Algebra 1

Proff. A. De Sole, D. Valeri

Primo appello, 26 giugno 2024

Nome: _			
Cognome:			
Numero di m	atricola:		
Docente: De	e Sole \	Valeri (cerchiare il/	i docente/i).

Esercizio	Punti totali	Punteggio
1	6	
2	6	
3	6	
4	6	
5	6	
Totale	30	

Soluzione:			
Risposta: $n =$			
		2	

Esercizio 1. Determinare tutti gli interi positivi n tali che $n^2 + 1$ sia divisibile per n + 1.

Esercizio 2. Siano $X=\{1,2,3\},\ \Omega=\{f:X\to X\},$ e si consideri il gruppo $G=S_3\times S_3.$ Per ogni $(\sigma,\tau)\in G$ e $f\in\Omega,$ denotiamo

$$((\sigma,\tau)\cdot f)(x) = \sigma(f(\tau^{-1}(x))).$$

- (a) Mostrare che · definisce un'azione di G su Ω .
- (b) Determinare lo stabilizzatore G_{1_X} e calcolare la cardinalità dell'orbita \mathcal{O}_{1_X} della funzione identità $1_X \in \Omega$, definita da $1_X(x) = x$ per ogni $x \in X$.
- (c) Determinare lo stabilizzatore G_{χ} e calcolare la cardinalità dell'orbita \mathcal{O}_{χ} della funzione $\chi \in \Omega$ definita da $\chi(x) = 1$ per ogni $x \in X$.

Soluzione:

Risposta:

Esercizio 3. Sia $p\in\mathbb{Z}$ un primo positivo. Si consideri l'anello

$$A_p = \mathbb{Q}[x]/(x^4 - 11x^2 + 2p)$$
.

- (a) Determinare tutti gli ideali di A_5 .
- (b) Per quali primi p > 0 A_p è un campo?

Soluzione:

\mathbf{D} .	
H 16	nocta
TUL	posta:

(a) Ideali di ${\cal A}_p$:

, (b)
$$p =$$

 $\bf Esercizio~4.~$ Determinare la forma canonica di Smith della seguente matrice

$$\begin{pmatrix} 2 & 6 & -8 \\ 12 & 14 & 6 \\ 4 & -4 & 8 \end{pmatrix} \in \operatorname{Mat}_{3\times 3}(\mathbb{Z}).$$

Soluzione:

Risposta:

Esercizio 5. Sia \mathbb{F} un campo e sia \mathbb{K} il campo di spezzamento su \mathbb{F} del polinomio $x^4 + 1$. Calcolare $[\mathbb{K} : \mathbb{F}]$ nei seguenti casi:

(a) $\mathbb{F} = \mathbb{Q}$;

(b) $\mathbb{F} = \mathbb{F}_5$.

Soluzione:

Risposta: (a)
$$[\mathbb{K} : \mathbb{F}] =$$
 $\qquad \qquad ; \quad (b) \ [\mathbb{K} : \mathbb{F}] =$

Foglio per la brutta copia

Foglio per la brutta copia

Foglio per la brutta copia