Esercizi - foglio 16 (consegna 6 maggio)

Esercizio 16.1 Esprimere il gruppo abeliano $A := \mathbb{Z}/(12) \times \mathbb{Z}/(15) \times \mathbb{Z}/(18)$ come prodotto diretto di gruppi ciclici $\mathbb{Z}/(d_i)$, dove d_i divide d_j quando $i \leq j$. Esprimere A anche come prodotto diretto di gruppi del tipo $\mathbb{Z}/(p^k)$ con p primo.

Esercizio 16.2 Considerare l'applicazione lineare $L_M: \mathbb{C}^3 \to \mathbb{C}^3$ associata alla seguente matrice complessa

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 4 & 1 \end{pmatrix}.$$

- (a) Ridurre, tramite eliminazione di Gauss sull'anello $\mathbb{C}[x]$, la matrice xI-M in forma diagonale con elementi diagonali che dividono ognuno il successivo.
- (b) Determinare la forma canonica di Jordan di L_M e una base di \mathbb{C}^3 in cui L_M assume la forma di Jordan.

Esercizio 16.3 Sia $T: \mathbb{Q}^3 \to \mathbb{Q}^3$ un'applicazione lineare tale che $(T^7 + 2I)(T^2 + 3T + 2I)^2 = 0$. Determinare le possibili forme di Jordan di T e il relativo polinomio caratteristico.

Esercizio 16.4 Dire quanti siano, a meno di isomorfismo, i gruppi abeliani di ordine 400.

Esercizio 16.5 Sia p(t) un polinomio a coefficienti in un campo \mathbb{F} monico di grado n. Dimostrare che esiste una matrice M di tipo $n \times n$ a coefficienti in \mathbb{F} che abbia polinomio caratteristico $\det(x\mathbb{I}-M)=p(t)$.

Esercizio 12.6 Determinare il polinomio minimo di $\sqrt{3} + \sqrt{5}$ su ciascuno dei seguenti campi:

(a) \mathbb{Q} ; (b) $\mathbb{Q}[\sqrt{5}]$; (c) $\mathbb{Q}[\sqrt{10}]$; (d) $\mathbb{Q}[\sqrt{15}]$.

Esercizio 12.7 Sia α una radice complessa del polinomio irriducibile $x^3 - 3x + 4 \in \mathbb{Q}[x]$. Scrivere esplicitamente l'inverso di $\alpha^2 + \alpha + 1$ nella forma $a + b\alpha + c\alpha^2$ con $a, b, c \in \mathbb{Q}$.

Esercizio 12.8 Sia \mathbb{F} un campo e α un elemento che genera un'estensione $\mathbb{F}[\alpha]$ di \mathbb{F} di grado 5. Dimostrare che $\mathbb{F}[\alpha^2] = \mathbb{F}[\alpha]$.