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Abstract

We classify a certain class of vertex algebras, finitely generated by a Virasoro field,
even primary fields of conformal weight 1 and odd primary fields of conformal weight
3/2. This is the first interesting case to consider when looking at finitely generated
vertex algebras containing a Virasoro field (the most interesting from the point of
view of physics).

By the axioms of vertex algebras it follows that the space g of fields with conformal
weight 1 is a Lie algebra, and the space U of fields with conformal weight 3/2 is a
g-module with a symmetric invariant bilinear form.

One of the main observations is that, under the assumption of existence of a quasi—
classical limit (which basically translates to the existence of a one parameter family
of vertex algebras, the free parameter being the Kac-Moody level k), the complex
connected algebraic group G corresponding to the Lie algebra g acts transitively on
the quadric S?> = {u € U s.t. (u,u) =1} C U. This generalizes a similar result of
Kac in the case of conformal algebras. Using this observation, we will classify vertex
algebras satisfying the above assumptions, by using the classification of connected
compact subgroups of SOy acting transitively on the unit sphere. The solution is
given by the following list:

® g==s50, U=C" forn >3,
e g=gl, U=C"pC", forn>1,n+#2,
g=sl, U=CqC>,

e g=5p,Psp,, U=C"QC* n>2,
e g=B;, U=V, = Spin,,
[ J g:Gz, U:V'/rl-

However, if one removes the assumption of existence of quasi—classical limit, the
above argument fails and the problem of classification has to be studied using different
techniques. In the case in which g is a simple Lie algebra and U an irreducible g—
module, we will prove, under some weak technical assumption, that no examples with
“discrete” values of the Kac—Moody level appear.
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Chapter 1

Introduction

Vertex algebras were introduced about 15 years ago by Richard Borcherds [3]. They
provide a rigorous definition of the chiral part of 2—dimensional conformal field theory,
intensively studied by physicists. Since then they had important applications to
physics, in string theory and conformal field theory, and to mathematics, by providing
tools to study the most interesting representations of infinite dimensional Lie algebras.

Conformal algebras were introduced more recently by Victor Kac. They give an
axiomatic description of the singular part of the operator product expansion of chiral
fields in conformal field theory. To some extent, conformal algebras are related to
vertex algebras in the same way Lie algebras are related to associative algebras. This
is more than just an analogy. In fact, any conformal algebra R has a Lie bracket,
and the corresponding universal enveloping algebra U(R) is naturally endowed with
a structure of vertex algebra, which is then called the “enveloping vertex algebra”
over R.

From a mathematical point of view, the theory of vertex algebras is much richer
than the related theory of finite conformal algebras. Indeed in a relatively short period
of time, the theory of finite conformal algebras has been extensively developed by
Kac and his collaborators, and a complete classification of finite simple Lie conformal
superalgebras was found [5, 6]. However, a similar structure theory for vertex algebras
is far from being known. This thesis approaches this problem by studying vertex
algebras which are generated by a Virasoro field and primary fields of conformal
weight 1 and 3/2.

In the next section we will give the definitions of Lie conformal algebra and ver-
tex algebra, needed throughout the thesis. In Section 1.2 we will then describe the
problem studied in the thesis and state the main results.

1.1 Definitions of Lie conformal algebras and ver-
tex algebras

Definition 1.1.1. A Lie conformal superalgebrais (see [12]) a Zo—graded C[T]-module
R = R3® R; endowed with a C-linear map R® R — C[A|® R denoted by a®b — [a  b]
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and called A-bracket, satisfying the following axioms

[Ta b = —Aarb], [arTb] = (A+T)[a b (sesquilinearity)
[bxal = —pla,b)[a _x_1 b] (skewsymmetry)
[ax[bucl]—p(a,b)b,faxc] = [[axb] aru (Jacobi identity)

for a,b,c € R. We denoted p(a, b) = (—1)P@P(®) Here and further ® stands for the
tensor product of vector spaces over C. In the skewsymmetry relation, [a ) 1 0]
means that we have to replace in [a , b] the indeterminate A with the operator
(=X —T), acting from the left. We call rank of a Lie conformal algebra its rank as
C[T] module. For brevity, we will sometimes drop the prefix super in superalgebra.

For a Lie conformal algebra we can define a C-bilinear product R ® R — R for
any n € Z, = {0,1,2,---}, denoted by a ® b — a(,)b and given by

[ax b= AYagb, (1.1)

nEZ+

where we are using the notation: A := 2—7

Particularly important in physics is the Virasoro conformal algebra. 1t is defined
as the free C[T]-module of rank 1 generated by an even element L, with A-bracket
defined by

[LxLl=(T+2\L (1.2)

and extended to C[T] ® L using sesquilinearity.

Vertex algebras can be thought of as a special class of infinite-rank Lie conformal
algebras.

Definition 1.1.2. A vertex superalgebra is a pair (V, |0)), where V is a Zy—graded
C|[T]-module, called the space of states, and |0) is an element of V, called the vacuum
state. It is endowed with two parity preserving operations: a A-bracket V@ V —
C[A] ® V' which makes it a Lie conformal superalgebra, and a normal order product
V®V — V, denoted by a ® b —: ab :, which makes it a unital differential algebra
with unity |0) and derivative T'. They satisfy the following axioms

(a) quasi-associativity
(abe:—alher): = (fOTd/\a> byl
+ p(a,b) : (fOTd)\b> laxd:,

(b) skewsymmetry of the normal ordered product

0
:ab:—p(a,b):ba:z/ dAa » 0],

=T
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(¢) non commutative Wick formula

(@ :bc:] ::[a,\b]c:—i-p(a,b):b[a)\c]:—i-/o dulla » 0] , c] .

The normal order product of more than two elements is obtained by taking products
starting on the right. In other words, for elements a,b,c,--- € V, we will denote
rabe---:=:a(tb(te---1) )

A proof of the equivalence between this definition of vertex algebra and the one
given in [12] can be found in reference [1].

Remark 1.1.3. Since |0) is the unit element of the differential algebra (V,T'), we have
T|0) = 0. Moreover, by sesquilinearity of the A-bracket, it is easy to prove that the
torsion of the C[T]-module V is central with respect to the A-bracket; namely, if
p(T)a = 0 for some p(T') € C[T|\{0}, then [a , b] = 0 for all b € V. In particular the
vacuum element is central: [a , [0)] =[|0) » a] =0, Va € V.

Remark 1.1.4. Using skewsymmetry (of both the A\-bracket and the normal ordered
product) and non commutative Wick formula, one can prove the right Wick formula

[fab: xc] =:(e"a)[bc]:+pla,b): (e"b)[a » c]:
+ pla,b) [ odulb , fa oy o]

The proof follows from a straightforward computation. This formula first appeared
in [1].

For a vertex algebra we can define n—th products for every n € Z in the following
way. Since V is a Lie conformal algebra, all n-th products with n > 0 are already
defined by (1.1). For n < —1 we define n—th product as (k= —n—1 > 0)

ak—nyb=: (T®a)b: . (1.3)

By means of the n—th products, for every n € Z we have a linear map V' — EndV
given by a — a(,). The following super commutation relation follows by definition of
n—th product and by the axioms of vertex algebra (see for example [12]):

m
EREDD < -)(a(j)b)(m+n—j) : (1.4)
70 \J

By definition every Vertex algebra is a Lie conformal algebra. On the other hand,
given a Lie conformal algebra R there is a canonical way to construct a vertex algebra
which contains R and is strongly generated by it (in the sense specified below). This
result is stated in the following

Theorem 1.1.5. Let R be a Lie conformal superalgebra with A\-bracket [a » b]. Let
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Ry, be R considered as a Lie superalgebra with respect to the Lie bracket:
0
la, b :/ dNa b, abeR,
-T

and let V = U(Ry,,) be its universal enveloping algebra. Then there exists a unique
structure of a vertex superalgebra on V' such that the restriction of the A—product to
Rp;e X Rp;e coincides with the A—product on R and the restriction of the normal
ordered product to Ry, x V coincides with the associative product of U(R[,;,).

The vertex algebra thus obtained is denoted by V(R) and is called the enveloping
vertezr algebra associated to R. For a proof of this theorem, see [12] and [1, Th 7.12].

Definition 1.1.6. A Virasoro (or conformal) vector of a vertex algebra V' is an even
element L such that

() [Lx L] = (T +2)\) L + §2@|0),
(b) L =T,
(c) Ly is diagonalizable on V.

The number c is called the central charge of L. A vertex algebra V endowed with a
Virasoro vector L of central charge c is called a conformal vertex algebra of rank c.

It follows from (1.4) that if L is a Virasoro element, then the endomorphisms
L, = Ln41) € EndV satisfy the commutation relation

[Liny L] = (m — n) Ly, + 1—02(m3 —m)om-—n, YMmnez.

In other words any conformal vertex algebra V' of rank c is a representation of the
Virasoro Lie algebra with central charge ¢, via the action L,(a) = Lyya.

By definition of conformal vector, we ask that the operator L(y) is diagonalizable on
V. Eigenvalues of L1y are called conformal weights. Therefore if a € V' is eigenvector
of V with conformal weight A, we have the A-bracket relation

[L x a] = T(a) + AXa + ( terms of higher order in A ) .

Definition 1.1.7. An element a € V is called primary of conformal weight A if there
are no other terms in the above A—bracket:

[La]l=(T+ANa .

The following are some obvious but very useful formulas related to conformal
weights.

Lemma 1.1.8. Suppose a and b are eigenvectors of Ly with conformal weights A(a)
and A(b) respectively. Then

14



(a) Ta is eigenvector of Luy with conformal weight

A(Ta)=Aa) + 1,

(b) for every n € Z, awmb is eigenvector of L1y with conformal weight
A(amyb) = A(a) + A(b) —n—1.
In particular A(: ab:) = Aa) + A(D).
The proof follows from a straightforward computation.

Definition 1.1.9. A vertex algebra is said to be strongly generated by a collection of
elements A = {a*, « € A}, if the vectors

af‘ijl_l) .- -a?fjn_1)|0) , o; €A, 4i=>0,1=1,...,n,
span the whole space of states V. In other words V' is obtained by applying 7" to,
and by taking ordered products of, elements of A.

1.2 Vertex algebras strongly generated by a Vi-
rasoro field and primary fields of conformal
weight 1 and 3/2

The main purpose of the thesis is to study the following

Problem 1.2.1. Classify vertex algebras V' which are strongly generated by the
following elements:

1. the vacuum element |0),

2. a finite dimensional space g of even primary elements of conformal weight
A =1, called currents,

3. a finite dimensional space U of odd primary elements of conformal weight
A=3

2
4. the Virasoro element L.

The assumptions of Problem 1.2.1 are motivated by the following considerations.
From the point of view of physics, it is natural to require that the vertex algebra V' is
a representation of the Virasoro Lie algebra, namely it is a conformal vertex algebra
with a Virasoro element L € V. To say that V is strongly generated by primary
elements is equivalent to say that the representation of the Virasoro Lie algebra on V'
decomposes as direct sum of highest weight representations. In this case, each primary
element corresponds to the highest weight vector of a subrepresentation. In particular,
this assumption is automatically satisfied if we require that the representation of
the Virasoro Lie algebra on V' is unitary. Moreover, if we require that the vertex
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algebra V is unitary (namely the adjoint representation of V' on itself is a unitary
representation), it follows that the conformal weights have non negative semi-integer
values, [15]. Let us now examine the smallest possible values of the conformal weight
A€ %Z+. A = 0 corresponds to the vacuum vector |0) € V. Primary elements of
conformal weight A = 1/2 generate a Fermion subalgebra V3, C V, [12]. In particular
the vertex algebra V' becomes a representation of the Clifford algebra. It follows by
representation theory of the Clifford algebra, that the space V' decomposes as a tensor
product V' = Vj/, ® V', where V! C V is a vertex subalgebra generated by primary
elements of conformal weight A # 1/2, see [12, Theorem 3.6], [9]. We can thus restrict
ourselves to consider vertex algebras strongly generated by a Virasoro element and
primary elements of conformal weight A = 1,3/2,.... The easiest situation, in which
V' is generated by L and primary elements of conformal weight A = 1, is “trivial”.
Indeed in this case it follows by simple conformal weight considerations that the
generating set R = C|0) & C[T'|g & C[T]L is the semidirect product of the current
Lie conformal algebra and the Virasoro Lie conformal algebra, [12], so that V is a
quotient of the enveloping vertex algebra U(R). In conclusion, the first “non trivial”
situation is when the vertex algebra V' is strongly generated by a Virasoro element
and primary elements of conformal weight 1 and 3/2.

A problem similar to Problem 1.2.1, though easier, has been studied in [13]. There
is given a complete list of physical Lie conformal algebras which, by definition, con-
tain a Virasoro element L and for which the set of even (resp. odd) elements is
generated, as C[T]-module, by primary elements of conformal weight A = 1 (resp.
A =1/2,3/2).

We want to stress the difficulties arising from formulating Problem 1.2.1 in the
context of vertex algebras rather than finite Lie conformal algebras. If we denote by
R the C[T]-module

R=C[T|(Cl0)®geUaCL) , (1.5)

in both situations we want to define a bilinear A\-bracket [a 5 b] for element a,b €
R, satisfying the axioms of Lie conformal algebra. When classifying physical Lie
conformal algebras, one asks that R is itself a Lie conformal algebra, therefore closed
under the A-bracket; namely [a , b] € C[A]R. Conversely, in the vertex algebra
setting, we just ask that R is a strongly generating set for some vertex algebra V/,
which is thus obtained from R by taking normal ordered products. Therefore one
allows the A\-bracket [a ) b] to take values in a larger space:

[a,b € CA]V =CA(R+:RR:+---).

Notice that by asking that R is as in (1.5) we make sure, by conformal weight
considerations, that the A-bracket [a ) b] with a,b € R is a linear combination of
elements of R and normal ordered products of at most two elements of R, namely

[a x b € CIA\|(R+ : RR:) C CA]V . (1.6)
In other words Problem 1.2.1 can be viewed as first deformation of the problem of
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classifying all physical Lie conformal algebras.

A vertex algebra V' generated by a space R with a A-bracket of kind (1.6) is
known in physics literature as a conformal algebra with quadratic non linearities.
The problem of their classification is discussed in [7] and [8] and a list is provided.
There the proof is based on “physical” arguments and in particular on the assumption
of existence of classical limit, which, in this paper, will be removed.

As we said, if we want the space R in (1.5) to be a strongly generating set of a
vertex algebra V', we need it to be endowed with a A-bracket of kind (1.6) satisfying
sesquilinearity, skewsymmetry and Jacobi identity. It turns out this is all we need to
do: the existence of such A-bracket structure on R ® R guarantees the existence of
an “enveloping vertex algebra” over R. In other words, we will prove a generalization
of Theorem 1.1.5, to the case in which R is not necessarily a Lie conformal algebra,
since it might not be closed under the A-bracket, but it still has a A-bracket structure
[A]: R®R — C[A](R+ : RR:) satisfying all the axioms of Lie conformal algebras.
This is stated in the following

Theorem 1.2.2. Let R = Ry @ R; be a vector superspace, endowed with an even
vector |0) € R and an even endomorphism T € EndR such that T|0) = 0. Assume
that R is of finite rank as C[T]|-module. Denote by T (R) the tensor algebra over R.
Let Ly : R® R — C[A\] ® T(R) be a Lie A\-bracket of degree 2, namely a parity
preserving linear map satisfying sesquilinearity, skewsymmetry and Jacobi identity
(in the sense specified in Section 2.1), such that Ly(a,b) € C[A] ® R if either a or
b€ Ry and Ly(a,b) € CI\| @ (R® (R; ® Rg)) if a,b € R1. Then there exists a vertex
algebra, called the enveloping vertex algebra over R and denoted by U(R), together
with a surjective map m: T(R) — U(R), such that R — 7(R) is a generating set
for U(R), the vacuum vector is 7(|0)), the infinitesimal translation operator of U(R),
restricted to R, 1s given by T, the \=bracket, restricted to R ® R, is compatible with
L)\.'
[7‘(‘(0,) A W(b)] = 7T(L)\(CL, b)) ’ Va,b €R )

and the normally ordered product, restricted to R Q@ R, is compatible with the associa-
tive product in T (R):

cm(a)m(b): = m(a®b), Va,beER.
Chapter 2 will be entirely devoted to stating and proving Theorem 1.2.2.

In the next chapters we will use Theorem 1.2.2 to partially solve Problem 1.2.1.
The main technique used is based on the analysis of the generating space R C V,
defined by (1.5). Apart from the C[T]-module structure, R carries a bilinear product
a®b — a()b, for every n € Z. The axioms of vertex algebras are translated into some
complicated equations for all n—th products, known as Borcherds identities. By direct
inspection of these identities one gets in particular that the O-th product restricted to
g ® g defines a Lie algebra structure on the space g, and the 0-th product restricted
to g ® U defines a representation of g on the space U. Moreover, the 0-th product of
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two element u,v € U is of the form
uo)v = Q(u,v)L + TK(u,v) + Py (u,v) - Pa(u,v) , (1.7)

where Q(u,v) is a symmetric invariant bilinear form on U, K € Homg( A*U, g) and
P € Hom,(S?U, S?g). We are using the notation P = P; ® P, for an element of g® g.

One of the main observations is that, under the assumption of existence of a quasi—
classical limit (which basically translate to the existence of a one parameter family
of vertex algebras, the free parameter being the Kac-Moody level k), the complex
connected algebraic group G corresponding to the Lie algebra g acts transitively on
the quadric S = {u € U s.t. (u,u) = 1} C U. This generalizes a similar result
in the case of conformal algebras [13]. Therefore, under the above assumption, we
will solve Problem 1.2.1 by using the classification of connected compact subgroups of
SOp acting transitively on the unit sphere. More precisely we will prove the following

Theorem 1.2.3. Let V be a vertex algebra strongly generated by the space R in
(1.5), which admit quasi—classical limit (according to Definition 5.1.5). Assume g is
a reductive Lie algebra, U is any g-module, and the bilinear forms % : S*g — C, Q :
S2U — C (defined in Table 5.1) are non degenerate. Then the pair (g,U) is one of
the following

e g=-s0, U=C", forn>3,
e g=gl, U=C"aC", forn>1,n+#2,

g=sl, U=C*qC>,

® g=5p,®sp,, U=C"®C% n>2
e g=B;, U=V;, = Spin,,

e g=Go, U=V,,.

However, if one removes the assumption of existence of quasi—classical limit, the
above argument fails and Problem 1.2.1 has to be studied using different techniques.
We will be able to do so, in the special case in which g is a simple Lie algebra and U is
an irreducible g—-module, and under a technical assumption that the vertex algebra V'
is “non degenerate”. Roughly speaking, such assumption guarantees that the space R
generates freely its enveloping vertex algebra V' = U(R), namely an analogue of the
Poincare-Birkhoff-Witt Theorem holds. We will prove that, under these assumption,
every vertex algebra V' admits a quasi—classical limit, and thus no examples appear
with “discrete” values of the Kac-Moody level k. This is stated in the following

Theorem 1.2.4. Let V be a non degenerate (according to Definition 3.2.4) vertex
algebra strongly generated by the space R in (1.5), and assume that g is a simple
Lie algebra, U is an irreducible g—module and the bilinear forms »x: S?g — C, Q :
S2@Q — C (defined in Table 3.1) are not identically zero. Then the pair (g,U) is one
of the following: (so,, C*) with n >3, n # 4, (Bs, V), (G2, V).
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Chapter 2

Existence of the enveloping vertex
algebra U(R)

In this chapter we will define the enveloping vertex algebra U(R) over a space R
endowed with a A-bracket with “quadratic non—linearities”.

In the particular case in which R is a Lie conformal algebra, namely it is closed
under the \-bracket, the space U(R) is easily defined as the universal enveloping
algebra over the Lie algebra Ry;. (defined in Section 1.1). However, if R is not
a Lie conformal algebra, namely the A-bracket admits “quadratic non-linearities”,
the construction of U(R) is more involved. In Section 2.1 we will describe such
construction. The main results are Theorem 2.1.7 and Theorem 2.1.8. Theorem 2.1.7
gives an explicit description of the space U(R) by providing a basis over C. It is the
analogue, in this more general setting, of the Poincare-Birkhoff-Witt Theorem for the
universal enveloping algebra over a Lie algebra. Finally, Theorem 2.1.8 states that
U(R) is naturally endowed with a vertex algebra structure.

The remaining sections of this chapter will be devoted to proving Theorem 2.1.7
and Theorem 2.1.8. In Section 2.2 we will state and prove some technical lemmata,
needed in the following sections. In Section 2.3 we will prove Theorem 2.1.7. In order
to prove Theorem 2.1.8 we will need to present an equivalent definition of vertex
algebra, based on the notion of local fields, and to state the so called “Existence
Theorem”, [12]. This will be done in Section 2.4. Finally in Section 2.5 we will prove
Theorem 2.1.8.

2.1 Enveloping vertex algebra over R

Throughout this chapter we will denote by R a vector superspace, R = R & R,
where Rj (respectively Ri1) denotes the even (resp. odd) subspace, endowed with an
even element |0) € R and an even endomorphism 7" € EndR such that T'|0) = 0. We
will always assume R is of finite rank as C[T]-module. For example R can be as in
(1.5). Let T(R) be the tensor algebra over R

T(R)=C®R®R*?®---
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and we extend the action of T' to T (R) by derivation of the tensor product, namely
T(1)=0, T(A®B)=T(A)®@B+A®T(B), VA,Be T(R) .
We want to define a gradation on 7 (R) which will allow us to carry induction argu-

ments.

Definition 2.1.1. (a) A monomial m = 4;®- - -®a, € T (R) is said to be homogeneous
if each factor q; is either even or odd.

(b) The degree of a homogeneous monomial m is by definition the pair (n, k), where n
is the total number of factors of m and k is the number of odd factors of m. More in
general an element A € T (R) is said to be a homogeneous polynomial of degree (n, k)
if it is linear combination of homogeneous monomials of degree (n, k). (The element
0 is considered to be of any degree.)

(c) We assign alphabetical ordering to the set of all possible degrees D = {(n, k) | 0 <
k <n € Z,}, namely we say that (ni,k;) < (ne, ko) if either ny < ny or n; = ny and
k1 < ko. An element A € T(R) is then said to be a polynomial of degree (n, k) if it
is linear combination of independent homogeneous monomials of degree less then or
equal to (n, k) and the highest degree is (n, k).

(d) We then have a gradation on T (R), namely

T(R) = @ T(R)nk],

(n,k)eD

where T (R)[n, k] is the space of homogeneous polynomials of degree (n,k). The
corresponding filtration is

Too(R) C Tio(R) C Tia(R) C--- CT(R),
where 7, ;(R) is the space of polynomials of degree less then or equal to (n, k).
Definition 2.1.2. A A-bracket (of degree 2) on R is a linear map
Ly : RRR—-CAN®T(R),

satisfying the following conditions:

1. L, is parity preserving and every element Ly(a,b) is a polynomial in A with
coefficients in 7 (R) of degree at most (2,0). More precisely

L’\‘R@R D R ® Ry — R[], if either 4 or j =0 ,
19 L

Lalp or, ¢ B1®Ri — (Ro® RG%)[A] -
2. sesquilinearity conditions hold, namely for a,b € R

Ly(Ta,b) = —ALy(a,b) , Ly(a,Tb) = (T + \)Lx(a,b) .
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We say that the A-bracket L, is skewsymmetric (or a skew A-bracket) if for a,b € R
L)\(CL, b) = —p(a, b)L_)\_T(b, a) . (21)

Lemma 2.1.3. A) Let R be as above and let Ly : R® R — C[\| ® T(R) be a
A-bracket on R. One can define uniquely linear maps

Ly: To2(R)® T(R) — C[A] @ T(R) ,
N: T2(R)QT(R) — T(R),

such that Ly, restricted to RQ R coincides with the given \-bracket, and the following
conditions hold for a,b € R, A € T2(R), C € T(R):

Lr(1,0) =0, Ly(A,1) =0, (2.2)

Ly(a,b®C) = N(Lx(a,b),C)+ p(a,b)b® Ly(a,C)

+ [ dp Lu(La(a,8),0) (23)
Ly(a®b,C) = (eT%) ® Ly (b, C) + p(a, b) (eT%) ® Lx(a,C)
\ (2.4)
+ p(a,b) [ dp Lu(b, Ln-y(a,C))
N(1,C) = C, N(A1) = A, N(@,C)=a&C, (2.5)
N@®b,C) = a®b®0+(f0Td)\a)®LA(b,0)
(2.6)

T

n p(a,b)(fod)\ b) ® Ly(a,C) .

B) Moreover Ly and N satisfy the following grading conditions ((n1, k1) < (2,2)):
L)\(ﬁn,kl (R) ® 7;12J€2 (R)) - (C[)‘] ® 7;11+n2,k1+k2*2(R) )

N(El,kl(R) &® 7;12,162 (R)) C 7;11+n2,k1+k2 (R) :
(We use the convention Tp_1(R) = Th—1n-1(R), Tn,—2(R) = Th—1n—2(R)).

2.7)

Proof. For A€ C@ Ror C € C, N(A,C) is given by (2.5) and for A € C, C € C
or A,C € R,Ly\(A,C) is given by (2.2). Assume then by induction that N(a ®
b,C"), Ly(a®b,C") and Ly(a,b®C") are uniquely defined and they satisfy the grading
conditions (2.7), for every a,b € R and C' € T,,(R) with (p,q) < (n,k). For
C € Tnx(R) we then have that N(a®b, C) is defined by (2.6), Ly(a®b, C) is defined
by (2.4) and Ly(a,b® C) is defined by (2.3). It’s easy to check that all terms in the
right hand sides of (2.6), (2.4) and (2.3) are well defined by the inductive assumption
and they satisfy the grading conditions (2.7). O

Definition 2.1.4. Let R be as above and let Ly : R® R — C[A\] ® T(R) be any
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A-bracket on R. We define the subspace M(R) C T(R) by

0)—1; A®b®c®D —pb,c)A®c®b® D

M(R) =
PV =W\ o N[ dr La,0), D), ADETR), beeR

The universal enveloping algebra over R is, by definition, the quotient space
UR)=T(R)/M(R) .

If 7 : T(R) — U(R) is the quotient map onto U(R), we denote the image of
monomials of 7(R) by

tab-zi= 1(a@b® - Q 2) .
The filtration on 7 (R) induces naturally a filtration on U(R)
Upo(R) C Urp(R) CUi1(R) C---U(R) ,
defined by Uy x(R) = m(Tox(R)).

Definition 2.1.5. Lemma 2.1.3 allows us to give sense to triple A-brackets. We say
that the A-bracket Ly : R® R — C[A] ® T(R) satisfies Jacobi identity if for every
a,b, c € R it satisfies

Ly(a,L,(b,¢)) — p(a,b)L,(b, Lx(a,c)) = Lyyu(La(a,b),c) mod C[A, u] ® M(R) .
(2.8)
A A-bracket Ly : R® R — C[A\] ® T(R) is said to be a Lie A-bracket if it satisfies
skewsymmetry (2.1) and Jacobi identity (2.8).

Lemma 2.1.6. Given a A\-bracket L, : R® R — C]\|® T (R) we can define the map
L: R® Tz22(R) = T(R) given by (a € R, B € T22(R))

L(a, B) = /0 i\ Ly(a, B) .

=T

If Ly is a Lie A-bracket, then L satisfies skewsymmetry
L(a,b) = —p(a,b)L(b,a) , Va,b€ R
and Jacobi identity
L(a, L(b,c)) — p(a,b)L(b, L(a,c)) = L(L(a,b),¢) mod M(R), Va,b,c€ R .
Proof. The proof follows from a straightforward computation. O

The main results of this chapter are the following two theorems.
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Theorem 2.1.7. Let A = {ag = |0),a1,as, ...} be a countable basis for the space R
such that each basis element a; has given parity. Denote by

Bz{:ail...ai :

n ° )

the collection of ordered monomials of U(R). If Ly is a Lie A\-bracket (of degree 2)
on R, then B is a basis for U(R). In particular there is a natural embedding

R 5 n(R) C UR).

Theorem 2.1.8. Let Ly : R® R — C[]\] ® T(R) be a Lie A-bracket (of degree 2)
on R. There is a unique structure of vertex algebra on U(R) (which is then called
the enveloping vertezr algebra over R) such that the vacuum vector is |0) = w(1), the
infinitesimal translation operator is induced by the action of T on T (R):

T(n(A)) ==(T(A)), VAeT(R),
the A-bracket restricted to R @ U(R) is compatible with L) :
[7(a) » 7(B)] = m(Lx(a,B)), Va€e R, BeT(R),

and the normally ordered product restricted to RQU (R) is compatible with N (namely
with the tensor product):

:m(a)m(B): = n(N(a,B)) =m(a®B), Va€eR, BeT(R).

Remark 2.1.9. Consider the particular case in which R is closed under the A\-bracket
Ly, namely Ly(a,b) € R[], Va,b € R.

(a) In this case the map L: R® R — R defined in Lemma 2.1.6 is a Lie bracket on
R and U(R) coincides with the universal enveloping algebra over R (viewed as a Lie
algebra with respect to L). Therefore Theorem 2.1.7 coincides, in this case, with the
PBW Theorem for ordinary Lie superalgebras.

(b) Moreover, to say that R is closed under the Lie A\-bracket L, is equivalent to
say that R is a Lie conformal algebra. Therefore U(R) coincides with the enveloping
vertex algebra over R (as defined in Section 1.1), and Theorem 2.1.8 reduces to
Theorem 1.1.5. We can thus view Theorem 2.1.8 as a generalization of Theorem 1.1.5
to the case in which the A-bracket L) is allowed to take values on the larger space

C[\ ® (R& RE?).

The remaining sections of this chapter will be devoted to prove Theorem 2.1.7 and
Theorem 2.1.8. In the next section we will prove some technical results needed in the
proof of both Theorem 2.1.7 and 2.1.8. The proof of Theorem 2.1.7 will be in Section
2.3 and the proof of Theorem 2.1.8 will be in Sections 2.4 and 2.5. The content of
the following sections will not be needed for an understanding of the remaining of the
thesis, so it can be skipped at first reading.
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2.2 Some technical results

In the following we will assume that all hypotheses of Theorems 2.1.7 and 2.1.8 are
satisfied. Namely R = Rj @ R; is a vector superspace with an even (vacuum) vector
|0), an even endomorphism 7' : R — R which makes R a C[T]-module of finite rank,
and a Lie A-bracket (of degree 2) Ly: R® R — C[A\] ® T(R) (see Definitions 2.1.2
and 2.1.5).

For convenience, we want to introduce a notation which will be used throughout
this section. For elements A, B,C - -- € T(R) for which the right hand side is defined,
we will denote

skI(A,B;\) = Lx(A,B) + p(A, B)L_,_r(B,A),
skn(4,B,C) = N(A,N(B,C)) — p(A, B)N(B,N(4A,C))
= N(([rdr (4, B)),C)
IW(A, B,C;)) = Lx(A,N(B,C)) — [}du L,(Lx(A,B),C)
— N(Lr(4,B),C) — p(4, BYN(B, Ix(4,C))
rW(A, B,C;)) = Ly(N(A,B),C) — p(A,B) [ du Lu(B, Ly_,(A,C))
. N((eTaxA),LA(B,C)) - p(A,B)N((eTaxB),LA(A,C)),
4A(4,B,C) = N(N(A,B),C) — N(A,N(B,C))
- N((fOTd)\ A),L,\(B,C))
. p(A,B)N((fOT d\ B),LA(A, o)),
JAB,CsAw) = La(A,L(B,C)) — p(4, B)L,(B, Lx(4,0))
— Ly u(Lx(A,B),C) .

Remark 2.2.1. Using the above notation, we can write in a more concise form all the
definitions introduced in the previous subsection. The maps Ly : T22(R) ® T(R) —
CIA|®T (R) and N : To2(R)®T (R) — T (R) are defined respectively by the equations

IW(a,b,C;\) = rW(a,b,C;)\) = 0,
qA(a,b,C) = 0, Va,be R, C € T(R) .

The definition of Lie A-bracket can be written in terms of the conditions

skl(a,b;A) = 0, Ya,b € R,
J(a,b,c; A n) € CA\ul @ M(R), Va,b,ceR.
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Finally, the subspace M(R) C T(R) is defined as
M(R) =span{|0) —1; A®skn(b,¢,D), bceR, A,DeT(R)} .

Lemma 2.2.2. The map N : Ty2(R) @ T(R) — T(R) satisfies Leibniz rule with
respect to the derivation T, namely, for A € T32(R), B € T(R)

TN(A,B) = N(TA,B) + N(A,TB) , (2.9)

The map Ly : To2(R)® T (R) — CIA]Q T (R) satisfies sesquilinearity conditions with
respect to T, namely, for A € Too(R), B € T(R)

Ly(TA,B)=—-AL\(A,B), L\(A,TB)=(A+T)L\(A,B), (2.10)
In particular T is a deriwation of L.

Proof. Recall that 1 € C is a unit element for the normal ordered product N, and it is
a central element for the A\-bracket L,; this means that equations (2.9) and (2.10) are
trivially true if either A or B belongs to C. Since by definition N(a, B) = a ® B for
a € R, B € T(R), we also have that (2.9) is obviously satisfied for A € R, B € T(R).
Moreover, by definition of A-bracket, we also know that equations (2.10) are true for
A, B € R. The lemma will be proved if we show that, for a,b € R, C € T(R)

Ly(T(a®b),C) = —ALx(a®b,C), (2.11)
Ly(Ta,b®C) = —ALy(a,b®C), (2.12)
TN(a®b,C) = N(T(a®b),C)+ N(@a®b,TC), (2.13)
Ly(a®b,TC) = A+T)Lrx(a®b,C), (2.14)

Ly(a, Tb®C)) = (A+T)Lr(a,bC), (2.15)

We will prove these equations by induction on deg(C). By the above arguments,
all equations (2.11)—(2.15) are obviously true if deg(C) = (0,0). Assume now that
equations (2.11)—(2.15) are satisfied if deg(C) < (n, k), and we want to prove them
for C' € T, x(R). By definition one has

Iy(T(@®b),C) = Ly(Ta)®b,C) + Ly(a® (Tb),C)
- ( TaATa) ® Ly(b,C) + p(a, b) ( T%) ® Ly(Ta,C)
+ pla,d) [ dp Lu(b, Lr_y(Ta, C)) (2.16)
+ (eT%) ® Ly(Th, C) + p(a, b) eTa*Tb) ® Lx(a,C)
+ pla,b) [ dp L(Th, Ly_,(a, C))
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By inductive assumption we have
Ly(Ta,C) = —AL\(a,C), Lx(Tb,C) = —ALy(b,C),
Lu(b, Lry(Ta,C)) = (= NLu(b, Laos(a,C) |
Lu(Tb, Ly (@,C)) = —pLy(b, Lr-u(a,C))

In the last two equations we used the fact that, by Lemma 2.1.3, degL)(a,C) <
deg(a)+deg(C). Combining these results we can rewrite the right hand side of (2.16)
as

(eTBA (T - A)a) ® Ly(b,C) + p(a,b) <eT8A (T - )\)b) ® Ly(a,C)

— Ap(a,b) [ dpp Lu(b, Lr-u(a,C)) = —ALr(a®,C) .

Here we used the fact that eT» )\ = (A+T)eT9. This proves equation (2.11). Similarly
one has, by induction

Ly(Ta,b®C) = N(Lx(Ta,b),C) + p(a,b)b® Ly(Ta,C))

+ Jodp L(IA(Ta,b),C) = —Aa(a,b@C),

which proves (2.12). By definition of N one has
TN(a®b,C) = T{a®b® C+ (fOTdA a) ® Ly (b, C)

+p(a, b)(fOT d\ b) ® Li(a, 0)} . (2.17)

Recall that T is defined by derivation of the tensor product. Moreover, by inductive
assumption, we have T'Ly(a,C) = Ly(Ta,C) + Ly(a,TC). Putting together these
facts, we can rewrite the right hand side of (2.17) as

NT(a®b),C) + Na®b,TC)
thus proving (2.13). Similarly we have
TLy(a®b,C) = T{ <6T6*a> ® Lx(b,C) + p(a,b) (eTaAb> ® Ly(a,C)

+p(00) [ Lyl I u(a,C)}

Since deg (LA(a, C’)) < deg(a) + deg(C), we can use inductive assumption to write
the right hand side as

Ly(T(a®b),C) + Ly(a®b,TC),
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which, together with (2.11), gives (2.14). Finally we have

TLy(a,b® C) = T{N(L,\(a, b),C) + pla, b)b & Ly(a, C)

2.18
P LM(L,\(a,b),C)} , (2.18)

We need to use (2.13) and (2.14) to compute respectively the first and the third term
of the right hand side. This, combined to inductive assumptions, allows us to rewrite
the right hand side of (2.18) as

Ly(Ta,b®C)+ Ly(a, T(b® (C)) ,
which, together with (2.12), gives (2.15). This completes the proof of the lemma. O

Corollary 2.2.3. The space M(R) C T(R) is invariant under the action of T,
namely TM(R) C M(R).

Proof. Tt follows immediately by the definition of M(R) and by Lemma 2.2.2. O
Lemma 2.2.4. (a) For a,b,c € R, we have

A

skl(a,b® c; \) = skn(Ly(a,b),c,1) -l—/ dv skl(Ly(a,b),c;v) . (2.19)
-T
In particular, if b, c € Ry we have
skl(a,b®c; \) = skn(Ly(a,b),c,1) . (2.20)

(b) Fora € R, b,c € Ry and D € T(R), we have
skn(a,b® ¢, D) = b®skn(a,c, D)+ skn(a,b,c® D)

+ skn(a, ( T dx b),LA(c, D))

+ skn(a, (jOT d\ c) ,L\(b, D)) (2.21)

+  [Ied) skn(Ly(b,a),¢, D) ,
where T, denotes T' acting only on the element c.

Proof. Equations (2.19) and (2.21) follow by rather lengthy computations. The details
are provided in the Appendix. Equation (2.20) follows immediately from (2.19), after
noticing that Ly(a,b) € R[\] and using (2.1). O

Corollary 2.2.5. The following conditions hold
skl(71,1(R), Too(R); A) C CIA] @ M(R)
skn(71,1(R), T20(R), T(R)) C M(R) .
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Proof. We need to prove that skl(A, B; \) € C[]\]® M(R) and skn(A, B, D) € M(R)
for every A, B, D € T(R) such that deg(A) < (1,1) and deg(B) < (2,0). If deg(A) =
0 or deg(B) = 0, we obviously have skl(A, B; \) = 0 and skn(A, B, D) = 0, so we can
assume A =a € Rand B € R® RS?. If B =) € R, then skl(a,b;A) = 0 by (2.1)
and skn(a, b, D) € M(R) by definition of M(R). Finally, if B = b® c with b, c € Rg,
we have skl(a,b ® ¢;\) € C[]\] ® M(R) by (2.20) and skn(a,b ® ¢, D) € M(R) by
(2.21). O

Lemma 2.2.6. For a,b,c € R, D € T(R), the following equations hold
J(a,b,e® D; A\, ) = 1W(a, L,(b,c),D;\) — p(a,b)IW(b, Lx(a,c), D; p)
— IW(Lx(a,b),¢, D; XN+ p) + N(J(a,b,c;\ 1), D)
+ pla,c)p(b,c)e® J(a, b, D; A, p)

+ M duL,(3(a,b,e; A p), D) (2.22)

0
+ fou dv J(a, L,(b,c), D; \,v)

- p(a'a b) fo/\ dv J(b: L)\(G,, C), Da s V)

Ja,b® ¢, D; \, ) = <eT3ub) ®J(a, ¢, D; \, 1) + (6T3MC)®J(a, b, D; \, 1)
+ fo)‘ dv J(Lx(a,b),c, D;v, A+ p—v)
(2.23)
-+ f0” dv J(a,c, L,—,(b,D); \, )

+ f()” dv L,(c,J(a,b,D;\,p—v)) , forb,c€ Ry

IW(a,b®c,D;)\) = fo)\ du fo)ﬁ“ dv J(Lx(a,b),c, D; p,v)
+ (fOT dp b) ® J(a,c, Dy X, ) (2.24)
+ (fOTd,u c) ® J(a,b, D; A\, 1) for b, c € Ry
IWW(a®b,c,D; ) = fo)\ du fo)‘_“ dv J(b, Lx—,(a,c), D; p, v)
+ skn( (6T8*a> ,¢, Lx(b, D)) (2.25)

+ skn((eTaAb),c, Ly(a, D)) , for a,b € Ry .

Proof. All above equations follow directly from the definitions, by straightforward
though rather lengthy computations. The details are provided in the Appendix. [

Lemma 2.2.7. For a,b,c € R, D € T(R), the following equations hold

28



N(skn(a,b,1), D) = skn(a,b,D) , (2.26)

A
La(skn(a, b, 1), D) = — / d 3(a, b, Di i A — 1) | (2.27)
0

0

La(a,skn(b,c, D)) = —1W(a, ( / du Ly c)),D; )

+ [ (W (e, b), . D1 ) = p(b. W (0,1, Di )
—p(a, ¢)p(b, ¢)skn(c, Ly(a,b), D) + p(a, b)skn(b, Ly(a, ¢), D)

+ p(a, b)p(a, )skn(b, ¢, Lx(a, D)) (2.28)
+ /0 " d N(SKI(n(0,8), & 1) — p(b, €)sl(La(a, ), b: 1), D)

—N(( / OAT dp skl(a, Ly, (b, 0); )\)),D)

—p(a,b) /0 y / Y0 LKL s (b, 0), ¢ 0), D)

+p(a, p(b,¢) /0 " / Y4 LKLy (6 ), b 1), D)

A A
- / dv / dp Ly(sK1(a, Ly (b, c); A), D)
0 v

0

~pla bl ON( [ dndbcas—r— 1)), D)

—A-T

A A
—p(a, bYp(as <) / dv / A Lo((byc, a;v— i, ji— ), D) .
0 v

Proof. Equation (2.26) follows immediately by quasi—associativity (2.6). For (2.27),
we use the right Wick formula (2.4) to get

Ly(skn(a, b, 1), D)
= Ly(a®b,D) — p(a,b)Lr(b® a, D) + [ dy Ly(L,(a,b), D)

= — [ dp Lu(a, La-u(b, D)) + p(a,d) [ dp Lu(b, La—u(a, D))
+ Jo dp La(Lu(a,0), D) = — [ dp J(a,b, D; s, A — ) .

Equation (2.28) follows by a straightforward but quite lengthy computation. The
proof is provided in the Appendix. O

Corollary 2.2.8. The following condition holds
N(To2(R) N M(R), T(R)) ¢ M(R). (2.29)
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Proof. Notice that 71 1 (R)NM(R) = 0, so that T2 2(R)NM(R) is spanned by elements
skn(a, b,1) with a,b € R. Therefore condition (2.29) follows immediately by equation
(2.26). 0

Corollary 2.2.9. The following conditions hold

LA(Tz2(R) N M(R), T(R)) C C[A\|® M(R), (2.30)
N(Tz2(R), M(R)) € M(R), (2.31)
LA(T22(R), M(R)) C C]A]® M(R), (2.32)
IW(T1(R), Too(R), T(R); A) C ClAl @ M(R), (2.33)
IW(T20(R), Tia(R), T(R); A) € CA| @ M(R), (2.34)
J(Ti1(R), Too(R), T(R); A p) C ClA, p] © M(R) . (2.35)

In particular the space M(R) is a two sided ideal with respect to the maps N and L.

Proof. All conditions (2.30)—(2.35) will be proved simultaneously with an induction
argument based on Lemmata 2.2.6 and 2.2.7. In order to prove condition (2.31) we
need to prove that N(A, E) € M(R) for every A € To2(R), E € M(R). On the
other hand, for A € 7;,(R) this is automatically satisfied. It is therefore enough to
consider A = a ® b € R®?. To prove (2.32) we need to show that Ly(A, E) € M(R)
for every A € T32(R) and E € M(R). We will consider separately the two cases
A=a€ Rand A = a®b € R®. To prove (2.33) and (2.34) we need to show
that IW(A, B, D; \) € M(R) in the two cases A € T11(R), B € Tz0(R), D € T(R),
and A € Ty0(R), B € T11(R), D € T(R). If either deg(A) = 0, or deg(B) = 0
or A € R and B € R, we have IW(A, B, D;\) = 0 thanks to the left Wick formula
(2.3). We thus only need to consider the two cases A =a € R, B=0b®c € RS?
and A=aQ®be R?Q, B = ¢ € R. Finally, to prove (2.35) we need to show that
J(A,B,D;\, ) € M(R) for A =a € R, B € T30(R) and D € T(R). We will
consider separately the two cases B=b® c € R?Z and B = b € R. In conclusion,
the corollary will follow once we will have proved the following conditions

Ly(skn(a,b,1),D) € C]\| @ M(R), Va,be R, D e T(R) , (2.36)
N(a®b,E) e M(R), Va,b€ R, E € M(R) , (2.37)
Ly(a®b, E) € C[A\] ® M(R) , Va,b € R, E € M(R) , (2.38)
Lr(a, F) € C\] ® M(R) , Vae R, Fe M(R), (2.39)

IW(a,b®c,D; ) € CA] @ M(R) , Ya€ R, byce Ry, De T(R), (2.40)

IW(a®b,e,D;\) € CA]@ M(R), Va,be Ry, c€ R, DeT(R), (2.41)
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Ja,b®c,D; A p) € CApl @ M(R), Va€R, bc€ Ry, DET(R), (242)

J(a,b,c® D; \,u) € CI\, p] @ M(R), Va,b,ce R, D e T(R) . (2.43)

Notice that if deg(D) = deg(E) = 0 and deg(F) < (1,1), all conditions (2.36)-
(2.43) are satisfied. For (2.43) this is true due to assumption (2.8) on the A-bracket.
Let’s assume then, by induction, that (2.36)-(2.43) are satisfied for D € 7, ,(R) with
(p,q) < (n,k), E € T,,(R) N M(R) with (p,q) < (n,k) and F € T,,(R) N M(R)
with (p,q) < (n+ 1,k +1). We need to prove that (2.36)—(2.43) are satisfied for
D e n,k(R), FE € ﬂ,k(R) N M(R) and F € 7;L-|—1,k-|—1(R) N M(R) Condition (236)
follows by equation (2.27) and inductive assumption on (2.43). By quasi—associativity
relation (2.6) we have

N@®bE)=a®b® E+ (/Td)\ a) ® Ly(b, E) + (/Td)\ b) ® Lx(a, E)

0 0

and every term in the right hand side is in M(R) by inductive assumption on (2.39).
This proves (2.37). Similarly, by right Wick formula (2.4) we have

L(a®bE) = (eT%) ® L(b, E) + p(a,b)(eTaxb)@)LA(a,E)

+ pla,b) Jy dp Lu(b, La-y(a, E)) -

Since deg(Ly(a, E)) < (n+1,k+1), we can use again inductive assumption on (2.39)
to deduce that the right hand side belongs to M(R), thus proving (2.38). In order
to prove (2.39) we will consider separately the following two situations:

(@) F=bRFE forb€ R, E€ M(R)NTox(R),

’

(b) F =skn(b,c,D) € M(R)NTht16+1(R), (and D € Tp_1,-1(R)) -
In the first case we have, by left Wick formula (2.3)

Ly(a,b® E) = N(Lx(a,b), E) + p(a,b)b ® Ly(a, E) + /)\ du L,(Lx(a,b), E) ,

and all terms in the right hand side are in M(R) by inductive assumption and by
(2.37) and (2.38). In the second case, Ly(a, F) is given by equation (2.28), and (2.39)
follows from Corollaries 2.2.5 and 2.2.8, from equation (2.36) and from inductive
assumption on (2.40) and (2.41). Conditions (2.40) and (2.41) follow respectively
by equations (2.24) and (2.25) in Lemma 2.2.6 and inductive assumption on (2.43).
Similarly, (2.42) follows by equation (2.23), by inductive assumption on (2.43) and by
(2.39). Finally, (2.43) follows by Corollary 2.2.8, by equations (2.36), (2.40), (2.41),
(2.42) and by inductive assumption. This concludes the proof of the corollary. O
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2.3 Proof of Theorem 2.1.7

In this section we want to use the results of Section 2.2 to prove Theorem 2.1.7. Let
us denote by B the collection of homogeneous ordered monomials in 7 (R):

B={ai1®---®ain, 1<iy < <ip, n€Z+}

and let B[n, k] be the collection of homogeneous ordered monomials of degree (n, k);

we then have 5 5
B= || Bnk .
(n,k)eD

We denote the corresponding filtration by

Bue= |J Blp.dl.
(p.0)<(n k)

By definition (see Theorem 2.1.7) we have B = m(B) and we denote

~ :ail...aip:,
Bn,k - 7T([))n,lc) = .
s.t. either p <m, or p=mnand > p(a;) <k

1<ip <o < i

Lemma 2.3.1. 1. Any element E € T, (R) can be decomposed as
E=P+M, (2.44)

where P € spancB, , and M € M(R).

2. The space Uy, x(R) is spanned by the set B, . In particular
U(R) = spancB .
Proof. We want to prove part 1 by induction on (n, k). For (n,k) = (0,0) we have
T0,0(R) = C and the statement is trivial. Let then (n,k) > (1,0). It suffices to

prove the statement for monomials £ = a;, ® - - - ® a;, € T (R) of degree (n, k) (They
obviously form a basis of 7 (R), if a;; € A). Let us define the disorder of E by

d(E) =#{(p,q) st. 1<p<q<n,ip> iq} .
We will prove that £ decomposes as in (2.44) by induction on d(E). To say d(E) = 0

is equivalent to say that E is an ordered monomial and E € B,, x, so there is nothing
to prove. Suppose then d(E) > 1 and let p € {1,...,n — 1} be such that i, > i,41.
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By definition of M(R) we have
E = p(aip:a’ip+1)ai1®"'®aip+1 ®a/ip®"'®ain

+ 0, - ® i, _, X N(L(aip,aip+1),aip+2 R---R ain) mod M(R) .

Recall L(a,b) was defined in Lemma 2.1.6. The first term in the right hand side has
disorder d(E)—1, so it can be decomposed as in (2.44) by induction. By Lemma 2.1.3,
the second term of the right hand side belongs to 7, x—1(R), therefore by inductive
assumption it also decomposes as in (2.44). This concludes the proof of the first
part of the lemma. Part 2 follows trivially from part (a) and from the definition of

U(R). 0

Lemma 2.3.2. Let us denote by U a vector space with basis B, namely
u=gpca.

There is a unique linear map

such that
1. (1) =1,
2. o(A) = A, YA € B,
3. M(R) C kero.

Proof. We want to prove that there is a unique sequence of linear maps oy
Tnk(R) — U , such that

1. 00,0(1) =1 ) O—n,k|7;7q(R) = Up,q: V(p, Q) S (TL, k)a
2. oni(A) = A, VA € By,
3. M(R)NT,x(R) C ker o, .

This obviously proves the lemma, since we can then define ¢ with the conditions
0|T (R) = Tniks V(n, k) € D. The condition ggo(1) = 1 defines completely ogpo. Let
then (n,k) > (1,0) and suppose by induction that o, , is uniquely defined and it
satisfies all conditions (1)—(3) for every (p,q) < (n, k).

A) Uniqueness of oy,

Given E = a;; ® --- ® a5, € Tox(R) with a;;, € A, we will prove that o, (E) is
uniquely defined by induction on the disorder d(E) (see the definition above). For
d(E) = 0 we have E € B, so it must be 0,,(E) = E by condition (2). Let then
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d(E) > 1 and let (ip,i,41) be the “left most disorder”, namely p € {1,...,n} is the
smallest integer such that i, > i,.1. By condition (3) we have

onk(E) = plai,, i, )onk (ail Q- Qai,_, Qai,, Qa;,Va, ,Q a)

t Onk (ail Q- ®ai,,® N(L(aip’ aip+1)a Uiy @+ & azn)> .

Since (a;, ® -*- ® a;,,, ® a;, ® - - ® a;,) has disorder d(E) — 1, the first term in the
right hand side is uniquely defined by inductive assumption. Moreover, by Lemma
2.1.3 we have (a;, ® --- ® a;,_, ® N(L(as,,ai,,,), i,y @ -+ ® a5,)) € Tpr—2(R), so
that the second term of the right hand side is uniquely defined by condition (1) and
inductive assumption.

B) Ezistence of on

The above prescription defines uniquely a linear map o, : Tohi(R) — U, which by
construction satisfies conditions (1) and (2). We are left to show that condition (3)
holds. By definition of M(R) it suffices to prove that, for any homogeneous monomial
E=a,®: --®a;, € Tor(R) (a;; € A) of degree (n, k), and for any ¢ = 1,...,7n, one
has

On ke (ail ®...a; , ®skn(a;,, G, 0, Q-+ @ ain)) =0. (2.45)

Without loss of generality i, > 4,41, so that d(E) > 1. We will prove equation (2.45)
by induction on d(E). Let (ip,i,41) be the “left most disorder”. For p = ¢ equation
(2.3.2) holds by construction, so there is nothing to prove. We will consider separately
the cases p<q¢—1land p=gq— 1.

1) Assume p < q¢ — 1. For simplicity we rewrite
E=A0cb@D® fRe®H,
where A = a;, ® - ®a;,_, (11 < - < ip1 < i), €= a;, b= ag,,, (i > ipp1),

D=a;,,® - Qaj_,, f=a,e=a,, (ig>i41), H=0;,,® --®a;,. The left
hand side of equation (2.45) then takes the form

an,k(A®c®b®D®f®e®H) ~ple, f)an,k(A®c®b®D®e®f® H)

(2.46)
—an,k(A®c®b®D®N(L(f,e),H)) .

By definition of oy, x, the first term of (2.46) can be written as
an,k(p(b,c)Aeab@c@D®f®e®H+A®N(L(c,b),D®f@a@ﬂ)) . (2.47)

Since d(A®c®Rb@DR®e® f® H) =d(F) — 1, we can use inductive assumption to
rewrite the second term of (2.46) as

—p(e, f)on i (p(b, )ARIRc®DRe®fQH+AQN(L(c,b), DRe® f ®H)) . (2.48)
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By Lemma 2.1.3 we know that AQ c®b® D ® N(L(f,e), H) € Tnx—2(R), so that
eo(R) = Tnik—2 and inductive assumption to rewrite

the third term of (2.46) as

O (p(b, ) A®b@c®DON (L(f, e), H)+ARN (L(c, b), DON(L(f, e), H))) . (2.49)
Combining (2.47), (2.48) and (2.49) we can rewrite (2.46) as

- (p(b, )A®b®c® D®skn(f,e, H)+ A® N(L(c,b), D ®skn(f, e, H))) . (2.50)

The first term of (2.50) is zero by inductive assumption, since d(AQRbRcR D ® f ®
e® H) = d(E) — 1. Consider the second term in the argument of o, in (2.50). By
Lemma 2.1.3 we know that it is an element of 7, x_2(R); moreover by Corollary 2.2.9
we know that it is in M(R). It follows by induction that also the second term of
(2.50) is zero. We thus proved, as we wanted, that (2.46) is zero.

2) We are left to consider the case p = ¢ — 1. For simplicity we rewrite
E=AQc®b®@a®D
where A = a;;, ® -+ ® a;,_, (i1 < - < ipy < dp), € = Gy, b= Gipyy, @ = Gy

(ip > tpg1 > ipt2), D = a5,y ® -+ - @ a;,. The left hand side of equation (2.45) then
takes the form

an,k(A®c®b®a®D—p(a,b)A®c®a®b®D—A®c®N(L(b,a),D)) . (2.51)

After some manipulations based on inductive assumption similar to the ones used
above, we can rewrite (2.51) as

On (A ® {N (L(c,b),a ® D) — p(a, b)p(a, c)a ® N(L(c,b), D)
+p(b,c)b ® N(L(c,a), D) — p(a,b)N(L(c,a),b® D) (2.52)
+p(b, ¢)p(a, )N(L(b, a),c ® D) — ¢ ® N(L(b, a), D)}) .

It follows by Corollary 2.2.5 that

A®a® N(L(c,b),D) — p(a,b)p(a,c)A® N(L(c,b),a ® D)
A® N(L(a, L(c,b)), D) mod M(R) ,

A®b® N(L(c,a),D) — p(a,b)p(b,c)A® N(L(c,a),b® D)

= AQ® N(L(b,L(c,a)),D) mod M(R) ,
A®c® N(L(b,a),D) — p(b,c)p(a,c)A® N(L(b,a),c® D)

= A® N(L(c, L(b,a)), D) mod M(R) .
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Since every term in the above expressions is in 7, x—2(R), we can use inductive as-
sumption to rewrite (2.52) as

Ok (A®N((p(b, )L(b, L(e, a))—p(a, b)p(a, ¢) L(a, L(c, b)) —L(c, L(b, a))), D)) . (2.53)

By Lemma 2.1.6, L satisfies skewsymmetry. A simple computation based on the
definition of L(A, B), of J(A, B,C; A, 1) and of skl(A, B; \) allows us to rewrite (2.53)
as

p(a, b)p(a, c)p(b, €)onk (A ® N((fET d\ f_OA_T du J(a,b, c; A, u))

+ (fET dX skl(L(a, b), c; A))’D)) '

By definition of Lie A-bracket, we know that J(a,b,c; A, 1) € CIA, p] @ (T22(R) N
M(R)), and by Corollary 2.2.5 skl(L(a,b),c;\) € CA] ® (Tz2(R) N M(R)). We
finally notice that, by Corollary 2.2.8, the argument of o, in (2.54) is an element
of M(R), and by part B) of Lemma 2.1.3 it belongs to 7,—1,—1(R). Therefore, by
inductive assumption, it is in the kernel of oy, , namely (2.54) is zero. We thus proved,
as we wanted, that (2.51) is zero. O

(2.54)

Lemma 2.3.3. If 0 is as in Lemma 2.3.2, the induced map

Q>

: U(R)=T(R)/M(R) = U
is an isomorphism of vector spaces (namely M(R) = ker o).

Proof. By definition the map & : U(R) — U is surjective. On the other hand, we have
a natural map 7 : U — U(R) which maps every basis element A = a;, ®---®a;, € B
to the corresponding 7(A) = : a;, ...q;, : € BC U(R). By Lemma 2.3.1 this map is
also surjective. The composition map

U - vrR S u

is the identity map (by definition of 7 and &.) This of course implies that both 7 and
¢ are isomorphisms of vector spaces. O

The last lemma is basically saying that B is a basis for the space U(R), thus
concluding the proof of Theorem 2.1.7.

2.4 Existence Theorem for vertex algebras

In order to prove Theorem 2.1.8 we will need to use, together with the results in
Section 2.2, the so called Existence Theorem for vertex algebras [12], which we want
to state here.

In order to state the Existence Theorem, we need an equivalent definition of vertex
algebra (see [12]), based on the notion of fields.
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Definition 2.4.1. A field on a vector superspace V is an expression

a(z) =Y amz "' € EndV[[z*]]

neEL

such that for every v € V one has apyv = 0 for n >> 0 (namely a(z)v is a Laurent
series in z, with coefficients in V). We say that a(z) has parity p(a) if each a) €
EndV has parity p(a). We denote by glf(V') the space of fields on V.

For each n € Z, one defines the n—th product of fields as
a(2)mb(2) = Res, ((2)b(2)inz (2 = 2)" = pla, B)b()a(@)iza(z = 2)") . (2.55)

Here Res, denotes the coefficient of z—! and iz, (respectively i, ) stands for the series
expansion in the domain |z| > |z| (resp. |z| > |z|); namely

ip. (T —2)" = Z(?)x"‘j(—z)j :

Jj20
ez —2)" = (’;.)acj(—z)”_j :
Jj20
It is easy to see that the space glf(V) is closed under all n—th products, and also under

derivation 0, by the indeterminate z. Formula (2.55) is equivalent to the following
two formulas for n € Z

a(z)mb(2) = Res;la(z),b(2)](z —2)"
a(2)(cnnb(2) = : (0™a(2))b(2) : .

We denoted by [a(z), b(w)] the super commutator of fields

[a(2), b(w)] = Y [agmy, bz ™ w7,

m,nez

and by : a(z)b(z) : the normal ordered product of fields, defined as

ta(2)b(2) == a(z)+b(z) + p(ab)b(z)a(z)_ ,

where

a2)s =D amz ", alz)- =Y amz "

n<-1 n>0
Definition 2.4.2. A pair of fields a(z),b(z) € glf(V) is said to be local if
(z —w)N[a(2),b(w)] =0, for N >>0.
It is not hard to prove the following (see [12])
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Lemma 2.4.3. A pair of fields (a(2),b(z)) is local if and only if

[a(2):bw)] = Y (a(w)b(w)dP6(z — w) .
720
(finite)

Recall the definition of the formal §—distribution

Mz —w) = (lgw — twe) (2 Zz w "t e C[[z%, wt]] .

nEL

It is characterized by the property
Res,v(2)0(z —w) = v(w) , Vo(z) € V[[zF]] .

Definition 2.4.4. Let (V, |0)) be a pointed vector superspace, with an even endomor-
phism T, and let R C V be a Zy—graded C[T|-submodule containing |0). A state—field
correspondence from R to V is a parity preserving linear map YV : R — glf(V), de-
noted by a — Y (a, z), such that the following axioms hold:

1. vacuum axioms: Y (|0),2) =1y, Y(a,2)|0)=a+Ta+--- € V[z]],
2. translation invariance [T,Y(a,2)] =Y (Ta, 2) = 0,Y (a, 2).

The state-field correspondence Y : R — glf(V) is said to be local if every pair of
fields (Y (a, 2),Y (b, 2)), with a,b € R, is local.

The above definition was introduced in [1], together with the following

Lemma 2.4.5. Giving a state—field correspondence Y from R to V is equivalent to
providing R ® V' with two parity preserving operations:

1. a A-bracket RQV — V[}A], denoted a ® B — [a » B], satisfying sesquilinearity

[Ta  Bl=—-MaB], [axTBl=(\+T)axB], YacR, BeV,

2. a normal ordered product RQV — V, denoted a ® B — : aB :, such that |0) is
a unity and T is a derivation.

More precisely, this correspondence is obtained in the following way. If Y is a state—
field correspondence from R to V, then we define (a € R, B € V)

la » B] = Res,e®Y(a,2)B, :aB:=a_B.

Conversely, given a A-bracket and a normal ordered product on RQV', we get a state
field correspondence by defining (a € R, B€V)

Y(a,2)_.B=1a _o, Blz™", Y(a,2),B=:(e"a)B: . (2.56)
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Proof. The proof of this statement is straightforward. O

Thanks to Lemma 2.4.5 we can reformulate the definition of vertex algebra in
terms of the state—field correspondence Y. We have the following

Definition 2.4.6. A verter algebra is a vector superspace V', with an even vacuum
vector |0) € V, an even infinitesimal translation operator 77 € EndV and a local
state—field correspondence Y : V — glf(V).

This definition of vertex algebra was first given in [12]. The equivalence between
this definition and the one given in Section 1.1 is far from obvious; a proof can be
found in [1].

The following fact is known as Existence Theorem, and it states that, given a
suitable collection of pairwise local fields, one can construct a vertex algebra.

Theorem 2.4.7. Let V' be a vector superspace, let |0) be an even vector of V and T
an even endomorphism on V. Let {a*(z), o € A} (A an index set) be a collection of
fields such that

(i) [T,a%(z)] = 0,a%(z), for all a € A,

(i) T|0) =0, a*(2)|0) € V[[2]], and denote a® = a*(2)|0)|,=0 € V,
(iii) every pair (a®(z),ad?(2)), for o, B € A, is local,
(iv) the vectors a(ajll) . --a‘(’}i)|0> with s € Zy, j, €L, a, € A, span' V.

Then the formula

Yagyy -+ ayl0),2) = a® (2) Gy (@ (2) i) (- - - @ (2) 5,y )

defines a unique verter algebra structure on V such that |0) is the vacuum vector, T
is the infinitesimal translation operator and Y (a®, z) = a*(z) for all a € A.

The proof of the Existence Theorem can be found in [12]. In the next subsection
we will use the Existence Theorem (or rather Corollary 2.4.9 below) to prove Theorem
2.1.8.

Remark 2.4.8. In reference [12] the Existence Theorem is stated with one additional
“non degeneracy” assumption:

(v) the linear map )", Ca®*(2) = >, Ca®, defined by a®(z) — a®, is injective.
This hypothesis is actually not needed.

Proof. of the Remark. Suppose (V, (0), T, A = {a*(z), « € A}) satisfy assumptions (i),
(ii), (iii) and (iv) of Existence Theorem. We want to prove that the non degeneracy
condition (v) automatically holds. For this, let a(z) € spang.A be a field such that
a = a(z)]0)],—0 = 0. (Namely a(z) is in the kernel of the linear map defined in (v)).
We want to prove that a(z) = 0. Clearly a(z)|0) = e*Ta = 0. Assume, by induction
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on s, that a(z)b = 0 for every b € W, = Spanc{a‘(’yl) .- -a(og.ss)m), o €A i €L, 1=
1.. .s}. We then have by locality (N >> 0)
(z —w)Na(2)a*(w)b = p(a,a®)(z — w)Va*(w)a(z)b=0, VaeA.
Since a®(z)a’ (w)b involves only finitely many negative powers of w we conclude that
a(z)aib=0, Vj €Z .
In other words a(z)v =0, Vv € V, as we wanted. O

Corollary 2.4.9. Let V' be a vector superspace with an even vector |0) € V and an
even endomorphism T € EndcV, let R C V be a Zs—graded T—invariant subspace
containing |0), and let Y : R — glf(V') be a local state field correspondence such that
vectors aj)b(jp) - |0) with s € Zy, jn € Z, a,b,--- € R, span V (we are using the
notation Y (a,2) = >,y amz " '). Then V has a unique vertex algebra structure
compatible with Y .

Proof. This corollary follows immediately from the Existence Theorem by choosing
{Y(a, z), a € R} as collection of local fields. O

2.5 Proof of Theorem 2.1.8

The following lemma is immediate consequence of the results in Section 2.2.

Lemma 2.5.1. (a) The space U(R) is endowed with an endomorphism (infinitesimal
translation operator) T : U(R) — U(R) , defined by

T(r(A)) = n(TA), YAeT(R),
with a A-bracket | 5 | : Usp(R) @ U(R) — CIA| ® U(R) , given by
[m(A) » 7(B)] = 7(Lx(A, B)), VA€ Tz2(R), B T(R),
and with a normally ordered product : | : : Uss(R) ® U(R) — U(R), given by
7(A)r(B) : =7(N(A, B)), VYA€ Ta(R), Be T(R).

(b) All above maps are parity preserving (we assign to U(R) the parity induced by
T(R)). The A\-bracket satisfies sesquilinearity with respect to T

[TA,B]=-AA,B], [A\TB|=(W\+T)[A,B], VAe€U3(R), BeU(R).
The normally ordered product satisfies Leibniz rule with respect to T
T(:AB:) =:(TA)B:+:A(TB):, VYAe€Uy3s(R), BeU(R).
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(¢) For a € R, B € Uyo(R) the following skewsymmetry conditions hold
[a x B] = —p(a, B)[B _x—1 d]
aB:= p(a,B):Ba:+ [°.d)\[a B].
(d) For a,b € R, C € U(R)
[ax (b, Cll = pa,b)[byfaxCl + [laxb] a CT, (2.57)

[ay :bC:] = :[axblC: + p(a,b):bla, C]: (2.58)

+ /Odu[[mbm,

fab: A Cl = :(e"a) b Cl: + pla,b): (e7b) [a » O] (2.59)
+ o) [Cdulb,laan CI.

c(tab)C: = :a(:bC:):—i—:(/OTd/\a)[b,\C’]: (2.60)

+ pla,b): (/OTd)\b) 0y C]: .

Remark 2.5.2. Quasi—associativity (2.60) implies that the expression : (: ab:)C : — :
a(: bC' :) : is super symmetric under the exchange of a and b. It follows that

ca(: bC :) —p(a,b) : b(: aC :) :=: (: ab:)C : —p(a,b) : (: ba :)C : . (2.61)

Thanks to Lemma 2.4.5, with the A-bracket and the normally ordered product
we can define a state—field correspondence

Y : Uya(R) — glf(U(R)) ,

given by (2.56). According to Corollary 2.4.9, in order to prove that U(R) has a
vertex algebra structure (compatible with the A-bracket [ , | and the normally ordered
product : :), it suffices to show that the restriction of the state—field correspondence
Y to R, namely Y|g : R — glf(U(R)), is local.

Locality of Y|z will be proved with a sequence of two lemmata.

Lemma 2.5.3. For A € Uyy(R) and n € Z, let Ay € End U(R) be defined by
Y(A,2) = 3, cn Amyz ™', where Y(A, 2) is given by (2.56). The following super
commutation relations hold:

m
[a(m), b(n)] = Z (_] > (a(j)b)(m+n_j) , Va,be R, mneZ. (2.62)

>0
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Proof. First, notice that the endomorphisms Ay, for A € Us(R), are equivalently
defined by (B € U(R))

[AxB] = ano )‘(")A(n)B )

A(—n—l)B = : (T(")A)B s Vn ez, . (2.63)

By translation invariance of the statefield correspondence Y, we have (A € Uz2(R))
[T, A(n)] = —’I’LA(n_l) = (TA)(R) , VneZ. (264)

Equation (2.57) is equivalent to (2.62) for m,n € Z;. From (2.58) we get, after
substituting b with 70)b

[ax : (TYB)C ] — pla,b): (TYb)]a y C] :

= (()“"T)(j)[a A b])C: + fo)\ dp (A — )9 [[a 5 b] . Cl. (2.65)

The coefficient of A\(™) of the left hand side is

[agm); b-5-]C -
The coefficient of \(™ of the first term in the right hand side of (2.65) is
m
> (i)(a(i)b)(mjli)o :
sup{0,m—j}<i<m
The coefficient of A(™ of the second term in the right hand side of (2.65) is
m
> ( ; ) (a@b)m—j-i-1)C -
0<i<m—j—1

In order to get this, we used the following identity

A
/ dp (A= p)®Pp@ = APt - vp gez,
0

which follows by the relation B(t,s) = I'(¢)I'(s)/T'(t + s) between the Beta—function
and the Gamma-function. Combining the previous results, we get that (2.62) holds
formeZ,, n=—-j—1€ —Z, — 1. From skewsymmetry of the A-bracket on R, we
have

bgya = pla,b) > (=1 T® (ay 0b) , Va,beR, j€Ly . (2.66)

k>0

Using (2.64), (2.66) and the previous result, we get, for a,b € R, n € Z,, m =
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—i1—1le-Z,—-1
n\({n—p—i—1
(agicn, b] = Y (1) <p> ( . >(a<p+q)b)(n—z‘—p—q—1) :
0,420

This equation is equivalent to (2.62) for m = —i —1 € —Z, — 1, n € Z,, provided
the following combinatorial identity

S =07):

which is not hard to prove. We are left to prove (2.62) for m,n € —Z — 1. From
(2.61) we get
[, b n)]C =

(:
= (Jdrfern)C:
= Y= (ab)-i-2C

which is (2.62) for m = n = —1. More in general, if we change a with T®a and b
with 7Ub in (2.61) we get

ab: —p(a,b) : ba :)C :

(aion,bosn] = ([od (NOA+T)0a 5 b))

Zk>0( k D) (@gd) —imj-r-2)
which is (2.62) for generic m,n € —Z, — 1. O

Lemma 2.5.4. For a,b € R one has

[V (a, 2) = Y(agb,w)dds(z —w) . (2.67)

3>0
In particular all pairs (Y (a,2),Y (b, 2)) for a,b € R are local.

Proof. (2.67) follows, with a straightforward computation, from (2.62). The second
part of the statement is obvious. O

This concludes the proof of Theorem 2.1.8.
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Chapter 3

Main ideas and techniques used in
the classification

As we explained in Chapter 1, we want to study vertex algebras V' which are strongly
generated by a subspace

R=Cl0)® (CT]®g)® (CT|QU)® (CTL) , (3.1)

where |0) is the vacuum vector, L is a Virasoro element, g is a finite dimensional
space of even primary elements (with respect to L) of conformal weight A =1 and U
is a finite dimensional space of odd primary elements of conformal weight A = 3/2.
We denote as usual Ry = C|0) & (C[T] ® g) @ (C[T]L) and R; =C[T]| ®U.

According to Theorem 2.1.8, if a space R as in (3.1) is endowed with a Lie \-
bracket of degree 2, namely an even linear map

Ly : R;® Rj — (Rz'_|_j S 6i:j:iR(‘?2)[)‘] , LJE Z/2Z )

satisfying sesquilinearity, skewsymmetry and Jacobi identity (in the sense specified
in Section 2.1), then there is a vertex algebra V' = U(R) which is strongly generated
by R, with A-bracket structure compatible with L.

We would like to prove a converse statement to Theorem 2.1.8. Namely, if V' is
a vertex algebra strongly generated by a subspace R C V as in (3.1), we want to
find under which assumption the space R is endowed with a Lie A\-bracket L, of
degree 2. Since V is a vertex algebra, by definition it is endowed with a Lie A-bracket
[A] : V®V — VI]). It is easy to check that this A-bracket, restricted to g® g and
g ® U, defines a Lie algebra structure on g and a structure of g-module on U. This
will be discussed in Section 3.1. Moreover, by simple conformal weight considerations,
the restriction of [ 5 | to R is such that
Ri X Rj — RH—J[)\] if either 7 = (_] or j = (_) y

[x]
[x]

R,®QR;

Ri® Ri — (Rg+: RyRp:)[}] -

Ri®R;
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We are denoting : RgRj : the linear span of elements : ab : with a,b € Rz. We can
then define L, to coincide with [ 5 | when restricted to R; ® R;, if either ¢ = 0 or
j = 0. The only problem is to define Ly(a,b) when both a and b are odd elements.
Let m denote the quotient map

T R()EBR?Q — Rg+: RgRj :

given by a®b +: ab : for a,b € Rz. We need to lift the map [ , |

: R1®QR; —
R{®Rz

(Ry+ : RgRg :)[A] toamap Ly : Ri® R — (Rg @ RY?)[)], so that the following
diagram commutes

(Rs & RE*)[A] (3.2)

v |
™
Ri® Rz SO (Ro+ : RgRyp :)[A]
and in such a way that the resulting linear map L, on R is a Lie A-bracket of degree
2 (according to Definition 2.1.5). We will see in Section 3.2 that such Lie A\-bracket
Ly on R exists under a non degeneracy condition on the vertex algebra V. Loosely

speaking, this condition guarantees that the quotient map 7 : (g® U) — : gU : is
an isomorphism.

In Section 3.3 we will look more closely at this non degeneracy assumption. In
particular we will show that, in the special case in which g is a simple Lie algebra
and U is an irreducible g-module, it holds for all but finitely many values of the
Kac—Moody level k.

In conclusion, the problem of classifying vertex algebras which are strongly gener-
ated by the space R as in (3.1), and which are “non degenerate” (in the sense specified
above) reduces to the problem of classifying triples (g, U, Ly ), where g is a Lie algebra,
U is a g—module and L, is a Lie \-bracket of degree 2 on the space R given by (3.1).
In Section 3.4 we will find necessary and sufficient conditions on g and U in order for
R to admit such a Lie A\-bracket L,. This will be used in Chapter 4 to completely
solve the problem of classification in the special case when g is a simple Lie algebra
and U is an irreducible g—module.

3.1 Preliminary results

Let V' be any vertex algebra strongly generated by a subspace R C V as in (3.1). We
will assume that R is a minimal generating set for V', namely V is not generated by
any T—invariant proper subspace R’ C R. This is equivalent to ask that the Virasoro
element L does not lie in the space T'g+ : gg :. In other words, we are ruling out
the situation in which L is obtained by Sugawara construction taking normal ordered
products of elements in g.
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Since by assumption L is a Virasoro element in V', we have
[L L] =(T+2\L+ 1—62)\3|0) ,
for some ¢ € C. Moreover, by our assumptions on g and U we also have
[Lyxal] = (T+XNa, [axL] = Aa, Vaeg,
[Lav] = (T+3Nv, wiall] = GT+3Nv, WweU.

We want to write the most general A-bracket between any two elements of R. For
this we will use conformal weight considerations, based on Lemma 1.1.8. Since V is
strongly generated by R, the spectrum of L) is contained in 3Z.. Moreover, if V[A]
denotes the eigenspace of L(;y with conformal weight A, then we necessarily have

Vo] =Cl0) , V[1/2]=0, V[l]=g, V[3/2] =U , V2] = (CL&Tg) + (: g9 :) ,

where : gg denotes the linear span of elements : ab : with a,b € g. As a consequence
of the above considerations, we have the following restrictions on the A-bracket of
two elements of R (a,b € g, u,v € U):

lax bl =a@b+Aapyb, [axu]=aqu = —[uiadl,
[u  v] = uo)v + Aumyv + )\(z)u@)v ,

where

apbeg, anbeCl0), apuel,
(3.3)
UV € V[Q] , W EP, UQUE C|0> .

By imposing skewsymmetry and Jacobi identity to the A-bracket of elements of R,
we get additional restrictions. In particular, by skewsymmetry of [a » b] with a,b € g
we get
a(o)b = —b(o)a s a(l)b = b(l)a s

and by imposing Jacobi identity we get
aq) (b)) = b)lape) + (apb)e ,
a@)(boye) = (a@b)ayc -
In other words, g is a Lie algebra with respect to the Lie bracket [,] : gxg — g

given by
la,b] = a)b, Va,beg,

with a symmetric, invariant, bilinear form »(,) : g x g — C given by
aayb = »#(a,b)|0) , Va,beg.
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Moreover, by Jacobi identity of the triple A-bracket [a » [b , v]], with a,b € g, v € U,
we get

a() (byv) — by (awyv) = [a, bl -
In other words, there is a representation p : g — gl(U) of the Lie algebra g on the
space U, given by

(p(a))(v) =a@pv, Vaeg velU.

We will denote in the following (p(a))(v) = av.

We now want to find conditions on the A-bracket [u ) v]| of elements in U. By
(3.3), for every u,v € U we can find Q(u,v) € C, K(u,v) € g and P(u,v) € g®? such
that

uoyw = Qu,v)L+TK(u,v)+: Pu,v): . (3.4)

Recall that by assumption R is a minimal generating set for V', and therefore CL N
(T'g+ : gg :) = 0. It follows that (3.4) uniquely defines the bilinear map @ : U X
U — C. On the contrary K(u,v) and P(u,v) are not uniquely defined. In fact, by
skewsymmetry of the normal order product, it is very easy to check that, for a, b € g,
we can redefine

K'(u,v) = K(u,v) —[a,b], P'(u,v) = Pu,v)+a®b—->b®a, (3.5)

and the expression (3.4) of uv still holds after replacing K with K’ and P with
P'. In particular, after an appropriate rescaling of kind (3.5), we can make sure that
P(u,v) € S%g C g®2.

Lemma 3.1.1. (i) Let : S?g :C: gg : denote the linear span of elements : ab: + : ba :,
with a,b € g. Then
TgnN :S%:= 0.

(i1) In particular
CL+Tg+:g99:= CL&Tg®:S%: .

Proof. Let A =Y",(: a;b; : + : bja; :) =Tc € :S%g:NTg. By taking A-bracket with
L we get, on one hand

[L A A] = (T+ 2)\) Z( aibi S biai I) -+ %)\32%(01,@) y

% %

and on the other hand
[L x Al = (T +2\)Tc+ Xc .

By comparing the coefficient of A\? in both these expressions, we get ¢ = 0. This
proves part (i). Part (ii) follows immediately from part (i) and the assumption that

L ¢:gg:. O

Since we are assuming P(u,v) € S?g, it follows by Lemma 3.1.1 that K(u,v) is
uniquely defined by the decomposition (3.4). In other words, equation (3.4) uniquely
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defines the bilinear map K : U x U — g. Let us denote by my the quotient map
7o : g®%% —: gg :, defined by mo(a ® b) =: ab :, and by 7 its restriction to S?g C g®.

Lemma 3.1.2. (i) Consider g** as a g-module via adjoint action. The space K =
Ker(my) C g®? is a g—submodule.
(ii) In particular K = Ker(my) = K N S?g is a g-submodule of S?g.

(iii) The space : S*g : is naturally endowed with the structure of g—module via the
1somorphism B
:S%g: ~ S?*g/K .

Proof. Let A=) .a; ® b; € K. By Wick formula we then have, for every c € g
0= ¢ Z D a;b; = Z( [e,a;)b; + + = age, b] :) .
We then have
ad(c)A = Z[C, (LZ‘] Qb +a; ® [C, bz] e ,

thus proving part (i) of the lemma. Parts (ii) and (iii) follow trivially from part
(). O

It follows from Lemma 3.1.1 and the definition of K that the decomposition (3.4)
defines uniquely a bilinear map P: U x U — S%g/K ~: S%g .

We can use Jacobi identity for the triple A-bracket [L ) [u , v]] with u,v € U, to
express u(1)v and v in terms of Q(u,v), K(u,v) and P(u,v). By Jacobi identity

(Lo [upv]] = [up [Lox o] + [[Lx u] xpp 0] - (3.6)

By non commutative Wick formula and simple algebraic manipulations, we can
rewrite the left hand side of (3.6) as

(T + 2\)u)v + XK (u,v) + (T + Ny
+ 29 (eQ(u, ) + 25¢(Py (u, ), Pofus, ) ) 0) (3.7)
Here and further we use the convenient notation

P(u,v) = Pi(u,v) ® Py(u,v) + K € S*g/K,

not forgetting that the right hand side actually denotes, in general, a linear combi-
nation of monomials in S?g C g®2. We also used the fact that, since P, ® P, € S?g,
then [P;(u,v), P2(u,v)] = 0. The right hand side of (3.6) is

1 1
(T + 2/\)U(0)U + (5/\2 + ,U,(T + A))u(l)v + Z/\?’u(g)v . (3.8)
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Comparing (3.7) and (3.8) we then have
uyv = 2K(u,v),

UV = %(CQ(U, v) + 23¢( Py (u, v), Py(u, v))) |0) .

By skewsymmetry of the A-bracket, we have
[urv] = [v_xrul, YuvelU.

By comparing separately the coefficients of each power of )\ in the above equation,
we get
U(O)U = v(o)u — Tv(l)u y U,(l)?) = —v(l)u y U,(Q)U = U(Q)u .

We can then use (3.4), (3.9) and Lemma 3.1.1 to conclude that, for every u,v € U,
Q(u,v) =Q(v,u), K(u,v)=-K(v,u), :P(u,v):=:Pv,u): .
In other words, ), K and P can be thought of as linear maps
Q: S*U — C,
K: NU — g, (3.10)
P: SU — S%/K~:8%: .
We finally want to use Jacobi identity for the triple A-bracket [a ) [u , v]] with

a € g and u,v € U, to prove that the linear maps in (3.10) are actually g-module
homomorphisms. By Jacobi identity

[ax[upv]]=[upulexo]]+[laxv] e 0] (3.11)
The left hand side of (3.11) is, by Wick formula
AQ(u, v)a+ (T + A+ 2u)a, K (u,v)] + A(A + 2p)2(a, K (u, v))|0)
+ : [a, Pu(u, )] Po(u, v)  + 1 Py(u, v)[a, Po(u, v)] - (3.12)
+2\3¢e(a, Py (u, v)) Po(u, v) + Al[a, Pr(u, v)], Po(u, v)] .
Similarly, the right hand side of (3.11) is
Q(u, av) L + Q(au, v)L + (T + 2p) K (u, av) + (T + 2X + 2u) K (au, v)

+: P(u,av) : + : P(au,v) : +M(Z)U(2)(av) + (0 + ,U)(Q)(CI/U)(Q)U . (3.13)

If we put A = g =0 in both (3.12) and (3.13) and we compare the resulting expres-
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sions, we get the following equation
(Qau,v) + Q(u,av))L + T(K (au,v) + K (u,av) — [a, K (u,v)])+ : P(au,v) :
+: P(u,av) : = : [a, P (u,v)]|Pe(u,v) : + : Pi(u,v)[a, Py(u,v)]: .
It then follows by part (ii) of Lemma 3.1.1 that, for every a € g, u,v,€ U,

Q(au,v) + Q(u,av) = 0
K(au,v) + K(u,av) = [a, K (u,v)]
: P(au,v) : +: P(u,av): = :ad(a)P(u,v): .

In other words, the linear maps (), K and P defined in (3.10) are g-module homo-
morphisms.

Remark 3.1.3. By comparing the coefficients of every other power of A and p in (3.12)
and (3.13), we get that the following additional conditions hold

Q(u,v)a + 23¢(a, Py (u,v))Py(u,v) + [[a, Pi(u,v)], Ps(u,v)] = K(au,v) — K(u,av) ,
(3.14)
and
62¢(a, K(u,v)) = cQ(au,v) + 23¢(Py(au,v), Py(au,v)) . (3.15)

We can summarize all the results obtained so far in the following

Proposition 3.1.4. Let V be any vertex algebra strongly generated by the space R
in (8.1), and assume L ¢ : gg :. Then g is a Lie algebra, U is a g—module, and
they are endowed with g—module homomorphisms s : S?g — C, Q : S?U — C,
K: AU — gand P: S?U — S*g/K, where K C S?g is the g-submodule defined
by K = Ker(Ty : S?g —: S%g :). The above structures are uniquely defined by the
A-bracket on R, which is given in the following table

o1



Table 3.1:

L b v
(T +2)\)L
L (T+ A)b (T + 3X\)v
+£23))0)
a Aa [a, b] + A3¢(a, b)|0) av

(T +2\)K(u,v)+ : P(u,v) :
u | 3T+ 3Nu —bu +Q(u,v) (L + £A20))

+%)\(2);{(P1(U, U), PQ(U': U))'O)

So far we studied the conditions on g and U obtained by imposing skewsymmetry
and Jacobi identity of the A-bracket of elements of R. The only non trivial condition
left to impose is Jacobi identity for the triple A-bracket [u » [v , w]] of elements in
U. In Section 3.3 we will study this last condition. In the next section we will use
Proposition 3.1.4 to prove a converse statement to Theorem 2.1.8.

3.2 Converse statement to Theorem 2.1.8

In this section we want to state and prove a converse statement to Theorem 2.1.8.
In other words, we will prove that if V' is any vertex algebra strongly generated by
a subspace R C V as in (3.1), then R is naturally endowed with a Lie A-bracket of
degree 2. This holds under some “non degeneracy” assumption on the vertex algebra
V.

In order to formulate precisely what this assumption consists of, we need to in-
troduce some notation. By Proposition 3.1.4, g is a Lie algebra and U is a g-module.
We consider the space S%g naturally embedded in g®?

S%g = spang{a®@b+b®a, a,beglcCg®?.
By definition we have
g®U = spanc{a®u, a€g, uelU},
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and we define the space
S%(g,U)y; = spanc{20@u+u®a, acg uclU}C(gU)dU®g).

Lemma 3.2.1. The spaces S?g, g®u and S?(g,U), are g—-modules. Moreover, there
1s a g-—module isomorphism

oc:gU = S%(g,U),,
given by c(a®@u) =2a@u+ uQ a.
Proof. The proof of this lemma is straightforward. O

If 7(R) denotes the tensor algebra over R, consider the surjective map 7 (R) — V,
defined by a1 R ao ® - - ® a,, — : aias - --a, :, for every aq,...,a, € R. Recall that
we denote the normal order product of several elements by taking normal ordering
starting to the right, : ajas---a, : = : a1(: a2(: az---a,) :) ;. Notice that this
map is surjective since, by assumption, V' is strongly generated by R. We denote by
7o, 1, To the restrictions of this map to the spaces S%g, g ® U and S%(g,U), and
by K, K1, Ky their kernels. Namely, if we let

:8%g: = spang{:ab:+:ba:, a,beg} CV,
:gU: = spanc{:au:, a€g,ueclU} CV,
:8%(g,U)y: = spang{2:au:+:ua:, a€g, uelU} CV,

then we are denoting
K = Ker(ﬁo 1 S?%g —»: 529) ,
Ky = Ker(m : g®U—»:gU:),
Ky = Ker(ﬁg : S?%(g,U) —: 5%(g,U)s : ) :

Lemma 3.2.2. The spaces K, K1 and Ky are g-modules.

Proof. We already proved in Lemma 3.1.2 that K is a g-module. The same argument
proves that K; and Iy are g-modules. O

As immediate consequence of Lemma 3.2.2, the spaces : S?g :, : gU : and
: S%(g,U), : are naturally endowed with the structure of g-module, by asking that
the maps Ty, m and 7y are g-module homomorphisms. Later we will need the
following

Lemma 3.2.3. Let us denote

A% (g,U) = spanc{a@u—-u®a, acg, ucU},

93



and let 7 be the restriction of the quotient map T(R) — V to A*(g,U).

(i) We have an isomorphism of vector spaces
el)e (Ueg) = A(g,U)®S%(g,U): -
(ii) The image under 7 of A*(g,U) is
#(A*(g,U)) C TU .
(iii) The space : S?(g,U)s : = m2(S?(g,U)s) is such that
:S%(g,U)y: N (TU) = 0.
(iv) As immediate consequence
TU+:gU :+:Ug: = TU®: S*(g,U)s : .
Proof. Part (i) is immediate consequence of the following obvious identities
a®@u = ;@Qu-u®a)+320Qu+u®a),
u@a = —3(@Qu—u®a)+3(20Q@u+u®a).

For (ii), just notice that, by skewsymmetry of the normal order product,

0
ﬁ(a@u—u@a)::au:—:ua::/ d\[a yu]=T(au) € TU .

-
We now want to prove (iii). Suppose 4 = >.(2a; ® u; + u; ® a;) = Tv € : S*(g,U)y :
N(TU). By taking the A-bracket with L we have, on one hand

)
[L)\ A] = (T+ §A)Z(2ai®ui+ui®ai) ,

2

and on the other hand

[LrA] = (T+N(T+ g/\)v .

Comparing the coefficient of A2 in the above expressions, we get v = 0, as we wanted.
We are left to prove (iv). By (i) we have

TUS (gU)® (Ug) ~TU & A (g,U) ® S%(g,U), .
Taking the image in V of both sides and using (ii) we get
TU+:gU:+:Ug: = TU+:5%g,U), :,
which, together with (iii), gives (iv). O

54



We can now define the non degeneracy condition needed to prove the converse
statement of Theorem 2.1.8.

Definition 3.2.4. A vertex algebra V strongly generated by a space R as in (3.1) is
said to be non degenerate if the following three conditions hold:

(i) R is a minimal generating set for V', namely L ¢ : gg : +Tg.

(i) There is an embedding of g—modules : S%g : ~ S?g/K < S?g. Namely K C S?g
admits a complementary submodule, so that S2g can be decomposed as direct sum
of submodules

S’ ~ K@ :S%: .
(iii) The spaces S?(g,U), and : S%(g,U), are isomorphic, namely Ky = 0.

Remark 3.2.5. If g is a reductive Lie algebra, condition (ii) is automatically satisfied
by complete reducibility. In Section 3.3 we will study in more detail condition (iii).
In particular we will prove that, in the special case in which g is a simple Lie algebra
and U an irreducible g-module, condition (iii) is automatically satisfied for all but
finitely many values of the Kac-Moody level k.

The main result of this section is the following

Theorem 3.2.6. Let V' be any non degenerate vertex algebra strongly generated by
a space R as in (3.1). Then R is endowed with a Lie A\-bracket of degree 2, Ly :
R® R — T(R)[A], compatible with the A-bracket structure of the vertex algebra V,
namely such that the following diagram commutes

T(R)[\] (3.16)

R®R — VA

Proof. We want to define a Lie A-bracket of degree 2 on R. Since L, has to be
compatible with [ ], and since [R;  R;] C Ryy;[)] if either ¢ = 0 or j = 0, we
necessarily have Ly |r,er; = [ A ||rior, if ij = 0. Thanks to sesquilinearity, we are left
to define the A-bracket Ly(u,v) for elements u,v € U. By Proposition 3.1.4, there
are g—module homomorphisms » : S?g - C, Q: S?U - C, K: AU — g, P:
S?U — S?g/K ~: S?g : such that

[urv] = Qu,v)L + (T +2\)K(u,v) + : P(u,v):

+ 1a2 (CQ(u, v) +2%(P1(u,v),P2(u;U)))|0> :

We can rewrite the above equation as
[urv] = [uxvh + :Pu,v):,
where [u , v]; € R[\]. By non degeneracy assumption on V', there is an embedding
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S%g/K — S?g C g®2. We then denote by P the composition map
P S L Sk — g*?,

and we define
Ly(u,v) = [u vy + P(u,v).

We want to prove that the map Ly : R x R — (R & C[T]g®?)[)\] defined above is
a Lie A\-bracket of degree 2, namely it satisfies skewsymmetry and Jacobi identity
(in the sense specified in Definition 2.1.5). Skewsymmetry condition is obvious, and
the same is true for Jacobi identity of the triple A-bracket [z » [y , 2]], if z,y, z are
homogeneous and at most one of them is in R;. We thus are left to prove the following
three conditions (a € g, u,v,u; € U, i =1,2,3)

EA(L Ly(,0)) — Dyl Ia(Lo)) — Dngu(Ea(Lou) o) € MRIA W], (3.17)
Ly(a,L,(u,v)) — Lu(u,Lx(a,v)) — Lyiu(La(a,u),v) € M(R)A 4], (3.18)
Ly(uy, Ly (ug,u3)) + Ly (ug, Ly(u1, us)) — Lagu(La(ur, ug), us) € M(R)[A, 1], (3.19)

where M(R) was defined in Section 2.1. Notice the plus sign in the last equation,
due to the fact that both u; and u, are odd elements. With a computation similar
to the one used to study equation (3.6), we can prove that the expression in (3.17) is
identically zero. Moreover, with a computation similar to the one used for equation
(3.11) we can rewrite the first two terms of (3.18) as

AQ(u, v)a + (T + A+ 241)[a, K (u, v)] + A\ + 21)5¢(a, K (u,v))|0)
+ ad(a)P(u, v) + N][a, P, (u, v)], Po(u, v)] + 2\s¢(a, Py (u, v)) Py(u, v) |
and the last term of (3.18) as
(T + 2p) (K (u, av) + K (au, v)) — 2K (au, v) — P(u, av) — P(au, v)
— 1A\ +2p) (cQ(au, v) + 25¢( Py (au, v), Pa(au, v))) 10) .

Using the fact that s, (), K and P are g—module homomorphisms and comparing
the above two expressions, we get that the expression in (3.18) is identically zero,
thanks to equations (3.14) and (3.15). We are left to prove condition (3.19). First
notice that, by conformal weight considerations based on Lemma 1.1.8, every term
in (3.19) leaves in the space V[5/2] @ (C|\, p]i ® V[3/2]), where C[A, u]; denotes the
space of homogeneous polynomials in A and p of degree 1. Recall that V[3/2] = U.
Moreover L is compatible with [ , ], namely [ ] is obtained via the composition
map R® R =2 T(R)[\] — V[)\]. Since the quotient map 7 (R) — V, restricted
to U, is an isomorphism, we have that the part of expression (3.19) which lies in
C[\, u)1 ® V[3/2] is the same if we replace Ly with [ ] everywhere. On the other
hand, [, ] satisfies Jacobi identity. This means that the part of expression (3.19) which
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lies in C[\, p]; ®V'[3/2] is identically zero. We then only have to check condition (3.19)
after putting A = p = 0. Using Wick formula we get that the expression in (3.19)
with A=pu=0is

T(%Q(ug, us)us + 1Q(ur, us)uz — Q(ur, up)us — K (ua, us)ur — K (us, u3)u2)
— (Py(us, us)u1) ® Po(ug, ) — P (uz,u) ® (Po(tz, us)us)
—(Py(u1, u3)us) @ Py(ug,uz) — Py(ur,u3) ® (Po(ur, us)us)
— 2P (uy, p) @ (Py(uy, uz)us) .
Notice that, by definition of M(R)
Pi(ur, us) ® (Po(ur, us)ug) = (Py(ur,us)us) @ Po(ur, us)
+ T(P1 (1, us) (Py(us, u2)u3)) mod M(R) .

Using this and the above expression, we conclude that condition (3.19) is equivalent
to

T(%Q(Uz, uz)u; + %Q(U1,U3)U2 — Q(u1, uz)uz — K (ug, uz)uy — K (uy,uz)uy
Py, 1) (Pa(us, 1)) ) = 3 e, ((Pi(ttoys ) t) @ Poltioy, ug) — (3:20)
Py (thgy, ) @ (Pt i) ) € M(R)
where C3 denotes the group of cyclic permutations of (1,2,3). Since | , | satisfies

Jacobi identity, we know that if we replace the tensor products in (3.20) with normal
order products, we get zero:

T(%Q(UQ’ uz)ur + 5Q(ur, ug)ug — Q(uy, ug)ug — K (ug, ug)us — K (us, ug)us
o+ Py, 1) (Po(us, 1)) ) = Y e, (¢ (Pt Yt Paltioy ) - (3:21)
+: Pi(tgyy Ugy ) (Po(Ugy s Ugy) Ugs) - ) =0.

On the other hand, we can decompose the left hand side of (3.21) according to the
decomposition (see Lemma 3.2.3)

TU+:gU:+:Ug:= TUD: S*(g,U), :,

and conclude that both components in TU and in : S*(g,U), : have to be zero. In
particular

Z (2 : Pl(ugl,u@)(Pg(um,u”)ugs) S (Pl(um;Uag)uas)PZ(umauag) : ) = 0.

o€Cs
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By non degeneracy assumption on V, we know that Xy = 0, so that S?(g,U), —:
S%(g,U)s :. It then follows

> (2P (ter 1) @ (Poltter e )tty) + (it U ttoy) @ ol ugs)) = 0,
ceCs
which clearly implies, since (g ® U) N (U ® g) = 0, that
Z Pi(tgy s Uoy) ® (Po(Uoy, Ugy)gy) =0 .
ceCs

We then have that the last term in (3.20) is zero. This, together with equation (3.21),
implies that the whole expression in (3.20) is zero. This concludes the proof of the
theorem. O

3.3 Non degeneracy condition in the special case:
g simple, U irreducible

In the previous section we were able to prove the converse statement of Theorem 2.1.8

under the assumption that V' is non degenerate (see Definition 3.2.4). Condition (i)

in Definition 3.2.4 means that L is not obtained, via Sugawara construction, taking

normal order products of elements in g. Condition (ii) is automatically satisfied as
soon as the Lie algebra g is reductive. In this section we want to study condition (iii).

Throughout this section we will denote by o the g-module isomorphism o : g®
U = S?(g,U),, given by o(a ® u) = (2a ® u +u ® a). Moreover, let p: g U — U
be the g-module homomorphism defined by p(a ® u) = au. The image through o of
Ker(p) is a g—submodule of S%(g, U),, given by

Ker(poo™) = { Z(?al Qu; +u; ®a;) € S*(g,U)y, s.t. Zaiui = 0}

Lemma 3.3.1. The following condition holds
o(K1) = KenKer(poo™) .

Proof. Let A= ".a; ® u; € K;. By definition of K’; we have
Z taiu; = 0. (3.22)
Taking the A-bracket of both sides of (3.22) with L we get
Ly
OZ[L)\ zi::aiui:] = 5/\ zi:aiui,
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so that A € Ker(p). This implies, by skewsymmetry of the normal order product

0

Z(: a;U; © — UG5 I) = [TdA Z[CLZ A U,Z] = TZO,ZUML = 0. (323)

i

It follows from (3.22) and (3.23) that Y .(2 : amu; : + : wa; ;) = 0, namely
o(A) € Ky. We thus proved (K1) C Ko N o(Ker(p)). For the opposite inclusion, let
A=>"(20; ® ui + u; ® a;) € KyNKer(poo™). Since o' (A4) € Ker(p) we have

Z(I a;U; @ — D UzQ4 :) = TZCLZ’LLZ =0 5
and since A € K9 we have
Z(Q:aiui:—i—:uiai:) =0.

It then follows Y, : a;u; : = 0, namely 0~'(A4) € Ky, as we wanted. This concludes
the proof of the lemma. O

Consider now the special case in which g is a simple Lie algebra and U is an
irreducible g—-module. We denote by (,) the normalized Killing form on g (defined
so that the square length of long root is equal to 2), so that the bilinear form s« :
S2?g — C defined in Proposition 3.1.4 is s(a, b) = k(a,b), Va,b € g, for some constant
k € C, known as Kac-Moody level. Let {J,, J* a=1,...,dimg} be a dual basis of
g with respect to the Killing form. Namely (J,, J?) = d,,5. We use the convention of
summing over repeated indices. Then Qy = J, ® J* € g®2 is a g-invariant element,
namely

ad(a)(2) = [a,Jo]@J*+Jy ®[a,J*] = 0, Vaeg.

Moreover the Casimir element 2 = J,J* € U(g) acts as a scalar on any irreducible
g-module II, namely
Q|H = QH][H ;

where 1;; denotes the identity operator on Il and Q2 € C.
Let us first study the space K;. We want to prove the following

Lemma 3.3.2. Let g be a simple Lie algebra and U an irreducible g—module. Then
K1 =0, unless the Kac—Moody level k is

1
k = i(QH_Qg_QU)a

for some irreducible component 11 C g U.

Proof. It A=)".a; ® u; € Ky, we have

O0=[bx Y tam;] = > (- [baiu; s +: ai(buy) :)+)\Z(k(b,ai)ui+[b,ai]ui).

1 i
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By looking at the coefficient of A in the above equation, we get, after replacing b with
J¢, taking the tensor product with J, and summing over «,

0=J, ®Z ©ag)u; + [T, aglu;) —kZaZ@)uz-i-ZJ ® [J, ai]u; . (3.24)

In the second equality we used the obvious identity J,(J% a) = a. Moreover, using
the fact that €2y is g-invariant, we can rewrite the last term in the right hand side of
(3.24) as

- Z[Ja, ai] ® Ju; . (3.25)
By definition of the Casimir operator €2, we can rewrite (3.25) as

——Q z:az@)uz Q + Qp)( Za,@uz .

Substituting back in (3.24) we thus get
QA) = 2k+Q5+Qy)A .

In other words, A € g ® U is eigenvector of {2 with eigenvalue (2k + Q; + Qy). On
the other hand, the eigenvalues of 2 in g ® U are )y, for irreducible components
IT C g® U. This completes the proof of the lemma. O

We can now study the space K. We want to prove the following

Lemma 3.3.3. Let g be a simple Lie algebra, U an irreducible g—module, and assume
K1 =0. Then Ky = 0, unless the Kac—Moody level k is

1
k=2 (200 —39) .

Proof. Since U is irreducible, p(g® U) = U. Moreover, since g is simple, by complete
reducibility we have
g U ~Ker(p)a U,

where the natural embedding U <« g ® U is given by v — QLQJQ ® J*v. Taking the
image of this decomposition through the isomorphism o : g®U = S?(g,U),, we get

S*(g,U)2 ~ Ker(poo )& U,

where now U is embedded in S?(g, U); via the map v QLQJ(QJQ ® J% + Ju @ J%).
By Lemma 3.3.1 and our assumptions, we have

KyNKer(poo™)=0.

It follows that K, C U, where U C S%(g, U), is the isotipic component with the same
highest weight as U. (Namely it is direct sum of a finite number of copies of U).
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Notice that Q|5 = Qul;. Let then A = 3.(20; ® u; +u; ® a;) € Ky N U. Since
A € Ky, we have

0 = [ba >,(2:aiui:+:wa )] =), (2 2 [b, aslu; : 42 1 a;(buy)

+ (buz)az e Uz[b, ai] : ) + )\Zz (3k(b, ai)ui + 3[b, CLZ']UZ' — bazuz) .

As we did in the proof of Lemma 3.3.2, we now look at the coefficient of A in the
above equation, we replace b by J“, we take the tensor product with J, and we sum
over a. The result is

Z (3]6@1 ® U; + 3Ja ® [Ja, ai]ui - Ja ® Jaa,-ui) = 0. (326)

Since A € U, we know that Q(A) = QuA, and therefore Q(o~(4)) = Qo' (A).
This implies

ZJa@)[JO‘,a,-]ui = = Vo a] ® Ju; = %QQZ(@@W).

2

Substituting back in (3.26) we then get
3(k + %Qg)Zai Qu = J,® J“Zaiui :
Taking the image of both sides of this equation under p: g U — U, we get
3(k+ %Qg) ; au; = Qp ; a;u; . (3.27)

Suppose that Y, a;u; = 0. This is equivalent to say p(c~'(A4)) = 0. On the other
hand we assumed A € K,. We would then have A € KyNKer(poo™!), which implies
A = 0 thanks to the assumption Iy = 0 and Lemma 3.3.2. If A # 0, it must then be
> aiu; # 0, so that equation (3.27) implies

3
3k+ 50 —Qu = 0.

This concludes the proof of the lemma. O
We can summarize the results of Lemma 3.3.2 and Lemma 3.3.3 in the following

Theorem 3.3.4. Let V be any verter algebra such that the space R in (3.1) is a
minimal strongly generating set. Suppose g is a simple Lie algebra and U is an
wrreducible g—module. Then V' is non degenerate, unless the Kac—Moody level k takes
values

1 1
k=239, or k=3(n—Q ),
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for some irreducible component Il — g Q@ U.

3.4 Conditions on R coming from Jacobi identity

In this section we want to find necessary and sufficient conditions on the space R in
(3.1), in order for it to admit a Lie A-bracket of degree 2 (see Definition 2.1.5)

Due to sesquilinearity, it suffices to define Ly(z,y) for z,y € CL&g®U. Moreover,
the same computations done in Section 3.1 lead to the following

Lemma 3.4.1. (i) Let Ly : RQ R — (R® RZ?)[\] be a Lie A-bracket of degree 2 on
the space R = C|0) & (C[T|®@g) ® (CT)|@U) @& (C[T|L), such that L is a Virasoro
element of central charge c, namely

LA\(L,L) = (T+2)\)L+%)\3|O),

g is a finite dimensional space of even primary elements of conformal weight A =1,
namely
Ly(L,a) = (T+XNa, Vacg,

and U is a finite dimensional space of odd primary elements of conformal weight
A =3/2, namely
3
Ly(L,u) = (T + 5)\)” , YueU.
Then g is a Lie algebra and U is a g—module. Moreover there exist g—module homo-
morphisms » : S?g — C, Q: S?U —- C, K: AU — g, P: S?U — S?g, such

that the A—bracket structure on R is given by Table 3.1 for all products except Ly (u,v)
with u,v € U. In this case we have

Ly(u,v) = Qu,v)L+ (T +2)\)K(u,v) + P(u,v)

+ %)\2 (CQ(U,U) + 23¢( Py (u,v), Po(u, U))) 0) -

Recall we are using the notation A = A1 ® Ag for a generic element A € g g, namely
Ay ® Ay stands for a linear combination of monomials in g ® g.

(i1) Conversely, let g be a Lie algebra, U be a g—module and »,Q, K, P be g-module
homomorphisms as in (i). Define on the space R = C|0) ® (C[T)|®g)® (C[T|Q@U) &
(CIT)L) a map Ly : R® R — (R® RZ*)[\] as described in (i). Then Ly is a Lie
A—bracket of degree 2 on R if and only if equations (3.14) and (3.15) hold and Jacobi
identity is satisfied for the triple A~bracket Ly(u1, L,(us,us)), u; € U, 1 = 1,2,3,
namely

L)\(ul, LM(UQ,’U,g))-i-L)\(UQ, Lu(ul, U3)) = L,\+M(L)\(U1,’U,2), u3) mod M(R) . (328)

Proof. The computations are the same as the ones needed to prove Proposition 3.1.4.
The details of the proof are left to the reader. O
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According to Lemma 3.4.1, we are left to impose condition (3.28). By Definition
2.1.5 and Lemma 2.1.3, in order to compute the triple A—brackets we need to use,

when needed, the left and right Wick formulas (2.3) and (2.4). Therefore the two
terms in the right hand side of (3.28) are respectively

%Q(Ug, U3)(T+3/\)U1 - (T+)\+2/L)K(UQ, Ug)’U,l + /\Pl(’U,Q, Ug)(PQ(UQ, U3)U1)

3.29
— P {1z, ) © (Py(utz, us)ur) — (Py(utz, s)) @ P(uiy,us) , (3.29)
and
sQ(u, us)(T+3p)ug — (T42A+ 1) K (uq, ug)ug + pPi (uy, us) (Pa(ur, us)us)
3.30
— Pi(u1, us) @ (Po(ur, us)us) — (Pi(u1,u3)us) @ Po(uy, us) , ( )
and the right hand side of (3.28) is
3@ (1, u) (2T + 3\ + 3p)ug + (A — p) K (w1, up)us
(3.31)

+ (A =+ )Py (ur, ug) (Pa(u, ug)us) + 2P (u, us) @ (Pa(uy, us)us) .

The coeflicients of A in (3.29), (3.30) and (3.31) are elements of U C R. On the other
hand RN M(R) = 0. We thus get, from condition (3.28), that

%Q(Uh Ug) Uz — %Q(U& ug)ur + K (uy, ug)uz — K (uz, ug)uy + 2K (uy, uz)us
3.32
+ Py (u1, ug)(Po(u1, ug)us) — Pi(us, ug)(Pa(ug, ug)uy) = 0. ( )

The coefficient of p in (3.28) is obtained from the coefficient of A by replacing u; with
Uy, therefore we don’t get a new condition from it. We are left to impose condition
(3.28) with A = = 0. By (3.29), (3.30) and (3.31) this is equivalent to

T (%Q(um uz)uy + %Q(ula uz)ug — Q(u1, ug)uz — K (ug, uz)u; — K (uy, us)uz)

- ( Py (ug, ug) ® (Py(uz, ug)ur) + (Pi(us, us)uy) @ Py(us, us) 535
+P1(U1, U3) ® (PQ(U1, U3)U2) + (P1 (ul, U3)U2) X Pz(ul, Ug) .

+ 2P (u1, u3) ® (Pg(ul,ug)u;;)> € M(R) .

By taking the sum of the expression in (3.33) over all permutations of uy, us, us the
first part disappear, so that condition (3.33) implies

> (2Pt 0y) @ (Palti 1, Ytay) + (P (1t 4, )thy) @ Po{ttey ) ) € M(R)
ceCs

(3.34)
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where C3 denotes the set of cyclic permutations of (1,2,3). By definition of M(R),
(3.34) is equivalent to

> (3Pi (U 1) @ (Polttoy oy )tty) = TPyt 1) (a1t s, ) ) € M(R)

ceCs

(3.35)
Since ((g@U) ® R)N M(R) = 0, it follows that condition (3.35) is equivalent to the
following equation

D Pi(toy, toy) ® (Pa(tg,, Uy )tigy) = 0. (3.36)

oc€Cs

Using this equation, it follows that condition (3.33) is equivalent to

T (%Q(Uz, uz)u1 + %Q(Ul, ug)ug — Q(uy, ug)uz — K (ug, uz)us — K (uy, U3)U2)

(3.37)
+ (Pr(u1, ug)uz) ® Po(uy, ug) — Py(uy, ug) @ (Po(u, ug)uz) € M(R) .
By definition of M(R), we can replace the last two terms of (3.37) by
—T(P1(U1, UQ)(PQ(Ula U2)U3)) .
Since RN M(R) = 0, we conclude that (3.37) is equivalent to
%Q(Um uz)uy + %Q(Ula uz)up — Q(u1, ug)us
3.38
= K (ug, uz)us + K(u1, us)ug + Pr(ur, ug)(Po(ur, ug)us) . ( )

We then conclude that Jacobi identity (3.28) is equivalent to the three equations
(3.32), (3.36) and (3.38). Notice that equations (3.32) and (3.38) are equivalent.
Indeed (3.38) is obtained from (3.32) by taking symmetrization in u;, ue and using
(3.36). Conversely (3.32) is obtained from (3.38) by taking anti-symmetrization in
Uy, us.

We can summarize all the above results in the following

Theorem 3.4.2. Let R be a space R = C|0) @ (C[T]| @ g) & (C[T] ®U) & (CT]L),
where g and U are finite dimensional vector spaces. Then R admits o Lie A\-bracket
of degree 2 (see Definition 2.1.5) such that |0) is central, L is a Virasoro element
and g (respectively U) is an even (resp. odd) space of primary elements of conformal
weight 1 (resp. 8/2), if and only if g is a Lie algebra, U is a g—module, and there
erist g-module homomorphisms > : S?’g — C, Q: S?U - C, K: AU — g, P:
S?U — S?g, such that the following conditions hold (a € g, u,v,u; € U, i =1,2,3)

Q(u,v)a + 2(a, P (u,v))Py(u,v) + [[a, P (u,v)], Py(u, v)]

= K(au,v) — K(u,av) , (3.39)
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6¢(a, K(u,v)) = cQ(au,v) + 23¢(P; (au,v), Py(au,v)) , (3.40)
5Q(u2, ug)uy + 5Q(u1, us)us = Q(u1, uz)us + K (ug, us)u
+K(U1, U3)U2 + Pl(ul, ’LLQ)(PQ(Ul, ’LLQ)U,g) , (341)

2066’3 Pl(utfli u02) ® (PQ(UUU udz)u’ffs) =0, (3'42)

where C3 denotes the group of cyclic permutations of (1,2, 3).

3.5 Equivalent formulations of Problem 1.2.1

As we said in Chapter 1, the main goal of the thesis is to study Problem 1.2.1.
In Section 3.2 we have seen that, for technical reasons, it is convenient to consider
vertex algebras which are non degenerate (according to Definition 3.2.4). We therefore
formulate the following weaker version of Problem 1.2.1

Problem 3.5.1. Classify all vertex algebras V' which are non degenerate and strongly
generated by a Virasoro element L and finitely many even (respectively odd) primary
elements of conformal weight 1 (resp. 3/2).

Thanks to Theorems 2.1.8 and 3.2.6, Problem 3.5.1 is equivalent to the following

Problem 3.5.2. Classify all spaces R = C|0) & (C[T] ® g) & (C[T] ® U) @ (C[T]L),
which admit a Lie A-bracket of degree 2, for which L is a Virasoro element and g
(resp. U) is an even (resp. odd) finite dimensional space of primary elements of
conformal weight 1 (resp. 3/2).

Finally we can use Theorem 3.4.2 to rewrite Problem 3.5.2 in the following equiv-
alent form

Problem 3.5.3. Classify all 7-tuples (g, U, ¢, s, @, K, P) where g is a Lie algebra,
Uis agmodule,c€ C, and »c: S?g —-C, Q: S?U —-C, K: AU — g, P:
S2U — S%g are g-module homomorphisms such that equations (3.39), (3.40), (3.41)
and (3.42) are satisfied.

In the next chapter we will completely solve Problem 3.5.3 in the special case
in which g is a simple Lie algebra, U is an irreducible g-module and s, () are not
identically zero.
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Chapter 4

Classification in the special case: g
simple, U irreducible

In this chapter we will completely solve Problem 3.5.3 in the special case in which g
is simple, U is irreducible, 3¢ and () are not identically zero. In Section 4.1 we will
see that, as a consequence of equations (3.39), (3.40), (3.41) and (3.42), the Casimir
operator €) has to have the same eigenvalue on every irreducible component IT C S2U
such that IT ¢ S2?g. This turns out to be a very strong restriction on g and U.
In Section 4.2 we will classify all pairs (g, U) satisfying this condition. The answer
is contained in Table 4.5. Therefore we will have restricted ourselves to consider a
finite (relatively small) list of pairs (g,U), for which we will have to check whether
the assumptions of Problem 3.5.3 are satisfied. This will be done in the remaining
Sections 4.3, 4.4 and 4.5, basically with a case by case check. The complete solution
of Problem 3.5.3 in the special case in which g is simple, U is irreducible, 3¢ and @
are not zero, is provided in Theorem 4.6.1 and Table 4.6.

To conclude, a remark about the notation used in this chapter. With an abuse
of notation, we will denote by u ® v any element of the space U®?, not necessarily a
monomial. In other words u ® v has to be understood as a generic linear combination
of monomials in U%2.

4.1 Preliminary restrictions

Let g be a simple finite dimensional Lie algebra (over C) and let U be an irreducible
finite dimensional g-module. We will denote by (,) the “normalized” Killing form
on g, defined so that the square length of long roots is equal to 2. Since g is simple,
any symmetric invariant bilinear form on g has to be proportional to the killing form;
in particular s(a,b) = k(a,b), Ya,b € g, for some constant £ € C — {0}, known
as Kac—Moody level. Since U is irreducible, by Schur’s Lemma there is a unique
(up to scalar multiplication) invariant bilinear form on U, which we denote by (, ).
Since by assumption @ : S?U — C is non zero, after an appropriate choice of the
normalization factor, we can set Q(u, v) = (u,v), Yu,v € U. Throughout this chapter
we will denote by {J* « =1,...,dimg} a basis of g orthonormal with respect to
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the Killing form: (J¢,.J?) = 6*®, and by {e’, i = 1,...,dim U} an orthonormal basis
of U: (¢, e’) = 6“. Recall that the Casimir operator is the following central element
of the universal enveloping algebra of g:

Q=JJ*eU(g),

where we are using the convention of summing over repeated indices. In particular it
acts as a scalar in any irreducible g-module TI, namely Q| = Qply, where Qp € C
and Ty is the identity operator on II.

Our goal is to classify all such pairs (g, U) which admit g-module homomorphisms
K: AU — g, P: S?U — S?%g, satisfying all conditions (3.39), (3.40), (3.41) and
(3.42).

The composition of maps S?U — S?g — C given by v ® v — P(u,v) —
(Pi(u,v), Py(u,v)) defines a symmetric invariant bilinear form on U, which thus has
to be proportional to (,); namely

(P (u,v), Py(u,v)) = p(u,v) Vu,v € U (4.1)

from some constant p € C, which will be fixed by condition (3.39). Using (4.1),
equation (3.40) turns out to be equivalent to

K(u,v) = o(J%,v)J, (4.2)

where o is given by
6ko = 2kp+ ¢, (4.3)

and p is defined by (4.1). In order to get (4.2), just replace a by J¢ in (3.40), multiply
both sides by J*, and sum over the repeated index a = 1,...,dimg.

We can now use the expression (4.2) of K(u,v) and condition (3.39) to get
[[a, Pi(u,v)], Py(u,v)] + 2k(a, P(u, v))Pe(u,v) = o({J*, a}u,v)J* — (u,v)a . (4.4)

We denote by {4, B} the anti-commutator of A and B, namely {A, B} = AB + BA.
After replacing a by J? in (4.4), taking the tensor product with J? and summing over
B =1,...,dimg, the right hand side of (4.4) becomes

o({J%, JPYu,v)J* @ J* — (u,v)J*® J¢,

the second term of the left hand side of (4.4) gives simply 2kP(u, v), while from the
fist term of the left hand side of (4.4) we get

[J%, Pi(u,v)], Po(u,v)] @ J* = =[J%, Pi(u,v)] ® [J%, Pa(u,v)] .

In the last identity we used the fact that Q, = > J*® J* € g® g defines a one
dimensional trivial submodule of g ® g, namely

la, 7% ® J® = —J° ® [a, J°] . (4.5)
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Suppose now that © ® v (or rather a linear combination of such monomials) is an
element of an irreducible component IT C S2U. Since P : S2U — S%g is a g-module
homomorphism, we get that either P(u,v) = 0 or there is an embedding IT C S%g
such that P(u,v) € I C S?g. Using the fact the the Casimir operator Q2 € U(g) acts
by scalar multiplication by €23 on g and by scalar multiplication by {2 on II, we get

1
[Ja, Pl(u,v)] X® [Ja, PQ(U, ’U)] = (§QH — Qg) P(U,U) .
In conclusion (4.4) gives, for u ®@ v € I C S?U,
1
(2% — 200+ Q) P(u,v) = o(J°, Phu,0)J" @ P — (wo)J @I . (46)

Notice that if 2k # %QH — Q, for all irreducible components IT C S?U, equation (4.6)
defines completely P(u,v) for every u,v € U. Equation (4.6) is equivalent to the
following two equations for P(u,v). For u®v € C C S2U

P(u,v) = ac(u,v)J* @ J* | (4.7)
where a¢ € C is given by the equation
(2k + Qy) dimg ac = 20y —dimg .
For v ® v € II, where II is any non trivial irreducible submodule of S2U,
P(u,v) = an({J*, JP}u,v)J*® J? (4.8)

where apy is given by
1
(Qk — 591‘[ + Qg)an = 0.

To get (4.7) just notice that, if u ® v € C C S?U, then u® v = %ei ® €', and that
for every a,b € g one has

Qy dimU

(abé',e') = Try(a,b) = dimg

(a,b) . (4.9)
Equation (4.8) follows immediately by (4.6). We can use (4.7) to find an equation for
the constant p defined by (4.1). After taking the image via (,) : S?g — C of both
sides of (4.7) we get (4.1):

p=dimg ac . (4.10)

So far we used equations (3.39) and (3.40) to find expressions for the homomor-
phisms K : A?U — g and P : S?U — S?g depending only on the values of the
parameters ¢ and k. We are left to impose conditions (3.41) and (3.42) to get restric-
tions on the values of ¢ and k£ and on the choice of g and U.

Since P : S?U — S?g is a g-module homomorphism, if [T C S?U is an irreducible
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component which is not embedded in S?g, it must be P| = 0. Therefore if we choose
u®wv € Il C S?U, equation (3.41) gives

U((Jo‘u, w)J% + (J%,w)J"‘u) = %((u,w)v + (v, w)u) . (4.11)

Since by assumption © ® v € II C S?U, and since the Casimir operator acts as a
scalar on U and II, we have

Quuev=2Qu®v+2J% Q@ J% . (4.12)

Substituting into (4.11) we thus get

1 1
—Qn—Qu ) ==. 4.1
o (30m-9w) = (4.13)

Notice that (4.13) gives a very strong restriction on g and U, namely for every irre-
ducible component IT C S2U such that IT ¢ S?g the Casimir operator must take the
same value.

In the next section we will find a complete list of pairs (g, U) satisfying the above
condition.

4.2 Restrictions on (g,U) coming from (4.13)

According to the observations at the end of Section 4.1, we need to solve the following:

Problem 4.2.1. Classify all pairs (g,U) where g is a simple Lie algebra, U is an
irreducible, orthogonal, self-contragradient g-module such that S?U admits a de-
composition S?2U = ¢ @ ¥, where ¥, and ¥, are such that there is an embedding
¥¢ C S%g and Q|yp is constant.

For simplicity, we introduce the following notation, which will be used throughout
this section. If g is a Lie algebra of rank r, § its Cartan subalgebra, then o, ..., a;, €
h* denote its simple roots and 7y, ..., 7, € h* its fundamental weights. An irreducible
g—-module will be denoted by its highest weight A. Therefore 7y,..., 7, denote the
fundamental representations, and any other irreducible g-module (or, equivalently,
any positive dominant weight), will be A = >~ |, \ym, € Py, for arbitrary A\, € Zy.
A are called the labels of A, and we define the length of X as [A| := )", _, Ay. The
trivial one dimensional representation will be both denoted as 0 (according to the
above notation) or as C. Given an irreducible g-module A € P, the Casimir operator
2 € U(g) acts as scalar on A\, and we denote by 2, € R, its value: Q[, = Q, I,.
In the space of dominant weights P = {u = Y, _, nymg, n, € Z} we have a partial
ordering. We say that 4 > v if and only if (12 — v) can be written as non zero linear
combination of simple roots «; with non negative integer coefficients. In particular if
A is an irreducible g—-module and p is any weight of A\, namely the weight subspace
of A with weight u is non zero, then \ > p.

We will need the following simple

70



Lemma 4.2.2. If A > p, then 2 > Q.

Proof. Recall that Qy = (A, A + 2p), where p = $3° o = Y| _ m is the semi-
sum of all positive roots, or equivalently the sum of all fundamental weights. By
assumption A = y + 7, where v = Y, _ ngay # 0 for some n; € Zy, i = 1...,7.
Then

D= =2(+p,7)+(7,7)>0.

Immediate consequence of Lemma 4.2.2 is the following:

Corollary 4.2.3. Let A € Py be an irreducible g—module. For any irreducible com-
ponent I1 C S2\, II # 2\ we have Qgy > Q.

It follows that if the pair (g, \) satisfies the assumptions of Problem 4.2.1, either
there is an embedding (2)\) C S?g, or there is an embedding S?\/(2)\) C S%g. We
will consider these two cases separately.

4.2.1 Case 1: (2)\) C S?%g

The following table shows the decomposition of S?g into irreducible components for
every simple Lie algebra g (see [18]):

Table 4.1:

g S’g

Ay, r>1 | 2m 4 2m,) @ (ma + mp—1)0r>3 @ (M1 + 7, )0r>2 ® C
(2m3) for r =3

B, r>3| (2m)®q (2my) forr=4 ®(2m)®C

(mq) forr>5

Cr,7>2 | (4m)® (2m) @maeC

(2m3) ® (2my) for r =4

Dy, r>4 | (2m) ® (2m) ®{ (my+m5) forr =5 ®C
(my) for r > 6

Es (2mg) @ (m +75) & C
Er (2mg) @@ C

Eq 2m)emeC

F, (2my) ® (2m) ® C

G- (2m) ® (2m)® C
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Obviously A ~ g satisfies the condition (2)\) C S?g and all the assumptions of Problem
4.2.1. If X # g, since we are asking that A € P, and (2)\) C S?g, only the following
possible pairs (), g) are allowed:

Table 4.2:

B, r>3 m

B; 3

D.,,r>4 m
D4 5

Fy YS!

(
(
(
(
C,,7>2 o (272) ® T20,>3 B Tady>4 B C
(
(
(
(

Go Ut

By looking at the decomposition of S?) into irreducible components (in the third
column) for each case in the above list, we see that all the other assumptions of
Problem 4.2.1 are satisfied.

4.2.2 Case 2: S2)\/(2)\) C S?%g

In order to impose condition S?)\/(2)\) C S?g we will need the following:

Lemma 4.2.4. Let g be a simple Lie algebra an A € Py be any non trivial irreducible
g—module, with |\| > 2. If \; > 2, then

(2) — 20;) C S*N
and if Nj, A\j > 1 fori # j, then
(2X — oy — aj) C S?N.
Remark 4.2.5. One can also prove (see [16, 19]) that if \; > 1, then
(2) — ;) C A%X .

But we will not need this fact and therefore we will not prove it.

In order to prove Lemma 4.2.4 we will use the following Freudenthal’s formula
(see, for example, [10]):
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Lemma 4.2.6. Suppose 1 = X\ — >, njoq is a weight of the irreducible g—module
A € P., and denote by my[u| its multiplicity, namely the dimension of the weight
subspace of weight . Then

((/\ +p, A+ p) - (u+p,u+p))mx[u] = 2ZZmA[u+ia](u+ io,a) . (4.14)

Proof of Lemma 4.2.4. Consider first the case A\; > 2. Under this assumption we have
mx[A] = ma[A — ;] = my[A — 2¢4] = 1. Therefore, just by dimension counting, we
get mgz2y[A —2a;] = 2. On the other hand the multiplicity of (2A —2¢;) in the highest
component (2)) C S?)\ is may[2A—2q;] = 1. This of course implies that there must be
in S2\ a singular vector of weight 2\ —2q;. In other words (2A—2¢;) C S?2). Consider
now the case A;;, A; > 1, for some ¢ # j = 1,...,7. Under this assumption we have
ma[A] = my[A — ;] = my[A — ;] = 1. We are also interested in my[A — o; — «].
Since (v, ;) < 0 for ¢ # j, we know that my[A —a; — ;] > 1. To compute its actual
value we can use Freudenthal’s formula. By putting p = A — a; — «; into (4.14), and
using the obvious identities (A, ;) = (s, 05) i, (pys) = 3(a, ), the left hand
side becomes

((Cki, Ckz)/\, + (Odj, O&j)/\j - 2((%‘, og))m)\[)\ — O — ij] . (415)

For the right hand side of (4.14), the sum over the positive roots & > 0 will be different
depending whether o; + «; is a positive root or not. If a; + «; is not a positive root
(which is equivalent to say (o, ;) = 0), we get

(ci i) Ai + (o, ) A (4.16)

and if ; + «; is a root (namely (a4, ;) < 0), we get
2((% ai) i + (aj; ) Aj — 2(;, a,-)) : (4.17)

By comparing (4.15), (4.16) and (4.17) we finally get

. 1if (O!i,Ozj):O
maA - i - ag] = { 2 if (ay, o) < 0

By dimension counting the multiplicity of (2\ — o; — ;) in S2\ is

2 if (O!i, Q]’) =0

mg2\2A — i — o] =1+ my[A — o — o] = { 3if (as, ) < 0

We now want to compute the multiplicity of (2\ — o; — «;) in the highest component
(2)\) C S?)X. Again we can use Freudenthal’s formula (4.14), by changing A with 2\
and taking p = 2)\ — a; — ;. The left hand side becomes

2((0&5, a’z))\z + (Q]’, O!j)Aj - (O,/Z', aj))mQA[Q/\ — Oy — aj] y (418)
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and the right hand side is, if o; + «; is not a root
2((0@, ;i)\ + (o, aj))\j) , (4.19)
while if o; + «; is a root
A{(0n, 09N + (0,07, = (05, ) - (4.20)
By comparing (4.18), (4.19) and (4.20) we get

1if (a4, ;) =0
ma[2A = 0 — ] = { 2 if Eai,aﬁ <0

In all cases we proved that ma[2A — oy — ] < mg25[2A — @; — «;], which obviously
implies that there is a singular vector in S%\ of weight (2\ — «; — «;), namely (2 —
oy — ij) C SQ)\ I

Lemma 4.2.4 gives a powerful tool to solve Problem 4.2.1. We will consider sepa-
rately the two situations |A\| = 1 and |A| > 2.

Case [\ =1

The first case is |A| = 1, namely ) is a fundamental representation. We want to check
case by case to see when the assumptions of Problem 4.2.1 are satisfied (by looking,
for example, at the tables in [18] for the decomposition of S?7;). For g = A,, r > 1,
the condition that A\ = m; is self contragradient (namely C C S?)) is satisfied only
forr=4k+3, k € Z, and A = my,o. On the other hand

S Mokt = (2Mopye) ® (Tok + Topsa) ® - O (T + Tapyo) © C .

Comparing this with the decomposition of S?g in Table 4.1 we get that (g = Ay 13, A =
Tokt+2) meets the assumptions of Problem 4.2.1 only for £k = 0,1. Forg=B,, r > 3
we have that

S’m, = @ (g +7y), forl1<p<r—1
0<y<uz
z+y<2p
r=y mod4

2 _ ~
S T, = @ Ty —i

0<<1<r
1=0,3 mod4
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where we denoted (following [18])

4

0 for p=0,2r+1
. Tp for 1<p<r-1
Tp = 9
27, for p=r
| T2r+1-p for r+1<p<2r

From the first decomposition, if p > 3 and p # r, both (27,) and (273) are irreducible
components of S?m, but not of S?g (see Table 4.1); therefore A\ = m, does not meet the
assumptions of Problem 4.2.1. Similarly, for p = r # 3,4 we have (27,), m,_3, T,_4 C
S?m, and 2m,, m_; ¢ S%g for either i = 3 or 4; so that also A = 7, is ruled out,
unless r = 3,4. It follows that the assumptions of Problem 4.2.1 are satisfied only
for A =m,m, Vr >3 and A = m, for r = 3,4. For g = C,, r > 2, the condition
C C S?m, is satisfied if and only if p € 2Z,. Moreover

SPm, = @ (Mg +my) -
0<y<z
r+y<2p
x—y <2(r—p)
r=y=p mod 2

From this decomposition we have 27, C S%m, for all p, 27y C S?r, for p > 5 and
(e + m4) C S%m, for p # r. On the other hand if p # 2 (see Table 4.1) 2m,, 2m,
and 7 + 74 are not components of S2g. This means that A\ = 7, does not satisfy the
assumptions of Problem 4.2.1, unless p =2 or p =r = 4. For g = D, we have

S’m, = @ (g +7y), forl<p<r-—2
0<y<wx
r+y<2p
r=y mod4

S'm, = (27Tp)€9<@7fr—4i), forp=r—-1,r,

i>1

where we denoted 7y = C and

(0 for p=20,2r
Tp for 1<p<r-2
iy =14 (T +m) for p=r—1r+1
(2m,_1) ® (2m,) for p=r
| T2r—p for r4+2<p<2r-1
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From the first decomposition we have that, if p > 3 and p # r — 1,7, then (27,) and
(75 + #1) are embedded in S?m, but not in S?%g, therefore this case is ruled out. If
p=r—1orr, m, admits a symmetric invariant bilinear form if and only if r = 0
mod 4. If r > 12, then (27,) and 7,_4 are embedded in S?m, but not in S?g, so that
A = 7,1 and 7, are ruled out unless » = 4 or 8. In conclusion the only g—modules
A = m, which satisfy all the assumptions of Problem 4.2.1 are A\ = 7, for all p if
r =4, A\ = m, my for all values of »r > 5, A = m;, g for r = 8. We are left to
consider the exceptional simple Lie algebras g = E,.,r = 6,7,8, Fy, G>. With a
case by case check (based on the tables in [18]) one finds that the only pairs (g, A)
satisfying the assumptions of Problem 4.2.1 where g is an exceptional Lie algebra
and A is a fundamental representation are all the adjoint representations plus the two
cases (g = Fy,A=m), (g =Gz, A =m).

Case || > 2

Consider now the case || > 2. By Lemma 4.2.4 we have (2\ — a; — ;) C S?A
for 4,5 such that \;, \; > 1if ¢ # j and A; > 2 if 7 = j. Therefore, since we are
assuming S?\/(2)\) C S?g, we must have (2\ — a; — ;) C S?g. In other words we
can restrict ourselves to look for dominant weights A € P, which can be written
as A = %(,u + o; + ), for some 4,5 = 1,...,r and some irreducible component
p C S?g. By direct inspection, the only quadruples (g, s, o, ;) such that p C S%g
and A = 2(1 + o; + ;) € P, are the ones listed in the Table 4.3.
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Table 4.3:

g u ; + A
Ay C 2011 = 4my 2m ~ g
A 47y 200 = 4my 47y
A, m + o o1 + g = T + T (m+m) ~g
As 21 + 21y 20 = 41 — 279 3m;
Ao 21 + 27y 2009 = =27 + 47e 3
As 21 + 2wy 2009 = =27 + 4wy — 273 27y
Ay, 7>3 m+mo o to (m+m)~g
=2m — My — TWp_1 + 27,
Bs 21y a1 + oz = 2w — 279 + 275 T + T3
Bs 21y 2003 = —2my + 473 21
B., r>3 2m 2001 = 41 — 279 21
Cy To a1+ g = Ty o
Cy 279 20, = 4 — 279 2m ~ g
Cy 41y 2009 = —4my + 4y 27y
Cr, 7>3 2my 20y = 4w — 2y 2m ~ g
D, 279 ; + o = 2m; + 27; — 2o, T + T
1,5 =1,3,4
D,, r>5 2m 2000 = 4m — 27y 21
Go 279 20, = 4 — 279 21y
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Among these pairs (g, \) we have to select those for which all assumptions of Problem
4.2.1 are satisfied. By imposing C C S%)\ we rule out g = Ay, A = 37 and 3.
According to Lemma 4.2.2 we can then exclude all pairs (g, \) such that 2\ ¢ S%g
and there is another component IT C S?) such that IT ¢ S?g. In this way we rule out
the following cases:

Table 4.4:
g A IIC S%\ ¢ S%g
Bs w + w3 T + 273
Bs  2m3 T + T
Dy m+m, T + 73 + My
1#7=13,4
Gy 2m T+ T

4.2.3 Solution of Problem 4.2.1

We can summarize all the results we have gotten so far in the following Table 4.5,
which gives a complete solution to Problem 4.2.1.
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Table 4.5:

SZA

g A d n
All Ax~g see Table 4.1

Ay 4y (8m1) ® (4m) @ C 2 1
Az o (2m) @ C 2 0
A 27y (4my) ® (211 +2m3) ® (2m) @ C | 3 1
Ay Ty (274) @ (w2 + 7m6) & C 2 1
B; 3 (2m3)® C 2 0
By Ty (2my) @m dC 2 1
B, r>3 m (2m) @ C 2 0
B, r>3 2m (4m1) @ (2m2) & (2m) & C 3 1
Cy 27y (4dmg) @ (4m1) @ (2m2) @ C 3 1
Cy Ty (2m4) ® (2mp) ® C 2 1
Co o (2m) @ C 2 0
Cs Ty (2m)®m®C 3 0
C,,mr>4 m (2my) @ s ® M B C 3 1
D, M i=1,...,4 | @m)®C 2 0
Dy om, i=1,...,4 | (4m) @ (2m) ® (2m;) ® C 31
Dg Tp, P=1,8 Q2m)emaeC 2 1
D.,,r>5 m (2m) @ C 2 0
D.,r>5 2m (4m1) ® (2m2) & (2m) B C 3 1
Fy m (2m)@meC 2 1
Gy m (2m)®C 2 0
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The second last column shows the value of d = dim Homg(S?), S*g). In other words,
if we decompose S2\ = X% @ ¥ where Y¢ is a maximal submodule embedded in S%g
and ¥° ~ S%2)\/¥4 then d is the number of irreducible components of % It can be
obtained immediately by comparing the decomposition of S2) in the third column of
Table 4.5 with the corresponding decomposition of S2g, given in Table 4.1. The last
column gives the number of irreducible components of X%, denoted by n.

So far we proved that all the pairs (g, A = U) satisfying the assumptions of Problem
3.5.3, and such that g is simple, U is irreducible, ¢ and () are non zero, have to be
listed in Table 4.5. In the following Sections we will find out which of the pairs
(g,U) listed in Table 4.5 do satisfy all conditions of Problem 3.5.3, namely admit
homomorphisms K : A?U — g, P: S?U — S?g satisfying equations (3.39), (3.40),
(3.41) and (3.42). We will consider separately the following three situations:

a) adjoint representation: U ~ g,
b) (g,U) such that U # g and dim Hom,(S?U, S?%g) = 3,
¢) (g,U) such that dim Hom,(S?U, S?*g) = 2.

4.3 Case U ~ g

Assume U ~ g. In this case the equation (4.2) for K(a,b) reduces to
K(a,b) = ola,b] . (4.21)

Moreover, if a; ® ay (or rather a linear combination of such monomials) is an element
of an irreducible component IT C S?g, then

1
([Ja, [J’B,al]],ag)J“ & Jﬂ = —[J”‘,al] ® [Ja,ag] = — (EQH - Qg) a1 X ay .

Therefore the expressions (4.7) and (4.8) for P(ay, as) become
P(CLl,(Lg) = ﬁ]‘[ a; ® as , if a1 @ ag € II C 529 , (422)

where
fc = dimgoc,

Bn = -2 —Qy)an, forIlC S%g M #C.
For b € g and a; ® ay € IT C S?g, condition (3.41) gives

[P1(a,1,a2), [P2(ar, a2), b]] + 2[K (a1, b), as] = (a1,b)as — (a1, a2)b .
By using (4.21) and (4.22) this equation gives
(B — 20)]ax, [ag, b]] = (a1, b)as — (a1,a2)b . (4.23)
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In the left hand side we can substitute
1
a1, [A2, = — | S8 T g ai,0)asz ,
o fan 8] = = (0= 2, ) (01,0

which follows by the obvious identity [a, b] = (J*, [a, b])J*, g-invariance of the Killing
form, and equations (4.5) and (4.12). In the right hand side of (4.23) we notice that
(a1,a2) = 0 if IT # C and (ay,a9)b = dimg (a1, b)ay if Il = C. Equation (4.23) thus
reduces to the identity

Assuming IT # C is any irreducible component of S?g, we can use the definition (4.22)
of By and the definition (4.8) of ag to get from (4.24)

(4ko +1) (%QH _ Qg) ok . (4.25)

Clearly (4.25) can not be satisfied for all non trivial irreducible components IT C S?g,
since the left hand side is different for different choices of II, while the right hand side
does not depend on II.

In conclusion, the case U ~ g is always ruled out, unless g is such that S?g =
(irreducible)@(scalar). This happens only for g = A;. We will consider this example
in Section 4.5, together with all other cases for which dim Homg(S?U, S?g) = 2.

4.4 Case dim Hom,y(S?U, S?g) = 3

Let us consider now the pairs (g, U) in Table 4.5 for which dim Hom,(S?U, S?g) = 3.
According to the isomorphisms Cy ~ sos, A3 ~ sog, B, =~ s0941,7 > 3, D, =~
SO9, 7 > 4, O, =~ 8py,, 7 > 3, all such pairs are included in one of the following two
cases:

1. g=-so0,, UcS*C"/C,n>5

2. g=sp,, UCAC'/)C,n>6
For each of these two cases we will prove by direct computation that equations (3.39),
(3.40), (3.41) and (3.42) can not be simultaneously satisfied, for any choice of homo-
morphisms s : S?g - C, Q: S?°U - C, K: A°U — g, P: S?U — g. In other
words, all pairs (g, U) with dim Homg(S2U, S*g) # 2 are ruled out.

We have an explicit realization of the Lie algebra g and its representation U in
the following way. Consider first g = so,, U = S*C"/C. By definition

g:son:{XEMatn(C|XT:—X}.

Its defining representation is the space C" of n-—vectors. If we naturally identify
C" ® C* ~ Mat,,C, the action of so, on Mat,C is given by commutator: (X )(M) =
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(X,M] = XM — MX, VX € so,, M € Mat,C. The decomposition C* ® C* =
A?C"* @ S%2C" translates into Mat,,C = so, ®K, K = U @ CI, where

U={A6MatnC|AT=A, TrA:O}.

Consider now g = sp,,, U = A2C"/C. Let J be the matrix
J= (4.26)

Then
g=sp, = {X € Mat,C | XJ+JXT:0} ,

and
U= {AeMatnC | AT — JAT =0, TrA:O} .

Throughout this section we denote n = 2r, where r = rankg > 3.

The unique (up to scalar multiplication) symmetric invariant bilinear form on g
is the trace form (X,Y) = Tr(XY), VX,Y € g. Similarly, the unique symmetric
invariant bilinear form on U is (A, B) = Tr(AB), VYA,B € U. Therefore the g-
module homomorphisms s : S%g — C and Q : S?U — C are necessarily of the form
(X,Yeg, A BeU)

#(X,Y)=k(X,Y) and Q(A,B)=¢(4,B),

for some k,e € C. Notice that the choice of the normalization factor € can be modified
arbitrarily with a g-module isomorphism U = U, A+ §A for any § € C — {0}. We
can thus fix e = 1.

Remark 4.4.1. (a) We can fix a dual basis {J,, J% « € A} on so, as follows. We
take A ={<i,7> |1 <i<j<n}and

> 1
Jeijs = —JW7 = ﬁ(Ei'—Ej')-

(b) Similarly, we have a dual basis {J,, J% « € A} on sp,, as follows.

Ay = 5By = Bnpijmii-) , AV = Au, 1<4,j<r,
By = L(Binrj+Bjnpi), BY = Cy, 1<i<j<r,
Cij = Z5(Bniimij+ Enyig) , C7 = By, 1<i<j<r,
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Bi = Einy1-i BY = C;, 1<i<r,

Ci = Epy15; C" = By, 1<i<r.
It is immediate to check that, indeed, Tr(J,J?) = das , Vo, B € A.

Lemma 4.4.2. Let the pair (g, U) be either (so,, S*C"/C), n > 5, or (sp,, A*C"/C),
n = 2r > 6. We denote by I respectively the identity matriz, if we consider g =
son, U = S?C*/C, or the matriz J, if we consider g = sp,,, U = A2C"/C. It follows
that I? = i*1, where i*> = +1, depending whether we consider g = so,, U = S?C"/C
or g =sp,, U= A?C"/C.

(a) If Qn denotes the eigenvalue of the Casimir operator Q = J,J* € U(g) on the
wrreducible g—module 11, then

Q(Cn = %(n — 7,2) y
QU = n,
Qg = n— 2i? .

As usual we assume we sum over repeated indices.
(b) For every matriz M € Mat,C we have

1 1
JoMJ* = —éLMTI+§IHNQI.

In particular
J.XJ* = 12X VX eg,

2

JLAJ® = 124 VAeU.

c¢) There is a unique, up to scalar multiplication, g—module homomorphism: AU —
(c) g

g, namely
[A,B] = AB—BA, VYA, BeU.

(b) A basis for Homg(S?U, S?g) is given by the following three g—module homomor-
phisms S2U — S?g

PO(A,B) = (A,B)J,®J",

P®(A,B) = %({{A,B}, T} ® J + J, ® {{A, B}, J"“})
= Jo®{{A, B}, J°},

P®(A,B) = %((AJQ B+ BJ,A)® J% + J, ® (AJ®B + BJaA))
= J,® (AJ°B + BJ°A) .

Here and further {A, B} denotes the anti-commutator of A and B, namely AB+ BA.
(e) In all cases except g = spg, U = A’C® /C, the following expressions define linearly
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independent g-module homomorphisms SP°U @ g —U (X €g, A; €U, 1=1,2,3)
MW(X; A1, As, A3) = 33 e, (Aoy, A0n) (X, Ay
M®P(X;A1,42,45) = Y,es,[{Ani A0y, X}, Au]
M®(X; A1, 49, 43) = Y ,cq, AnlX, Agy]A,,

We denote by Ss the set of all permutations of (1,2,3). For g = sps, U = A’C%/C
the only relation of linear dependence among them is

M(l)(X;Al,AQ,Ag) = 2M(2)(X;A1,A2,A3) =+ 2M(3)(X;A1,A2,A3) . (427)

(f) The following expressions define linearly independent g—module homomorphisms:
SPU®g—g(Xeg, A BeU)

RO(X;A,B) = (4,B)X ,

RO(X;A,B) = {{A,B}, X},

R®(X;A,B) = (AXB+ BXA).
Proof. Parts (a) and (b) can be checked with a straightforward computation. Their
proof will be omitted. (Note that we will only need them in the particular case g =
spg, U = A*C%/C). Part (c) follows immediately by the fact that dim Homgy(A2U, g) =
1 (see [18]). Clearly all the maps P® : S?U — S?g, M%) : S3U®g — U, R : S?U®
g—g,1=1,2,3, are g-module homomorphisms. Since dim Homy(S?U, S?g) = 3, we

only need to prove their linear independence (and relation (4.27) for g = spg). This
can be checked by direct inspection. O

It follows by (c¢) and (d) in Lemma 4.4.2 that the g-module homomorphisms K
and P are

K(A,B) = o[A,B],
P(A,B) = a;PW(A,B)+ ayP? (A, B) + asP® (A, B)

for some values of 0,; € C, 7 =1, 2, 3.
Let us impose now equation (3.42). In this setting, it takes the form

Y i Y PP(Agy, Ary) @ [P (Asy, Asy), Ag)]) = 0, YA €U,  (4.28)

1=1,2,3 0€C3

where Cj is the set of cyclic permutations of (1,2,3). After a straightforward com-
putation we get the following identities

" PO (Agy, Ar) B[P (Asy; Agy), Avs) = Ja®@MD(J% A, Ay, As), Vi=1,2,3,

oeCs
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where M@ (X; Ay, Ay, A3) is defined in part (e) of Lemma 4.4.2. Thanks to the above
equations, (4.28) can be rewritten as

D e ® MY(J% Ay, Ay, A) = 0. (4.29)

i=1,2,3

By Part (e) in Lemma 4.4.2, the M®)’s are linearly independent in all cases except
g = spg, U = A?C®/C. Therefore equation (4.29) implies

a1 = g = (03 = 0 s
unless g = spg, U = A?C®/C, in which case (4.29) is equivalent to

Qg = O3 = —20[1 . (430)

Let’s now impose equation (3.39). In our setting it takes the form (X € g, A, B €
U)
3 . . . o
> i (26X, PO(A, B PO (A, B) + [PO(4, B), [P (4, B), X]))

=1

= o[A,[B, X]] + o[B, A4, X]] - (4, B)X . (4.31)

Notice that if a; = ap = a3 = 0, equation (4.31) cannot be satisfied for all A, B € U
and X € g. This automatically rules out all the pairs (g,U) except g = spg, U =
A?CP/C. Using Part (b) of Lemma (4.4.2), it is not hard to prove the following
equations

(X, P94, BYPY(A,B) = RO(X;A,B), i=1,2,3,
[P1(4, B), [P{V(4,B),X]] = QRO(X;A,B),
[PP(A,B),[PP(A,B),X]] = {Ju{A,B}J* X} - {{A, B}, J*XJ*}
+ Qo {{4, B}, X} — Jo{{4, B}, X }J*
= 2RM(X; A, B) + (Qen — 23i%)RP(X; A, B) |
PP (A, B), [P (A,B),X]] = —12R®(X;A,B) - ?R®(X; A, B),
[A,[B,X]] +[B,[A, X]] = R®(X;A B)-2R®(X;A,B),
where R® (X; A, B), i = 1,2, 3, are defined in part (f) of Lemma 4.4.2. Substituting
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back in (4.31), we then get

(1 + 2kay + 01Q4 + 202) RO (X5 A, B) + (2kay + 0Qcn — 3320y — Li%a;

2 2

— 0)R®(X; A, B) + (2kas — ag + 20) RO (X; 4, B) = 0. (4.32)

By part (f) in Lemma 4.4.2, R, R® and R® are linearly independent g-module
homomorphisms. Therefore equation (4.32) holds if and only if all the coefficients
of RW(X; A, B) are zero. Since we are only interested in the case g = spg, U =
A2C%/C, we can replace i* = —1, Q; =8, Qc¢» = 7/2. Moreover, by (4.30) we have
a; = —, ag = ag = 2a. It then follows from equation (4.32)
1—-2ka—4a = 0,
dka+1la—0o = 0, (4.33)
2kae+a+0 = 0.

It is not hard to check that the system of equations (4.33) does not admit any solution.
In conclusion, also the pair (g = sps, U = A?C®/C) is ruled out.

4.5 Case dim Hom,(S?U, S%g) = 2

We are left to consider the case dim Homy(S?U, S*g) = 2. Suppose u®uv is an element
of the irreducible component II C S?U. Since the map u®v — ({J¢, J*}u,v)J*® J?
is a g-module homomorphism: S?U — S%g, we have

({J*, JPYu,v)J* ® JP =0 if I ¢ S?%g ,
2 W (y p)Je®J*, fll~C.

dimg

In the second identity we used equation (4.9). It follows that the expression of P(u,v)
given by (4.7) and (4.8) becomes in this case

P(u,v) = y({J*, J?}u,v)J* ® J° + B(u,v)J*® J*, VYu,veU, (4.34)

where [ and y are related to the ag’s by

Qu
ac=2yq o B, ag=7v (4.35)

Here TT denotes the (unique) non trivial irreducible component of S?U which can be
embedded in S?%g.

In order to solve Problem 3.5.3 we need to impose conditions (3.39), (3.40), (3.41)
and (3.42). From equations (4.2), (4.10) and (4.35) we get that (3.40) is equivalent
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to
6koc = c+ 4kyQy + 2Bkdimg , (4.36)

and similarly, from equations (4.7), (4.8) and (4.35) we get that (3.39) is equivalent

to
(2k + Qg)(29Qy + Bdimg) = 20Qy —dimg,
@k — 107+ Q) = o. (4:37)

We now want to use equation (3.42) to get a very strong restriction on the g—
module U. This is stated in the following

Lemma 4.5.1. (a) Suppose 0 # P : S?U — S%g is as in (4.34), and assume it
satisfies equation (3.42). Then, for every irreducible component I1 C S*U one has

(b) In particular, if U = 11, is the irreducible g-module with highest weight X\, then

S2U = My e C. (4.39)

Proof. We can rewrite equation (3.42) by using the expression (4.34) of P(u,v). For
every ui, ug, u3 € U we have

¥ Y T I e 10,) T ® (JPugy) + B ) (o), u0) I © (J%ugy) = 0. (4.40)

geCs geCs

We can replace u3 by €’ in equation (4.40), take the tensor product of both sides by
e¢’, and sum over the repeated index i = 1,...,dim U. The resulting equation is

Y{I®, TP, ug) J* @ (JPe') @ ¢ +4J* @ (JPur) @ ({J°, T  }us)
+ 4% @ (JPuy) @ ({J%, JP}uy) + B(ur, uz)J* @ (J%) @ € (4.41)
+8J*® (JaU1) Quo + BJ*® (JQUQ) ®u; = 0.

Notice that the expression in (4.41) is symmetric in u; and us. Namely we can think
at the left hand side of (4.41) as a g—module homomorphism

LHS : S°U — gUU . (4.42)

Let us assume that u; ® uy (or rather a linear combination of such monomials) is an
element of an irreducible component II C S2U. Notice that there is a surjective map
m: g®U — U, given by 7(a ® u) = au. We can then compose the homomorphism
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(4.42) with 7 in two different ways: either

LHS 12

LHS, : S*U — gU®U — UQU

a®@u®v — (ou) v

or

LHS 13

LHS, : SU — gU®U — UQU

a@uv = u® (av)

It is then clear that (4.41) implies the two equations
LHS, =0 , LHS, = 0. (4.43)

Equation (4.38) will follow by comparing these two conditions. Let us first compute
LHS,. By definition it is, for u; ® uy € II C S2U

LHS, = ~({J%, JP}uy, up)(J*JPe)) @ e + 2y(J*JPuy) @ ({J%, JP}us)

+ Blur, ug)(J*J€) @ € + 28(J* ;) @ sy . (4.44)

Since the Casimir operator 2 = J*J* acts as scalar on the irreducible g—-module U,
we can replace in the last two terms of the right hand side of (4.44) J*J%' = Q¢
and JYJ%u; = Qpu;. Moreover, since by assumption u; ® us € II C S2U, we have

Qnu1 R uo = QQUu1 X uo + 2(J°‘u1) (024 (Ja’LLQ) y (445)
so that we can replace, in the second term of the right hand side of (4.44)
(JO‘Jﬂul) ® ({Ja, J’B}Ug) = 2(JQJ’BU1) Y (JaJ’BUQ) — %([Ja, J’B]Ul) X ([Ja, Jﬂ]’u,g)

= (2(%91‘[ — QU)2 + %Qg(%QH - QU)>U1 X us .

In the last equation we used the obvious identity

[J* JPl @ [J* JP] = —QgJ*® J* . (4.46)
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We can then use the above observations to rewrite (4.44) as
LHS, = ~({J% JP}uy, up)(J*JPe}) @ €t
+ 27(2(5% — Q)2 + 10,(10n — QU)>u1 ® g (4.47)
+ BQu(ui,uz)e’ ® et + 28Qpu; @ uy .
Let us now compute LHS,. By definition
LHS, = ~y({J%, J?}us, ug)(JPe") @ (J€') + 2v(JPur) @ (J{J*, J?}us)

+ ﬁ(ul, UZ)(Jaei) X (Jaei) + 25(Jau1) ® (Jauz) ‘ (4.48)

By (4.45) we can replace in the last two terms in the right hand side of (4.48)
(J%) @ (J%') = Qe e,

and .
(JaU1) X (Ja’l,tg) = (§QH — QU)UI X ugy .

Moreover, by (4.5) and (4.46) we get
(JPuy) @ (J{J2, JPYug) = 2(JPuy) @ (J4T*JPuy) + (JPuy) @ ([J%, JP]J%us)
= (2Qu — 3) (300 — Q)us @ uy .
Substituting the above results back in (4.48) we thus get
LHS, = y({J% J7}ui,us)(JPe") @ (Jo€)
+ 292 — 1) (53 — Q)us Q@ uy (4.49)
— B (ur, u)ef @ € + 28(30 — Qu)uy @ us .

Since (ae’) ® e' = —e'(ae’), the sum of the first term in the right hand side of (4.47)
and the first term in the right hand side of (4.49) is zero. Therefore, if we take the
sum of the two equations (4.43), we get, after simple algebraic manipulations

0= LHSI + LHSQ = QH(VQH — 2")/QU + B)Ul X U9 5 ‘v’ul R us € II C 52U .

This clearly implies part (a) of the lemma. Notice that (4.38) is an equation of degree
2 in £ = Q. One solution is obviously z = 0, which is obtained for II = C C S?U.
It follows that the Casimir operator €2 has the same eigenvalue on every non trivial
irreducible component IT C S2U. By Corollary 4.2.3 this is possible only if S2U/C ~
I15). This concludes the proof of the lemma. O

It follows by part (b) of Lemma 4.5.1 that all cases in Table 4.5 with d = 2 and
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n # 0 are ruled out. We are then left to consider the pairs (g,U) in Table 4.5 for
which d = 2, n = 0. It is clear from the isomorphisms: A; ~ so3, Cy ~ so5, Az ~
S0g, B, ~809.41,7 > 3, D, >~ soq.,r > 4, that all such pairs are

1. g=so,, U=C"n>3, n#4,
2. g:B3, U:7T3, (450)
3. g:Gg, U:’ﬂ'l.

We now want to use Lemma 4.5.1 to study equations (3.41) and (3.42). We will
denote for the rest of this section IIyy, = II. Every element u; ® us € S2U can be
decomposed according to the decomposition (4.39) as follows

(ula u2) i

(’Uq,Ug) i i
ImU eRe (4.51)

U @ Uy = (U1®U2_ el ®ei)+

so that the first expression in the right hand side belongs to I C S2U, while the last
term belongs to C C S2U. The decomposition (4.51), together with (4.45), implies
that for every element u; @ uy € S2U

(11, o) e®e . (4.52)

1 1
(J%1) ® (J%ug) = (5911 - QU) U @ Uy — EQH FmU

Equation (4.52) will be very useful to study equations (3.41) and (3.42). Let us
consider first equation (3.41). Using the expressions (4.2) of K(u,v) and (4.34) of
P(u,v), we get

%((’U/l, U3)U2+(U2, U,3)U1) - (Ul, Ug)Ug = 0'((JaU1, Ug)JaU2+(JaU2, u3)Jau1)
- 7(({J", T8 Vs, ug) T TPug + (LT, T Yug, u3)JaJﬂu1) (4.53)
—ﬂ((ul,ug)JaJaug + (’LLQ,Ug)JaJa’LL1) .

To get (4.53) we replaced in the right hand side of (3.41) P(uy, ug)us = —P(uy, us)us—
P(ug, ug)uy, which holds thanks to equation (3.42). Since (4.53) holds for every
us € U, it is equivalent to the following equation

2v({J%, JP}ur) @ (J*JPus) + 2B0ur ® up — 20(J%u;) ® (J%us)

+u Q ug — (ul, u2)ei () et = 0 , Yu, @ ug € S2U . (4.54)

We can rewrite the third term in the left hand side of (4.54) using (4.52). Moreover,
for the first term in the left hand side of (4.54) we have the following sequence of
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identities, which can be proved using (4.46) and (4.52)
({J%, JP}ur) @ (J*JPus) = 2(J*JPur) ® (J*TPug) — $([J*, JPlur) @ ([J*, JPlus)

= 2(30n — Q) (3m — Qu + 1Q5)u1 @ Uy

— Qu(30n — 20y + 1Q) Wi g i

Using the above results, we get that (4.54) is equivalent to the following equation, for
every u; ® ug € S?U

(1 - 20’(%8_21‘[ — QU) + 4’}/(%91‘[ - QU)(%QH - QU + ng) + ZIBQU> U1 X U9
(4.55)

— (dimU — o + 2920 (36 — 200 + 10,)) St @ ¢ = 0.

Clearly equation (4.55) holds if and only if both the coefficients of u; ® up and
(u1,uz)e’ @ et are zero. We thus conclude that equation (3.41) is equivalent to the
following two conditions

1-— 20'(%911 - QU) + 4’7(%91‘[ - QU)(%QH - QU + %Qg) + Q,BQU =0 ;

dim U — 00y + 2900 (200 — 200 + 10,) = 0 . (4.56)
Finally, let us consider equation (3.42). By (4.34) we can rewrite it as
> ((JaJﬂu,,l, Uoy) IO @ TPy, + (JETPuy,, g ) IO ® Jﬂu(,S)
oc€eCs
+ 4 Z(u,,l,u@),]a ® J%Uy, = 0, Vuj,ug,uz €U . (4.57)

geCs

If S3 denotes the group of all permutations of (1,2, 3), equation (4.57) can be rewritten
as

1
¥ Z(cu]o‘ual,ugz)J"‘u(,.3 + 56 Z(um,um)omo.3 =0, Yaeg, u,uguslU.
0ES3 o€S3

(4.58
Here we used the obvious fact that, if > J* ® uq, = 0 form some u, € U, a =
1,...,dimg, then necessarily u, = 0, Voo = 1,...,dimg. We can then use (4.52) to
get from (4.58)

7(%911 — QU> Z (QUgy, Ugy ) Ugy + %(’ydiQn?U + ﬁ) Z(uol, Ugy)0Uy, = 0. (4.59)

0€S3 0€S3

Notice that the first term in the left hand side of (4.59) is identically zero, since it
is both symmetric and skewsymmetric with respect to u,, and u,,. In conclusion
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equation (3.42) is equivalent to the following condition

‘B =0 (4.60)

So far we proved that the pairs (g,U) in Table 4.5 with d = 2, n = 0 satisfy the
assumptions of Problem 1.2.1, if and only if equations (4.36), (4.37), (4.56) and (4.60)
are satisfied for some choice of the parameters ¢, o, 3, v, k. Surprisingly enough,
for every value of the Kac-Moody level k and in all examples listed in (4.50) one can
find ¢, o, 5, such that all the equations (4.36), (4.37), (4.56) and (4.60) hold. The
corresponding values of all the parameters are given in the following table.

Table 4.6:

(so, , C*) (B; , m3) (Gy , m)
dim U n 8 7
dim g ”(”2_ D 21 14
Q. n—1 24—1 4
Q, 2(n —2) 10 8
Qn on 12 %
. k(3k +n2/2 —5) 2k(2k+11) k(9% + 31)
k+n—3 k+4 2(k +3)
o/y 2k +n —4 2(k +2) 2k+13—0
B/ -2 —; —g
1 1 3
7 A(k+n-3) 3(k+4)  8(k+3)

92



4.6 Final classification

We can summarize all the results of Chapter 4 in the following

Theorem 4.6.1. A complete list of 7-tuples (g,U,c, s, Q, K, P) satisfying all the
assumptions of Problem 3.5.3, and such that g is simple, U is irreducible and 3, Q
are not identically zero, is as follows. The pair (g,U) is one of the following

(i) (son, C*), n>3, n#4
(ii) (Bs, m3 = Spiny)
(ZZZ) (GQ, 7T1)

The bilinear forms » : S?g — C and Q : S?U — C are respectively »(a,b) = k(a,b)
and Q(u,v) = e(u,v), for a,b € g, u,v € U, where (a,b) denotes the normalized
killing form on g, (u,v) is the unique (up to scalar multiplication) invariant bilinear
form on U, and k, e are arbitrary constants. Without loss of generality we can assume
e = 1. The g-module homomorphisms K, P are given respectively by (4.2) and (4.34),
and the constants c,o, 3,7 are given in Table 4.6.

Thanks to Theorems 2.1.8, 3.2.6 and 3.4.2, the above result is equivalent to the
following

Corollary 4.6.2. (i) Let V be any vertez algebra strongly generated by a space R C'V
as in (3.1). Assume that V is non degenerate according to Definition 3.2.4. Suppose
moreover that the Lie algebra g is simple, the g-—module U 1is irreducible and the
bilinear forms » : S?’g — C, Q : S?U — C (defined in Proposition 3.1.4) are
not identically zero. Then the datum (g,U,c,s,Q, K, P) defined by the A-bracket
structure in Table 3.1 is one of the 7-tuples listed in Theorem 4.6.1.

(i1) Conversely, let (g,U, c, 3¢, Q, K, P) be one of the 7-tuples listed in Theorem 4.6.1.
Then there exists a verter algebra U(R) which is strongly generated by the space R as
in (3.1) with A-bracket structure on R @ R given in Table 3.1.
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Chapter 5

Quasi—classical limit and
transitivity of group action on
quadrics

By looking at the list of vertex algebras in Corollary 4.6.2, we notice that each example
in the list has the following two properties.

1) The Kac—Moody level k is an arbitrary complex number (except for some singular
value). Namely for each pair (g,U), there corresponds a family of vertex algebras
Uk(R), parametrized by the Kac-Moody level.

2) The complex connected algebraic group G associated to the Lie algebra g acts
transitively on the complex quadric S* = {u € U , s.t. (u,u) = 1} C U. This
observation is related to a similar result in [13]. There it is proved that this property
holds in the special case in which the space R in (3.1) is a Lie conformal superalgebra,
namely it is closed under A-bracket (or, equivalently, the g-module homomorphism
P : S?U — S%g defined in Table 3.1.4 is identically zero). In [13] is also provided
a complete classification of pairs (g,U), where g is a Lie algebra, U an orthogonal
self contragradient g-module such that the connected complex algebraic group G
associated to g has transitive action on the quadric S? C U. It is then immediate to
check that all pairs (g,U) listed in Theorem 4.6.1 fall in this classification.

This chapter will be devoted to understand the intimate connection between prop-
erties 1) and 2) above. Loosely speaking, we will prove the following. Suppose
{Ux(R), k € C} is a family of vertex algebras strongly generated by the space R in
(3.1), parametrized by the parameter k¥ € C (for example, the Kac-Moody level).
Under certain regularity assumptions on the behavior at £ ~ oo, we will be able to
define a “quasi-classical limit” of the vertex algebra structures of Uy(R) for k — oo,
which will be a Poisson vertex algebra structure on the symmetric algebra S(R). We
will then use this structure to prove that, in general, the connected algebraic group
G associated to g acts transitively on the quadric S? C U. This can be viewed as a
generalization of the result in [13] to the context of vertex algebras. Using this result,
we will find in Chapter 6 a complete classification of vertex algebras generated by a
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space R as in (3.1) which admit quasi—classical limit (see Definition 5.1.5), for generic
reductive g and (possibly reducible) U.

5.1 Definition of Poisson vertex algebras

A Poisson vertex algebra is the same as a vertex algebra which is associative (in-
stead of quasi-associative), commutative (instead of skewsymmetric), and for which
commutative (instead of non commutative) Wick formula holds. In other words, we
replace Definition 1.1.2 with the following

Definition 5.1.1. A Poisson verter superalgebra is a Z/27Z—-graded C[T]-module V
endowed with two operations: a A-bracket V ® V' — C[A] ® V which makes it a Lie
conformal superalgebra; a product V®V — V', which makes it a super commutative,
associative unital differential algebra, with derivative T, and unity denoted by |0) € V.
They satisfy the following commutative Wick formula

[a ) bc] = [able + p(a,b) bla ) ] . (5.1)

Remark 5.1.2. It follows by sesquilinearity and skewsymmetry of the A-bracket that
the following (commutative) right Wick formula holds

[ab » c] = <eTa*a) [bc] + pa,b) (eTaAb> [a ] . (5.2)

Suppose R is a Lie conformal algebra. By Theorem 1.1.5 we can associate to R
an enveloping vertex algebra U(R). A similar (and in fact much easier) statement is
true for Poisson vertex algebras.

Theorem 5.1.3. Let R be a Lie conformal algebra, and let S(R) be the symmetric
algebra over the space R. The extension of the endomorphism T to S(R) by derivation,
and of the A\-bracket to S(R) ® S(R) by left and right commutative Wick formulas
(5.1) and (5.2), make S(R) a Poisson vertex algebra.

It is not hard to prove directly that S(R) is indeed a Poisson vertex algebra.
Instead, we will derive this result starting from the enveloping vertex algebra U(R)
via a limiting procedure known as quasi—classical limit. Given the Lie conformal
algebra R and h € C/{0}, we get a new Lie conformal algebra Rj (isomorphic to
R) in the following way. As C[T]-module, Ry = R. The A-bracket structure on Ry,
denoted by [ » |5, is given by

[a)\b]ﬁ:h[a)\b], Va,b € R .

It is obvious that Ry is again a Lie conformal algebra. Let then R} be the space R
considered as a Lie algebra with respect to the Lie bracket

[a, b = /0 dX [a » Bl .

=T
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By Theorem 1.1.5 the space V; = U(R¥®) (the universal enveloping algebra over RE®)
is endowed with a structure of vertex algebra, such that the normal order product
restricted to Ry ® V4 is compatible with the associative product of U(Re®), and the
A-bracket restricted to Ry ® Ry is compatible with | |5 Theorem 5.1.3 follows
immediately from the following

Theorem 5.1.4. The space S(R) is obtained as a limit for h — 0 of the space V:

h—0

Let us denote by 7, and my the quotient maps mp @ T(R) — Vg, and mo : T(R) —
S(R). The associative commutative algebra structure of S(R) is obtained as a limit
of the normal order product structure of Vi, (which is non commutative and non as-
sociative) in the following way

mo(A)mo(B) = lim :7p(A)mp(B) :n, VA, BeT(R). (5.3)

h—0

Here : 3 denotes the normal order product on Vy. Finally, the following A—bracket

[10(A) x mo(B)]F? = lim %[wﬁ(A) »Th(B)n, VA,BeT(R), (5.4)

h—0

makes S(R) into a Poisson vertex algebra, compatible with the Lie conformal algebra
structure of R.

Proof. Notice that, by definition of [ ) |5, we have lim; ,o[a » bl = 0, Va,b € R. Tt
follows that

Vi = T(R)/{(a®b—b®a—[a,b]s; a,be R) 23 S(R) .

Moreover, equation (5.3) follows immediately by the fact that, in the limit & — 0,
quasi—associativity and skewsymmetry conditions in Definition 1.1.2 become respec-
tively associativity and commutativity. Obviously [ 5 |°® defined in (5.4) satisfies all
axioms of Lie conformal algebra, and for a,b € R we simply have [a , b]"® = [a ) 0],
namely [ , |°P restricted to R ® R is compatible with the A\-bracket of R. We are
left to show that [ ) |°® satisfies commutative Wick formula. For A, B,C € T(R) we
have

Hm(A) 3 s m(B)m(C) e =+ (3lma(4) s m(B)n)7a(C) o
+ p(4,B)  m(B) (Hma(A) » ma(O) e (5:5)
+ 3 Jo di [ A) 3 mu(B)ln e ()l -
In the limit % — 0, the left hand side of (5.5) converges to
[mo(4) » mo(B)mo(C)®
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and the first two terms in the right hand side of (5.5) converge to
[m0(A) x 70(B)]"Pm0(C) + p(A, B) mo(B)[mo(A) » mo(C)7F .

Finally, the last term in the right hand side of (5.5) has asymptotic behavior, for
i~ O

0 / dps [[mo(A) » To(B)F® , mo(C)F®

so that in the limit # — 0 it converges to zero. This completes the proof of the
theorem. ]

In the next sections we will try to generalize the results of Theorems 5.1.3 and 5.1.4
to the case in which the A-bracket structure on R admits “quadratic non linearities”.
In the next chapter we will then use these results to classify vertex algebras V' strongly
generated by primary fields of conformal weight 1 and 3/2, for which the symmetric
space S(R) over the generating set R C V in (3.1) has a (compatible) Poisson vertex
algebra structure. More precisely, we introduce the following

Definition 5.1.5. Suppose R is a super C[T]-module endowed with a Lie A\-bracket
of degree 2, and let V be a vertex algebra strongly generated by R C V, with
compatible A\-bracket structure. We say that V' admits a quasi—classical limit if S(R)
is a Poisson vertex algebra.

5.2 Enveloping Poisson vertex algebra S(R) over a
conformal algebra R with “quadratic non lin-
earities”

Suppose R is a super C[T]-module endowed with a Lie A-bracket of degree 2. Recall
in Chapter 2 we constructed the enveloping vertex algebra U(R), thus generalizing
the statement of Theorem 1.1.5. In this section we want to prove an analogous result
in the context of Poisson vertex algebras. Namely we want to generalize Theorem
5.1.3 to the situation in which the Lie A-bracket structure on R admits “quadratic
non linearities”.

Throughout this section, we let R be a vector superspace R = Ry & Ry, with an
even endomorphism 7" € EndR. Let S(R) denote the symmetric algebra over R, and
we extend the action of T to S(R) by derivation.

Definition 5.2.1. A Poisson A-bracket of degree 2 is a A\-bracket of degree 2, LT®,
on R (see Definition 2.1.2) such that LI®: R® R — C[\] ® S(R).

Lemma 5.2.2. Let LYB be a Poisson A\-bracket of degree 2 on R. One can find
uniquely a linear map

L% . S(R)®S(R) — C[\®S(R),
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such that the restriction to R @ R coincides with the given \-bracket, 1 is a cen-
tral element, namely LY?(1,A) = L{#(A,1) = 0, VA € S(R), and left and right
commutative Wick formulas hold, namely for A, B,C € S(R)

LYB(A,BC) = LYP(A,B)C + p(A,B)BLYP(A,C)
LPB(AB,C) = (eTBAA)L’;B(B,C) + p(A,B) (eTBAB)Lf\DB(A, ) .
Proof. The proof of this lemma is straightforward. O

Definition 5.2.3. A Poisson Lie A—bracket of degree 2 on R is a Poisson A—bracket
LY®: R® R — S(R) such that the following two conditions hold

(1) skewsymmetry (a,b € R)

Ly"(a,b) = —p(a,b)LEX 4 (b,a) , (5.6)

(2) Jacobi identity (a,b,c € R)
L3"(a, L% (b, ¢)) — p(a, b)L;P (b, L3P (a, ¢)) = Ly, (LX" (a, b)e) - (5.7)
Here the triple A-brackets are defined thanks to Lemma 5.2.2.

The following theorem is analogous to Theorem 2.1.8 in the context of Poisson
vertex algebras.

Theorem 5.2.4. Let Ly be a Poisson Lie A\-bracket on the space R. Then the map
LB S(R)®S(R) — CI\|® S(R) defined in Lemma 5.2.2 is a Lie conformal algebra
structure on S(R). In particular S(R) is a Poisson vertezr algebra.

Proof. We need to prove the L}® satisfies the axioms of conformal algebra. Notice
that, by definition, for A = a;...ay,, B="0b -+, € S(R), we have

LY(A,B) = Y p(z‘,j)(e”*al---2---am)(b1---}---bn)LEB(ai,bj),
1<:1<m
1<j<n

where ~ denotes a missing element, and p(i, j) = £1 is an appropriate sign. Sesquilin-
earity and skewsymmetry of LY® follow immediately by the above expression. We are
left to prove Jacobi identity. Let us denote, for A, B,C € S(R)

J(A,B,C;\, ) = LyP(A,LP(B,0)) — p(A, B)L®(B, Ly®(4, 0))
— LX%.(LXP(A,B),C) .
We know by assumption that
J(a,b,c;A\p) = 0, Va,b,c€ R,
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and we want to prove that
J(A,B,C;\pu) = 0, VA B,CeS(R). (5.8)
It is immediate to check the following identities. For A, B,C,D € S(R)
J(A,B,CD;\,u) = J(A,B,C; A\, u)D + p(A,C)p(B,C)CI(A, B,D; A\, 1) ,
J(A,BC,D; A p) = p(4, B)(e"%B)J(A,C, D; A, p)
+ p(4,C)p(B,C) (e"%C ) (A4, B, D; A, )

JAB,C,D;\,p) = ("A)I(B,C,D; A )+ p(A, B) (7 B)I(4,C,Di A, )

Equation (5.8) follows by the above identities with an easy induction argument. [J

Theorem 3.4.2 gives necessary and sufficient conditions for the space R in (3.1)
to admit a Lie A-bracket of degree 2. Similar computations can be used to prove an
analogous statement about Poisson Lie A-brackets of degree 2. The difference is that,
since there are no integral terms in the left and right Wick formulas, in this case the
computations are much easier. The result is described in the following

Theorem 5.2.5. Consider the space R = C|0) & (C[T]®g)® (C[T)®@U) & (C[T]L).
Let L{? : R® R — C[T] ® S(R) be a linear map such that |0) is central, L is a
Virasoro element of central charge ¢ € C, namely

LPB(L,L) = (T+2\)L+ %X”m) ,
g is a finite dimensional space of even primary elements of conformal weight 1, namely
LY%(L,a) = (T+MNa, Vaeg,

and U is a finite dimensional space of odd primary elements of conformal weight 3/2,
namely

3
LYB(L,u) = (T+§/\)u, VueU .

Then LYP is a Poisson Lie A\-bracket of degree 2 (and thus S(R) has naturally the
structure of Poisson vertex algebra) if and only if g is a Lie algebra, U is a g—module,
and there exist g-module homomorphisms %z : S?’g — C, Q: S?U = C, K: AU —
g, P: S?U — S%g, such that the following equations hold (a € g, u,v,u; € U, i =

100



1,2,3)

Q(u,v)a + 25(a, Py (u,v)) Py(u,v) = K(au,v)+ K (av,u) , (5.9)
65¢(a, K(u,v)) = ¢Q(au,v) , (5.10)
£ Qs u)n + Qo vy = Qus, s + K (g, ) (5.11)

+ K (uy,us)us , (5.12)
> Pi(toy, Uey) - (Pa(tio, oy )tig) = 0, (5.13)
0€Cs

where Cy denotes the group of cyclic permutations of (1,2,3), and - denotes the as-
sociative commutative product in S(R). In this case the A-bracket structure on R is
given by the following table.

Table 5.1:
L b v

(T +2)\)L
L . (T + \)b (T + 3\

+132°0)
a Aa [a, b] + A3(a,b)|0) av

Q(u,v) (L+ £A@|0
Aoz e s N (1,0) (£+ 5X710)
+ (T + 2)\)K (u,v) + P(u,v)
Proof. The proof is straightforward. O

5.3 Existence of the quasi—classical limit

If R is a Lie conformal algebra, Theorem 5.1.4 states that, starting from the enveloping
vertex algebra U(R), there is a canonical way to construct a Poisson vertex algebra
structure on S(R), which consists in taking a “quasi—classical” limit & — 0 of the
family of vertex algebras {U(Ry), fi € C}. It is natural to ask if a similar construction
is possible in the more general situation in which the A-bracket structure on R admits
“quadratic non linearities”.

Unfortunately in general such construction is not possible. To better understand
what the problem is, suppose R is a space admitting a Lie A-bracket of degree 2
(according to Definition 2.1.5) of kind Ly : R® R — C[A\] ® S(R). Following the
construction in Theorem 5.1.4, we would like to define a map LY® : S(R)® S(R) —
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C[\] ® S(R) such that, when restricted to R ® R, it coincides with the original Lie
A-bracket on R,
LYB(a,b) = Lx(a,b), Va,beR.

On the other hand such a map cannot be a Poisson Lie A-bracket on R (and therefore
it does not define a structure of Poisson vertex algebra on S(R)). Indeed the Jacobi
identity in the Definition 5.2.3 of a Poisson Lie A-bracket of degree 2 is not the same
as the Jacobi identity in the in the Definition 2.1.5 of a Lie A-bracket of degree 2, for
the following simple reason. While in equation (2.8) we compute the triple A-brackets
by using, when needed, the non commutative Wick formulas, in equation (5.7) the
triple A—brackets are defined by the commutative Wick formulas.

It turns out that, if the space R is endowed with a family of Lie A—brackets
of degree 2, Lg\k) (parametrized, for example, by the Kac-Moody level k), then we
can still define a limiting procedure, again called “quasi—classical limit”, which will
produce a Poisson Lie A-bracket of degree 2 on R, and therefore a structure of Poisson
vertex algebra on S(R). The remaining of this section will be devoted to describe
such construction.

Definition 5.3.1. Consider the space
R =Coo(CTeg e (CTeU)a (CT]L) . (5.14)

We say that R admits a 1 parameter family of Lie A-brackets of degree 2, if the
following conditions hold.

(1) For arbitrarily large k£ € C there is a Lie A-bracket of degree 2, Lg\k), such that |0)
is central, L is a Virasoro element with central charge c*), and g (respectively U) is
a finite dimensional space of even (resp. odd) primary elements of conformal weight
1 (resp. 3/2).

(2) The Lie algebra structure of g and the g—-module structure of U are independent
of k, and the g-module homomorphisms »*) : S%?g — C, Q® : S?U — C, K®* :
AU — g, P% . S2U — S?g defined in Theorem 3.4.2 satisfy the following limiting
conditions (a,b € g, u,v € U)

2 (a,b) ~ k%5(a,0) , QP (u,v) ~ kPQ(u,v), K®(u,v) ~ k'K (u,v), (5.15)

for some constants «, 3,7 € R such that @ > 0, and fixed g-module homomorphisms
x, ), K such that >z and ) are non degenerate, and K is not identically zero. Here
we are using the notation

FR) ~ KF = lim S fk) =7

k—oo k&

(3) If {J,, J% « € A} is a dual basis of g with respect to the bilinear form 3, then
the expression

Z <Jau1 Q Jg + Jyus ® Jaul) )
acA
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is not zero for every pair uy,us € U.

Remark 5.3.2. Notice that, up to a change of variable ¥’ = k®, we can assume,
without loss of generality, « = 1. Moreover, the bilinear form Q®*) on U can be
rescaled arbitrarily with a g-module isomorphism U = U, u + du, for § € C — {0}.
We can thus assume, without loss of generality, 5 = 0.

Remark 5.3.3. If g is any reductive Lie algebra, condition (3) in Definition 5.3.1 is
automatically satisfied, unless U is a trivial g-module. For this, let vy € U be any
singular vector of weight A, let {J,,J% « € A} be a dual basis of root vectors of
g, and let {h;, i =1,...,r} C {J,, o € A} be an orthonormal basis of the Cartan
subalgebra. We then have

ZJQU)\(@JQU,\ = Zhiw(@hiv,\ = ‘)\|2’U,\®’U)\ 7é 0.

acA i=1

Lemma 5.3.4. Suppose the space R in (5.14) admits a 1-parameter family of Lie
A-brackets of degree 2. And assume, without loss of generality, that a« = 1, 8 = 0.
Then there exists ¢ € C — {0} such that, for u,v € U

lim 1c® = ¢,
k—o0
lim K®(u,v) = K(u,v) = £Q(Jau,v)J*,
k—o0
klim kP®(u,v) = Pu,v) = SQ({Ja, Jstu,v)J*® J°
—00
— 1Qu,v)Ja®J*.

Proof. By Theorem 3.4.2, the g-module homomorphisms »*), Q®)  K®&) and P*)
satisfy all equations (3.39)—(3.42). Consider first equation (3.39). In this setting, it
takes the form

—Q¥ (u,v)a + K® (au,v) + K® (av,u) = 23*)(a, Pl(k) (u, v))PQ(k) (u,v)

+ [[a, P (u, 0)], PP (w, )] (5.16)

We will consider separately the two situations v < 0 and v > 0.

Case v <0

In this case, by assumption (5.15) we have that IC*)(u, v) hoop 0, Yu,v € U, so that
if we take the limit for £ — oo of both sides of equation (5.16) we get

~Q(u,v)a = lim (259, P (u, v)) PP (u,0) + [[a, PP (w,0)], PP (w,0)] )

k—o0
(5.17)
We can thus replace a by J, in both sides of (5.17), take the tensor product by J*
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and sum over w = 1,...,dimg. The resulting equation is

—Q(u,v)J, ® J* = lim (2kp<k>(u, v) + Qk(%%(’“)(Ja, P® (u,v))
—00

_ %(Ja’Pf’“)(u,v)))PQ(’“)(u, 2) ® J° + [[Ja, PO (u, v)], PP (0, 0)] @ Ja) ' (5.18)

Note that the second and third term in parenthesis in the right hand side of (5.18)
are negligible with respect to the first term, so that (5.18) implies

lim kP® (u,v) = ——Q(u V) o ® J* . (5.19)

k—o0

Consider now equation (3.41), which takes the form

%Q(k) ('U«Z; U3)U1 + %Q(k) (Ub U3)U2 - Q(k) (ula U2)U3 = K® (UQ, Ua)ul

5.20
=+ K(k) (Ul, U,g)UQ -+ Pl(k) (U,l, Ug)(PZ(k) (Ul, U,Q)Ug;) . ( )

By the assumption 7 < 0 we have lim K*) = 0, and by (5.19) we also have hm pk) =

k—o0

0. Therefore, if we take the limit for £ — oo of both sides of equation (5. 20) we get

Q(ug, ug)us + %Q(Ul, uz)ty — Q(u1, ug)us = 0. (5.21)

DN —

Since @ is non degenerate and U is not 1 dimensional, equation (5.21) cannot be
satisfied for all choices of uy,us,u3 € U. We thus conclude that the case v < 0 is
ruled out.

Case v >0

If we divide both sides of equation (5.16) by k7 and take the limit for £k — oo, we
obtain, with an argument similar to the one used to derive (5.19)

lim k17 P®) (y,v) = %(K(Jau,v)+K(Jav,u))®J ——(570Q(u v)J,®J%, (5.22)

k—00

where 6,0 = 0 if v > 0, and 6,9 = 1 if v = 0. Consider now equation (3.40). After
dividing both sides by k7! we can write it as

(k)
kv +1

6

v+l %(k) (aa K(k) (U, U)) =

(k) (Pl(k)(au, v), PQ(k)(au, v)) .
(5.23)

Q"W (au,v) +

sl
In the limit for £ — oo, the left hand side of (5.23) converges to
65¢(a, K (u,v)) ,

and the second term in the right hand side of (5.23) converges to zero, thanks to
(5.22). We thus conclude, after replacing a by J,, taking the tensor product by J¢,
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and summing over « = 1,...,dim g, that

K(u,v) = -Q(Jyu,v)J* (5.24)

[o2R e

where ¢ is defined by
c(k)

1m .
k—oo kY1

c =

Notice that, since by assumption K is not identically zero, it follows that ¢ # 0.
Putting together (5.22) and (5.24) we get

1
lim k77 P®) (y,v) = ({Ja,Jg}u v)J*® JP — = WOQ(u v)Ja ®J% . (5.25)

k—o00

In order to complete the proof of the lemma, we are left to show that v = 0. Suppose
then, by contradiction, that v > 0, and divide both sides of equation (3.41) by k" to
get

,%7 (K(k) (u2, ug)ur + K® (u1, U3)U2> = ﬁQ(k)(Wa us)uy + Q,%Q(k) (1, uz)ue

1 (k) 1 plk) (k) (5.26)
— 7 QW (ur, ug)us + 5 Py (ur, uz) (Py (w1, ug)us) .

In the limit £ — oo, every term in the right hand side of (5.26) converges to zero, so
that equation (5.26) implies

K(Ug, U3)U,1 + K(Ul, U,g)UQ =0. (527)

Since (5.27) holds for every u; € U, i = 1,2, 3, and since @ is non degenerate, we get,
after making the substitution (5.24)

Jau1®Jau2+Jau2®Jau1 = O, Vul,u2 € U,

thus contradicting assumption (3) in Definition 5.3.1. This concludes the proof of the
lemma. 0

We can now state the main result of this section. It is a statement analogous to
Theorem 5.1.4 in the situation in which the A\-bracket on R admits “quadratic non
linearities”.

Theorem 5.3.5. Suppose the space R in (5.14) admits a 1 parameter family of Lie
A-brackets of degree 2.

(1) Then ¢ € C— {0} and the g-module homomorphisms 3 : S’g —C, Q: S°U —
C, K: AU — g, P: S?U — S?%g defined in Lemma 5.5.4 satisfy all equations
(5.9)-(5.13).

(2) The map LY2 : R® R — C[\ ® S(R) defined in Table 5.1 is a Poisson
Lie A\-bracket of degree 2 on R. Or, equivalently, LY? defines a structure of Poisson
vertex algebra on S(R).
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(8) In particular, the enveloping vertex algebra Ui(R) admits a quasi—classical limit
(according to Definition 5.1.5).

Proof. Part (1) of the theorem follows by the following obvious considerations. If we
take the limit for & — oo of both sides of (3.39) we get equation (5.9). If we divide
both sides of (3.40) by k and take the limit for & — oo, we get equation (5.10). If we
take the limit for £ — oo of both sides of (3.41) we get equation (5.12). Finally, if
we multiply both sides of (3.42) by k& and take the limit for £ — oo we get equation
(5.9). Part (2) of the theorem follows immediately by Theorems 5.2.5 and 5.2.4. O

The property that the vertex algebra Uy (R) admits quasi-—classical limit imposes
very strong conditions on the structure of the space R. In particular, in the next
two sections we will prove that if R admits a 1 parameter family of Lie A-brackets of
degree 2, or, more generally, if S(R) admits a Poisson vertex algebra structure, then:

1. there exists a “little superalgebra” structure on the space g = CL_; ® U_1/2 ®
90D CLo ® U2 ® CLy.

2. the action of the connected complex algebraic group G on the quadric S?2={ue
U s.t. Q(u,u) =1} is transitive.

5.4 Little superalgebra

Let V' be a vertex algebra. Recall in Section 1.1 we defined the n—th product of two
elements a,b € V by the formulas

[axb] = Z)\(”)a(n)b , 2 (T™a)b:= a1y, n€Zy .

n>0

In this section we will use a “shifted” notation. If a is eigenvalue of L;y with conformal
weight A,, we define
Un = Qnin,—1) € EndV .

Notice that, if A, = 3/2, then a, is defined for semi-integer values of n. By sesquilin-
earity we immediately get

(Ta)m = —(m+ Ag)am , (5.28)

and the super commutation relation (1.4) can be rewritten using this new notation

as

(b = 3 (”” ?“ 1) (agyb)msn - (5.29)
J=0

Suppose now the space R = C|0) & (C[T] ® g) ® (C[T] @ U) & (C[T|L) admits

a Lie A-bracket of degree 2 (see Definition 2.1.5) such that |0) is central, L is a

Virasoro element, g (respectively U) is a finite dimensional space of even (resp. odd)

primary elements of conformal weight 1 (resp. 3/2). The super commutation relation
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(5.29), restricted to the operators L,, n = —1,0,1, ao for a € g and u, with n =
—1/2,1/2, u € U, is described in the following table (a,b € g, u,v,z,y € U)

Table 5.2:
[, ] L, L-1/2 bo Ly Y172 Ly
L,]_ 0 0 0 —L,1 —y,1/2 —2L0
Q(U’, y)LO
Q(u,x)L 4 .
U_1/2 0 _(bu)71/2 —5U_1/2 — K(u,y)o —Ui/2
+: P(u,z) 14
+ P(U,y) 0
Qg 0 (CL.’L‘),l/Q [CL, b]() 0 (ay)l/g 0
Ly | Ly ST 1/ 0 0 —3Y1/2 -L,
Q(v,z) Lo
1 Q(Ua y)Ll
Vij2 || V-1/2 + K(v,2)o —(bv)1/2 3V1/2
+: P(Ua y) 1
+: P(v,x)
Ll 2L() .Tl/g 0 L1 0 0

Notice that the elements in Table 5.2 are not closed under commutation, because
of the occurrence of the elements : P(u,v) :,. On the other hand, if R admits a
1 parameter family of Lie A-brackets of degree 2, then, by Lemma 5.3.4 we have
klim Q™ (u,v) = Q(u,v), klim K® (u,v) = K(u,v) and klim P®)(y,v) = 0. So that,
—00 —0 0
in the limit £ — oo, the elements : P(u,v) :, disappear. We thus proved the following

Theorem 5.4.1. Suppose the space R in (5.14) admits a 1 parameter family of Lie
A-brackets of degree 2. Let g be the vector space § = CL_1 @ U_1/2 ® go ® CLy @
Uiy ® CLy, where go ~ g and U_1/; ~ Uyjp ~ U. Fora € g, u € U, denote by ag
the corresponding element of go, and by u_y/o and uy o the corresponding elements of
U_1/2 and Uy )y respectively. Then g has the structure of a Lie superalgebra, known as
the “little superalgebra” associated to R, with Lie bracket given by Table 5.2, with @
and K replaced by Q and K respectively, and with P = 0.

It is natural to ask whether a converse statement to Theorem 5.4.1 is true. In
fact this problem has been studied and solved in [14], [15]. More precisely, given
any simple finite dimensional Lie superalgebra § with a ;Z-gradation § = & gj,

JELZ
with a non degenerate invariant bilinear form, and such that there are elements f €
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g-1, T € go, € € g1 forming an sl, triple, Kac and Wakimoto were able to reconstruct,
with an operation “inverse” to quasi—classical limit known as quantum reduction, the
corresponding family of vertex algebras Vi (g), parametrized by the Kac-Moody level
k.

5.5 Transitivity of group action on quadrics

Let U be a complex vector space with a non degenerate symmetric bilinear form
Q@ : S?U — C. We denote by S? the complex quadric

S? = {u €U such that Q(u,u) =1} . (5.30)

Let SO(U) be the corresponding complex orthogonal group, namely the group of
unimodular linear transformations of U preserving the bilinear form Q).

Definition 5.5.1. Let G be an algebraic subgroup of SO(U), and let g be the corre-
sponding Lie algebra. We say that the action of G on U is infinitesimally transitive
on the quadric S% C U if for every u € S? one has

gu = ut, (5.31)
where u* denotes the orthogonal complement to wu.

Remark 5.5.2. If dim U > 1, then the action of G on U is infinitesimally transitive on
the quadric S C U if and only if G acts transitively on S?. Indeed, it follows from
(5.31) that Gu is an open orbit on the quadric S* C U. Since this holds for every
point on the quadric S?, and, for dimU > 1, §? is connected, we conclude that G
acts transitively on S? C U.

Remark 5.5.3. For an arbitrary algebraic subgroup G C SO(U), the inclusion gu C ut
is always true, for every u € U. Indeed by invariance of (), we have Q(au,u) = 0, Ya €
g, ueU.

Theorem 5.5.4. Suppose the space R in (5.14) admits a Poisson Lie A-bracket of
degree 2, and suppose the bilinear form Q defined in Theorem 5.2.5 is non degenerate.
In particular, by Theorem 5.8.5, these assumptions are automatically true if R admits
a 1 parameter family of Lie A\-brackets of degree 2.

(1) Then for every u € S? we have gu = ut,

(2) Equivalently, the connected compler algebraic group G associated to g has in-
finitesimally transitive action on the quadric S* C U defined in (5.30).

Proof. By Theorem 5.2.5, there exist g-module homomorphisms Q: S°U—C, K:
AU — gand P : S?U — S?g such that equations (5.9)-(5.13) are satisfied. In
particular, if we choose u; = upy = u, uz = v € ut, we get, from equation (5.12)

—Q(u,u)v = 2K (u,v)u € gu .
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If v € S?, this implies that u* C gu. The statement then follows from Remark
5.5.3. O

Remark 5.5.5. Theorem 5.5.4 generalizes a similar statement in [13], where the same
result is proved under the assumption that R is a Lie conformal superalgebra.
In the particular case in which g is a reductive Lie algebra, one can prove the

following stronger result.

Theorem 5.5.6. A) Suppose g is a reductive Lie algebra, U is any g-module, and
x: 8?39 - C, Q: S?U — C are non degenerate symmetric invariant bilinear
forms. Denote by {J,, J* a=1,...,dimg} a dual basis of g with respect to . The
following are necessary and sufficient conditions for the space R in (5.14) to admit a
Poisson Lie A-bracket of degree 2.

(i) The Casimir operator Q = J,J* € U(g) acts as a scalar on U.

(ii) If we decompose S*U =11 © C, where Il = Ker(Q), then the Casimir operator
Q acts as a scalar on II.

(11i) Let Qy and Qp denote the eigenvalues of Q on U and 11 respectively. Then

1

B) Under these assumptions, we have the following expressions of ¢, K and P defined
in Theorem 5.2.5.

¢ = 3(dimU 1)/ , (5.33)
K(u,v) = gQ(Jau,v)Ja, (5.34)
Plu,v) = %Q({Ja,Jg}u,v)J"-J’B—%Q(U,U)JQ-J"“, (5.35)

where - denotes the associative product in the symmetric algebra S(R). As usual, we
use the convention of summing over repeated indices.

Proof. From equation (5.10) we immediately get (5.34). Using this expression of K,
we then get from (5.12)

%Q(“% UB)UI + %Q(Uh u3)u2 - Q(u1, uz)u3

E A cA 5.36
= £Q(Jauz,u3)Ju; + §Q(Jaur, uz)J*uy . (5:36)

Let {e;,e’; i = 1,...,dimU} be a basis of U dual with respect to Q. If we replace
u; = €;, up = €' in (5.36) and sum over the repeated index i = 1,...,dimU, we get

(dimU — us = —<Q(Jaes,uz) % = gn(ug). (5.37)

Wl ol
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In the last equation we used the obvious identity J,e; ® J%' = —e; ®Q(ei). It follows
from (5.37) that €2 acts on U as scalar multiplication by

Q = J(dimU-1). (5.38)

T ¢
If we replace us = e; in (5.36), take the tensor product by e’ and sum over the
repeated index ¢t = 1,...,dim U, we get

1 B . _
5(11,1 R Uy + U R ’U,l) - Q(’U,l, ’LLQ)GZ' X e = g(Jaul X Ja’U,Q + Ja’u,z ® J"‘ul) . (539)

Since {2 acts as a scalar on U, we have
Q(u1 X UQ) = 2Jau1 & JaUQ + QQU UL Q ug .

We thus get, from (5.39)

6 12 - ,
Q(u1 X U2 + U2 (9 ul) = (2QU + E) (’U,1 & U9 + U2 (024 ’U,1) — ?Q(ul’ ug)ei (024 6z . (540)
Let now A € Ker(Q). Equation (5.40) implies
6
O(A) = (29U+ t) A.
c
In other words, €2 acts on II as scalar multiplication by
6
QH - ZQU + - . (541)
c

Equation (5.32) follows immediately from (5.38) and (5.41). So far we proved that
conditions (1)—(3) in Theorem 5.5.6 are necessary conditions. Moreover we proved
that, if we define K (u,v) by (5.34), then equations (5.10) and (5.12) are satisfied if
and only if Q acts as a scalar on U and II = S2U/C, its eigenvalues satisfy equation
(5.32) and ¢ is given by (5.33). We are left to show that there exists P : S?U — S?g
such that equations (5.9) and (5.13) hold. From equation (5.9) we get the expression
of P(u,v), namely

_ 1~
P(u,v) = ~K(Jsu,v) - J? — iQ(u,v)Ja - JY

N | =

This, together with (5.34), gives (5.35). Consider now equation (5.13). We can rewrite
it as

C N QUadstior, o) I - (JPugy) = 5" Quorstis,)J® - (Jousy) ,  (5.42)
3

0€S3 0€S3

where S3 denotes the group of all permutations of (1,2,3). Notice that, given any
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element A=u®v+v®u € S*U, we can decompose it as

QQ(U,U) ® ei) 4 QQ_(U,U) %

A = ( - 76 — 7 & ;
URU+vRU dimUe dimU€®e

so that the first expression is in IT = Ker(Q), and the last term is in C C S2U. If we
apply the Casimir operator €2 = J,J%, we then get

Qn
dim U

1 - )
Jau® I+ Jo® % = (50— ) @ev+veu) - Q(u,v)e; ¢ . (5.43)

We can now use (5.43) to rewrite equation (5.42) as

<QH - 2QU>ZQ(“01; Jauag)Ja *Ugy = (GZI?HHU - 1)2@(”015 uaz)‘]a ) (Jauas) :

ogES3 o€S3

[N Y]

(5.44)
Notice that the left hand side of (5.44) is identically zero, by obvious symmetry
considerations. Therefore (5.44) is equivalent to the single condition

To conclude, we just notice that (5.45) is automatically satisfied as soon as (5.32)
and (5.33) hold. O

Notice that the result of Theorem 5.5.6 is stronger than the result of Theorem
5.5.4. In fact we have the following

Lemma 5.5.7. Let g be any Lie algebra and let U be a g-module with a non degenerate
symmetric invariant bilinear form Q : S*U — C. Consider the decomposition

S’U = NlaC,

where II C S?U is a complementary submodule to C. If the Casimir operator acts
as a scalar on U and on II, then for every u € U such that Q(u,u) # 0 we have
gu = u™. In particular the connected complex algebraic group G associated to g has
infinitesimally transitive action on the quadric S? defined in (5.30)

Proof. Let u € U be any element such that Q(u,u) # 0, and let w € u*. It follows
by (5.43) that

Qlau,w) 1w = (50 = Q) Q(u,w) - 5 325Q(u, w)Q(er, w)e

= g Qu,u)w .
This of course implies u+ C gu. The lemma follows from Remark 5.5.3. O

In the next Chapter we will use Theorems 5.5.4 and 5.5.6 to classify all vertex
algebras V strongly generated by a space R as in (3.1), with reductive g, which admit
quasi—classical limit (see Definition 5.1.5).
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Chapter 6

Classification under the
assumption of existence of
quasi-classical limit

In this Chapter we will consider vertex algebras V' strongly generated by a Virasoro
element and primary elements of conformal weight 1 and 3/2, which admit quasi—
classical limit. In particular we will completely solve the problem of their classifica-
tion, under the assumptions that the Lie algebra g of elements of conformal weight
1 is reductive, and the bilinear forms 7 : S?g — C and Q : S?U — C defined in
Theorem 5.2.5 are non degenerate.

According to Definition 5.1.5, to say that the vertex algebra V admits a quasi—
classical limit is equivalent to say that the generating set R C V admits a Poisson Lie
A-bracket of degree 2. Or, equivalently, that the symmetric space S(R) has a Poisson
vertex algebra structure. Therefore our first task will be to classify all pairs (g, U),
where g is any reductive Lie algebra and U is any non zero g-module, for which the
corresponding C[T]-module R = C|0) & (C[T] ® g) @ (C[T] ® U) & (C[T]|L) admits
a Poisson Lie A-bracket of degree 2. For this we will use the results of Theorem
5.5.4 and 5.5.6. Thanks to Theorem 5.5.4 we can restrict ourselves to pairs (g,U)
for which the connected complex algebraic group G associated to g acts transitively
on the quadric S? = {u € U such that Q(u,u) = 1} C U. A list of such pairs is
provided in [13, Theorem 3.1], and is reproduced in Table 6.1. We will then go through
the list in Table 6.1 and check, case by case, whether all conditions in Theorem 5.5.6
are satisfied. We will thus have, in Theorem 6.1.2, a complete list of pairs (g, U) for
which the corresponding space R admits a Poisson Lie A-bracket of degree 2. To
complete our classification, we will be left to see whether for every pair (g, U) listed
in Table 6.2, there exists a vertex algebra V' which is strongly generated by the space
R=Cl0) (CT|®g) @ (CT)®U)® (CT]L). This will be done in Section 6.2.
In particular we will prove that for each pair (g,U) in Table 6.2 the corresponding
space R admits a 1 parameter family of Lie A-brackets of degree 2. So that, thanks
to Theorem 2.1.8, there is a family of enveloping vertex algebras Uy (R), strongly
generated by R, with compatible A-bracket structure.
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6.1 Classification of Poisson vertex algebras
The following lemma follows by Theorem 3.1 in [13].

Lemma 6.1.1. Let SO(U) be the complex orthogonal group of linear transformations
of the vector space U preserving a non degenerate symmetric bilinear form @ : S*U —
C. Consider connected closed subgroups G C SO(U), such that the corresponding Lie
algebra g is reductive. A complete list of pairs (g,U) for which the group G has
infinitesimally transitive action on the quadric S*> = {u € U such that Q(u,u) =1}
15 given in the following table.

Table 6.1:
g U
SOy, C, n>1
sly, CreC»™, n>2
gl CreC»™, n>2
sp,, CrpC", n>4

sp,®C C*oC», n>4
sp, ®spy, C*®C?>, n>2
B3 =so; C® = Spin, =V,
By =sog C' = Sping =V,

Go C" =V,

Here and further, for simple g we denote by V) the irreducible g-module with
highest weight A, and by 7y,..., 7. the fundamental weights of g. In particular, for
classical Lie algebras, V., is the fundamental representation.

We want to find which of the pairs (g, U) listed in Table 6.1 satisfy all conditions in
Theorem 5.5.6, namely there is a non degenerate invariant bilinear form 7 : S%g — C
for which the corresponding Casimir operator 2 = J,J* is such that Q|y = Qp 1y,
Q|s20/c = Qullg2y ¢, for some constants €y and Qr, and equation (5.32) holds.

For the pairs (so,,C*; n > 1), (Bs, Vi,) and (Gs, Vy,), the values of Qy and Qp
are provided in Table 4.6. It is immediate to check that, in all three cases, equation
(5.32) is satisfied. On the contrary, the pair (By, V;,) is easily ruled out. Indeed,
from Table 4.5 we have S*V,, = Vor, ® V;, ®C, and, by Lemma 4.2.2, Qly,, > Qly, .
In particular Q does not act as a scalar on S?U/C. We will consider each of the
remaining cases separately.
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Case: g=sl,, U=C"C"; n>2

By definition C* =V, and C** =V, , where r = n — 1 is the rank of g. Recall that
the space S?U decomposes as

SQU = ‘/27r1 & Vv27rr ) V7r1+7rr ©® C.

The unique (up to scalar multiplication) invariant bilinear form on g is the trace form
#(a,b) = Tren (ab). Let {J,, J*, a=1,...,dim g} be a dual basis of g with respect to
7, and let Q = J,J* € U(g) be the corresponding Casimir operator. The eigenvalues
of Q on U and S?U are the following

1 4
Qe =, =n——, Qopy, =Qop, =2n+2——, Qu iy, =2n.
n n
Since we ask that 2o, = Q, 1,, all values of n except n = 2 are ruled out. Forn = 2
we then have Qp = 3/2, Qn = 4, and it is immediate to check that condition (5.32)
holds.

Case: g=gl,, U=C"aC"; n>2

The Lie algebra g decomposes as g = sl,, @C. Irreducible finite dimensional g-modules
are V() ), where A = 22:1 kim;i, ki > 0, is a dominant weight for sl, and p € C. With
this notation C* = V,, 1y, C** =V, _;, and the space S2U decomposes as

SQU = ‘/(2711,2) @ Vv(27rr,72) 5> ‘/(m—km,o) 5> C.

There are two independent invariant bilinear forms on g, namely ¢ (a, b) = Tren (ab)
and 35 (a,b) = 5Trea (a) Trer (b), and accordingly there are two linearly independent

central elements in U(g) of degree 2, namely Q' = Y E;;Ej; and Q% = 11 It is
1<i,j<n

immediate to find the eigenvalues of Q! and Q2 on the irreducible components of U

and S?U. They are as follows

1 _ 1 _ 2 _ 2 —
Qi) = Yy =10 V) = Yoy = 1,
Q%2m,2) = Q%2m,—2) =2(n+1), Q%Qm,Q) = Q%Qﬂ’r,—Z) =4,

1 _ 2 _

Q(wﬂ—m,o) == 2’/’L , Q(’ll'l'i‘ﬂ'r,o) - 0 .

Since 2 € U(g) is a central element of degree 2, we have Q = aQ! + Q2% and the
condition that Qr, 2y = Qr, 41,00 imposes § = —%oz. In other words it must be (up
to scalar multiplication)

1

1<4,j<n
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It is not hard to check that the corresponding bilinear form is, for n # 2,
1
ij(a, b) = ’TI'(Cn (ab) — mﬂ@n (a)ﬁCn (b) .

Notice that, for n = 2, Q € U(sly) C U(g), so that the corresponding bilinear form is
degenerate. Therefore the case n = 2 has to be ruled out. With the above choice of
Q we have Qy =n — 3 and Qp = 2n. It is immediate to check that condition (5.32)
is satisfied for every n.

Case: g=sp,,, U=C"0C"; n=2r >4

The symmetric and wedge square power of the fundamental representation of sp,
decompose as S?V,, = Vy,, and A?V,, =V, ® C. Tt follows that

S°U = (Vor, e C @V, ®C..

Since g is a simple Lie algebra, there is a unique (up to scalar multiplication) Casimir
element 2 € U(g) of degree 2. By Lemma 4.2.2 we have Qy,, > Q,, so that Q does
not act as a scalar on S?U/C. This case is therefore ruled out.

Case: g=5p,®C, U=C"C"; n=2r >4

As for gl,, we denote by V), the irreducible finite dimensional g-modules, with
A=Y, kim; dominant weight for sp,, and pu € C. With this notation U = V{,, 1) ®
Viri,-1), and its symmetric square decomposes as

S2U = V(27r1,2) ©® ‘/(271'1,—2) S V(27r1,0) & ‘/(WZ,O) ®C.

There are two independent central elements of U(g) of degree 2, Q%= € Uf(sp,,) C
U(g), namely the Casimir element of sp, C g, and Q¢ = 11 € U(g). Obviously
QC|V(2W170) = QC|V(W2,0) =0, and, by Lemma 4.2.2, Q% |y, > OQ%rfy . It imme-
diately follows that there is no Casimir element Q2 € U(g) which acts as a scalar on
S2U/C. In conclusion this case has to be ruled out.

Case: g =sp, ®sp,, U=C"®@C?; n>2

We are left to consider the case g = sp, ®sp,, U = C* ® C? for n > 2. With the no-
tation introduced above, we have U = V|4, r,), and its symmetric square decomposes,
for n > 3, as

SU = ‘/(27r1,27r1) D sz,o) ®&C )

and for n = 2 as S°U = V{or, 2r,) ® C. Again, there are two independent Casimir
elements, namely (2"~ € U(sp,,) C U(g) and Q%2 € U(sp,) C U(g). For example we

can choose P~ = Y J,J* where {J,, J* « € A} is the dual basis described in
acA
Remark 4.4.1, associated to the bilinear form s*°»(a, b) = Tren (ab). By Lemma 4.4.2

we have that the eigenvalues of (2°P» and €2°P2 in the irreducible components of U and
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S2U are as follows

Sp,, —_ n+l 5Py, _ SPp, —
Qe =% Qomomy=n+2, Qgrg=n,

Sp2 _ 3 SP2 — SP2 —

(mi,m) = 20 Q(27r1;27f1) =4, Q(Wz,o) =0.

Every central element Q2 € U(g) of degree 2 can be written as Q0 = SQPr+aQ%P2. With
an appropriate normalization we can fix § = 1, and the condition that Qo o) =
Qr,,0) iImposes o = —%. Notice that, since for n = 2 there is no component V, o) in
S2U, in this case the value of « is arbitrary. The corresponding bilinear form is

1
#(a,b) = 3P (a,b) — 5%51’2 (a,b) ,
unless n = 2, in which case
#(a,b) = " (a,b) + a2 (a,b) ,

for arbitrary value of a. The request that 3 is non degenerate just imposes o # 0.
With the above choice of €2, we have Qp = % and Qp = n for n > 3, and
Qu = 3(a+1) and Q = 4(a + 1) for n = 2. Tt is immediate to check that, in both

cases, equation (5.32) is satisfied.

All the above results, together with Theorem 5.5.6, give a complete classification
of Poisson vertex algebras generated by R as in (3.1), with reductive g and non
degenerate bilinear forms 3 and (). This is stated in the following

Theorem 6.1.2. Let g be a non zero reductive Lie algebra and let U be a non zero
g—module. Suppose the space R = C|0)® (C[T]®g) & (C[T|@U) & (C[T|L) admits a
Poisson Lie A\-bracket of degree 2, LYB. Moreover assume that the invariant bilinear
forms % : S?’g — C and Q : S?U — C defined in Table 5.1 are non degenerate.
Then the pair (g,U) is one of the examples listed in the following Table 6.2.

Remark 6.1.3. (i) In the third column of Table 6.2 there is the expression of the
bilinear form 3 : S?g — C. For a € sp,, ®sp, we use the notation a = a; + ay, with
a; € sp,, and ay € spy. If {J,, J* « € A} is a dual basis of g with respect to 3, the
corresponding Casimir element is by definition 2 = J,J* € U(g).

(ii) The value of ¢ in the fourth column is obtained by equation (5.33).

(iii) Notice that the data provided in Table 6.2 describe completely the corresponding
Poisson Lie A-bracket of degree 2, L}® : R®@ R — C[A|® S(R). Indeed the structure
of LEB is as in Table 5.1, and the g-module homomorphisms K : A?U — g and
P : S?U — S%g are given by equations (5.34) and (5.35).

(iv) In the last column of Table 6.2 there is the corresponding Little superalgebras g,
defined in Section 5.4. For a detailed account of simple Lie superalgebras, see [11].
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Table 6.2:

g U #(a,b) ¢ g

C CoC ab 3 s1(2]1)

SOy, C', n>3,n#4 S Trcn (ab) 3 | spo(2|m)

sly CoC Tree (ab) 6 | sl(2[2)/C

gl, C'aeC», n>3 | Tren(ab) — 5 Tren (a)Teen (b) | 6 | sl(2[n)
Py @ SPy C* @ C? Tree (a1b1) + @ Tree (azhs) 12 | D(2,1;)
sp,®sp, C'®C?* n>4 Tren (a1br) — 3Tree (ashs) 12 | osp(4|n)

Bs Vi, Try(ada adb) 4| F4)

G, |7 Try(ad a ad b) 2 G(3)

Remark 6.1.4. In Theorem 6.1.2 we did not consider the situation in which either g
or U is zero. In this case we have the following possibilities. If g = U = 0, then the
space R in (3.1) is the Virasoro Lie conformal algebra. If U = 0 but g # 0, then the
space R is the current Lie conformal algebra. Finally, if g = 0 but U # 0, it follows
by Theorem 5.5.4 that U = C, and the space R in (3.1) is the Neveu-Schwarz Lie
conformal superalgebra, [17].

6.2 Quantization

In this section we will “quantize” the Poisson vertex algebras described in Theorem
6.1.2. More precisely, for each pair (g,U) in Table 6.2 we will classify all 7-ples
(g,U, ¢, 3,Q, K, P) satisfying the assumptions of Problem 3.5.3, so that the corre-
sponding product defined by Table 3.1 is a Lie A-bracket of degree 2 on the space
R defined by (3.1), and then, by Theorem 2.1.8, there exists an enveloping vertex
algebra U(R) strongly generated by R. In fact we will see that, for each pair (g, U),
the space R admits a 1-parameter family of Lie A-brackets of degree 2 (see Definition
5.3.1), {Lg\k), k € C}, with arbitrarily large value of the Kac Moody level k, and the
corresponding “quasi—classical limit”, described in Theorem 5.3.5, coincides with the
Poisson vertex algebra structure on S(R) defined by the data in Table 6.2 and by
equations (5.34) and (5.35), as explained in Remark 6.1.3.

6.2.1 Case: g simple, U irreducible

Consider the pairs (so,,C*, n > 3,n # 4), (Bs,Vg,) and (Gs,Vy,). We proved
in Corollary 4.6.2 that, for an arbitrary value of the Kac—Moody level k (except
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at most some singular value), there is a corresponding Lie A-bracket of degree 2,
Lg\k) : R®R — C[\] ® T(R), given by Table 3.1, where »*) Q® K® and
P®) are defined in Theorem 4.6.1. Furthermore, by looking at the expressions of
the parameters c,o, 8,7 in Table (4.6), it follows that {Lg\k , k € C} is in fact a
1 parameter family of Lie A-brackets of degree 2 on R. We can summarize these

observations in the following

Proposition 6.2.1. A) Let (g,U) be one of the pairs (so,,C*, n > 3,n # 4),
(B3, Vi), (G2, Vy,). Then the space R in (3.1) admits a 1 parameter family of Lie A—
brackets of degree 2, {Lg\k), k € C}, as in Table 3.1 with 3%, Q¥ K®  P®) defined
in Theorem 4.6.1. The corresponding Poisson Lie \-bracket of degree 2, LYB, defined
in Theorem 5.3.5, coincides with the Poisson Lie \—bracket described in Remark 6.1.5.

B) R does not admit any other Lie A=bracket of degree 2.

6.2.2 Case: g=C, U=CopC

Let g = Ch, U = Cvy @ Cv_, with action of g on U given by hvy. = H+v.. The
g-module homomorphisms » : S?g — C, Q : S?°U — C, K : A2U — g and P :
S2?U — S?%g are necessarily of the form

w(hh) = k|

Q(viav¢) =1 3 Q(U:I:av:t) =0 )

. ~ ~ (6.1)
(/U:I:aUZF) = +oh ) K(U:I:avzt) =0 ’

P(Uiav¢) = ’Yh@h, P(v:bv:t) = 07

for some constants k, 0,y € C. It is not hard to check that equation (3.42) implies
v = 0, and equations (3.39), (3.40), (3.41) are equivalent to the following conditions

1
o=5, c=3k. (6.2)

Since P = 0, the space R in (3.1) is closed under the A\-bracket in Table 3.1. In other
words, R is the N = 2 Lie conformal superalgebra, [12]. We thus proved the following

Proposition 6.2.2. A) Let g = C, U = C® C*. The space R in (3.1) admits a
structure of Lie conformal superalgebra. The A-bracket is given in Table 3.1, with

P =0 andc,x,Q,K defined by (6.1) and (6.2).
B) R does not admit any other Lie A\—bracket of degree 2.

6.2.3 Case: g=sp,, U=C>q C?

0 1
10 ] . We
will denote an element of U as u; + v9, with u in the first component of U and v, in

Recall that sl; = sp, = {a € Maty,C | aJ + Ja' = 0}, where J = [
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the second component. The following facts follow immediately from representation
theory of sls,

g:VZMa 5292‘/;%1@@:
U=V ®Ve, SU=Vor, C)®C, AU =V, &C.

In particular the g-module homomorphisms » : S?g — C, Q : S?U — C, K :
AU — g, P: S?U — S?g are uniquely defined (up to scalar multiplication) and
they are given by

»x(a,b) = kTre(ab),

(Uflan) = Q(UQaul) = (Utju)a Q(uiavi) - 0,
K(ui,v3) = —K(vg,u1) = o(uwv'+ovut)J, K(u;,v) = 0, (6.3)
P(ui,v0) = P(vg,u) = y(W'Ju)J,® J*, P(us,v;) = 0,

for some constants k,0,v € C. Here {J,,J% « € A} denotes a dual basis of sl,
with respect to the trace form, namely Tres (J,J?) = dap- As before, it is not hard to
check that equations (3.39), (3.40), (3.41) and (3.42) are equivalent to the following
conditions

o =

1
3 c=3k, v=0. (6.4)
We thus proved the following

Proposition 6.2.3. A) Let g = sl,, U = C* ® C?. The space R in (3.1) admits a
structure of Lie conformal superalgebra (known as N = 4 conformal algebra, [12]).
The A\-bracket is given in Table 3.1, with P = 0 and ¢, 3, Q, K defined by (6.3) and

(6.4).

B) R does not admit any other Lie A-bracket of degree 2.

6.24 Case: g=gl, U=C"C", n=r+12>3

We identify gl, = Mat,C, C* with the space of column n—vectors, and C** with the
space of row n—vectors. Namely C** = {u’, u € C"}. The action of gl, on C" is
given by (left) matrix multiplication, and on C™* it is given by a(u') = —u'a. We
have dim Hom,(S?g, C) = 2, and every symmetric invariant bilinear form on g is of
kind

#(a,b) = ki1 Tren (ab) + ko Tren (@) Tren (b) (6.5)

for arbitrary ki, ks € C. Moreover dim Homgy(S?U,C) = 1, and the unique (up to
scalar multiplication) symmetric invariant bilinear form on U is

Qu,v") = Q' u) =vlu, Q(u,v) =Q(" u)=0. (6.6)
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Furthermore, dim Homy(A?U, g) = 2, and every g-module homomorphism K : A*U —
g is of the form

K(u,v") = =K' u) = oyuv’ + oo(v'u)T, K(u,v) = K(v',u")=0. (6.7)

Finally, dim Hom,(S?U, S?g) = 4, and every g-module homomorphism P : S?U —
S?g is of the form

P(u,v") = a(@u)T@ I+ v'u)],® J* + ty(uv' @ T+ TQ uv')
+ 30(Jou' @ J* + J, ® Jour') (6.8)
P(u,v) = Phu') = 0.

Here we are denoting by {J,, J% « € A} a dual basis of g with respect to the
trace form, namely such that Trca (JoJ?) = 6,45, and we are using the convention of
summing over repeated indices. For example we can choose J, = E;;, J* = Ej;, 1 <
1,j < n. The following lemma is an easy fact from linear algebra

Lemma 6.2.4. For every u,v € C", A € Mat,C, we have

Tron (JoA)J* = A, Trea(unt) = viu ,  J,AJ* = Tron (A)T .

Let us first impose equation (3.39) with the above expressions of s, Q, K, P. After
simple algebraic manipulations based on Lemma 6.2.4, we can rewrite it as

(6k1 + 316 — o1){a, uv'} + (26ks + vk1 + nyky — &) Tren (a)uv’
+ (1 +2B8ky + 6 + 2nB) (v'u)a + (vk1 — 6 — 202) (viau)T
+(vka + 2Bks + 2k + 2naks — 28) (viu)Tren ()T = 0 .

Notice that the expressions {a, uv'}, Tree (a)uv?, (viu)a, (viau)d, (v'u)Tres (a)T de-
fine linearly independent elements of Homy(C" ® C** ® g, g), so that equation (3.39)
is equivalent to the following conditions

(5k1+%n(5—al =0,

20ky + vk1 +nyke — 9 = 0,

1428k +6+2n8 = 0, (6.9)

Yk1 —6—209 = 0,

vky 4+ 28ke + 20kt + 2naks — 28 = 0.

In a similar way, it is not hard to prove that equation (3.40) is equivalent to the
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following conditions

c+ 2(5 -+ nﬁ)(nkl + k'g) + 2(’}/ + na)(k1 + nkg) = 60’1]€1 y

01k2 + 0'2(k1 + ’I’Lkg) = 0. (610)

Consider now equation (3.41). We have to consider separately the two situations
uy,up € C*, uf € C»* and uy,uz € C*, ul € C>*. In the first case equation (3.41)
takes the form

1
(01 + 09 — 5)((u§u2)u1 + (ubuy)ug) = 0,
and in the second case it takes the form

1 1 1
(5(5 =+ nﬂ +a+1-— 0'1)(’11/311,1)’&3 + (5”5 + Y — 5 — 02)(u§u3)u1 = 0.

In conclusion equation (3.41) is equivalent to the following three conditions
o1+ 09 — % =0,
0+nB+a+l—0 =0, (6.11)
%n5+’y—%—02 = 0.

We are left to impose equation (3.42). By symmetry considerations, it is enough to
consider the situation u;,uy € C*, u3 = w* € C»*. In this case equation (3.42) takes
the form

E;g (%6(Jauglwt ® JUygy + (W'gy)Jo @ J%Uy, ) + %v(umwt ® Ugy + (W, ) T ® g, )
g€S?

+/B(wtual)Ja®Jau02 +a(wtu01)]l®u02) = 0.

In the first term of the left hand side of the above equation we can replace
Jauglwt ® JUy, = ug2wt ® Uy, -

Using this fact, we conclude that equation (3.42) is equivalent to the following con-
ditions

o+~ = 0,
W0+p =0, (6.12)
%v—i-oz = 0.

Surprisingly enough, all equations (6.9), (6.10), (6.11) and (6.12) admit a family
of solutions, with arbitrary value of k; # 1 —n. For given k;, the corresponding values
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of all other parameters are as follows

b A
— 2k1+n _ k1+1
o1 = Fan-D o %2 T TFhtaD
L B (6.13)
0 = fng = 20 = 220 = -7,

_ (n=1)(n%45n-3) )

¢ = 6k + (n?+5n—2) o

The following proposition is an easy consequence of the above results.

Proposition 6.2.5. A) Let g =gl,, U =C" @ C"*, n > 3. A complete list of 7-
ples (g,U, ¢, 5, Q, K, P) satisfying all assumptions of Problem 3.5.8 is given by (6.5),
(6.6), (6.7) and (6.8), with ki # 1 — n arbitrary, and all other parameters given by
(6.13).

B) The corresponding Lie A-brackets L&kl), defined by Table 3.1, form a 1 parameter
family of Lie A-brackets of degree 2 on the space R in (3.1).

C) The Poisson Lie X bracket of degree 2, LY®, defined in Theorem 5.3.5, coincides
with the Poisson Lie A—bracket described in Remark 6.1.5.
6.2.5 Case: g=sp,Dspy, U=C"QC?, n=2r>2

We are left to consider the case g = sp, ®sp,, U = C* ® C2, n > 2. The generic
element in g is of kind A+ a, with A € sp,, and a € sp,. Moreover every element of U
is linear combination of monomials v ® z, with v € C* and x € C?. Irreducible finite
dimensional g-modules are denoted by V(y .y, where A = Y7 | k;m; is a dominant
weight of sp,, and pu = km; is a dominant weight of sp,. With this notation we have

g = ‘/(27T1,0) S ‘/(0,27r1) ) U = Wﬂl,ﬂl) )
5?0 = Viar,0) D 65>3V(2m0,0) D 0n>3Vima,0) ® Vio,am) D Vizm 2m) ® C
SU = Vv(27r1,27r1) D 5n23v(7r2,0) ®C, AU = 5”23‘/(7@,27”) ® V(27T110) 3% V(0727r1) )

It follows that dim Homgy(S?g,C) = 2 and the generic symmetric invariant bilinear
form on g is of kind

#(A+a,B+0b) =k Tren (AB) + ko Trez (ab) . (6.14)

The unique (up to scalar multiplication) symmetric invariant bilinear form on U is
given by

Quez,v®y) = (v'Ju)(y'jz) . (6.15)
In the first factor of the right hand side J denotes the nxn matrix (4.26), and in
the second factor j denotes the corresponding 2x2 matrix, j = [ _01 (1) ] Since

123



dim Homy(A%U, g) = 2, every g—module homomorphism K : A*U — g can be written
as

1 1
Ku®z,v®y)= §al(ytjx)(uth +oulJ) + §ag(vJut)(xytj +yz'j),  (6.16)

for some value of 01,09 € C. Notice that the first term in the right hand side is an ele-
ment of sp,,, while the second term is in spy. For n = 2 we have dim Hom,(S52U, S%g) =
3, and for n > 3 we have dim Homg(S?U, S?g) = 4. It follows that every g-module
homomorphism P : S?U — S?g can be written as

Puervey) = o' Ju)(y'jz)j.® j*+ B0 Ju)(y'jz)Jo @ J*
+ 57y 5z) ({Ja, w'J —vutJ} @ J + J, @ {J¥, uwvtJ — vutJ}) (6.17)
—l—%é((uvﬂ] +vutd) @ (xyt + yzty) + (zy' + yz') @ (uvtJ + vutJ)) )

Here {J,,J*, « € A} denotes a dual basis of sp,, with respect to the trace form.
For example we can take J,, J* as in Remark 4.4.1(b). {ja, % « € A} denotes the
corresponding dual basis of sp,. Notice that for n = 2 we have

wtJ —vutJ = (V' Ju)T, (6.18)

so that the third term in the right hand side of (6.17) can be written as linear com-
bination of the other three. In particular, for n = 2 we can assume v = 0.

We can now use the above expressions of s, @), K, P to impose equations (3.39),
(3.40), (3.41), (3.42). For this it is convenient to use Lemma 4.4.2 and equation
(6.18). After a straightforward though rather lengthy computation, similar to the
one done in the previous section, we find the following results. For n = 2, equation
(3.39) is equivalent to

oy = %5]{32 y 09 = %6]{31 ;

14+ 2aky +4a—0y = 0,

equation (3.40) is equivalent to
601k = 60o9ky = ¢+ 68k + 6aks , (6.20)
equation (3.41) is equivalent to
l1+i6—01—0y+3a+338 = 0,

6.21
l—36—o1—os+3a+35 =0, (6.21)
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and equation (3.42) is equivalent to

1
a=p=-15. (6.22)
For n > 3, equation (3.39) is equivalent to
01 = %51{2 ; 02 = %5k1 )

1+2ak2+4a—02 = 0,

1428k +3v+(n+2)8 =0, (6:23)
’Yk1+"T+4’)/—U1 =0,
equation (3.40) is equivalent to
601k1 = 6o2ks = c+ (n+1)vki +n(n+ 1)Bk + 60k, , (6.24)
equation (3.41) is equivalent to
1+ v+ B8+3a—101 = 0,
—1—0y+ 22y =0, (6.25)
01+202—|—%(5—”T+2'y =0,
and equation (3.42) is equivalent to
1 1
Z<5+04: 17+B=6+7:0. (6.26)

It is not hard to check that, for arbitrary values of k; and k, such that k; + ko #
—2, all equations (6.19), (6.20), (6.21) and (6.22) admit a common solution. The
corresponding values of all other parameters are as follows

— ka2 — k1
o1 = Titketz 92 T Ftkst2
— 2 - _ - _
§ = 2 = —4a = —48, (6.27)

3(2k1 ko+k1 —|—k2)

¢ = k1+ka+2

Similarly, for n > 3, all equations (6.23), (6.24), (6.25) and (6.26) admit a family of
solutions parametrized by k; € C — {—n/2}. For given k;, the corresponding values
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of all other parameters are as follows

kQ = —(2k1+%n+2),

_ 4dki+n+4 _ 2k
o1 = 21191—7|En ’ 02 = _2k1—|1—’n ’

S D _ 1, _ 1 (6.28)
@ = gpm = B =37 = -0,

¢ = 12k + }(n? —9n+32) — BHE=A0D

The following propositions follow immediately by the above results.

Proposition 6.2.6. A) Let g = sp,®spy, U = C2 @ C*. A complete solution of
Problem 3.5.3 is as follows. The maps »,Q, K, P are given by the equations (6.14),
(6.15), (6.16) and (6.17), ki and ko are arbitrary parameters such that ki + ko # —2,
v =0, and all other parameters are given by (6.27).

B) For a given value of the ratio ko /k, we have a 1 parameter family of Lie A-brackets
of degree 2, Lf\kl’kz), defined on the space R in (3.1) by Table 3.1.

C) The corresponding Poisson Lie X\ bracket, LfB’I”/kl, defined in Theorem 5.8.5,

coincides with the Poisson Lie A\-bracket described in Remark 6.1.3, with o = ko /ky.

Proposition 6.2.7. A) Let g = sp, ®spy, U =C" ® C?, forn > 4. A complete list
of T-ples (g,U, ¢, 2, Q, K, P) satisfying all assumptions of Problem 3.5.8 is given by
(6.14), (6.15), (6.16) and (6.17), with arbitrary ki # —n/2 and all other parameters
given by (6.28).

B) The corresponding maps Lg\kl) : R® R — C[\]T (R) defined in Table 3.1 form a
1 parameter family of Lie A—brackets of degree 2.

C) The Poisson Lie \ bracket of degree 2, LY®, defined in Theorem 5.3.5, coincides
with the Poisson Lie A\—bracket described in Remark 6.1.5.

6.3 Final classification

We can summarize all the results of Chapter 6 in the following

Theorem 6.3.1. Let g be a reductive Lie algebra and U a g-module, with non degen-
erate symmetric invariant bilinear forms % : S*g — C and Q : S?U — C. Denote
by R the C[T|-module in (3.1). The space R admits a Poisson Lie A-bracket of degree
2, LB, as in Table 5.1 (namely S(R) is a Poisson vertez algebra), if and only if R
admits a 1 parameter family of Lie A-brackets of degree 2, Lg‘k) , whose “quasi—classical
limit” (described in Theorem 5.3.5) coincides with LY.

Corollary 6.3.2. Let V be any vertez algebra strongly generated by a space R C'V as
in (3.1), which admits quasi—classical limit, namely such that S(R) has a compatible
structure of Poisson vertexr algebra. Suppose g is a reductive Lie algebra, U is a
finite dimensional g-module, and the bilinear forms 7, Q defined in Table 5.1 are non
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degenerate. Then (g,U) is one of the examples listed in Table 6.2. Moreover, for each
such pair (g,U), the \-bracket structure of V restricted to R is given in Table 3.1,
with ¢, %, Q, K and P defined in the corresponding Proposition 6.2.1, 6.2.2, 6.2.3,
6.2.5, 6.2.6 or 6.2.7.

Remark 6.3.3. So far we were able to classify vertex algebras strongly generated by
a space R as in (3.1) which admit quasi—classical limit. As we have seen, this is
equivalent to classify all the spaces R which admit a 1 parameter family of Lie A\—
brackets of degree 2, with arbitrarily large value of the Kac—Moody level k. It is
natural to ask whether there are vertex algebras V', strongly generated by R, which
do not admit quasi—classical limit, and for which the Kac-Moody level k is bounded.
At the conjectural level, the answer to this question is yes. In fact, already for g simple
and U irreducible such vertex algebras appear, which violate the “non degeneracy”
condition in Definition 3.2.4 (namely, for which PBW Theorem fails).
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Appendix A

A.1 Proof of Lemma 2.2.4
Proof. of equation (2.19). By definition, the left hand side of (2.19) is
skl(a,b® c; A) = Ly(a,b® ¢) + p(a,b)p(a,c)L_» 7(b®c,a) . (A.1)

By the left Wick formula (2.3), the first term in the right hand side of (A.1) is

N(Ly(a,b),c) + p(a,b)b ® Ly(a,c) +/O dp L,(La(a,b),c) , (A.2)

and, by the right Wick formula (2.4), the second term in the right hand side of (A.1)

N p(a,b)p(a,c)b @ L 1(c,a) + p(a,b)p(a, c)p(b,c)c® L_»_7(b, a)

+ p(a, b)p(a, ¢)p(b, ¢) f3 dv Ly(c, L, (b, a))|“:_)\_T : (A-3)

By skew—symmetry of the \-bracket Ly, the sum of the second term of (A.2) and the
first term of (A.3) is zero. Moreover, adding the first term of (A.2) and the second
term of (A.3) we get
0
skn(Ly(a,b),c, 1) +/ du L,(La(a,b),c) . (A.4)

=T

Finally, by summing the last term of (A.2), (A.3) and (A.4), we get, after a change
of variable of integration

A
/ du skl(Ly(a,b),c; p) .

-T

Putting together the above results we thus get equation (2.19). O
Proof. of equation (2.21). The left hand side of (2.21) is (b, c € Rp)
skn(a,b® ¢, D) =a@N(b®c,D)— N(b®c,a® D)

- N((ff’T X Ly(a,b® c)),D) .
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The first two terms in the right hand side of (A.5) are, by quasi—associativity (2.6),
respectively

T T
a®b®c®D+a®</ dAb)@L,\(c,D)+a®</ d)\c>®L,\(b,D), (A.6)
0 0
and
T T
—b®c®a®D—(/ dAb)@LA(c,a@pD)—(/ dAc)@L,\(b,aébD). (A7)
0 0

We can then use the left Wick formula (2.3) to rewrite the second and third terms of
(A.7) respectively as

—(fy drb) @ La(e;a) @ D= ([ dAb) @ a @ L(c, D)

(A.8)
- ( S5 dx b) ® [Mdp Lu(Lx(c,a), D) ,
and
_(fon)\ c) ® La(b,a) ® D — (fOTd)\ c) ® a® Ly(b, D)
(A.9)
- ( S d c) ® [Ndy Lu(L(b,a), D) .
The last term in the right hand side of (A.5) is, by left Wick formula (2.3)
_N((fj’T dX Ly(a,b) ® c) D) — N((ffT d\ b® Ly (a, c)) ,D)
(A.10)

_ (ff’T d\ [ dp Ly(L(a, b),c)) 2D .

Notice that, since by assumption, b,c € Ry, every term in (A.10) is well defined.
We can then use quasi—associativity (2.6) to rewrite the first two terms of (A.10)
respectively as

—(fde)\L,\(a,b)@)c)@D—(f du [ d)\LAab))@)L“(c,D)

(A.11)
_ ( S du [ dA c) ® Ly(Lx(a,b), D) ,
and
_ ( J°dA b® Ly(a, c)) ® D — (jOT d [ dA b) ® L,(L(a, c), D)
(A.12)
(fo d,uf d)\ Ly(a, c)) ® L,(b,D) .
The sum of the first term of (A.6) and (A.7) can be written as
skn(a,b,c® D) + <fET d\ Ly(a, b)) ®Rc®D
(A.13)

+b®skn(a,c,D) +b® (fde)\ L,\(a,c)) ®D .
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Using skew—commutativity of the A-bracket, it is not hard to check that the sum of
the second term of (A.6), the second term of (A.8) and the second term of (A.11)
gives

skn(a, (/OT dA b>aL)\(Ca D)),

likewise, the sum of the third term of (A.6), the second term of (A.9) and the third
term of (A.12) gives

skn(a, (/OT d\ c),LA(b, D)) .

By skewsymmetry of the A—bracket it also follows that the sum of the first term of
(A.8), the first term of (A.12) and the last term of (A.13) is zero. And with a similar
computation, we can write the sum of the first term of (A.9), the first term of (A.11)
and the second term of (A.13) as

/OTC d\ skn(Ly (b, a), ¢, D) + (/OTd)\/HTdu La(Lu(b, a),c)) ©D. (Al4)

Again, using skewsymmetry of the A\-bracket, it is not hard to check that the third
term of (A.8) simplifies with the second term of (A.12), the third term of (A.9)
simplifies with the third term of (A.11) and the third term of (A.10) simplifies with
the second term of (A.14) This concludes the proof of equation (2.21). O

A.2 Proof of Lemma 2.2.6

Proof. of equation (2.22). The left hand side of (2.22) is, by definition

J(avbac®D;)‘:,U‘) = L)\(a:th(b:C@D)) - p(a,b)LM(b,LA(a,c®D))

Lau(Ia(a,b),c® D) . (A1)
We can use (2.3) to rewrite the first term in the right hand side of (A.15) as
Ly(a, N(Ly(b,c), D)) + p(b,c)Lx(a,c® L,(b,D))
+ [ dv La(a, Ly(L,(b.¢), D)) . (4.16)
Similarly the second term in the right hand side of (A.15) is
—p(a,b) Ly (b, N(Lx(a, ), D)) — pla,b)p(a,c)Lu(b,c® Lx(a, D))
(A.17)

— p(a,b) [ dv L,(b, L,(Lx(a,c), D)) .
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Moreover the third term in the right hand side of (A.15) can be written as

—IW(Lx(a,b),c, D; A+ p) — N(Lx4,(La(a,b),c), D)

~ p(a, )p(b, ) ® Lngu(La(@,8), D) — [ dv L (Lnsu(In(a,b), ), D) . A18)
We can then rewrite the first term in (A.16) and (A.17) respectively as
IW(a, L,(b,c), D; X) + N(Lx(a, L,(b,c)), D)
+ 00 0)p(0, YN (L, (b,). La(a, D) + [ dv Lu(Lata, Ly, ), D), A1)
and
—p(a, IW(b, L(a, c), D; u) — p(a, )N (Ly(b, Lx(a, ), D)
(A.20)

— p(b,¢)N(Lyx(a,¢), L,(b, D)) — p(a,b) fo“ dv L,(L,(b, Lx(a,c)),D) .
By (2.3) we can also rewrite the second term in (A.16) and (A.17) respectively as
p(ba C)N(L)‘(CL, C), Lu(b: D)) + p(a'a c)p(b, C)C b2 L,\(CL, Lu(ba D))

+ p(b, ) fo/\ dv L,(Lyx(a,c), L,(b, D)), (A.21)

and
—p(a, b)p(a,c)N(L,(b,c), Lx(a, D)) — p(a, b)p(a, c)p(b,c)c @ L, (b, Lx(a, D))
— p(a,b)p(a,c fo dv L,(L,(b,c), Lx(a, D)) .

(A.22)
Notice that the third term of (A.20) simplifies with the first term of (A.21) and the
third term of (A.19) simplifies with the first term of (A.22). If we put together the
second term of (A.18), (A.19) and (A.20) we get

N(J(a'a ba G /\:,u’)aD) :

Moreover, if we add the third term of (A.18), the second term of (A.21) and the
second term of (A.22) we get

p(a,b)p(a,c)e @ J(a, b, D; A, 1) .
By Jacobi identity, the last term of (A.18) becomes
— [ dv L,(Lx(a, L, (b,¢)), D) + p(a,b) [; ™ dv L,(L,(b, Lx(a,c)), D)
+ fo)‘ﬂ‘ dv L,(J(a,b,c; \, ), D) . (A.23)
If we put together the last term of (A.16), the last term of (A.19), the last term of
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(A.22) and the first term of (A.23), we get

I
/ dv J(a,L,(b,c),D; A\, v) .
0

Similarly, if we put together the last term of (A.17), the last term of (A.21), the last
term of (A.20) and the second term of (A.23), we get

A
—p(a, b)/ dv J(b, Ly(a,c), D; pu,v) .
0

Equation (2.22) follows immediately by the above results. O
Proof. of equation (2.23). The left hand side of (2.23) is (b,c € Ryp)

Jab®e, DiA ) = La(a,L(b®c,D)) — Ly(b&c,Ly(a, D))

A.24
— Luu(Ia(@,b®0), D) . (4-24)
By (2.4) the first term in the right hand side of (A.24) is
Ly(a, (€"%b) @ Ly(c, D)) + La(a, (¢7%c) @ L,(b, D))
(A.25)

+ [*dv L(a, L (¢, L, (b, D)),

and the first and second terms of (A.25) can be rewritten, using (2.3) and sesquilin-
earity, respectively as

(€199 Ly (a,b)) @ Ly(c D) + (%) @ La(a, Lu(c, D))
+ [ dv L,(Lx(a,b), Lysu(c, D)) (4.26)
and (e(A+T)auLA(a’ C)) ® L, (b, D) + (eTauc) ® Ly(a, L, (b, D))

) (A.27)
+f0 dv LU(L)\(CL, c)’L)\-HL—V(b’ D)) ’

We can rewrite the second term in the right hand side of (A.24) by using the right
commutative Wick formula (2.4)

~(€7%0) @ L(e, Ia(a, D)) — (¢€7%¢) ® L, (b, Ta(a, D))
(A.28)
— [ dv L(c, Ly—(b, L(a, D))) .
Finally, the third term in the right hand side of (A.24) is, by the left Wick formula
(2.3)
_L/\+H (L,\(a, b) ®c, D) - LM—M (b ® L)\(a’ C)7 D)

— [ dv Lysu(Lu(La(a,b), ), D) . (A.29)
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Notice that each term in (A.29) is well defined since, by assumption, b, ¢ € Rg. Since
Ly(a,b) and Ly(a,c) are in R[A], we can use the right Wick formula (2.4) to write the
first and second term of (A.29) respectively as

(¢ Lx(@.D)) ® Lasu(e. D) = (€%¢) ® Lysu(L(a.b). D)
(A.30)

— [M* dv Ly (¢, Lxyuv(La(a,b), D))

and

- (eT%) ® Laiu(La(a, ¢), D) — (Jau La(a, c)) ® Layu(b, D)
(A.31)

— [ dv L (La(a,¢), Lysy (b, D)) .

Adding the second term of (A.26), the first term of (A.28) and the first term of (A.31)
we get

<eT‘9"b) ® J(a,e, D; A\, 1) .

Similarly, the second term of (A.27), the second term of (A.28) and the second term
of (A.30) give

<6T‘9"c> ® J(a,b, D; A\, 1) .

Moreover the first term of (A.26) simplifies with the first term of (A.30) and the
first term of (A.27) simplifies with the second term of (A.31). Adding the last term
of expressions (A.25), (A.27) and (A.31) we get

/u dv J(a,c, L,—,(b,D); \,v) + /u dv L,(c,Lx(a,L,—,(b,D))) . (A.32)

Adding the last term of expressions (A.26), (A.29) and (A.30) we get

A u
/ dv J(La(a,b), ¢, Dsv A+ 1 — v) — / dv Lo(c; Ly po(In(a,5), D)) . (A.33)
0 0

Finally, the second term of (A.32) and (A.33), together with the last term of (A.28),
gives

I
/ dv L,(c,J(a,b,D; \, p —v)) .
0

Putting together all the above results, we get equation (2.23). O

Proof. of equation (2.24). The left hand side of (2.24) is (b, ¢ € Rg)
lW(a,b® CaD; A) = L)\(G,N(b@) CaD)) - N(L)\(a:b® C)aD)

— N(b®ec,Ly(a, D)) — [ dp Lu(Lx(a,b® c), D) . (A.34)
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Using quasi—associativity (2.6) we can rewrite the first term in the right hand side of
(A.34) as

Lx(a, b®c®D)+Ly (a, ( /O iy b)®LM(c, D))+Lx(a, ( /0 " c) ®L,(b,D)). (A.35)

Notice that, by assumption, b,¢ € R, and therefore Ly(a,b), Ly(a,c) € R[\] and
L,(Lx(a,b),c) € R[\, p]. We can thus apply twice the left Wick formula (2.3) to
rewrite the first term of (A.35) as
Lyx(a,0) @ c® D +b® Ly(a,c) ® D+ b® c® Ly(a, D)
+ [ du L(La(a,b),¢) ® D+ [ dp b® L,(L(a,c), D) (A.36)
+f0 dp ¢ ® L, (La(a, b), —|—f0 du [ dv L,(L,(Lx(a,b),c), D) .
Moreover, by (2.3) the second and third terms of (A.35) are respectively

( MT dp Ly(a, b)) ® L,(¢, D) + (foT dp b) ® Ly(a, L,(c, D))
N N (A.37)
+ o dp ;7" dv L,(Lx(a,b), Ly(c, D)) ,

and

(S duLa(a,)) © Lu(b, D) + ( fy' dp ¢) @ La(a, L(b, D))
A A— (A.38)
+ [ dp [ dv Lu(La(a,c), Ly (b, D)) .

Let us now consider the second term in the right hand side of (A.34). By (2.3) it is
equal to

—N(Lyx(a,b) ® ¢, D) — N(b® Ly(a,c), D) — /A du L,(Lx(a,b),c) @ D . (A.39)

Notice that, since b,c € R, every term above is well defined. We can then use
quasi-associativity (2.6) to rewrite the first and second term of (A.39) respectively as

“Ly(a,b)®c® D — (fOT dy Ly(a, b)) ® L,(c, D)
. (A.40)
- (f() du C) ® LN(L)\(CL: b)aD) 3
and

—b® Ly(a,c) ® D — (foT du b) ® L,(Lx(a,c),D)

_ (foT du LA(a,c)) ® Ly,(b,D) .

For the third term in the right hand side of (A.34) we can just use quasi-associativity

(A.41)
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(2.6) to get
“b®c® Ly(a, D) — (fOT dy b) ® L,(c, Ly(a, D))
. (A.42)
- (fo dy c) ® L,(b, Lx(a, D)) .

We are left to study the last term in the right hand side of (A.34). By (2.3) we can
rewrite it as

— [Mdp Ly(Lx(a,b) ® ¢, D) — [ du L,(b® Ly(a,c), D)

— [N [} dv L,(L,(Lx(a,b),¢), D) . (A.43)

We can then use the right Wick formula (2.4) to rewrite the first two terms of (A.43)
respectively as

— [Pdu (eTauL,\(a, b)) ® Lu(c, D) — [ dp (eTauc) ® L,(Lx(a,b), D)
N (A.44)
- fO d,U, fOu dl/ LV(Cﬂ LM—V(L)\(aa b)7 D)) )

and

—fo)‘ dup (eTaﬂb) ® L,(Lx(a,c), D) — fo/\ du (eTa“LA(a, c)) ® L,(b,D)
. (A.45)
— [ du [ dv L,(Lx(a,c), Ly, (b, D)) .

The first three terms of (A.36) simplify with the first term of expressions (A.40),
(A.41) and (A.42) respectively. Moreover, the fourth term of (A.36) simplifies with
the third term of (A.39). Adding the fifth term of (A.36), the second term of (A.37),
the second term of (A.41) and the first term of (A.45), we get

(/OTdM b) ® J(a,c,D; \, p)

and similarly, adding the sixth term of (A.36), the second term of (A.38), the third
term of (A.40), the second term of (A.42) and the second term of (A.44), we get

(/OTdu c) ® J(a, b, D; \, 1) -

Moreover, the sum of first term of (A.37), the second term of (A.40) and the first
term of (A.44) is zero. Likewise, the sum of the first term of (A.38), the third term
of (A.41) and the second term of (A.45) is zero. We finally notice that the last term
of (A.38) simplifies with the last term of (A.45), and by adding the last term of
expressions (A.36), (A.37), (A.43) and (A.44) we get

A A—u
/ d,u/ dv J(Lx(a,b),c,D; p,v) .
0 0
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Putting together all the above results we thus get equation (2.24). O
Proof. of equation (2.25). The left hand side of (2.25) is defined as (a,b € Rp)

IW(a®b,e,D;\) = Lx(a®b,c® D) — N(Lx(a ® b, c), D)

A.46

—C®L>\(a®b,D)—f0)‘d,u L,(Lyx(a®b,c),D) . (A.46)

The first term in the right hand side of (A.46) can be rewritten, by the right Wick
formula (2.4), as

(eTaAa> ® Ly(b,c® D) + (eT‘?Ab) ® Ly(a,c® D)

\ (A.47)
+ fo dp Ly (b, Lx—y(a,c ® D)) .
The first two terms of (A.47) are respectively equal, by (2.3), to
(eTaAa) ® Ly(b,c) @ D + (eTa*a) ®c® Ly(b, D)
(A.48)
+ (ST dp €™ a) © Ly(La(b,¢), D) ,
and
(eTaAb) ® Ly(a,c) @ D + (eTa*b) ® c® Ly(a, D)
(A.49)

+ (fO)\+T dlu’ eTa/\b) & LH(L/\(aac)aD) )

and the last term of (A.47) can be rewritten, by using twice the left Wick formula
(2.3), as

f())\ d/”’ Lu(ba L)\—M(a’a C)) ®D + f())\ d,l,l, L/\—u(a’a C) ® Lu(ba D)
+ fodp [ dv L(Ly(b, Ly y(a,¢)), D) + [ dpw Lu(b, ¢) ® Ly_u(a, D)
A.50
+ [ dp e ® Ly(b, Ly_y(a, D)) + [ du [* dv L, (L, (b, ¢), Lr_n(a, D)) (4.50)

+ i dp f; 7" dv Ly(b, L(Ly_u(a, ), D)) .

In order to compute the second term in the right hand side of (A.46) we need to use
first the right Wick formula (2.4) and then quasi—associativity (2.6). The result is

—(e"a) @ Ly(b,0) @ D = ( f du €a) @ L(La(b,¢), D)
_ (foT dp L,\_u(b, c)) ® Lu(a, D) — (eTaAb) ® La(a,¢) ® D
—(Jy s ") @ Ly(La(a,0), D) = ( f; dp La y(a,)) @ L(b, D) (4.51)

— [ du L(b, Ly u(a,)® D .
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The third term in the right hand side of (A.46) can be easily rewritten by using the
right Wick formula (2.4)

—c® (eTaAa> ® Ly(b,D) —c® (eTa*b> ® Ly(a, D)

: (A.52)
- fo dp ¢ ® Ly (b, Ly pu(a, D)) .

Finally, to compute the last term in the right hand side of (A.46) we need to use
twice the right Wick formula (2.4). The result is

— Jodp (7@ +20) @ L (La(b,¢), D) + ("% La_(b, ) ) ® L(a, D))
— [dp [ dv L(Lx psu(bsc), Ly o(a, D))

— [Mdp ((eT(aA“Laﬂ)b)@Lu(LA(a, ¢), D) + (eTaﬂLA_u(a, c))®Lu(b, D)) (A.53)
— [ du [ dv L,(Lx-psu(a, ), L (b, D))

— [Mdu [ dv Ly(Lu(b, La_u(a,c)), D) .

The first term in (A.48) simplifies with the first term in (A.51), likewise the first term
in (A.49) simplifies with the fourth term in (A.51). Moreover, adding the second term
of (A.48) and the first term of (A.52) we get

skn((eTa*a),c, Ly(b,D)) + (/_OT dp L,(a, c)) ® L_,(b, D) , (A.54)

and similarly, adding the second term of (A.49) and the second term of (A.52) we get

0

skn((e74b) . La(a, D)) + ( /_ L ) @ Ln-y(a, D) . (A.5)

The sum of the last term of (A.48), the second term of (A.51) and the first term
of (A.53) is zero, and similarly the sum of the last term of (A.49), the fifth term of
(A.51) and the fourth term of (A.53) is zero. The first term of (A.50) simplifies with
the last term of (A.51), and similarly the fifth term of (A.50) simplifies with the last
term of (A.52). The sum of the second term of (A.50), the sixth term of (A.51), the
fifth term of (A.53) and the second term of (A.54) is zero. Likewise, the sum of the
fourth term of (A.50), the third term of (A.51), the second term of (A.53) and the
second term of (A.55) is zero. The sixth term of (A.50) simplifies with the third term
of (A.53). Finally, the sum of the third and last terms of (A.50) and the last two
terms of (A.53) gives

A A—u
/ d,u/ dv J(a, Lx—,(a,c), D;p,v) .
0 0
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This concludes the proof of equation (2.25).

A.3 Proof of Equation (2.28)
By definition, the left hand side of equation (2.28) is
Ly(a,skn(b, ¢, D)) = Ly(a,b® c® D) — p(b,c)Ly(a,c®b® D)
— La(a, N(( [ dp L(b,0)), D)) -
The first term in the right hand side of (A.56) is, by (2.3)
A
N(Lx(a,b),c® D) + p(a,b)b® Lx(a,c® D) + / du L,(La(a,b),c® D) .
The second term of (A.57) is "
p(a,b)b ® N(Lx(a,c), D)+ p(a,b)p(a, c)b ® ¢ ® Ly(a, D)
+p(a,b) [; du b® Ly((La(a,c), D)
and the last term of (A.57) can be written as
Jo duIW((Lx(a,b), ¢, D; ) + f;" di N(Ly(L(a,b), ), D)
+pla,o)p(b,c) [} dpw ¢ ® L(Lx(a,b), D)
+ [N dp [ dv L,(Lu(Lx(a,b),¢), D) .
Similarly, the second term in the right hand side of (A.56) gives
—p(b,¢c)N(Ly(a,c),b® D) — p(a,c)p(b,c)c ® N(Ly(a,b), D)
— p(a,b)p(a, c)p(b, c)c ® b & Lx(a, D)
~p(a,e)p(b,0) f;' dpp c®Ly(La(a, ), D) = p(b,¢) 5 dplW(La(a ), b, Ds p)
—p(b,¢) [} dpp N(Lu(Lx(a, ),b), D) = p(a,b) [; du b®L(Lx(a, c), D)
—p(b,c) [ dp [* dv L,(L,(Lx(a,¢),b), D) .
The last term in the right hand side of (A.56) can be written as
~1W(a, ( % dp L, (b, c)) ,D; \) — N(Ly(a, ( %, dp L (b, c))), D)
= pla,b)p(a, )N (( [ du Lu(b,<) ), La(a, D))
— [ dp Lu(Lx(a, ( % dv L (b, c))), D).
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Notice that the last term of (A.58) simplifies with the seventh term of (A.60), and
similarly the third term of (A.59) simplifies with the fourth term of (A.60). Moreover,
adding the first term of (A.57) and the second term of (A.60), we get

~p(a,)p(b, )skn(c, Lx(a, b), D) — p(a, e)p(b, )N (( /_ dp Lo, I, 1)) D),

(A.62)
likewise, adding the first term of (A.58) and the first term of (A.60), we get

0

p(a, b)skn(b, Ly (a, ¢), D) + p(a, b)N( ( / dp Ly (b, I, c))) D). (A.63)

Similarly, adding the second term of (A.58), the third term of (A.60) and the third
term of (A.61), we get

p(a,b)p(a, c)skn(b, ¢, Ly(a, D)) .

The second term of (A.59) can be rewritten as

=T

/oA ds NSK(La(a8), 519, D)~ pla o, ON(( [

-2=T

du Lu(c, L(a, b))),D) ,

(A.64)
likewise, the sixth term of (A.60) can be rewritten as

A -
_p(ba C) / d,u’ N(Skl(L/\(aa C)a b; :U')a D) + p(a, b)N(( / d:u’ L,u(b) L)\(G,, C))) ) D) ’
0 —A-T
(A.65)
and the second term of (A.61) can be rewritten as
~N((f° g dp sKU(a, Lu(b,c); 1)), D)
(A.66)

+ p(a,0)p(a, ON(( [,y dit Losr(Ly(b,0),0)), D)
By summing all the last terms of (A.62), (A.63), (A.64), (A.65) and (A.66) we then
get, after simple algebraic manipulations
0

~plaWp(a N (( [

=T

dp (b, ;0 =X — p—T)), D).

After changing order of integration and using skewsymmetry of the A-bracket, the
last term of (A.59) becomes

—p(a,b) [} dv [ du L,(skl(L, (b, a), c; js), D)

+p(a,b)p(a, c)p(b,c) f; dv [ dp L(L,—u(c, LuiA(b,a)), D), (A.67)

140



similarly the last term of (A.60) becomes

p(a, c)p(b, c) fo)\ dv f:‘ du L,(skl(L,-x(c, a), b; n), D)

A.68
— plasb)pla,¢) [ dv [ dp Lo(Loy(b Lur(c,0), D), )
and the last term of (A.61) becomes
— [Xdv [} du L,(sKl(a, L,_»(b, c); \), D)
(A.69)

+ p(a’ b)p(a’7 C) f())\ dv fy)\ d,l,l, LU(LV—/\(LN—)\(ba C)a CL), D) .
To conclude, we notice that the sum of all the second terms of (A.67), (A.68) and
(A.69) is

A A
~plobp(ae) [ dv [ d LG, c00 — wp =), D).
0 v

Putting together all the above results we get, as we wanted, equation (2.28).
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