0 as in
example (1.7), condition (1.9) is equivalent to (1.6).

In our paper we show that, in the special case of space dimension
equal to one, and with the additional condition

A(t) is real analytic,(1.10)

the matrix A(t) is in fact uniformly symmetrizable if and only if it is
smoothly symmetrizable. As a consequence, we can prove:

Theorem 1.1. Consider Problem (1.1), (1.2) under assumptions (1.3),
(1.4) and (1.10), and assume B(t, x) ∈ C([0, T ]; W s,∞(R)) for some

s ≥ 0. Then, for any u0 ∈ Hs(R) and F (t, x) ∈ C([0, T ]; Hs(R)),
Problem (1.1), (1.2) has a unique solution u ∈ C1([0, T ]; Hs(R)).

Remarks. We conclude this section with a few remarks.
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1. We were not able to extend our method to the case of several
space dimensions n > 1. We suspect that there exist uniformly
but not smoothly symmetrizable matrices A(t, ξ) with analytic
coefficients. However, smooth symmetrizability is not necessary
for the C∞ well posedness. Indeed, in the case of 2 × 2 systems
one can prove (Nishitani [5], Nishitani and Colombini [1]) that
assumptions (1.3), (1.4) and (1.10) are sufficient for the C∞ well
posedness. The general case N ≥ 3, n ≥ 2 is open.

2. We also mention a related result due to Kajitani [3] who proved
that any uniformly diagonable hyperbolic system with smooth
(not necessarily analytic) coefficients is well posed in the Gevrey
classes γs for s < 2.

3. Another class of hyperbolic systems with analytic coefficients de-
pending only on time, well posed in C∞, is the class of pseu-

dosymmetric systems introduced in [2]. The pseudosymmetricity
assumption is in general not comparable with (1.3), (1.4). We
recall also the result of Nishitani [4] concerning 2×2 systemswith
analytic coefficients depending on (t, x) ∈ R2.

2. Proof of Theorem 1.1

Lemma 2.1. Let A(z) be a N × N matrix, with coefficients holomor-

phic on a complex neighbourhood of the real interval I =]a, b[, and

assume A(z) has real eigenvalues for real z ∈]a, b[. Then there exist

λ1(z), . . . , λN(z) holomorphic functions on some complex neighbour-

hood of I, such that the spectrum of A(z) is exactly {λ1(z), . . . , λN(z)}
for all z.

Proof. We shall apply the Schwartz reflection principle in the following
form (see e.g. [6]):

Let Ω be an open subset of C such that z ∈ Ω ⇐⇒ z̄ ∈ Ω,
and write

Ω± = {z ∈ Ω : ±ℑz > 0}.

Let f(z) be holomorphic on Ω+ and assume

ℑf(zn) → 0

for any sequence zn ∈ Ω+ converging to a point of ω ∩ R.
Then f can be extended to a function F , holomorphic on

Ω, such that F (z̄) = F (z).

Consider the characteristic polynomial p(λ, z) = det(λI − A(z)) of
the matrix A(z). As it is well known, apart from isolated exceptional
points, each point has a neighbourhood where the roots in λ of p(λ, z) =
0 can be expressed as N holomorphic functions λ1(z), . . . , λN(z) (not
necessarily distinct). By analytic continuation, any simply connected
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domain not containing an exceptional point has the same property.
Now, denote by Dr the disk |z − t0| < r for a fixed t0 ∈ I and write

D±
r = {z ∈ Dr : ±ℑz > 0}.

By the above argument, we can express the roots of p(λ, z) = 0 on
D+

r as N holomorphic functions λ1(z), . . . , λN(z), provided r is small
enough. Notice that |λj(z)| ≤ M on Dr, with a bound M depending
only on the coefficients of A(z).

Now, fix a root λ(z) = λj(z) for some j = 1, . . . , N . We shall prove
that λ(z) extends to a holomorphic function on Dr; this will follow at
once from Schwartz’ principle, as soon as we prove that ℑλ(zn) → 0 for
any sequence zn ∈ D+

r with zn → t∗ ∈ R. By a compactness argument,
this is equivalent to prove that if λ(znk

) → λ∗ for some subsequence
znk

, then λ∗ ∈ R; but this follows immediately by continuity, since

p(λ∗, t∗) = lim p(λ(znk
), znk

) = 0

and p(λ, t∗) has only real roots for t∗ ∈ R by the hyperbolicity assump-
tion.

Thus we have proved that, in a complex neighbourhood of each
point t0 ∈ I, we can represent the roots of p(λ, z) = 0 as holomor-
phic functions λ1(z), . . . , λN(z); by analytic continuation we conclude
the proof.

For any N×N matrix A with distinct eigenvalues λ1, . . . , λν , ν ≤ N ,
we can define the projections Pj on the corresponding eigenspaces using
the Dunford integrals

Pj(A) =
1

2πi

∫

Γj

(ζI − A)−1dζ, j = 1, . . . , ν(2.1)

where Γj is the boundary of a disk containing λj but not λi with i 6= j.
We have the following well known properties:

PiPj = δijPj ,

PjA = λjPj ,
ν

∑

j=1

Pj = I.

Define now the operator

Q ≡ Q(A) =
ν

∑

j=1

P ∗
j Pj,(2.2)

which enjoys the property

QA =

ν
∑

j=1

P ∗
j PjA =

ν
∑

j=1

λjP
∗
j Pj.(2.3)

We have then:
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Lemma 2.2. Let A be an N × N matrix, and assume S symmetrizes

A, i.e.,

SAS−1 is Hermitian.

Then

C−1
0 I ≤ Q ≤ C0I

with

C0 = ‖S‖2 · ‖S−1‖2.

Proof. Since the spectrum of A and SAS−1 is the same, we have

Pj(SAS−1) =
1

2πi

∫

Γj

(ζI − SAS−1)−1dζ

=SPj(A)S−1

as it is readily seen. Since SAS−1 is Hermitian, the operator πj =
Pj(SAS−1) is an orthogonal projection. Thus

(Qv, v) =
∑

|Pj(A)v|2 =
∑

|Sπj(A)S−1v|2

≤ ‖S‖2
∑

|πjS
−1v|2 = ‖S‖2|S−1v|2 ≤ C0|v|

2

and conversely

|v|2 ≤ ‖S−1‖2|Sv|2 = ‖S−1‖2
∑

|πjSv|2

= ‖S−1‖2
∑

|SPjv|
2 ≤ C0

∑

|Pjv|
2 = C0(Qv, v).

We are now ready to prove Theorem 1.1. By Lemma 2.1 we know
that the eigenvalues λ1(z), . . . , λN(z) of A(z) are holomorphic functions
on a neighbourhood of the real interval [0, T ]. In particular, for any
i 6= j two cases are possible: either λi ≡ λj everywhere, or λi = λj

only at isolated points. Thus we may define ν holomorphic functions
λ1(z), . . . , λν(z), ν ≤ N , such that λi = λj only at isolated points and

spec (A(z)) = {λ1(z), . . . , λν(z)}.

By possibly restricting the complex neighbourhood Ω of the real in-
terval [0, T ], we may assume that the λj(z) are holomorphic on Ω and
may coincide only at a finite number of real points t1, . . . , tk ∈ [0, T ],
while they are distinct for z ∈ Ω \ {t1, . . . , tk}.

Let us now define, for z 6∈ {t1, . . . , tk},

Pj(z) = Pj(A(z)) =
1

2πi

∫

Γj

(ζI − A(z))−1dζ, j = 1, . . . , ν
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where Γj is the boundary of a small disk centered in λj(z) and not
containing λi(z) for i 6= j. Clearly Pj(z) is a matrix valued holomorphic
function on

Ω̃ = Ω \ {t1, . . . , tk}

since λ1(z), . . . , λν(z) are continuous and distinct on Ω̃. Moreover,
remarking that

(ζI − A(z))−1 =
co(ζI − A(z))

det(ζI − A(z))
,

it is easy to prove that the functions Pj(z) may have at most poles at
z = t1, . . . , tk but no essential singularity. Indeed, we have the estimate

‖(ζI − A(z))−1‖ ≤
C

|ζ − λ1(z)| . . . |ζ − λν(z)|
;

now we can choose Γj such that

|ζ − λj(z)| =
1

2
min
i6=ℓ

|λi(z) − λℓ(z)| ≡ δ(z).

When z approaches one of the possibly singular points ti, where two
of the holomorphic functions λj(z) coincide, we have nevertheless an
estimate like

δ(z) ≥ C|z − ti|
p

for some integer p ≥ 1; in conclusion we obtain

‖Pj(z)‖ ≤
C

δ(z)ν−1
≤

C

|z − ti|p(ν−1)

which implies that Pj(z) has a pole at z = ti, i.e.,

Pj(z) =
B(z)

(z − ti)M

for some function B(z) holomorphic near ti, B(ti) 6= 0, and some inte-
ger M ≥ 0, as claimed. We can now apply Lemma 2.2 which gives for
real z = t the estimate

‖Pj(t)‖ ≤ C
1/2
0

and this implies M = 0, i.e., Pj(z) = B(z) can be extended to a
holomorphic function also at ti and hence on the whole open set Ω.

Thus we have proved that Q(z) = Q(A(z)), defined as

Q(z) =

ν
∑

j=1

P ∗
j (z)Pj(z)

for z ∈ Ω̃ (see (2.2)), can be extended to a C∞ function on the whole
of Ω; actually, Q(z) is a holomorphic function of (z, z̄).
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Using again Lemma 2.2, we see that we have constructed a function
Q(t) ∈ C∞([0, T ]) such that for t ∈ [0, T ]

C−1
0 I ≤ Q(t) ≤ C0I,

‖Q′(t)‖ ≤ C,

Q(t)A(t) is Hermitian.

In other words, we have proved that Problem (1.1), (1.2) is smoothly
symmetrizable, and the conlcusion of the proof follows by well known
and standard arguments (see e.g. [8]).

Remark. Notice that in the above proof we are not able to give an
estimate of ‖Q′(t)‖, but we only know it is bounded by the smoothness
of Q(t). Hence in the case of several space dimensions we cannot give
an estimate uniform in ξ of the analogous matrix Q′(t, ξ), which is
essential for the energy estimate.
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