Algebra I - Esercitazione

Esercizio 1. Siano R un anello ed I un suo ideale. Definiamo il radicale di I come

$$\sqrt{I} := \{ a \in R \mid \exists n \in \mathbb{N} \text{ t.c. } a^n \in I \}$$

Dimostrare le seguenti affermazioni:

- $\diamond I = \sqrt{I} \iff \exists J \text{ t.c. } I = \sqrt{J}. \text{ In tal caso } I \text{ si dice } radicale;$
- $\diamond~I$ è radicale $\iff R/I$ è un anello ridotto (ovvero non ha elementi nilpotenti);

 \Diamond

$$\sqrt{I} = \bigcap_{I \subseteq P} P$$

(Suggerimento: ripensare ad un esercizio della quinta scheda.)

Esercizio 2. Sia R un anello commutativo; denotiamo con $\operatorname{Spec}(R)$ l'insieme degli ideali primi di R (R stesso non incluso). Dato un sottoinsieme $S \subseteq R$, definiamo

$$V(S) := \{ P \in \operatorname{Spec}(R) \mid S \subseteq P \}$$

Se denotiamo con I(S) l'ideale generato da S, dimostrare che:

- $\diamond V(S) = V(I(S));$
- $\diamond V(I) = V(\sqrt{I});$
- \diamond Spec(R) è uno spazio topologico i cui chiusi sono i V(I), al variare di I.

Esercizio 3. Determinare se $\mathbb{Q}(\sqrt{2})$ e $\mathbb{Q}(\sqrt{3})$ sono isomorfi come campi e/o come \mathbb{Q} -spazi vettoriali.

Esercizio 4. Sia \mathbb{F} un campo ed $f \in \mathbb{F}[x]$ un polinomio; il *campo di spezzamento* di f è la più piccola estensione $\mathbb{K} \supseteq \mathbb{F}$ tale che f è completamente riducibile in $\mathbb{K}[x]$. Determinare il campo di spezzamento dei seguenti polinomi in $\mathbb{Q}[x]$:

- $\Rightarrow 3x^3 2x^2 + 3x 2;$
- $\diamond x^3 3;$
- $x^3 x^2 + 6x 6$.

Esercizio 5. Siano p un primo e \mathbb{F}_p il campo finito con p elementi. Determinare se i seguenti polinomi sono irriducibili o meno in $\mathbb{F}_p[x]$, al variare di p:

- $\diamond x^{p-1} 1;$
- $\diamond x^2 + 1;$
- $\diamond x^p 3.$

Esercizio 6. Determinare, se esistono, i polinomi minimi a coefficienti razionali e reali dei seguenti numeri complessi:

$$i-3$$
 $\sqrt[4]{2}$ $i-\sqrt{3}$ $e^{\frac{3i\pi}{4}}$ $i\pi$