Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
000000000000	00000000000000000	00000	0000	0000	

Minimizing Interaction Energies: Nonlocal Potentials and Nonlinear Diffusions

J. A. Carrillo

Imperial College London

Summer School, Roma, June 2017

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	

Outline

Problems & Motivation

- Minimizing Free Energies
- Collective Behavior Models
- Ist order Models

Qualitative Properties: Dimensionality of Support

- (Local) Minimizers
- Local Minimizers: Dimensionality of the support
- Local Minimizers: Atomic Support

3 Global Minimizers

4 Very Singular Potentials

5 Exact Solutions

Conclusions

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
• 00000 0000000					
Minimizing Free Energies					
Outline					

Problems & Motivation

- Minimizing Free Energies
- Collective Behavior Models
- 1st order Models

2 Qualitative Properties: Dimensionality of Support

- (Local) Minimizers
- Local Minimizers: Dimensionality of the support
- Local Minimizers: Atomic Support

3 Global Minimizers

Very Singular Potentials

5 Exact Solutions

6 Conclusions

Problems & Motivation	Qualitative Properti	es: Dimensionality of S	upport Global Min	nimizers Very Singular Pote	entials Exact Solution	ns Conclusions
000000000000000000000000000000000000000	0000000000					
Minimizing Free Energies						
A	• • •	. • 1	<u> </u>	3 / 1	1	

Aggregation for particles - Continuum Model

One particle attracted/repelled by a fixed location x = a

 $\dot{X} = -\nabla U(X - a)$ $U(x) = U(-x), U(0) = 0, U \in C^{1}(\mathbb{R}^{d}/\{0\}, \mathbb{R})$

Multiple particles attracted/repelled by one another

$$\dot{X}_i = -\sum_{j \neq i} m_j \,\nabla U(X_i - X_j)$$

 $\rho(t, x) =$ density of particle at time t

$$v(x) = -\int_{\mathbb{R}^d} \nabla U(x-y) \ \rho(y) dy$$

So $v = -\nabla U * \rho$:

 $\begin{cases} \rho_t + \mathrm{div}\partial\rho v = 0\\ v = -\nabla U * \rho \end{cases}$

Problems & Motivation	Qualitative Properties:	Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
000000000000000000000000000000000000000						
Minimizing Free Energies						
			~ •			

Aggregation for particles - Continuum Model

One particle attracted/repelled by a fixed location x = a

 $\dot{X} = -\nabla U(X - a)$ $U(x) = U(-x), U(0) = 0, U \in C^{1}(\mathbb{R}^{d}/\{0\}, \mathbb{R})$

Multiple particles attracted/repelled by one another

$$\dot{X}_i = -\sum_{j \neq i} m_j \, \nabla U(X_i - X_j)$$

 $\rho(t,x) = {\rm density} \ {\rm of} \ {\rm particle} \ {\rm at} \ {\rm time} \ t$

$$v(x) = -\int_{\mathbb{R}^d} \nabla U(x-y) \ \rho(y) dy$$

So $v = -\nabla U * \rho$:

 $\begin{cases} \rho_t + \operatorname{div}\partial\rho v = 0\\ v = -\nabla U * \rho \end{cases}$

Problems & Motivation	Qualitative Properties:	Dimensionality of Support	t Global Minimizers	Very Singular Potentials	Exact Solutions	
000000000000000000000000000000000000000		0000000				
Minimizing Free Energies						
			~ •			

Aggregation for particles - Continuum Model

One particle attracted/repelled by a fixed location x = a

 $\dot{X} = -\nabla U(X - a)$ $U(x) = U(-x), U(0) = 0, U \in C^{1}(\mathbb{R}^{d}/\{0\}, \mathbb{R})$

Multiple particles attracted/repelled by one another

$$\dot{X}_i = -\sum_{j \neq i} m_j \, \nabla U(X_i - X_j)$$

 $\rho(t,x) = {\rm density} \; {\rm of} \; {\rm particle} \; {\rm at} \; {\rm time} \; t$

$$v(x) = -\int_{\mathbb{R}^d} \nabla U(x-y) \; \rho(y) dy$$

So $v = -\nabla U * \rho$:

$$\begin{cases} \rho_t + \operatorname{div} \rho v = 0\\ v = -\nabla U * \rho \end{cases}$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials				
000000000000000000000000000000000000000							
Minimizing Free Energies							
Aggregation-Diffusion Equation							

$$\begin{cases} \rho_t + \operatorname{div} \rho v = 0\\ v = -\nabla U * \rho - \nabla P(\rho) \end{cases}$$

 $U: \mathbb{R}^d \to \mathbb{R}$ "interaction potential"
$$\begin{split} \rho(t,x) &: \text{density} \\ v(t,x) &: \text{velocity field} \\ x \in \mathbb{R}^d, t > 0 \end{split}$$

 $-\nabla U: \mathbb{R}^d \to \mathbb{R}^d$ "attracting/repelling field"

For which interaction repulsive/attractive potentials do we get convergence towards some nontrivial steady states?

How can we characterize these stationary states and what are their qualitative and stability properties?

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials				
000000000000000000000000000000000000000							
Minimizing Free Energies							
Aggregation-Diffusion Equation							

$$\begin{cases} \rho_t + \operatorname{div}\partial\rho v = 0\\ v = -\nabla U * \rho - \nabla P(\rho) \end{cases}$$

 $U: \mathbb{R}^d \rightarrow \mathbb{R}$ "interaction potential"

 $\rho(t, x)$: density v(t, x): velocity field $x \in \mathbb{R}^d, t > 0$

 $-\nabla U: \mathbb{R}^d \to \mathbb{R}^d$ "attracting/repelling field"

For which interaction repulsive/attractive potentials do we get convergence towards some nontrivial steady states?

How can we characterize these stationary states and what are their qualitative and stability properties?

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials				
000000000000000000000000000000000000000							
Minimizing Free Energies							
Aggregation-Diffusion Equation							

$$\begin{cases} \rho_t + \operatorname{div}\partial\rho v = 0\\ v = -\nabla U * \rho - \nabla P(\rho) \end{cases}$$

 $U: \mathbb{R}^d \to \mathbb{R}$ "interaction potential"

 $\rho(t, x)$: density v(t, x): velocity field $x \in \mathbb{R}^d, t > 0$

 $-\nabla U: \mathbb{R}^d \to \mathbb{R}^d$ "attracting/repelling field"

For which interaction repulsive/attractive potentials do we get convergence towards some nontrivial steady states?

How can we characterize these stationary states and what are their qualitative and stability properties?

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials				
000000000000000000000000000000000000000							
Minimizing Free Energies							
Aggregation-Diffusion Equation							

$$\begin{cases} \rho_t + \operatorname{div}\partial\rho v = 0\\ v = -\nabla U * \rho - \nabla P(\rho) \end{cases}$$

 $U: \mathbb{R}^d \to \mathbb{R}$ "interaction potential"

 $\rho(t, x)$: density v(t, x): velocity field $x \in \mathbb{R}^d, t > 0$

 $-\nabla U: \mathbb{R}^d \to \mathbb{R}^d$ "attracting/repelling field"

For which interaction repulsive/attractive potentials do we get convergence towards some nontrivial steady states?

How can we characterize these stationary states and what are their qualitative and stability properties?

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials				
000000000000000000000000000000000000000							
Minimizing Free Energies							
Aggregation-Diffusion Equation							

$$\begin{cases} \rho_t + \operatorname{div}\partial\rho v = 0\\ v = -\nabla U * \rho - \nabla P(\rho) \end{cases}$$

 $U: \mathbb{R}^d \to \mathbb{R}$ "interaction potential"

 $\rho(t, x)$: density v(t, x): velocity field $x \in \mathbb{R}^d, t > 0$

 $-\nabla U: \mathbb{R}^d \to \mathbb{R}^d$ "attracting/repelling field"

For which interaction repulsive/attractive potentials do we get convergence towards some nontrivial steady states?

How can we characterize these stationary states and what are their qualitative and stability properties?

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
000000000000000000000000000000000000000					
Minimizing Free Energies					
Formal G	radient Flow				

Basic Properties

- Conservation of the center of mass.
- **2** Liapunov Functional: Gradient flow of

$$\mathcal{F}[\rho] = \frac{1}{2} \iint U(x-y) \ \rho(x) \ \rho(y) \ dxdy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \ dx$$

with respect to the Wasserstein distance W_2 . (C., McCann, Villani; RMI 2003, ARMA 2006).

The macroscopic equation can be rewritten as

$$\frac{\partial \rho}{\partial t}(t,x) = \operatorname{div}\left(\rho(t,x)\nabla\left[\frac{\delta \mathcal{F}}{\delta\rho}(t,x)\right]\right) \;.$$

with entropy dissipation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}[\rho(t)] = -\int_{\mathbb{R}^2} \rho(t,x) \left| \nabla \frac{\delta \mathcal{F}}{\delta \rho}(t,x) \right|^2 \, dx \; .$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
000000000000000000000000000000000000000					
Minimizing Free Energies					
Formal G	radient Flow				

Basic Properties

- Conservation of the center of mass.
- **2** Liapunov Functional: Gradient flow of

$$\mathcal{F}[\rho] = \frac{1}{2} \iint U(x-y) \ \rho(x) \ \rho(y) \ dxdy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \ dx$$

with respect to the <u>Wasserstein distance W_2 </u>. (C., McCann, Villani; RMI 2003, ARMA 2006).

The macroscopic equation can be rewritten as

$$\frac{\partial \rho}{\partial t}(t,x) = \operatorname{div}\left(\rho(t,x)\nabla\left[\frac{\delta \mathcal{F}}{\delta\rho}(t,x)\right]\right) \;.$$

with entropy dissipation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}[\rho(t)] = -\int_{\mathbb{R}^2} \rho(t,x) \left| \nabla \frac{\delta \mathcal{F}}{\delta \rho}(t,x) \right|^2 \, dx \; .$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
000000000000000000000000000000000000000					
Minimizing Free Energies					
Formal G	radient Flow				

Basic Properties

- Conservation of the center of mass.
- **2** Liapunov Functional: Gradient flow of

$$\mathcal{F}[\rho] = \frac{1}{2} \iint U(x-y) \ \rho(x) \ \rho(y) \ dxdy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \ dx$$

with respect to the <u>Wasserstein distance W_2 </u>. (C., McCann, Villani; RMI 2003, ARMA 2006).

The macroscopic equation can be rewritten as

$$\frac{\partial \rho}{\partial t}(t,x) = \operatorname{div}\left(\rho(t,x)\nabla\left[\frac{\delta \mathcal{F}}{\delta\rho}(t,x)\right]\right) \;.$$

with entropy dissipation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}[\rho(t)] = -\int_{\mathbb{R}^2} \rho(t,x) \left| \nabla \frac{\delta \mathcal{F}}{\delta \rho}(t,x) \right|^2 \, dx \; .$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	Conclusions
000000000000000000000000000000000000000	00000000000000000	00000	0000	0000	
Minimizing Free Energies					

Minimization Problem

We want to find local minimizers of the total interaction energy

$$\mathcal{F}[
ho] := rac{1}{2} \iint_{\mathbb{R}^d imes \mathbb{R}^d} U(x-y)
ho(x)
ho(y) \, dx dy + \int_{\mathbb{R}^d} \Phi(
ho(x)) \, dx \, .$$

What is the right topology to talk about measures/densities being close?

When does a balance between attraction and repulsion (modelled either by nonlocality or diffusion) happen?

- Statistical Mechanics & Crystallization: Typically very singular potentials at zero: Lennard-Jones.
- Semiconductors Astrophysics Chemotaxis: Macroscopic model obtained from Vlasov Equation under certain limits. Newtonian Potential.
- Economic Applications: Mean Field Games, Cournot-Nash Equilibria.
- Fractional Diffusion: More singular than Newtonian repulsion but still locally integrable potentials. Levy Flights.
- Random Matrices: Eigenvalue distributions.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	Conclusions
000000000000000000000000000000000000000	00000000000000000	00000	0000	0000	
Minimizing Free Energies					

Minimization Problem

We want to find local minimizers of the total interaction energy

$$\mathcal{F}[\rho] := \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} U(x-y) \rho(x) \rho(y) \, dx dy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \, dx \, .$$

What is the right topology to talk about measures/densities being close?

When does a balance between attraction and repulsion (modelled either by nonlocality or diffusion) happen?

- Statistical Mechanics & Crystallization: Typically very singular potentials at zero: Lennard-Jones.
- Semiconductors Astrophysics Chemotaxis: Macroscopic model obtained from Vlasov Equation under certain limits. Newtonian Potential.
- Economic Applications: Mean Field Games, Cournot-Nash Equilibria.
- Fractional Diffusion: More singular than Newtonian repulsion but still locally integrable potentials. Levy Flights.
- Random Matrices: Eigenvalue distributions.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	Conclusions
000000000000000000000000000000000000000	00000000000000000	00000	0000	0000	
Minimizing Free Energies					

Minimization Problem

We want to find local minimizers of the total interaction energy

$$\mathcal{F}[\rho] := \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} U(x-y) \rho(x) \rho(y) \, dx dy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \, dx \, .$$

What is the right topology to talk about measures/densities being close?

When does a balance between attraction and repulsion (modelled either by nonlocality or diffusion) happen?

- Statistical Mechanics & Crystallization: Typically very singular potentials at zero: Lennard-Jones.
- Semiconductors Astrophysics Chemotaxis: Macroscopic model obtained from Vlasov Equation under certain limits. Newtonian Potential.
- Economic Applications: Mean Field Games, Cournot-Nash Equilibria.
- Fractional Diffusion: More singular than Newtonian repulsion but still locally integrable potentials. Levy Flights.
- Random Matrices: Eigenvalue distributions.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	Conclusions
000000000000000000000000000000000000000	00000000000000000	00000	0000	0000	
Minimizing Free Energies					

Minimization Problem

We want to find local minimizers of the total interaction energy

$$\mathcal{F}[\rho] := \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} U(x-y) \rho(x) \rho(y) \, dx dy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \, dx \, .$$

What is the right topology to talk about measures/densities being close?

When does a balance between attraction and repulsion (modelled either by nonlocality or diffusion) happen?

- Statistical Mechanics & Crystallization: Typically very singular potentials at zero: Lennard-Jones.
- Semiconductors Astrophysics Chemotaxis: Macroscopic model obtained from Vlasov Equation under certain limits. Newtonian Potential.
- Economic Applications: Mean Field Games, Cournot-Nash Equilibria.
- Fractional Diffusion: More singular than Newtonian repulsion but still locally integrable potentials. Levy Flights.
- Random Matrices: Eigenvalue distributions.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	Conclusions
000000000000000000000000000000000000000	00000000000000000	00000	0000	0000	
Minimizing Free Energies					

Minimization Problem

We want to find local minimizers of the total interaction energy

$$\mathcal{F}[\rho] := \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} U(x-y) \rho(x) \rho(y) \, dx dy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \, dx \, .$$

What is the right topology to talk about measures/densities being close?

When does a balance between attraction and repulsion (modelled either by nonlocality or diffusion) happen?

- Statistical Mechanics & Crystallization: Typically very singular potentials at zero: Lennard-Jones.
- Semiconductors Astrophysics Chemotaxis: Macroscopic model obtained from Vlasov Equation under certain limits. Newtonian Potential.
- Economic Applications: Mean Field Games, Cournot-Nash Equilibria.
- Fractional Diffusion: More singular than Newtonian repulsion but still locally integrable potentials. Levy Flights.
- Random Matrices: Eigenvalue distributions.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	Conclusions
000000000000000000000000000000000000000	0000000000000000	00000	0000	0000	
Minimizing Free Energies					

Minimization Problem

We want to find local minimizers of the total interaction energy

$$\mathcal{F}[\rho] := \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} U(x-y) \rho(x) \rho(y) \, dx dy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \, dx \, .$$

What is the right topology to talk about measures/densities being close?

When does a balance between attraction and repulsion (modelled either by nonlocality or diffusion) happen?

- Statistical Mechanics & Crystallization: Typically very singular potentials at zero: Lennard-Jones.
- Semiconductors Astrophysics Chemotaxis: Macroscopic model obtained from Vlasov Equation under certain limits. Newtonian Potential.
- Economic Applications: Mean Field Games, Cournot-Nash Equilibria.
- Fractional Diffusion: More singular than Newtonian repulsion but still locally integrable potentials. Levy Flights.
- Random Matrices: Eigenvalue distributions.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	Conclusions
000000000000000000000000000000000000000	00000000000000000	00000	0000	0000	
Minimizing Free Energies					

Minimization Problem

We want to find local minimizers of the total interaction energy

$$\mathcal{F}[\rho] := \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} U(x-y) \rho(x) \rho(y) \, dx dy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \, dx \, .$$

What is the right topology to talk about measures/densities being close?

When does a balance between attraction and repulsion (modelled either by nonlocality or diffusion) happen?

- Statistical Mechanics & Crystallization: Typically very singular potentials at zero: Lennard-Jones.
- Semiconductors Astrophysics Chemotaxis: Macroscopic model obtained from Vlasov Equation under certain limits. Newtonian Potential.
- Economic Applications: Mean Field Games, Cournot-Nash Equilibria.
- Fractional Diffusion: More singular than Newtonian repulsion but still locally integrable potentials. Levy Flights.
- Random Matrices: Eigenvalue distributions.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	Conclusions
000000000000000000000000000000000000000	00000000000000000	00000	0000	0000	
Minimizing Free Energies					

Minimization Problem

We want to find local minimizers of the total interaction energy

$$\mathcal{F}[\rho] := \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} U(x-y) \rho(x) \rho(y) \, dx dy + \int_{\mathbb{R}^d} \Phi(\rho(x)) \, dx \, .$$

What is the right topology to talk about measures/densities being close?

When does a balance between attraction and repulsion (modelled either by nonlocality or diffusion) happen?

- Statistical Mechanics & Crystallization: Typically very singular potentials at zero: Lennard-Jones.
- Semiconductors Astrophysics Chemotaxis: Macroscopic model obtained from Vlasov Equation under certain limits. Newtonian Potential.
- Economic Applications: Mean Field Games, Cournot-Nash Equilibria.
- Fractional Diffusion: More singular than Newtonian repulsion but still locally integrable potentials. Levy Flights.
- Random Matrices: Eigenvalue distributions.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	
000000000000000000000000000000000000000				
Collective Behavior Model				
Outline				

Problems & Motivation

• Minimizing Free Energies

• Collective Behavior Models

Ist order Models

2 Qualitative Properties: Dimensionality of Support

- (Local) Minimizers
- Local Minimizers: Dimensionality of the support
- Local Minimizers: Atomic Support

3 Global Minimizers

4 Very Singular Potentials

5 Exact Solutions

6 Conclusions

Collective Behavior Models					
0000000000000	000000000000000000000000000000000000000	00000	0000	0000	
Problems & Motivation	Qualitative Properties: Dimensionality of	Support Global Minimizers	Very Singular Potentials	s Exact Solutions	Conclusions

Cell/Bacteria Movement by Chemotaxis

$$\begin{split} &\frac{\partial n}{\partial t} = \Delta \Phi(n) - \chi \nabla \cdot (n \nabla c) \quad x \in \mathbb{R}^2 , \ t > 0 \ , \\ &\frac{\partial c}{\partial t} - \Delta c = n - \alpha c \qquad \qquad x \in \mathbb{R}^2 , \ t > 0 \ , \\ &n(0,x) = n_0 \geq 0 \qquad \qquad x \in \mathbb{R}^2 \, . \end{split}$$

Patlak (1953), Keller-Segel (1971), Nanjundiah (1973).

Movement and aggregation due to chemical signalling. Wikinut

J. Saragosti etal, PLoS Comput. Biol. 2010.

S. Volpe etal, PLoS One 2012.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
0000000000000					
Collective Behavior Models					

Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fish, birds, micro-organisms,... and artificial robots for unmanned vehicle operation.

Interaction regions between individuals^a

^aAoki, Helmerijk et al., Barbaro, Birnir et al.

- **Repulsion** Region: R_k .
- Attraction Region: A_k .
- Orientation Region: O_k .

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
0000000000000					
Collective Behavior Models					

Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fish, birds, micro-organisms,... and artificial robots for unmanned vehicle operation.

Interaction regions between individuals^a

^aAoki, Helmerijk et al., Barbaro, Birnir et al.

- Repulsion Region: R_k .
- Attraction Region: A_k .
- Orientation Region: O_k .

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
0000000000000					
Collective Behavior Models					

Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fish, birds, micro-organisms,... and artificial robots for unmanned vehicle operation.

Interaction regions between individuals^a

^aAoki, Helmerijk et al., Barbaro, Birnir et al.

- Repulsion Region: R_k .
- Attraction Region: A_k .
- Orientation Region: O_k .

2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla U(|x_i - x_j|). \end{cases}$$

Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \ell = \ell_R/\ell_A < 1$ and $C\ell^2 < 1$:

2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla U(|x_i - x_j|). \end{cases}$$

Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \, \ell = \ell_R/\ell_A < 1$ and $C\ell^2 < 1$:

2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla U(|x_i - x_j|). \end{cases}$$

Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \ell = \ell_R/\ell_A < 1$ and $C\ell^2 < 1$:

2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla U(|x_i - x_j|). \end{cases}$$

Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

$$U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$$

One can also use Bessel functions in 2D and 3D to produce such a potential.

$$C = C_R/C_A > 1, \ell = \ell_R/\ell_A < 1$$

and $C\ell^2 < 1$:

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials				
000000000000000000000000000000000000000							
Collective Behavior Models							
Model with an asymptotic speed							

Typical patterns: milling, double milling or flocking:

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials 0000	Exact Solutions	
1st order Models					
Outline					

Problems & Motivation

- Minimizing Free Energies
- Collective Behavior Models
- Ist order Models

2 Qualitative Properties: Dimensionality of Support

- (Local) Minimizers
- Local Minimizers: Dimensionality of the support
- Local Minimizers: Atomic Support

3 Global Minimizers

4 Very Singular Potentials

5 Exact Solutions

6 Conclusions

1.4 Onder Detection Models							
1st order Models							
0000000000000	00000000000000000	00000	0000	0000			
Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials				

1st Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and speed are much smaller than spatial variations, then from Newton's equation:

$$m\frac{d^2x_i}{d^2t} + \alpha\frac{dx_i}{dt} + \sum_{j\neq i}\nabla U(|x_i - x_j|) = 0$$

 $\frac{dx_i}{dt} = -\sum_{j \neq i} \nabla U(|x_i - x_j|) \quad \text{in the continuum setting} \Rightarrow$

$$\begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}\left(\rho v\right) = 0\\ v = -\nabla U * \rho \end{cases}$$

Flock Solutions: stationary states x_i^s of the 1st order model are connected to particular solutions of the Bertozzi etal 2nd order model of the form

$$x_i(t) = x_i^s + tv_0$$

with v_0 fixed with $|v_0|^2 = \frac{\alpha}{\beta}$. For which potentials do we evolve towards some nontrivial steady states/patterns? Is there any implication of the stability from first to 2nd order models?

If repulsion is very strong and localized while attraction has a larger length-scale, we assume $U = U_a + \delta_0$, and thus

$$\frac{\partial \rho}{\partial t} = \operatorname{div}\left(\rho \nabla U_a * \rho\right) + \Delta \rho^2$$

1.4 Onder Detection Models							
1st order Models							
0000000000000	00000000000000000	00000	0000	0000			
Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials				

1st Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and speed are much smaller than spatial variations, then from Newton's equation:

$$m\frac{d^2x_i}{d^2t} + \alpha\frac{dx_i}{dt} + \sum_{j\neq i}\nabla U(|x_i - x_j|) = 0$$

$$rac{dx_i}{dt} = -\sum_{j
eq i}
abla U(|x_i - x_j|)$$
 in the continuum setting \Rightarrow

$$\begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}\left(\rho v\right) = 0\\ v = -\nabla U * \rho \end{cases}$$

Flock Solutions: stationary states x_i^s of the 1st order model are connected to particular solutions of the Bertozzi etal 2nd order model of the form

$$x_i(t) = x_i^s + tv_0$$

with v_0 fixed with $|v_0|^2 = \frac{\alpha}{\beta}$. For which potentials do we evolve towards some nontrivial steady states/patterns? Is there any implication of the stability from first to 2nd order models?

If repulsion is very strong and localized while attraction has a larger length-scale, we assume $U = U_a + \delta_0$, and thus

$$\frac{\partial \rho}{\partial t} = \operatorname{div}\left(\rho \nabla U_a * \rho\right) + \Delta \rho^2$$

1st Orden Eristian Medal						
1st order Models						
0000000000000	00000000000000000	00000	0000	0000		
Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials			

1st Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and speed are much smaller than spatial variations, then from Newton's equation:

$$m\frac{d^2x_i}{d^2t} + \alpha\frac{dx_i}{dt} + \sum_{j\neq i}\nabla U(|x_i - x_j|) = 0$$

$$\frac{dx_i}{dt} = -\sum_{j \neq i} \nabla U(|x_i - x_j|) \qquad \text{in the continuum setting} \Rightarrow$$

$$\begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}\left(\rho v\right) = 0\\ v = -\nabla U * \rho \end{cases}$$

Flock Solutions: stationary states x_i^s of the 1st order model are connected to particular solutions of the Bertozzi etal 2nd order model of the form

$$x_i(t) = x_i^s + tv_0$$

with v_0 fixed with $|v_0|^2 = \frac{\alpha}{\beta}$. For which potentials do we evolve towards some nontrivial steady states/patterns? Is there any implication of the stability from first to 2nd order models?

If repulsion is very strong and localized while attraction has a larger length-scale, we assume $U = U_a + \delta_0$, and thus

$$\frac{\partial \rho}{\partial t} = \operatorname{div}\left(\rho \nabla U_a * \rho\right) + \Delta \rho^2$$
1 at Ouden	Entertion Madal				
1st order Models					
0000000000000	00000000000000000	00000	0000	0000	
Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials		

1st Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and speed are much smaller than spatial variations, then from Newton's equation:

$$m\frac{d^2x_i}{d^2t} + \alpha\frac{dx_i}{dt} + \sum_{j \neq i} \nabla U(|x_i - x_j|) = 0$$

$$\frac{dx_i}{dt} = -\sum_{j \neq i} \nabla U(|x_i - x_j|) \quad \text{in the continuum setting} \Rightarrow$$

 $\begin{cases} \frac{\partial\rho}{\partial t} + \operatorname{div}\left(\rho v\right) = 0\\ v = -\nabla U * \rho \end{cases}$

Flock Solutions: stationary states x_i^s of the 1st order model are connected to particular solutions of the Bertozzi etal 2nd order model of the form

$$x_i(t) = x_i^s + tv_0$$

with v_0 fixed with $|v_0|^2 = \frac{\alpha}{\beta}$.

For which potentials do we evolve towards some nontrivial steady states/patterns? Is there any implication of the stability from first to 2nd order models?

If repulsion is very strong and localized while attraction has a larger length-scale, we assume $U = U_a + \delta_0$, and thus

$$\frac{\partial \rho}{\partial t} = \operatorname{div}\left(\rho \nabla U_a * \rho\right) + \Delta \rho^2$$

1 at Ouden	Entertion Madal				
1st order Models					
0000000000000	00000000000000000	00000	0000	0000	
Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials		

1st Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and speed are much smaller than spatial variations, then from Newton's equation:

$$m\frac{d^2x_i}{d^2t} + \alpha\frac{dx_i}{dt} + \sum_{j \neq i} \nabla U(|x_i - x_j|) = 0$$

$$\frac{dx_i}{dt} = -\sum_{j \neq i} \nabla U(|x_i - x_j|) \quad \text{in the continuum setting} \Rightarrow$$

 $\begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}\left(\rho v\right) = 0\\ v = -\nabla U * \rho \end{cases}$

Flock Solutions: stationary states x_i^s of the 1st order model are connected to particular solutions of the Bertozzi etal 2nd order model of the form

$$x_i(t) = x_i^s + tv_0$$

with v_0 fixed with $|v_0|^2 = \frac{\alpha}{\beta}$. For which potentials do we evolve towards some nontrivial steady states/patterns? Is there any implication of the stability from first to 2nd order models?

If repulsion is very strong and localized while attraction has a larger length-scale, we assume $U = U_a + \delta_0$, and thus

$$\frac{\partial \rho}{\partial t} = \operatorname{div}\left(\rho \nabla U_a * \rho\right) + \Delta \rho^2$$

1.4 0.1	The state of Mrs. 1.1.				
1st order Models					
0000000000000	00000000000000000	00000	0000	0000	
Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials		

1st Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and speed are much smaller than spatial variations, then from Newton's equation:

$$m\frac{d^2x_i}{d^2t} + \alpha\frac{dx_i}{dt} + \sum_{j \neq i} \nabla U(|x_i - x_j|) = 0$$

$$\frac{dx_i}{dt} = -\sum_{j \neq i} \nabla U(|x_i - x_j|) \quad \text{in the continuum setting} \Rightarrow$$

$$\begin{cases} \frac{\partial\rho}{\partial t} + \operatorname{div}\left(\rho v\right) = 0\\ v = -\nabla U * \rho \end{cases}$$

Flock Solutions: stationary states x_i^s of the 1st order model are connected to particular solutions of the Bertozzi etal 2nd order model of the form

$$x_i(t) = x_i^s + tv_0$$

with v_0 fixed with $|v_0|^2 = \frac{\alpha}{\beta}$. For which potentials do we evolve towards some nontrivial steady states/patterns? Is there any implication of the stability from first to 2nd order models?

If repulsion is very strong and localized while attraction has a larger length-scale, we assume $U = U_a + \delta_0$, and thus

$$\frac{\partial \rho}{\partial t} = \operatorname{div}\left(\rho \nabla U_a * \rho\right) + \Delta \rho^2$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	•••••				
(Local) Minimizers					
Outline					

Problems & Motivation

- Minimizing Free Energies
- Collective Behavior Models
- Ist order Models

Qualitative Properties: Dimensionality of Support (Local) Minimizers

- Local Minimizers: Dimensionality of the support
- Local Minimizers: Atomic Support

3 Global Minimizers

4 Very Singular Potentials

5 Exact Solutions

6 Conclusions

Nontrivial patterns? - Particle Simulations

Potential a = 4, b = 0.85

Potential a = 4, b = 0.05

$$\dot{X}_i = -\sum_{j \neq i} m_j \, \nabla U(X_i - X_j)$$
$$U(x) = \frac{|x|^a}{a} - \frac{|x|^b}{b}$$
$$2 - d \le b < a$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
0000000000000	000000000000000000000000000000000000000	00000	0000	0000	
(Local) Minimizers					
Dimensic	nality of the support	rt			

Some simulations with power law potentials of the form

$$W(x) = \frac{|x|^{a}}{a} - \frac{|x|^{b}}{b}, \qquad 2 - d < b < a$$

Local minimizers in 3D for different parameters when b > -1 increases. The computations were done with n = 2,500 particles.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	0000 00000 000000000				
Local Minimizers: Dimens	ionality of the support				
Outline					

Problems & Motivation

- Minimizing Free Energies
- Collective Behavior Models
- Ist order Models

Qualitative Properties: Dimensionality of Support

• (Local) Minimizers

• Local Minimizers: Dimensionality of the support

• Local Minimizers: Atomic Support

3 Global Minimizers

4 Very Singular Potentials

5 Exact Solutions

6 Conclusions

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials		
	000000000000000000000000000000000000000				
Local Minimizers: Dimensionality of the support					
W_∞ -Topo	ology				

$$W_{\infty}(\mu,
u) = \inf_{\pi \in \Pi(\mu,
u)} \sup_{(x,y) \in \operatorname{supp}(\pi)} |x-y|,$$

- It is a good topology since it is closer to linearization around equilibrium of dynamical systems.
- It is the coarser topology among Wasserstein distances since all of them are ordered.
- Then, a local minimizer in W_2 is a local minimizer in W_∞ but not viceversa.

Basic Hypotheses:

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials		
	000000000000000000000000000000000000000				
Local Minimizers: Dimensionality of the support					
W_∞ -Topo	ology				

$$W_{\infty}(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \sup_{(x,y) \in \operatorname{supp}(\pi)} |x-y|,$$

- It is a good topology since it is closer to linearization around equilibrium of dynamical systems.
- It is the coarser topology among Wasserstein distances since all of them are ordered.
- Then, a local minimizer in W_2 is a local minimizer in W_∞ but not viceversa.

Basic Hypotheses:

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	000000000000000000000000000000000000000				
Local Minimizers: Dimensionality of the support					
W_∞ -Topo	ology				

$$W_{\infty}(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \sup_{(x,y) \in \text{supp}(\pi)} |x-y|,$$

- It is a good topology since it is closer to linearization around equilibrium of dynamical systems.
- It is the coarser topology among Wasserstein distances since all of them are ordered.
- Then, a local minimizer in W_2 is a local minimizer in W_∞ but not viceversa.

Basic Hypotheses:

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	000000000000000000000000000000000000000				
Local Minimizers: Dimensionality of the support					
W_∞ -Topo	ology				

$$W_{\infty}(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \sup_{(x,y) \in \text{supp}(\pi)} |x-y|,$$

- It is a good topology since it is closer to linearization around equilibrium of dynamical systems.
- It is the coarser topology among Wasserstein distances since all of them are ordered.
- Then, a local minimizer in W_2 is a local minimizer in W_∞ but not viceversa.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	000000000000000000000000000000000000000				
Local Minimizers: Dimensi	onality of the support				
W_∞ -Topo	ology				

$$W_{\infty}(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \sup_{(x,y) \in \text{supp}(\pi)} |x-y|,$$

- It is a good topology since it is closer to linearization around equilibrium of dynamical systems.
- It is the coarser topology among Wasserstein distances since all of them are ordered.
- Then, a local minimizer in W_2 is a local minimizer in W_∞ but not viceversa.

Basic Hypotheses:

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	
	000000000000000000000000000000000000000			
Local Minimizers: Dimens	ionality of the support			
Euler-Lag	grange Conditions			

Assume that U satisfies (H1) and let μ be a local compactly supported minimizer of the energy $\mathcal{F}[\mu]$ in the W_{∞} ball or radius ε . Then any point $x_0 \in \text{supp}(\mu)$ is a local minimimum of $\psi = U * \mu$ in the sense that

 $\psi(x_0) \leq \psi(x)$ for a.e. $x \in B_{\varepsilon}(x_0)$.

Note that ε is uniform on the support of μ .

W₂ EL-Conditions

Under the same assumptions, if μ is a W_2 -local minimizer of the energy, then the potential ψ satisfy

- (i) $\psi(x) = (U * \mu)(x) = 2\mathcal{F}[\mu] \mu$ -a.e.
- (ii) $\psi(x) = (U * \mu)(x) \ge 2\mathcal{F}[\mu]$ for a.e. $x \in \mathbb{R}^d$.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	
	000000000000000000000000000000000000000			
Local Minimizers: Dimens	ionality of the support			
Euler-Lag	grange Conditions			

Assume that U satisfies (H1) and let μ be a local compactly supported minimizer of the energy $\mathcal{F}[\mu]$ in the W_{∞} ball or radius ε . Then any point $x_0 \in \text{supp}(\mu)$ is a local minimimum of $\psi = U * \mu$ in the sense that

 $\psi(x_0) \leq \psi(x)$ for a.e. $x \in B_{\varepsilon}(x_0)$.

Note that ε is uniform on the support of μ .

W₂ EL-Conditions

Under the same assumptions, if μ is a W_2 -local minimizer of the energy, then the potential ψ satisfy

- (i) $\psi(x) = (U * \mu)(x) = 2\mathcal{F}[\mu] \mu$ -a.e.
- (ii) $\psi(x) = (U * \mu)(x) \ge 2\mathcal{F}[\mu]$ for a.e. $x \in \mathbb{R}^d$.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	
	000000000000000000000000000000000000000			
Local Minimizers: Dimens	ionality of the support			
Euler-Lag	grange Conditions			

Assume that U satisfies (H1) and let μ be a local compactly supported minimizer of the energy $\mathcal{F}[\mu]$ in the W_{∞} ball or radius ε . Then any point $x_0 \in \text{supp}(\mu)$ is a local minimimum of $\psi = U * \mu$ in the sense that

 $\psi(x_0) \leq \psi(x)$ for a.e. $x \in B_{\varepsilon}(x_0)$.

Note that ε is uniform on the support of μ .

W₂ EL-Conditions

Under the same assumptions, if μ is a W_2 -local minimizer of the energy, then the potential ψ satisfy

- (i) $\psi(x) = (U * \mu)(x) = 2\mathcal{F}[\mu] \mu$ -a.e.
- (ii) $\psi(x) = (U * \mu)(x) \ge 2\mathcal{F}[\mu]$ for a.e. $x \in \mathbb{R}^d$.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	
	000000000000000000000000000000000000000			
Local Minimizers: Dimens	ionality of the support			
Euler-Lag	grange Conditions			

Assume that U satisfies (H1) and let μ be a local compactly supported minimizer of the energy $\mathcal{F}[\mu]$ in the W_{∞} ball or radius ε . Then any point $x_0 \in \text{supp}(\mu)$ is a local minimimum of $\psi = U * \mu$ in the sense that

 $\psi(x_0) \leq \psi(x)$ for a.e. $x \in B_{\varepsilon}(x_0)$.

Note that ε is uniform on the support of μ .

W₂ EL-Conditions

Under the same assumptions, if μ is a W_2 -local minimizer of the energy, then the potential ψ satisfy

- (i) $\psi(x) = (U * \mu)(x) = 2\mathcal{F}[\mu] \mu$ -a.e.
- (ii) $\psi(x) = (U * \mu)(x) \ge 2\mathcal{F}[\mu]$ for a.e. $x \in \mathbb{R}^d$.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	
	0000 00000000000 0000000000000000000000			
Local Minimizers: Dimens	ionality of the support			
Strong Re	epulsive potentials			

Assume that μ is a local minimizer of the interaction energy \mathcal{F} with respect to W_{∞} such that U is radial and U(x) is γ -repulsive at the origin $0 < \gamma < d$. If μ contains *s*-Haussdorff dimensional connected components in its support, then $s \ge \gamma$.

(Balagué, C., Laurent, Raoul; ARMA 2013)

- W_{∞} EL-Conditions: Pure variational approach, by contradiction we build better competitors.
- Use the W_{∞} EL-Conditions together with suitable 2nd order minimality conditions to be able to use geometric measure theory results related to capacities of measures.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	000000000000000000000000000000000000000				
Local Minimizers: Dimens	ionality of the support				
Strong Re	epulsive potentials				

Assume that μ is a local minimizer of the interaction energy \mathcal{F} with respect to W_{∞} such that U is radial and U(x) is γ -repulsive at the origin $0 < \gamma < d$. If μ contains *s*-Haussdorff dimensional connected components in its support, then $s \geq \gamma$.

(Balagué, C., Laurent, Raoul; ARMA 2013)

- W_{∞} EL-Conditions: Pure variational approach, by contradiction we build better competitors.
- Use the W_{∞} EL-Conditions together with suitable 2nd order minimality conditions to be able to use geometric measure theory results related to capacities of measures.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	
	000000000000000000000000000000000000000			
Local Minimizers: Dimensi	onality of the support			
Strong Re	epulsive potentials			

Assume that μ is a local minimizer of the interaction energy \mathcal{F} with respect to W_{∞} such that U is radial and U(x) is γ -repulsive at the origin $0 < \gamma < d$. If μ contains *s*-Haussdorff dimensional connected components in its support, then $s \geq \gamma$.

(Balagué, C., Laurent, Raoul; ARMA 2013)

- W_{∞} EL-Conditions: Pure variational approach, by contradiction we build better competitors.
- Use the W_{∞} EL-Conditions together with suitable 2nd order minimality conditions to be able to use geometric measure theory results related to capacities of measures.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	
	000000000000000000000000000000000000000			
Local Minimizers: Dimensi	ionality of the support			
Strong Re	epulsive potentials			

Assume that μ is a local minimizer of the interaction energy \mathcal{F} with respect to W_{∞} such that U is radial and U(x) is γ -repulsive at the origin $0 < \gamma < d$. If μ contains *s*-Haussdorff dimensional connected components in its support, then $s \geq \gamma$.

(Balagué, C., Laurent, Raoul; ARMA 2013)

- W_{∞} EL-Conditions: Pure variational approach, by contradiction we build better competitors.
- Use the W_∞ EL-Conditions together with suitable 2nd order minimality conditions to be able to use geometric measure theory results related to capacities of measures.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	
	000000000000000000000000000000000000000			
Local Minimizers: Dimensi	onality of the support			
Condition	is on the potential			

 $\Delta^{\epsilon} U(x)$ is the approximate Laplacian of U,

$$-\Delta^{\epsilon} U(x) := \frac{2(d+2)}{\epsilon^2} \left(U(x) - \int_{B(0,\epsilon)} U(x+y) dy \right)$$

and $\int_{B(x_0,r)} f(x) dx$ stands for the average of f over $B(x_0,r)$.

Generalized Laplacian

Suppose $U : \mathbb{R}^d \to (-\infty, +\infty]$ is locally integrable. U is said to be γ -repulsive at the origin if there exists $\epsilon > 0$ and C > 0 such that

$$\begin{split} -\Delta^0 U(x) &= \liminf_{n \to \infty} -\Delta^{(1/n)} U(x) \geq \frac{C}{|x|^{\gamma}} \quad \text{for all} \quad 0 < |x| < \epsilon, \\ &-\Delta^0 U(0) = +\infty, \end{split}$$

and $-\Delta^0 U(x)$ is bounded below in compact sets.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	
	000000000000000000000000000000000000000			
Local Minimizers: Dimensi	onality of the support			
Condition	is on the potential			

 $\Delta^{\epsilon} U(x)$ is the approximate Laplacian of U,

$$-\Delta^{\epsilon}U(x) := \frac{2(d+2)}{\epsilon^2} \left(U(x) - \int_{B(0,\epsilon)} U(x+y) dy \right)$$

and $\int_{B(x_{0},r)}f(x)dx$ stands for the average of f over $B(x_{0},r).$

Generalized Laplacian

Suppose $U : \mathbb{R}^d \to (-\infty, +\infty]$ is locally integrable. U is said to be γ -repulsive at the origin if there exists $\epsilon > 0$ and C > 0 such that

$$-\Delta^{0}U(x) = \liminf_{n \to \infty} -\Delta^{(1/n)}U(x) \ge \frac{C}{|x|^{\gamma}} \quad \text{for all} \quad 0 < |x| < \epsilon,$$
$$-\Delta^{0}U(0) = +\infty,$$

and $-\Delta^0 U(x)$ is bounded below in compact sets.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	
	0000 0000 000000000000			
Local Minimizers: Dimensi	onality of the support			
Sketch of	the proof			

Let A be a Borel subset of \mathbb{R}^d , and $s \ge 0$. If there exists a probability measure $\mu \in \mathcal{P}(\mathbb{R}^d)$ supported on A such that

$$\iint_{\mathbb{R}^d\times\mathbb{R}^d}\frac{d\mu(x)d\mu(y)}{|x-y|^s}<\infty,$$

then $\dim_H A \ge s$, with \dim_H being the Hausdorff dimension of A.

• Let A be the support of μ .

• Choose ϵ small enough by the hypothesis of W being γ -repulsive, choose $x_0 \in A$ and define

$$\mu_0(B) = \mu(B \cap B(x_0, \epsilon/2)).$$

- Write μ = μ₀ + μ₁, where μ₀ and μ₁ are nonnegative measures with mass m₀ and m₁ respectively, and μ₀ supported in A ∩ B(x₀, ε/2).
- Observe that

$$C \iint_{\mathbb{R}^d imes \mathbb{R}^d} rac{d\mu_0(x) d\mu_0(y)}{|x-y|^\gamma} \leq C^* m_1 m_0 < +\infty.$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	
	0000 0000 000000000000			
Local Minimizers: Dimensi	onality of the support			
Sketch of	the proof			

Let A be a Borel subset of \mathbb{R}^d , and $s \ge 0$. If there exists a probability measure $\mu \in \mathcal{P}(\mathbb{R}^d)$ supported on A such that

$$\iint_{\mathbb{R}^d\times\mathbb{R}^d}\frac{d\mu(x)d\mu(y)}{|x-y|^s}<\infty,$$

then $\dim_H A \ge s$, with \dim_H being the Hausdorff dimension of A.

- Let A be the support of μ .
- Choose ϵ small enough by the hypothesis of W being γ -repulsive, choose $x_0 \in A$ and define

$$\mu_0(B) = \mu(B \cap B(x_0, \epsilon/2)).$$

- Write μ = μ₀ + μ₁, where μ₀ and μ₁ are nonnegative measures with mass m₀ and m₁ respectively, and μ₀ supported in A ∩ B(x₀, ε/2).
- Observe that

$$C \iint_{\mathbb{R}^d \times \mathbb{R}^d} \frac{d\mu_0(x) d\mu_0(y)}{|x-y|^{\gamma}} \le C^* m_1 m_0 < +\infty.$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	
	0000 0000 000000000000			
Local Minimizers: Dimensi	onality of the support			
Sketch of	the proof			

Let A be a Borel subset of \mathbb{R}^d , and $s \ge 0$. If there exists a probability measure $\mu \in \mathcal{P}(\mathbb{R}^d)$ supported on A such that

$$\iint_{\mathbb{R}^d\times\mathbb{R}^d}\frac{d\mu(x)d\mu(y)}{|x-y|^s}<\infty,$$

then $\dim_H A \ge s$, with \dim_H being the Hausdorff dimension of A.

- Let A be the support of μ .
- Choose ϵ small enough by the hypothesis of W being γ -repulsive, choose $x_0 \in A$ and define

$$\mu_0(B) = \mu(B \cap B(x_0, \epsilon/2)).$$

- Write μ = μ₀ + μ₁, where μ₀ and μ₁ are nonnegative measures with mass m₀ and m₁ respectively, and μ₀ supported in A ∩ B(x₀, ε/2).
- Observe that

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	
	0000 0000 000000000000			
Local Minimizers: Dimensi	onality of the support			
Sketch of	the proof			

Let A be a Borel subset of \mathbb{R}^d , and $s \ge 0$. If there exists a probability measure $\mu \in \mathcal{P}(\mathbb{R}^d)$ supported on A such that

$$\iint_{\mathbb{R}^d\times\mathbb{R}^d}\frac{d\mu(x)d\mu(y)}{|x-y|^s}<\infty,$$

then $\dim_H A \ge s$, with \dim_H being the Hausdorff dimension of A.

- Let A be the support of μ .
- Choose ϵ small enough by the hypothesis of W being γ -repulsive, choose $x_0 \in A$ and define

$$\mu_0(B) = \mu(B \cap B(x_0, \epsilon/2)).$$

- Write μ = μ₀ + μ₁, where μ₀ and μ₁ are nonnegative measures with mass m₀ and m₁ respectively, and μ₀ supported in A ∩ B(x₀, ε/2).
- Observe that

$$C \iint_{\mathbb{R}^d \times \mathbb{R}^d} \frac{d\mu_0(x)d\mu_0(y)}{|x-y|^{\gamma}} \le C^* m_1 m_0 < +\infty.$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	000000000000000000000000000000000000000				
Local Minimizers: Atomic	Support				
Outline					

Problems & Motivation

- Minimizing Free Energies
- Collective Behavior Models
- 1st order Models

Qualitative Properties: Dimensionality of Support

- (Local) Minimizers
- Local Minimizers: Dimensionality of the support
- Local Minimizers: Atomic Support

3 Global Minimizers

4 Very Singular Potentials

5 Exact Solutions

6 Conclusions

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	000000000000000000000000000000000000000				
Local Minimizers: Atomic	Support				
Mild Rep	ulsive potentials				

Let $U \in C^2(\mathbb{R}^N)$ be a radially symmetric potential which behaves like $-|x|^b/b$ in a neighborhood of the origin with b > 2.

Then a local minimizer of the interaction energy \mathcal{F} with respect to W_{∞} is supported in a finite number of points.

(C., Figalli, Patacchini; preprint)

- $U \in C^2(\mathbb{R}^d)$ and U is radially symmetric.
- U is bounded from below and U(0) = 0.
- There exists R > 0 with U(x) < 0 for all |x| < R and $U(x) \ge 0$ for all $|x| \ge R$.
- Fix b > 2. We write $\widetilde{U}(|x|) := U(x)$ and $\widetilde{U}_p(r) := \frac{\widetilde{U}(pr)}{p^b}$ for any p > 0 and $r \ge 0$. There exists a constant C > 0 such that

$$\begin{cases} \widetilde{U}_p(r) \to -Cr^b \\ \widetilde{U}'_p(r) \to -Cbr^{b-1} \end{cases} \text{ as } p \to 0 \text{ for all } r \ge 0. \end{cases}$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	000000000000000000000000000000000000000				
Local Minimizers: Atomic	Support				
Mild Rep	ulsive potentials				

Let $U \in C^2(\mathbb{R}^N)$ be a radially symmetric potential which behaves like $-|x|^b/b$ in a neighborhood of the origin with b > 2. Then a global minimizer of the interaction energy \mathcal{F} is supported in a finite number of points.

(C., Figalli, Patacchini; to appear in Ann. IHP)

- $U \in C^2(\mathbb{R}^d)$ and U is radially symmetric.
- U is bounded from below and U(0) = 0.
- There exists R > 0 with U(x) < 0 for all |x| < R and $U(x) \ge 0$ for all $|x| \ge R$.
- Fix b > 2. We write $\widetilde{U}(|x|) := U(x)$ and $\widetilde{U}_p(r) := \frac{\widetilde{U}(pr)}{p^b}$ for any p > 0 and $r \ge 0$. There exists a constant C > 0 such that

$$\begin{cases} \widetilde{U}_p(r) \to -Cr^b \\ \widetilde{U}'_p(r) \to -Cbr^{b-1} \end{cases} \text{ as } p \to 0 \text{ for all } r \ge 0. \end{cases}$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	000000000000000000000000000000000000000				
Local Minimizers: Atomic	Support				
Mild Rep	ulsive potentials				

Let $U \in C^2(\mathbb{R}^N)$ be a radially symmetric potential which behaves like $-|x|^b/b$ in a neighborhood of the origin with b > 2. Then a local minimizer of the interaction energy \mathcal{F} with respect to W_{∞} is supported in a finite number of points.

(C., Figalli, Patacchini; to appear in Ann. IHP)

- $U \in C^2(\mathbb{R}^d)$ and U is radially symmetric.
- U is bounded from below and U(0) = 0.
- There exists R > 0 with U(x) < 0 for all |x| < R and $U(x) \ge 0$ for all $|x| \ge R$.
- Fix b > 2. We write $\widetilde{U}(|x|) := U(x)$ and $\widetilde{U}_p(r) := \frac{\widetilde{U}(pr)}{p^b}$ for any p > 0 and $r \ge 0$. There exists a constant C > 0 such that

$$\begin{cases} \widetilde{U}_p(r) \to -Cr^b \\ \widetilde{U}'_p(r) \to -Cbr^{b-1} \end{cases} \text{ as } p \to 0 \text{ for all } r \ge 0. \end{cases}$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	000000000000000000000000000000000000000				
Local Minimizers: Atomic	Support				
Mild Rep	ulsive potentials				

Let $U \in C^2(\mathbb{R}^N)$ be a radially symmetric potential which behaves like $-|x|^b/b$ in a neighborhood of the origin with b > 2. Then a local minimizer of the interaction energy \mathcal{F} with respect to W_{∞} is supported in a finite number of points.

(C., Figalli, Patacchini; to appear in Ann. IHP)

- $U \in C^2(\mathbb{R}^d)$ and U is radially symmetric.
- U is bounded from below and U(0) = 0.
- There exists R > 0 with U(x) < 0 for all |x| < R and $U(x) \ge 0$ for all $|x| \ge R$.
- Fix b > 2. We write $\tilde{U}(|x|) := U(x)$ and $\tilde{U}_p(r) := \frac{\tilde{U}(pr)}{p^b}$ for any p > 0 and $r \ge 0$. There exists a constant C > 0 such that

$$\begin{cases} \widetilde{U}_p(r) \to -Cr^{b} \\ \widetilde{U}'_p(r) \to -Cbr^{b-1} \end{cases} \text{ as } p \to 0 \text{ for all } r \ge 0. \end{cases}$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
Local Minimizers: Atomic S	Support				
Second Va	ariation				

Let μ be a W_{∞} -local minimizer of \mathcal{F} with $\mathcal{F}(\mu) < +\infty$. There exists $\delta > 0$ such that for all $x_0 \in \operatorname{supp} \mu$ we have

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} U(x-y) \,\mathrm{d}\nu(x) \,\mathrm{d}\nu(y) \ge 0$$

for any signed measure ν with $\operatorname{supp}\nu \subset \operatorname{supp}\mu \cap B(x_0, \delta)$ and $\nu(\mathbb{R}^d) = 0$.

As a consequence, we obtain that **global minimizers** of the interaction energy are compactly supported with diam $(\operatorname{supp}\mu) \leq R$.

Given $x, y \in \text{supp}\mu$, take $\nu = \delta_x - \delta_y$ as signed measure and we deduce that $W(x - y) \leq 0$. Then, by assumptions on U we obtain the estimate on the support.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
Local Minimizers: Atomic S	Support				
Second V	ariation				

Let μ be a W_{∞} -local minimizer of \mathcal{F} with $\mathcal{F}(\mu) < +\infty$. There exists $\delta > 0$ such that for all $x_0 \in \operatorname{supp} \mu$ we have

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} U(x-y) \,\mathrm{d}\nu(x) \,\mathrm{d}\nu(y) \ge 0$$

for any signed measure ν with $\operatorname{supp}\nu \subset \operatorname{supp}\mu \cap B(x_0, \delta)$ and $\nu(\mathbb{R}^d) = 0$.

As a consequence, we obtain that **global minimizers** of the interaction energy are compactly supported with diam $(\operatorname{supp}\mu) \leq R$.

Given $x, y \in \text{supp}\mu$, take $\nu = \delta_x - \delta_y$ as signed measure and we deduce that $W(x - y) \leq 0$. Then, by assumptions on U we obtain the estimate on the support.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
Local Minimizers: Atomic S	Support				
Second V	ariation				

Let μ be a W_{∞} -local minimizer of \mathcal{F} with $\mathcal{F}(\mu) < +\infty$. There exists $\delta > 0$ such that for all $x_0 \in \operatorname{supp} \mu$ we have

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} U(x-y) \,\mathrm{d}\nu(x) \,\mathrm{d}\nu(y) \ge 0$$

for any signed measure ν with $\operatorname{supp}\nu \subset \operatorname{supp}\mu \cap B(x_0, \delta)$ and $\nu(\mathbb{R}^d) = 0$.

As a consequence, we obtain that **global minimizers** of the interaction energy are compactly supported with diam $(\operatorname{supp} \mu) \leq R$.

Given $x, y \in \text{supp}\mu$, take $\nu = \delta_x - \delta_y$ as signed measure and we deduce that $U(x - y) \leq 0$. Then, by assumptions on U we obtain the estimate on the support.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
000000000000	000000000000000000000000000000000000000	00000	0000	0000	
Local Minimizers: Atomic Support					

Qualitative Properties: Dimensionality of Support

Theorem.

Let μ be a W_{∞} -local minimizer of \mathcal{F} . Then each point of supp μ is isolated; in particular μ is atomic.

Steps of proof.

• Suppose $0, x_1, -x_2 \in \text{supp } \mu \cap B(0, \delta)$. Choose $\nu_{\lambda} = -\delta_0 + \lambda \delta_{x_1} + (1 - \lambda)\delta_{-x_2}$ in place of ν in the second variation and get, for an appropriate choice of λ ,

 $\sqrt{-U(x_1)} + \sqrt{-U(x_2)} \ge \sqrt{-U(x_1 + x_2)}.$

• Assume, by homogeneity, that $x_1 + x_2 = pe_1$, where e_1 is the first unit vector of the orthonormal base of \mathbb{R}^d , and p > 0 is a small rescaling parameter. From the above inequality, get

$$\sqrt{-U(x_1)} + \sqrt{-U(pe_1 - x_1)} \ge \sqrt{-U(pe_1)}.$$
Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions		
000000000000	000000000000000000000000000000000000000	00000	0000	0000		
Local Minimizers: Atomic Support						

Theorem.

Let μ be a W_{∞} -local minimizer of \mathcal{F} . Then each point of supp μ is isolated; in particular μ is atomic.

Steps of proof.

Suppose 0, x₁, -x₂ ∈ supp μ ∩ B(0, δ). Choose ν_λ = -δ₀ + λδ_{x1} + (1 - λ)δ_{-x2} in place of ν in the second variation and get, for an appropriate choice of λ,

$$\sqrt{-U(x_1)} + \sqrt{-U(x_2)} \ge \sqrt{-U(x_1 + x_2)}.$$

• Assume, by homogeneity, that $x_1 + x_2 = pe_1$, where e_1 is the first unit vector of the orthonormal base of \mathbb{R}^d , and p > 0 is a small rescaling parameter. From the above inequality, get

$$\sqrt{-U(x_1)} + \sqrt{-U(pe_1 - x_1)} \ge \sqrt{-U(pe_1)}.$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions			
	000000000000000000000000000000000000000						
Local Minimizers: Atomic Support							

Theorem.

Let μ be a W_{∞} -local minimizer of \mathcal{F} . Then each point of supp μ is isolated; in particular μ is atomic.

Steps of proof.

Suppose 0, x₁, -x₂ ∈ supp µ ∩ B(0, δ). Choose ν_λ = -δ₀ + λδ_{x1} + (1 - λ)δ_{-x2} in place of ν in the second variation and get, for an appropriate choice of λ,
 √(-U(x₁) + √(-U(x₂))) > √(-U(x₁ + x₂)).

• Assume, by homogeneity, that $x_1 + x_2 = pe_1$, where e_1 is the first unit vector of the orthonormal base of \mathbb{R}^d , and p > 0 is a small rescaling parameter. From the above inequality, get

$$\sqrt{-U(x_1)} + \sqrt{-U(pe_1 - x_1)} \ge \sqrt{-U(pe_1)}.$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	000000000000000000000000000000000000000				
Local Minimizers: Atomic	Support				
Qualitative	Properties: Dimension	ality of Su	pport		

• Write $x_1 = p(te_1 + y)$, where $y \in \mathbb{R}^d$ with zero first coordinate, and, by homogeneity, $t \in [0, 1]$. Then, using that $|x_1| \leq pt + p|y|$ and $|pe_1 - x_1| \leq p(1-t) + p|y|$, and that, for any $x \in \mathbb{R}^d$ and p small enough, $\sqrt{-U(px)}$ is radially non-decreasing as a function of $x \in \mathbb{R}^d$, get

$$\sqrt{-\tilde{U}(p(t+|y|))} + \sqrt{-\tilde{U}(p((1-t)+|y|))} \geq \sqrt{-\tilde{U}(p)}.$$

• Divide the inequality above by $p^{\alpha/2}$ and obtain

$$\sqrt{-\widetilde{U}_p(t+|y|)} + \sqrt{-\widetilde{U}_p((1-t)+|y|)} \ge \sqrt{-\widetilde{U}_p(1)}.$$

• By , as
$$p \to 0$$
, $(t+|y|)^{lpha/2} + ((1-t)+|y|)^{lpha/2} \ge 1$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	000000000000000000000000000000000000000				
Local Minimizers: Atomic	Support				
Qualitative	Properties: Dimension	ality of Su	pport		

• Write $x_1 = p(te_1 + y)$, where $y \in \mathbb{R}^d$ with zero first coordinate, and, by homogeneity, $t \in [0, 1]$. Then, using that $|x_1| \leq pt + p|y|$ and $|pe_1 - x_1| \leq p(1-t) + p|y|$, and that, for any $x \in \mathbb{R}^d$ and p small enough, $\sqrt{-U(px)}$ is radially non-decreasing as a function of $x \in \mathbb{R}^d$, get

$$\sqrt{-\tilde{U}(p(t+|y|))} + \sqrt{-\tilde{U}(p((1-t)+|y|))} \ge \sqrt{-\tilde{U}(p)}.$$

• Divide the inequality above by $p^{\mathbf{b}/2}$ and obtain

$$\sqrt{-\widetilde{U}_p(t+|y|)} + \sqrt{-\widetilde{U}_p((1-t)+|y|)} \ge \sqrt{-\widetilde{U}_p(1)}$$

• By , as
$$p \to 0$$
,
 $(t + |y|)^{\alpha/2} + ((1 - t) + |y|)^{\alpha/2} \ge 1$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	000000000000000000000000000000000000000				
Local Minimizers: Atomic	Support				
Qualitative	Properties: Dimension	ality of Su	pport		

• Write $x_1 = p(te_1 + y)$, where $y \in \mathbb{R}^d$ with zero first coordinate, and, by homogeneity, $t \in [0, 1]$. Then, using that $|x_1| \leq pt + p|y|$ and $|pe_1 - x_1| \leq p(1-t) + p|y|$, and that, for any $x \in \mathbb{R}^d$ and p small enough, $\sqrt{-U(px)}$ is radially non-decreasing as a function of $x \in \mathbb{R}^d$, get

$$\sqrt{-\tilde{U}(p(t+|y|))} + \sqrt{-\tilde{U}(p((1-t)+|y|))} \ge \sqrt{-\tilde{U}(p)}.$$

• Divide the inequality above by $p^{\mathbf{b}/2}$ and obtain

$$\sqrt{-\widetilde{U}_p(t+|y|)} + \sqrt{-\widetilde{U}_p((1-t)+|y|)} \ge \sqrt{-\widetilde{U}_p(1)}.$$

• By , as
$$p \to 0$$
,
 $(t + |y|)^{b/2} + ((1 - t) + |y|)^{b/2} \ge 1$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	Conclusions
	000000000000000000000000000000000000000				
Local Minimizers: Atomic	Support				

• For all $s \in [0, 1]$ and $z \in \mathbb{R}^d$, define

$$s_{b}(s, z) = (s + |z|)^{b/2} + ((1 - s) + |z|)^{b/2} - 1$$

and define, for any two distinct points $v, v' \in \mathbb{R}^d$, the open set

$$S_{\rm b}(v,v') := \left\{ w \in \mathbb{R}^d \mid s_{\rm b} \left(\frac{|\pi w - v|}{|v - v'|}, \pi w - w \right) < 0 \right\},$$

where π denotes the orthogonal projection on the segment [v, v'].

• What we have shown: for any y₀, y₁ ∈ supp μ, asymptotically close, there cannot be a third point in supp μ ∩ S_α(y₀, y₁).

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	000000000000000000000000000000000000000				
Local Minimizers: Atomic	Support				

• For all $s \in [0, 1]$ and $z \in \mathbb{R}^d$, define

$$s_{b}(s, z) = (s + |z|)^{b/2} + ((1 - s) + |z|)^{b/2} - 1,$$

and define, for any two distinct points $v, v' \in \mathbb{R}^d$, the open set

$$S_{\mathsf{b}}(v,v') := \left\{ w \in \mathbb{R}^d \mid s_{\mathsf{b}}\left(\frac{|\pi w - v|}{|v - v'|}, \pi w - w\right) < 0 \right\},$$

where π denotes the orthogonal projection on the segment [v, v'].

 What we have shown: for any y₀, y₁ ∈ supp μ, there cannot be a third point in supp μ ∩ S_α(y₀, y₁).

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	000000000000000000000000000000000000000				
Local Minimizers: Atomic	Support				

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	000000000000000000000000000000000000000				
Local Minimizers: Atomic	Support				

• For any two distinct points $v,v'\in \mathbb{R}^d,$ define the open "double cone" with opening $\tau>0$ by

$$C_{\tau}(v, v') := \left\{ w \in \mathbb{R}^d \mid \frac{\operatorname{dist}(w, [v, v'])}{\min\{|\pi w - v|, |\pi w - v'|\}} < \tau \right\},\$$

where [v, v'] denotes the segment joining v to v' and π denotes the orthogonal projection on the segment [v, v'].

- Since α > 2, r → r^{α/2} is a convex function on [0, +∞), and so S_α(y₀, y₁) is a convex set. Therefore we can fit a double cone generated by y₀ and y₁ inside it.
- We can actually compute the opening $\gamma(\alpha)$ of the cone that fits in $S_{\alpha}(y_0, y_1)$ with maximal volume:

$$\gamma(\alpha) = \frac{1}{2^{\alpha/2 - 1}} - 1.$$

• Finish the proof by contradiction. Suppose y_0 is not an isolated point, then it can be approached by a sequence of points in $\operatorname{supp}\mu$ in some direction. Therefore, using we know that, close enough to y_0 , one can find two points belonging to this sequence, say x_k and x_{k+1} , such that $x_{k+1} \in C_{\gamma(\alpha)}(y_0, x_k)$.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	00000000000000000000				
Local Minimizers: Atomic	Support				

• For any two distinct points $v,v'\in \mathbb{R}^d,$ define the open "double cone" with opening $\tau>0$ by

$$C_{\tau}(v, v') := \left\{ w \in \mathbb{R}^d \mid \frac{\operatorname{dist}(w, [v, v'])}{\min\{|\pi w - v|, |\pi w - v'|\}} < \tau \right\},\$$

where [v, v'] denotes the segment joining v to v' and π denotes the orthogonal projection on the segment [v, v'].

- Since b> 2, r → r^{b/2} is a convex function on [0, +∞), and so S_b(y₀, y₁) is a convex set. Therefore we can fit a double cone generated by y₀ and y₁ inside it.
- We can actually compute the opening $\gamma(\alpha)$ of the cone that fits in $S_{\alpha}(y_0, y_1)$ with maximal volume: $\gamma(\alpha) = \frac{1}{-1} - 1$

$$\gamma(\alpha) = \frac{1}{2^{\alpha/2 - 1}} - 1.$$

• Finish the proof by contradiction. Suppose y_0 is not an isolated point, then it can be approached by a sequence of points in $\operatorname{supp}\mu$ in some direction. Therefore, using we know that, close enough to y_0 , one can find two points belonging to this sequence, say x_k and x_{k+1} , such that $x_{k+1} \in C_{\gamma(\alpha)}(y_0, x_k)$.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	00000000000000000000				
Local Minimizers: Atomic	Support				

• For any two distinct points $v,v'\in \mathbb{R}^d,$ define the open "double cone" with opening $\tau>0$ by

$$C_{\tau}(v, v') := \left\{ w \in \mathbb{R}^d \mid \frac{\operatorname{dist}(w, [v, v'])}{\min\{|\pi w - v|, |\pi w - v'|\}} < \tau \right\},\$$

where [v, v'] denotes the segment joining v to v' and π denotes the orthogonal projection on the segment [v, v'].

- Since b > 2, r → r^{b/2} is a convex function on [0, +∞), and so S_b(y₀, y₁) is a convex set. Therefore we can fit a double cone generated by y₀ and y₁ inside it.
- We can actually compute the opening $\gamma(b)$ of the cone that fits in $S_b(y_0, y_1)$ with maximal volume:

$$\gamma(\mathbf{b}) = \frac{1}{2^{\mathbf{b}/2-1}} - 1.$$

• Finish the proof by contradiction. Suppose y_0 is not an isolated point, then it can be approached by a sequence of points in $\operatorname{supp}\mu$ in some direction. Therefore, using we know that, close enough to y_0 , one can find two points belonging to this sequence, say x_k and x_{k+1} , such that $x_{k+1} \in C_{\gamma(\alpha)}(y_0, x_k)$.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
	00000000000000000000				
Local Minimizers: Atomic	Support				

• For any two distinct points $v,v'\in \mathbb{R}^d,$ define the open "double cone" with opening $\tau>0$ by

$$C_{\tau}(v, v') := \left\{ w \in \mathbb{R}^d \mid \frac{\operatorname{dist}(w, [v, v'])}{\min\{|\pi w - v|, |\pi w - v'|\}} < \tau \right\},\$$

where [v, v'] denotes the segment joining v to v' and π denotes the orthogonal projection on the segment [v, v'].

- Since b > 2, r → r^{b/2} is a convex function on [0, +∞), and so S_b(y₀, y₁) is a convex set. Therefore we can fit a double cone generated by y₀ and y₁ inside it.
- We can actually compute the opening $\gamma(b)$ of the cone that fits in $S_b(y_0, y_1)$ with maximal volume:

$$\gamma(\mathbf{b}) = \frac{1}{2^{\mathbf{b}/2-1}} - 1.$$

• Finish the proof by contradiction. Suppose y_0 is not an isolated point, then it can be approached by a sequence of points in $\operatorname{supp}\mu$ in some direction. Therefore, using we know that, close enough to y_0 , one can find two points belonging to this sequence, say x_k and x_{k+1} , such that $x_{k+1} \in C_{\gamma(b)}(y_0, x_k)$.

000000000000	00000000000000000	00000	0000	0000	
Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials		

Non-HStable: Energy at infinity cost more than near the origin, i.e., the potential U satisfies

(H2) There exists $\mu \in \mathcal{P}(\mathbb{R}^d)$ compactly supported such that

 $\mathcal{F}[\mu] < 0 \le \lim_{|x| \to \infty} U(x).$

Main Theorem

Assume that the radial potential U satisfies Hypotheses (H1), (H2), and is increasing outside a large ball. Then there exists a global minimiser for the energy \mathcal{F} . Furthermore, any such global minimiser has compact support.

(Cañizo, C., Patacchini; preprint 2014) Main idea: Use the W_2 EL-Conditions to show a uniform repartition of the mass over the support.

(Simione, Slepcev, Topaloglou; preprint 2014) Lions Concentration Compactness Principle

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
T • 4					

Non-HStable: Energy at infinity cost more than near the origin, i.e., the potential U satisfies

(H2) There exists $\mu \in \mathcal{P}(\mathbb{R}^d)$ compactly supported such that

 $\mathcal{F}[\mu] < 0 \le \lim_{|x| \to \infty} U(x).$

Main Theorem

Assume that the radial potential U satisfies Hypotheses (H1), (H2), and is increasing outside a large ball. Then there exists a global minimiser for the energy \mathcal{F} . Furthermore, any such global minimiser has compact support.

(Cañizo, C., Patacchini; preprint 2014) Main idea: Use the W_2 EL-Conditions to show a uniform repartition of the mass over the support.

(Simione, Slepcev, Topaloglou; preprint 2014) Lions Concentration Compactness Principle

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
T					

Non-HStable: Energy at infinity cost more than near the origin, i.e., the potential U satisfies

(H2) There exists $\mu \in \mathcal{P}(\mathbb{R}^d)$ compactly supported such that

 $\mathcal{F}[\mu] < 0 \le \lim_{|x| \to \infty} U(x).$

Main Theorem

Assume that the radial potential U satisfies Hypotheses (H1), (H2), and is increasing outside a large ball. Then there exists a global minimiser for the energy \mathcal{F} . Furthermore, any such global minimiser has compact support.

(Cañizo, C., Patacchini; ARMA 2015) Main idea: Use the W_2 EL-Conditions to show a uniform repartition of the mass over the support.

(Simione, Slepcev, Topaloglou; preprint 2014) Lions Concentration Compactness Principle

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
T					

Non-HStable: Energy at infinity cost more than near the origin, i.e., the potential U satisfies

(H2) There exists $\mu \in \mathcal{P}(\mathbb{R}^d)$ compactly supported such that

 $\mathcal{F}[\mu] < 0 \le \lim_{|x| \to \infty} U(x).$

Main Theorem

Assume that the radial potential U satisfies Hypotheses (H1), (H2), and is increasing outside a large ball. Then there exists a global minimiser for the energy \mathcal{F} . Furthermore, any such global minimiser has compact support.

(Cañizo, C., Patacchini; ARMA 2015) Main idea: Use the W_2 EL-Conditions to show a uniform repartition of the mass over the support.

(Simione, Slepcev, Topaloglou; JSP 2015) Lions Concentration Compactness Principle

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
000000000000	00000000000000000	0000	0000	0000	
Kev Estir	nates				

-

$$E_R := \min\left\{\mathcal{F}[\mu] \mid \mu \in \mathcal{P}_R(\mathbb{R}^d)\right\} \le E_* < 0$$

Euler-Lagrange: for ρ_R -almost all $z \in \text{supp}(\rho_R)$ we have

$$\frac{1}{2} \int_{\mathbb{R}} U(z-x) \,\mathrm{d}\rho_R(x) = E_R.$$

Choose $A \in \mathbb{R}$ with $\frac{1}{2}U_{\min} \leq E_* < A < 0$ and r' > 0 with $U(x) \geq 2A$ for $|x| \geq r'$.

$$2E_R = \int_{\mathbb{R}} U(z-x) \,\mathrm{d}\rho_R(x)$$

= $\int_{B(z,r')} U(z-x) \,\mathrm{d}\rho_R(x) + \int_{\mathbb{R}^d \setminus B(z,r')} U(z-x) \,\mathrm{d}\rho_R(x)$
$$\geq U_{\min} \int_{B(z,r')} \,\mathrm{d}\rho_R(x) + 2A \int_{\mathbb{R}^d \setminus B(z,r')} \,\mathrm{d}\rho_R(x)$$

= $(U_{\min} - 2A) \int_{B(z,r')} \,\mathrm{d}\rho_R(x) + 2A,$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
000000000000	00000000000000000	00000	0000	0000	
Key Estin	nates				

$$E_R := \min\left\{\mathcal{F}[\mu] \mid \mu \in \mathcal{P}_R(\mathbb{R}^d)
ight\} \le E_* < 0$$

Euler-Lagrange: for ρ_R -almost all $z \in \text{supp}(\rho_R)$ we have

$$\frac{1}{2}\int_{\mathbb{R}}U(z-x)\,\mathrm{d}\rho_R(x)=E_R.$$

Choose $A \in \mathbb{R}$ with $\frac{1}{2}U_{\min} \leq E_* < A < 0$ and r' > 0 with $U(x) \geq 2A$ for $|x| \geq r'$.

$$2E_R = \int_{\mathbb{R}} U(z-x) \,\mathrm{d}\rho_R(x)$$

= $\int_{B(z,r')} U(z-x) \,\mathrm{d}\rho_R(x) + \int_{\mathbb{R}^d \setminus B(z,r')} U(z-x) \,\mathrm{d}\rho_R(x)$
$$\geq U_{\min} \int_{B(z,r')} \,\mathrm{d}\rho_R(x) + 2A \int_{\mathbb{R}^d \setminus B(z,r')} \,\mathrm{d}\rho_R(x)$$

= $(U_{\min} - 2A) \int_{B(z,r')} \,\mathrm{d}\rho_R(x) + 2A,$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers 0●000	Very Singular Potentials 0000	Exact Solutions	
Kev Estir	nates				

$$E_R := \min\left\{\mathcal{F}[\mu] \mid \mu \in \mathcal{P}_R(\mathbb{R}^d)
ight\} \le E_* < 0$$

Euler-Lagrange: for ρ_R -almost all $z \in \text{supp}(\rho_R)$ we have

$$\frac{1}{2} \int_{\mathbb{R}} U(z-x) \,\mathrm{d}\rho_R(x) = E_R.$$

Choose $A \in \mathbb{R}$ with $\frac{1}{2}U_{\min} \leq E_* < A < 0$ and r' > 0 with $U(x) \geq 2A$ for $|x| \geq r'$.

$$\begin{aligned} & \mathcal{E}E_R = \int_{\mathbb{R}} U(z-x) \,\mathrm{d}\rho_R(x) \\ & = \int_{B(z,r')} U(z-x) \,\mathrm{d}\rho_R(x) + \int_{\mathbb{R}^d \setminus B(z,r')} U(z-x) \,\mathrm{d}\rho_R(x) \\ & \geq U_{\min} \int_{B(z,r')} \,\mathrm{d}\rho_R(x) + 2A \int_{\mathbb{R}^d \setminus B(z,r')} \,\mathrm{d}\rho_R(x) \\ & = (U_{\min} - 2A) \int_{B(z,r')} \,\mathrm{d}\rho_R(x) + 2A, \end{aligned}$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials 0000	Exact Solutions	
Kev Estin	nates				

$$E_R := \min \left\{ \mathcal{F}[\mu] \mid \mu \in \mathcal{P}_R(\mathbb{R}^d)
ight\} \le E_* < 0$$

Euler-Lagrange: for ρ_R -almost all $z \in \text{supp}(\rho_R)$ we have

$$\frac{1}{2} \int_{\mathbb{R}} U(z-x) \,\mathrm{d}\rho_R(x) = E_R.$$

Choose $A \in \mathbb{R}$ with $\frac{1}{2}U_{\min} \leq E_* < A < 0$ and r' > 0 with $U(x) \geq 2A$ for $|x| \geq r'$.

$$2E_R = \int_{\mathbb{R}} U(z-x) \,\mathrm{d}\rho_R(x)$$

= $\int_{B(z,r')} U(z-x) \,\mathrm{d}\rho_R(x) + \int_{\mathbb{R}^d \setminus B(z,r')} U(z-x) \,\mathrm{d}\rho_R(x)$
$$\geq U_{\min} \int_{B(z,r')} \,\mathrm{d}\rho_R(x) + 2A \int_{\mathbb{R}^d \setminus B(z,r')} \,\mathrm{d}\rho_R(x)$$

= $(U_{\min} - 2A) \int_{B(z,r')} \,\mathrm{d}\rho_R(x) + 2A,$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials 0000	Exact Solutions	
Key Estir	nates				

• Rearranging terms:

$$\int_{B(z,r')} \mathrm{d}\rho_R(x) \geq \frac{A - E_R}{A - \frac{1}{2}U_{\min}} \geq \frac{A - E_*}{A - \frac{1}{2}U_{\min}} =: m$$

- When the potential is increasing outside a large ball, one can show by competing minimizers that gaps in the support in each component cannot be too large by sliding down a bit the mass of the density to the right of the gap. All together it gives a uniform bound \mathcal{K} on the diameter of the support of global minimizers.
- Since the bound on the diameter of the support of local minimizers is independent of R being the radius of the ball where we look for local minimizers, one can show that global minimizers for $\mathcal{P}_{R_0}(\mathbb{R}^d)$ are global minimizers for $\mathcal{P}_R(\mathbb{R}^d)$ with $R \ge R_0$ if $R_0 \ge 2\mathcal{K}$.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials 0000	Exact Solutions	
TZ 17 .1					
Kev Estin	nates				

• Rearranging terms:

$$\int_{B(z,r')} \mathrm{d}\rho_R(x) \ge \frac{A - E_R}{A - \frac{1}{2}U_{\min}} \ge \frac{A - E_*}{A - \frac{1}{2}U_{\min}} =: m.$$

- When the potential is increasing outside a large ball, one can show by competing minimizers that gaps in the support in each component cannot be too large by sliding down a bit the mass of the density to the right of the gap. All together it gives a uniform bound \mathcal{K} on the diameter of the support of global minimizers.
- Since the bound on the diameter of the support of local minimizers is independent of R being the radius of the ball where we look for local minimizers, one can show that global minimizers for $\mathcal{P}_{R_0}(\mathbb{R}^d)$ are global minimizers for $\mathcal{P}_R(\mathbb{R}^d)$ with $R \ge R_0$ if $R_0 \ge 2\mathcal{K}$.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials 0000	Exact Solutions	
Key Estir	nates				

• Rearranging terms:

$$\int_{B(z,r')} \mathrm{d}\rho_R(x) \ge \frac{A - E_R}{A - \frac{1}{2}U_{\min}} \ge \frac{A - E_*}{A - \frac{1}{2}U_{\min}} =: m.$$

- When the potential is increasing outside a large ball, one can show by competing minimizers that gaps in the support in each component cannot be too large by sliding down a bit the mass of the density to the right of the gap. All together it gives a uniform bound \mathcal{K} on the diameter of the support of global minimizers.
- Since the bound on the diameter of the support of local minimizers is independent of R being the radius of the ball where we look for local minimizers, one can show that global minimizers for $\mathcal{P}_{R_0}(\mathbb{R}^d)$ are global minimizers for $\mathcal{P}_R(\mathbb{R}^d)$ with $R \ge R_0$ if $R_0 \ge 2\mathcal{K}$.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
		00000			
P 1					

Examples

Power-laws & Morse Potentials

Consider the following potentials for all $x \in \mathbb{R}^d$ and $C_A, C_R, \ell_A, \ell_R > 0$:

(i) (Power-law potential) $U(x) = \frac{|x|^a}{a} - \frac{|x|^b}{b}$ with -d < b < a,

(ii) (Morse potential) $U(x) = C_A e^{-\frac{|x|}{\ell_A}} - C_R e^{-\frac{|x|}{\ell_R}}$ with $\ell_A < \ell_R$ and $\frac{C_A}{C_R} < \left(\frac{\ell_R}{\ell_A}\right)^d$,

with the convention $\frac{|x|^0}{0} = \log |x|$.

Sufficient Condition for not H-stable

Let U be a potential satisfying (H1), and assume furthermore that $U_{\infty} := \lim_{|x| \to \infty} U(x)$ exists (being possibly equal to $+\infty$).

- (i) If $U_{\infty} = +\infty$, then U is unstable.
- (ii) If U_∞ < +∞, call Ũ := U U_∞. If Ũ₊ is integrable and ∫_ℝ Ũ < 0 (being possibly equal to -∞), then U is unstable.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
		00000			
r 1					

Examples

Power-laws & Morse Potentials

Consider the following potentials for all $x \in \mathbb{R}^d$ and $C_A, C_R, \ell_A, \ell_R > 0$:

(i) (Power-law potential) $U(x) = \frac{|x|^a}{a} - \frac{|x|^b}{b}$ with -d < b < a,

(ii) (Morse potential) $U(x) = C_A e^{-\frac{|x|}{\ell_A}} - C_R e^{-\frac{|x|}{\ell_R}}$ with $\ell_A < \ell_R$ and $\frac{C_A}{C_R} < \left(\frac{\ell_R}{\ell_A}\right)^d$,

with the convention $\frac{|x|^0}{0} = \log |x|$.

Sufficient Condition for not H-stable

Let U be a potential satisfying (H1), and assume furthermore that $U_{\infty} := \lim_{|x| \to \infty} U(x)$ exists (being possibly equal to $+\infty$).

- (i) If $U_{\infty} = +\infty$, then U is unstable.
- (ii) If $U_{\infty} < +\infty$, call $\tilde{U} := U U_{\infty}$. If \tilde{U}_+ is integrable and $\int_{\mathbb{R}} \tilde{U} < 0$ (being possibly equal to $-\infty$), then U is unstable.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
00000000000	00000000000000000	00000	0000	0000	

(C., Chipot, Huang; PRSA 2014)

Discrete Setting: Find

$$I_N = \inf_{x \in (\mathbb{R}^d)^N} \mathcal{F}_N(x) \,,$$

with

$$\mathcal{F}_N(x_1,\cdots,x_N) = \sum_{i
eq j}^N \left(rac{|x_i-x_j|^a}{a} - rac{|x_i-x_j|^b}{b}
ight)\,.$$

Uniform Control of the support

Suppose that $1 \le b < a$. Then the diameter of any global minimizer of \mathcal{F}_N achieving the infimum I_N is bounded independently of N.

Key Idea: use Euler-Lagrange and a convexity argument for the repulsive potential to estimate the distance between the two particles the furthest away.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
00000000000	00000000000000000	00000	0000	0000	

(C., Chipot, Huang; PRSA 2014)

Discrete Setting: Find

$$I_N = \inf_{x \in (\mathbb{R}^d)^N} \mathcal{F}_N(x) \,,$$

with

$$\mathcal{F}_N(x_1,\cdots,x_N) = \sum_{i
eq j}^N \left(rac{|x_i-x_j|^a}{a} - rac{|x_i-x_j|^b}{b}
ight)\,.$$

Uniform Control of the support

Suppose that $1 \le b < a$. Then the diameter of any global minimizer of \mathcal{F}_N achieving the infimum I_N is bounded independently of N.

Key Idea: use Euler-Lagrange and a convexity argument for the repulsive potential to estimate the distance between the two particles the furthest away.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
00000000000	00000000000000000	00000	0000	0000	

(C., Chipot, Huang; PRSA 2014)

Discrete Setting: Find

$$I_N = \inf_{x \in (\mathbb{R}^d)^N} \mathcal{F}_N(x) \,,$$

with

$$\mathcal{F}_N(x_1,\cdots,x_N) = \sum_{i
eq j}^N \left(rac{|x_i-x_j|^a}{a} - rac{|x_i-x_j|^b}{b}
ight)\,.$$

Uniform Control of the support

Suppose that $1 \le b < a$. Then the diameter of any global minimizer of \mathcal{F}_N achieving the infimum I_N is bounded independently of N.

Key Idea: use Euler-Lagrange and a convexity argument for the repulsive potential to estimate the distance between the two particles the furthest away.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
00000000000	00000000000000000	00000	0000	0000	

(C., Chipot, Huang; PRSA 2014)

Discrete Setting: Find

$$I_N = \inf_{x \in (\mathbb{R}^d)^N} \mathcal{F}_N(x) \,,$$

with

$$\mathcal{F}_N(x_1,\cdots,x_N) = \sum_{i
eq j}^N \left(rac{|x_i-x_j|^a}{a} - rac{|x_i-x_j|^b}{b}
ight)\,.$$

Uniform Control of the support

Suppose that $1 \le b < a$. Then the diameter of any global minimizer of \mathcal{F}_N achieving the infimum I_N is bounded independently of N.

Key Idea: use Euler-Lagrange and a convexity argument for the repulsive potential to estimate the distance between the two particles the furthest away.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials •000	Exact Solutions	
Regularity	y of Local Minimiz	ers			

 $\Delta U_a \in L^p_{loc}(\mathbb{R}^d)$ for some $p \in (d, \infty]$

with ΔU_a bounded below.

Main Theorem

Assume that the potential U satisfies Hypotheses (H1) and (H3). Then any μ compactly supported W_{∞} local minimizer of the energy \mathcal{F} is bounded uniformly, i.e., $\mu = \rho(x) d\mathcal{L}^d$ with $\rho \in L^{\infty}(\mathbb{R}^d)$.

Example: $U(x) = V + |x|^a$ with a > 0.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials •000	Exact Solutions	
Regularit	y of Local Minimiz	ers			

 $\Delta U_a \in L^p_{loc}(\mathbb{R}^d)$ for some $p \in (d, \infty]$

with ΔU_a bounded below.

Main Theorem

Assume that the potential U satisfies Hypotheses (H1) and (H3). Then any μ compactly supported W_{∞} local minimizer of the energy \mathcal{F} is bounded uniformly, i.e., $\mu = \rho(x) d\mathcal{L}^d$ with $\rho \in L^{\infty}(\mathbb{R}^d)$.

Example: $U(x) = V + |x|^a$ with a > 0.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials •000	Exact Solutions	
Regularit	y of Local Minimiz	ers			

 $\Delta U_a \in L^p_{loc}(\mathbb{R}^d)$ for some $p \in (d, \infty]$

with ΔU_a bounded below.

Main Theorem

Assume that the potential U satisfies Hypotheses (H1) and (H3). Then any μ compactly supported W_{∞} local minimizer of the energy \mathcal{F} is bounded uniformly, i.e., $\mu = \rho(x) d\mathcal{L}^d$ with $\rho \in L^{\infty}(\mathbb{R}^d)$.

Example: $U(x) = V + |x|^a$ with a > 0.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials •000	Exact Solutions	
Regularit	y of Local Minimiz	ers			

 $\Delta U_a \in L^p_{loc}(\mathbb{R}^d)$ for some $p \in (d, \infty]$

with ΔU_a bounded below.

Main Theorem

Assume that the potential U satisfies Hypotheses (H1) and (H3). Then any μ compactly supported W_{∞} local minimizer of the energy \mathcal{F} is bounded uniformly, i.e., $\mu = \rho(x) d\mathcal{L}^d$ with $\rho \in L^{\infty}(\mathbb{R}^d)$.

Example: $U(x) = V + |x|^a$ with a > 0.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	Conclusions
000000000000	00000000000000000	00000	0000	0000	

Obstacle Problem

Continuity of the potential

Assume that the potential U satisfies Hypotheses (H1) and (H3). Let μ be a W_{∞} local minimizer of E. Then the potential $\psi(x) := U * \mu(x)$ associated to μ is a continuous function in \mathbb{R}^N .

Implicit Obstacle Problem

For all $x_0 \in \text{supp}(\mu)$, the potential function ψ is equal, in $B_{\varepsilon}(x_0)$, to the unique solution of the obstacle problem

$$\begin{cases} \varphi \geq C_0, & \text{in } B_{\varepsilon}(x_0) \\ -\Delta \varphi \geq -F(x), & \text{in } B_{\varepsilon}(x_0) \\ -\Delta \varphi &= -F(x), & \text{in } B_{\varepsilon}(x_0) \cap \{\varphi > C_0\} \\ \varphi &= \psi, & \text{on } \partial B_{\varepsilon}(x_0), \end{cases}$$

where $C_0 = \psi(x_0)$ and $F(x) = \Delta U_a * \mu \in L^p_{loc}(\mathbb{R}^d)$. Furthermore, the density μ is given by

$$\mu = -\Delta \psi + F.$$

Particular Case: Newtonian repulsion and quadratic confinement, the global minimizer is the characteristic of a ball with unit mass upto translations.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
000000000000	0000000000000000	00000	0000	0000	

Obstacle Problem

Continuity of the potential

Assume that the potential U satisfies Hypotheses (H1) and (H3). Let μ be a W_{∞} local minimizer of E. Then the potential $\psi(x) := U * \mu(x)$ associated to μ is a continuous function in \mathbb{R}^N .

Implicit Obstacle Problem

For all $x_0 \in \text{supp}(\mu)$, the potential function ψ is equal, in $B_{\varepsilon}(x_0)$, to the unique solution of the obstacle problem

$$\begin{cases} \varphi \geq C_0, & \text{in } B_{\varepsilon}(x_0) \\ -\Delta \varphi \geq -F(x), & \text{in } B_{\varepsilon}(x_0) \\ -\Delta \varphi &= -F(x), & \text{in } B_{\varepsilon}(x_0) \cap \{\varphi > C_0\} \\ \varphi &= \psi, & \text{on } \partial B_{\varepsilon}(x_0), \end{cases}$$

where $C_0 = \psi(x_0)$ and $F(x) = \Delta U_a * \mu \in L^p_{loc}(\mathbb{R}^d)$. Furthermore, the density μ is given by

$$\mu = -\Delta \psi + F.$$

Particular Case: Newtonian repulsion and quadratic confinement, the global minimizer is the characteristic of a ball with unit mass upto translations.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
000000000000	0000000000000000	00000	0000	0000	

Obstacle Problem

Continuity of the potential

Assume that the potential U satisfies Hypotheses (H1) and (H3). Let μ be a W_{∞} local minimizer of E. Then the potential $\psi(x) := U * \mu(x)$ associated to μ is a continuous function in \mathbb{R}^N .

Implicit Obstacle Problem

For all $x_0 \in \text{supp}(\mu)$, the potential function ψ is equal, in $B_{\varepsilon}(x_0)$, to the unique solution of the obstacle problem

$$\begin{cases} \varphi \geq C_0, & \text{in } B_{\varepsilon}(x_0) \\ -\Delta \varphi \geq -F(x), & \text{in } B_{\varepsilon}(x_0) \\ -\Delta \varphi &= -F(x), & \text{in } B_{\varepsilon}(x_0) \cap \{\varphi > C_0\} \\ \varphi &= \psi, & \text{on } \partial B_{\varepsilon}(x_0), \end{cases}$$

where $C_0 = \psi(x_0)$ and $F(x) = \Delta U_a * \mu \in L^p_{loc}(\mathbb{R}^d)$. Furthermore, the density μ is given by

$$\mu = -\Delta \psi + F.$$

Particular Case: Newtonian repulsion and quadratic confinement, the global minimizer is the characteristic of a ball with unit mass upto translations.
Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
			0000		

Fractional Obstacle Problem

(H3s) The function $U_a(x) := U(x) - V_s(x)$ with V_s being the fundamental solution in dimension d of $(-\Delta)^s$, $s \in (0, 1)$ satisfies:

 $(-\Delta)^{s} U_{a} \in L^{p}_{loc}(\mathbb{R}^{d})$ for some $p \in (d/2s, \infty]$

with $(-\Delta)^s U_a$ bounded above.

For $s \in (0, 1)$, it is then well known that

$$V_s(x) = \frac{c_{\mathrm{d},s}}{|x|^{\mathrm{d}-2s}}$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	

Fractional Obstacle Problem 2

Implicit Obstacle Problem

Assume that the potential U satisfies Hypotheses (H1) and (H3s). For all $x_0 \in \text{supp}(\mu)$, the potential function ψ is continuous and is equal, in $B_{\varepsilon}(x_0)$, to the unique solution of the fractional obstacle problem

$$\begin{cases} \varphi \geq C_0, & \text{ in } B_{\varepsilon}(x_0) \\ (-\Delta)^s \varphi \geq -F(x), & \text{ in } B_{\varepsilon}(x_0) \\ (-\Delta)^s \varphi &= -F(x), & \text{ in } B_{\varepsilon}(x_0) \cap \{\varphi > C_0\} \\ \varphi &= \psi, & \text{ on } \partial B_{\varepsilon}(x_0), \end{cases}$$

where $C_0 = \psi(x_0)$ and $F(x) = -(-\Delta)^s U_a * \mu \in L^p_{loc}(\mathbb{R}^d)$.

Main Theorem

Assume that the potential U satisfies Hypotheses (H1) and (H3s) + a bit of regularity. Then any μ compactly supported W_{∞} local minimizer of the energy \mathcal{F} is Hölder-continuous, i.e., $\mu = \rho(x) d\mathcal{L}^d$ with $\rho \in C^{\alpha}(\mathbb{R}^d)$ for all $0 < \alpha < 1 - s$.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	

Fractional Obstacle Problem 2

Implicit Obstacle Problem

4

Assume that the potential U satisfies Hypotheses (H1) and (H3s). For all $x_0 \in \text{supp}(\mu)$, the potential function ψ is continuous and is equal, in $B_{\varepsilon}(x_0)$, to the unique solution of the fractional obstacle problem

$$\begin{cases} \varphi \geq C_0, & \text{in } B_{\varepsilon}(x_0) \\ (-\Delta)^s \varphi \geq -F(x), & \text{in } B_{\varepsilon}(x_0) \\ (-\Delta)^s \varphi &= -F(x), & \text{in } B_{\varepsilon}(x_0) \cap \{\varphi > C_0\} \\ \varphi &= \psi, & \text{on } \partial B_{\varepsilon}(x_0), \end{cases}$$

where $C_0 = \psi(x_0)$ and $F(x) = -(-\Delta)^s U_a * \mu \in L^p_{loc}(\mathbb{R}^d)$.

Main Theorem

Assume that the potential U satisfies Hypotheses (H1) and (H3s) + a bit of regularity. Then any μ compactly supported W_{∞} local minimizer of the energy \mathcal{F} is Hölder-continuous, i.e., $\mu = \rho(x) d\mathcal{L}^d$ with $\rho \in C^{\alpha}(\mathbb{R}^d)$ for all $0 < \alpha < 1 - s$.

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
Basic Rel	ation				

Integral Equation

$$\int_{-R}^{R} |x - y|^{-\nu} \rho(y) dy = f_0(x)$$

with $\nu \in (0,1)$ has solution

$$\rho(x) = \frac{\sin \pi \nu}{2\pi} \frac{d}{dx} \int_{-R}^{x} \frac{f_0(y)}{(x-y)^{1-\nu}} dy - \frac{\cos^2 \frac{\pi \nu}{2}}{\pi^2} \left(R^2 - x^2\right)^{\frac{\nu-1}{2}} \text{P.V.} \int_{-R}^{R} \frac{\left(R^2 - y^2\right)^{\frac{1-\nu}{2}}}{y-x} \left\{\frac{d}{dy} \int_{-R}^{y} \frac{f_0(z)}{(y-z)^{1-\nu}} dz\right\} dy,$$

 $f_0(x) = 1$: $\rho(x) = \frac{\cos \frac{\pi \nu}{2}}{\pi} (R^2 - x^2)^{\frac{\nu-1}{2}},$

 $f_0(x) = x^2:$ $\rho(x) = -\frac{2\cos\frac{\pi\nu}{2}}{\nu(\nu+1)\pi} (R^2 - x^2)^{\frac{\nu+1}{2}} + \frac{\cos\frac{\pi\nu}{2}}{\pi\nu} R^2 (R^2 - x^2)^{\frac{\nu-1}{2}}.$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
Basic Rel	ation				

Integral Equation

$$\int_{-R}^{R} |x - y|^{-\nu} \rho(y) dy = f_0(x)$$

with $\nu \in (0,1)$ has solution

$$\rho(x) = \frac{\sin \pi \nu}{2\pi} \frac{d}{dx} \int_{-R}^{x} \frac{f_0(y)}{(x-y)^{1-\nu}} dy - \frac{\cos^2 \frac{\pi \nu}{2}}{\pi^2} \left(R^2 - x^2\right)^{\frac{\nu-1}{2}} \text{P.V.} \int_{-R}^{R} \frac{\left(R^2 - y^2\right)^{\frac{1-\nu}{2}}}{y-x} \left\{\frac{d}{dy} \int_{-R}^{y} \frac{f_0(z)}{(y-z)^{1-\nu}} dz\right\} dy,$$

$$f_0(x) = 1$$
:
 $\rho(x) = \frac{\cos \frac{\pi \nu}{2}}{\pi} (R^2 - x^2)^{\frac{\nu - 1}{2}},$

 $f_0(x) = x^2;$ $\rho(x) = -\frac{2\cos\frac{\pi\nu}{2}}{\nu(\nu+1)\pi} (R^2 - x^2)^{\frac{\nu+1}{2}} + \frac{\cos\frac{\pi\nu}{2}}{\pi\nu} R^2 (R^2 - x^2)^{\frac{\nu-1}{2}}.$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
Basic Rel	ation				

Integral Equation

$$\int_{-R}^{R} |x - y|^{-\nu} \rho(y) dy = f_0(x)$$

with $\nu \in (0,1)$ has solution

$$\rho(x) = \frac{\sin \pi \nu}{2\pi} \frac{d}{dx} \int_{-R}^{x} \frac{f_0(y)}{(x-y)^{1-\nu}} dy - \frac{\cos^2 \frac{\pi \nu}{2}}{\pi^2} \left(R^2 - x^2\right)^{\frac{\nu-1}{2}} \text{P.V.} \int_{-R}^{R} \frac{\left(R^2 - y^2\right)^{\frac{1-\nu}{2}}}{y-x} \left\{\frac{d}{dy} \int_{-R}^{y} \frac{f_0(z)}{(y-z)^{1-\nu}} dz\right\} dy,$$

$$f_0(x) = 1$$
:
 $\rho(x) = \frac{\cos \frac{\pi \nu}{2}}{\pi} (R^2 - x^2)^{\frac{\nu-1}{2}},$

 $f_0(x) = x^2:$ $\rho(x) = -\frac{2\cos\frac{\pi\nu}{2}}{\nu(\nu+1)\pi} (R^2 - x^2)^{\frac{\nu+1}{2}} + \frac{\cos\frac{\pi\nu}{2}}{\pi\nu} R^2 (R^2 - x^2)^{\frac{\nu-1}{2}}.$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
				0000	

One dimensional Case

 $a = 2, b \in (1, 2)$:

$$\rho(x) = \frac{M_0}{b-1} \frac{\cos\frac{\pi(2-b)}{2}}{\pi} (R^2 - x^2)^{\frac{1-b}{2}}.$$

Using the definition of the total mass, one determines the radius of the support:

$$M_0 = \int_{-R}^{R} \rho(x) dx = \frac{M_0}{b-1} \frac{\cos \frac{\pi(2-b)}{2}}{\pi} B\left(\frac{1}{2}, \frac{3-b}{2}\right) R^{2-b}.$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
				0000	

One dimensional Case

 $a = 2, b \in (1, 2)$:

$$\rho(x) = \frac{M_0}{b-1} \frac{\cos \frac{\pi(2-b)}{2}}{\pi} (R^2 - x^2)^{\frac{1-b}{2}}.$$

Using the definition of the total mass, one determines the radius of the support:

$$M_0 = \int_{-R}^{R} \rho(x) dx = \frac{M_0}{b-1} \frac{\cos \frac{\pi(2-b)}{2}}{\pi} B\left(\frac{1}{2}, \frac{3-b}{2}\right) R^{2-b}.$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
000000000000	00000000000000000	00000	0000	0000	

Higher Dimensions

Key identity:

$$\int_{B_R} (R^2 - |y|^2)^{-\frac{b+d}{2}} |x - y|^b dy = \frac{\pi^{\frac{d}{2}+1}}{\Gamma(\frac{d}{2})\sin\frac{(b+d)\pi}{2}}, \quad b \in (-d, 2-d)$$

 $a = 2, b \in (-d, 4 - d)$:

$$\rho(x) = -\frac{dM_0\Gamma(\frac{d}{2})\sin\frac{(b+d)\pi}{2}}{(b+d-2)\pi^{\frac{d}{2}+1}} (R^2 - |x|^2)^{1-\frac{b+d}{2}}$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
000000000000	00000000000000000	00000	0000	0000	

Higher Dimensions

Key identity:

$$\int_{B_R} (R^2 - |y|^2)^{-\frac{b+d}{2}} |x - y|^b dy = \frac{\pi^{\frac{d}{2}+1}}{\Gamma(\frac{d}{2})\sin\frac{(b+d)\pi}{2}}, \quad b \in (-d, 2-d)$$

 $a = 2, b \in (-d, 4 - d)$:

$$\rho(x) = -\frac{dM_0\Gamma(\frac{d}{2})\sin\frac{(b+d)\pi}{2}}{(b+d-2)\pi^{\frac{d}{2}+1}} (R^2 - |x|^2)^{1-\frac{b+d}{2}}$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	
000000000000	00000000000000000	00000	0000	0000	

Higher Dimensions

Key identity:

$$\int_{B_R} (R^2 - |y|^2)^{-\frac{b+d}{2}} |x - y|^b dy = \frac{\pi^{\frac{d}{2}+1}}{\Gamma(\frac{d}{2})\sin\frac{(b+d)\pi}{2}}, \quad b \in (-d, 2-d)$$

 $a=2, b\in (-d,4-d):$

$$\rho(x) = -\frac{dM_0\Gamma(\frac{d}{2})\sin\frac{(b+d)\pi}{2}}{(b+d-2)\pi^{\frac{d}{2}+1}} (R^2 - |x|^2)^{1-\frac{b+d}{2}},$$

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	Conclusions
000000000000	0000000000000000	00000	0000	0000	

- The strength of the repulsion at the origin determines the qualitative properties of the minimizers. As the repulsion gets stronger the regularity gets better.
- What are the implications of these properties on the long time asymptotics? Can we prove convergence towards stationary states for potentials less singular than Newtonian? What are the properties close to Newtonian singularity?
- Existence of global minimizers if adding a small diffusion either linear or nonlinear? Is H-Stability related? What are the implications for the evolution problem?
- Break of symmetry and uniqueness of minimizers?
- References:
 - Balagué-C.-Laurent-Raoul (Physica D & ARMA 2013).
 - C.-Chipot-Huang (PTRSA 2014).
 - O Cañizo-C.-Patacchini (ARMA 2015).
 - C.-Vázquez (PTRSA 2015).
 - Sc.-Delgadino-Mellet (Comm. Math. Phys. 2016)
 - O C.-Huang (to appear in KRM)

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	Conclusions

- The strength of the repulsion at the origin determines the qualitative properties of the minimizers. As the repulsion gets stronger the regularity gets better.
- What are the implications of these properties on the long time asymptotics? Can we prove convergence towards stationary states for potentials less singular than Newtonian? What are the properties close to Newtonian singularity?
- Existence of global minimizers if adding a small diffusion either linear or nonlinear? Is H-Stability related? What are the implications for the evolution problem?
- Break of symmetry and uniqueness of minimizers?
- References:
 - Balagué-C.-Laurent-Raoul (Physica D & ARMA 2013).
 - C.-Chipot-Huang (PTRSA 2014).
 - O Cañizo-C.-Patacchini (ARMA 2015).
 - C.-Vázquez (PTRSA 2015).
 - Sc.-Delgadino-Mellet (Comm. Math. Phys. 2016)
 - O C.-Huang (to appear in KRM)

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	Conclusions

- The strength of the repulsion at the origin determines the qualitative properties of the minimizers. As the repulsion gets stronger the regularity gets better.
- What are the implications of these properties on the long time asymptotics? Can we prove convergence towards stationary states for potentials less singular than Newtonian? What are the properties close to Newtonian singularity?
- Existence of global minimizers if adding a small diffusion either linear or nonlinear? Is H-Stability related? What are the implications for the evolution problem?
- Break of symmetry and uniqueness of minimizers?
- References:
 - Balagué-C.-Laurent-Raoul (Physica D & ARMA 2013).
 - C.-Chipot-Huang (PTRSA 2014).
 - O Cañizo-C.-Patacchini (ARMA 2015).
 - C.-Vázquez (PTRSA 2015).
 - Sc.-Delgadino-Mellet (Comm. Math. Phys. 2016)
 - O C.-Huang (to appear in KRM)

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	Conclusions

- The strength of the repulsion at the origin determines the qualitative properties of the minimizers. As the repulsion gets stronger the regularity gets better.
- What are the implications of these properties on the long time asymptotics? Can we prove convergence towards stationary states for potentials less singular than Newtonian? What are the properties close to Newtonian singularity?
- Existence of global minimizers if adding a small diffusion either linear or nonlinear? Is H-Stability related? What are the implications for the evolution problem?
- Break of symmetry and uniqueness of minimizers?

• References:

- Balagué-C.-Laurent-Raoul (Physica D & ARMA 2013).
- C.-Chipot-Huang (PTRSA 2014).
- O Cañizo-C.-Patacchini (ARMA 2015).
- C.-Vázquez (PTRSA 2015).
- Sc.-Delgadino-Mellet (Comm. Math. Phys. 2016)
- C.-Huang (to appear in KRM)

Problems & Motivation	Qualitative Properties: Dimensionality of Support	Global Minimizers	Very Singular Potentials	Exact Solutions	Conclusions

- The strength of the repulsion at the origin determines the qualitative properties of the minimizers. As the repulsion gets stronger the regularity gets better.
- What are the implications of these properties on the long time asymptotics? Can we prove convergence towards stationary states for potentials less singular than Newtonian? What are the properties close to Newtonian singularity?
- Existence of global minimizers if adding a small diffusion either linear or nonlinear? Is H-Stability related? What are the implications for the evolution problem?
- Break of symmetry and uniqueness of minimizers?
- References:
 - Balagué-C.-Laurent-Raoul (Physica D & ARMA 2013).
 - C.-Chipot-Huang (PTRSA 2014).
 - Cañizo-C.-Patacchini (ARMA 2015).
 - C.-Vázquez (PTRSA 2015).
 - Sc.-Delgadino-Mellet (Comm. Math. Phys. 2016)
 - C.-Huang (to appear in KRM)