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Università degli studi di Roma - La Sapienza

June 5-9, 2017



Broad Introduction



Energy-Driven Pattern Formation

Associate a “pattern” with an order parameter u defined over
a physical domain.

Capture and analyze observed (desired) patterns, or the
dynamics to, via minimization of some often postulated
“energy” defined over all possible patterns.

Can occur at all the different length scales - atomistic to
cosmological.

Examples include ferromagnets, ferrofluids, superconductors,
elastic materials (eg. martensitic), block copolymers, social
aggregation and self-organized systems (swarming, flocking)
.....

Much recent attention in the calculus of variations community.
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Two Common Mathematical Themes/Structures

1 NONCONVEXITY: Nonconvex variational problem
regularized by higher order terms

cf. R.V. Kohn, Energy Driven Pattern Formation”, Proc. ICM
’07.

2 NONLOCAL: Energetic competitions associated with short
and long range interactions.

cf. Seul & Andelman “Domain shapes and patterns: the
phenomenology of modulated phases.” Science ’95.
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“Pattern Formation”

Historically in the applied mathematics community, the field of
“Pattern Formation” has been the domain of “local methods”
via perturbation/bifurcation analysis off some special state,

e.g. Turing instabilities in reaction-diffusion systems.

Here we take a different, more “global” and Ansatz free
approach. Invoke methods which directly address
minimization of an “energy”.
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From this perspective, what can mathematicians and
applied mathematicians address?

Existence and non existence of global minimizers:

1 usually via the direct method in the calculus of variations.
2 sometimes trivial – sometimes not (especially when the

problem is posed on an unbounded domain). Key role of
compactness of minimizing sequence.

Existence of Local minimizers: critical points, stability etc.

Structural information about local and global minimizers.

Gradient flow dynamics – choice of metric fundamentally
important (cf. talks of Carrillo and Peletier).

Simulating Minimizers and Complex Energy Landscapes:
design numerical methods to address metastability and access
ground states (or at least stable local minimizers).
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Outline of the Lectures

Lecture 1 Overview (mostly on slides).

1 Gamow’s Liquid Drop Problem

2 The problem on the torus: the nonlocal isoperimetric problem
and the Ohta-Kawasaki functional

3 A recent physical motivation - diblock copolymers.

4 Analytical questions we want to address

5 Intrinsic periodicity and crystallization.

a substantial digression to discuss the finite dimensional
problem of Centroidal Voronoi Tesselation.



Lecture 2 Continuation with more analytical details (mostly on
blackboard)

1 Continue with intrinsic periodicity and crystallization for NLIP.

2 Some comments about local minimizers, and the shape of
minimizers for NLIP.

3 (if time permits) small volume fraction asymptotics of NLIP.

4 Return to the Liquid Drop Model – existence and
nonexistence results.

5 Give details of a simple proof of Frank et al for the
nonexistence when m > 8.



Lecture 3 A Variant of the Liquid Drop Problem (On blackboard)

1 Focus on a new shape optimization problem related to
algebraic potentials (∼ lectures of Carrillo).

2 Some recent existence and non existence results, joint with
Burchard and Topolaglu.

3 Recent results of Frank and Lieb which build on our work.



Gamow’s Liquid Drop Problem



George Gamow (1904-1968)

“A mathematician friend of mine, the late S. Banach, once told
me,“The good mathematicians see analogies between theorems or
theories; the very best see analogies between analogies.” This
ability to see analogies between models for physical theories
Gamow possessed to an almost uncanny degree”

– Stanislaw Ulam



Gamow’s Liquid Drop Model for the shape of atomic nuclei
(1930)

Among all Ω ⊂ R3 with |Ω| = m, minimize

E (Ω) = Per(Ω) +
1

2

∫

Ω

∫

Ω

1

|x − y | dx dy .

Wanted to predict:

the spherical shape of nuclei

the non-existence of nuclei when the atomic number (m) is
greater than some critical value.

existence of a nucleus with minimal binding energy per unit
particle.

Gamow’s variational problem is a beautiful marriage (or rather
divorce) of two older geometric problems:

The Classical Isoperimetric Problem

The Problem of the Equilibrium Figure ∼ Poincaré
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The Isoperimetric Problem

Which region of 3-space with volume m has minimal surface area?

Answer: the ball

Proof: depends on the class of competitors.

For the most general class (measurable sets of measure m): De Giorgi
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Problem of the Equilibrium Figure – Poincaré ∼ 1887

Shape of a fluid body of mass m in equilibrium.

Assuming vanishing total angular momentum, the total potential
energy in a fluid body, represented by a set Ω ⊂ R3, is given by

∫

Ω

∫

Ω
− 1

C |x − y | dx dy , |Ω| = m

where −(C |x − y |)−1, C > 0 is the potential resulting from the
gravitational attraction between two points x and y in the fluid.

Lyapunov / Poincaré asserted: unique shape of lowest energy
is a ball.

Rigorous proof involves the Riesz Rearrangement Inequality

We Give Some Details
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Lyapunov / Poincaré asserted: unique shape of lowest energy
is a ball.

Rigorous proof involves the Riesz Rearrangement Inequality

We Give Some Details



Problem of the Equilibrium Figure – Poincaré ∼ 1887
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Marriage (or “Divorce”) of the Two: Among all Ω ⊂ R3 with
|Ω| = m, minimize

E (Ω) = Per(Ω) +
1

2

∫

Ω

∫

Ω

1

|x − y | dx dy .

Gamow’s heuristic:
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Mass Scaling

Easy to see Gamow’s heuristic from scaling in m: consider λΩ for
λ > 0

E (λΩ) = λ2 Per(Ω) + λ5 1

2

∫

Ω

∫

Ω

1

|x − y | dxdy .

Thus E (λΩ) dominated by the perimeter term for small values λ
and the Coulomb term for large λ.

What is remarkable about Gamow’s problem is that, from the
perspective of the global minimizer, there is (most probably)
always a clear winner (cf. Lecture 2).



Mass Scaling

Easy to see Gamow’s heuristic from scaling in m: consider λΩ for
λ > 0

E (λΩ) = λ2 Per(Ω) + λ5 1

2

∫

Ω

∫

Ω

1

|x − y | dxdy .

Thus E (λΩ) dominated by the perimeter term for small values λ
and the Coulomb term for large λ.

What is remarkable about Gamow’s problem is that, from the
perspective of the global minimizer, there is (most probably)
always a clear winner (cf. Lecture 2).



Precise Formulation: Notion of a Set of Finite Perimeter

Functions of Bounded Variation: Let Σ ⊂ R3 and u ∈ L1(Σ).
Define the total variation of u to be

‖∇u‖(Σ) = “

∫

Ω
|∇u|”

= sup

{∫

Σ
u div φ dx

∣∣∣∣φ ∈ C 1
c (Σ,R3), |φ(x)| ≤ 1

}
.

If ‖∇u‖(Σ) <∞, we say u ∈ BV (Σ)

Sets of finite perimeter and Caccioppoli sets: A set Ω ⊂ R3 is said
to be of finite perimeter iff χΩ ∈ BV (R3). We define

Per(Ω) = ‖∇χΩ‖(R3).



Precise Formulation of the LD Model

For m > 0, consider minimizers of

E (z) =

∫

R3

|∇z | +
1

2

∫

R3

∫

R3

z(x) z(y)

|x − y | dx dy

over {
z ∈ BV (R3, {0, 1})

∣∣∣∣
∫

R3

z(x) dx = m

}
.

Note that existence is not straight forward via the direct method.



Universality of the LD Model

The spirit of energetic competitions involving competing
short- and long-range interactions is ubiquitous in the
contemporary calculus of variations.

The way in which Gamow’s Problem simply but directly
encapsulates this competition is behind a universality, with LD
model’s phenomenology shared by many other systems
operating at very different length scales: from femtometer
nuclear scale to nanoscale in condensed matter systems, to
centimeter scale for fluids and certain reaction-diffusion
systems, all the way to cosmological scales.



Mathematical “Rediscovery” of the LD Model

Surprisingly, the LD problem only recently received direct
attention from mathematicians, after it resurfaced as an
asymptotic limit in the Ohta-Kawasaki functional (1986) for
self-assembly of diblock copolymers (C-Peletier 2010).

This functional can be viewed as the diffuse-interface Liquid
Drop problem on a finite domain.



Very Different, and Indeed RICHER, Situation on a Finite Domain



“The LD problem on the Torus”

For fixed m ∈ (0, 1),

Minimize

∫

T3

|∇u| + γ

∫

T3

|∇v |2

over u ∈ BV (T3, {0, 1}), −
∫
T3 u = m with −∆v = u −m on T3.

Note: ∫

T3

|∇v |2 =

∫

T3

∫

T3

G (x , y)u(x) u(y) dx dy

G suitably chosen Green’s function for −∆ on T3 .

This nonlocal term is also ‖u −m‖2
H−1(T3)).

We will call this problem the nonlocal isoperimetric problem (NLIP).
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The Direct Method =⇒ Existence of a Minimizer

Let un be a minimizing sequence.

Bound on the total variation implies there exists a
subsequence un which converges in L1 to u ∈ BV (T3, {0, 1})
with −

∫
T3 u = m.

Lower semi-continuity of total variation implies
∫

T3

|∇u| ≤ lim inf

∫

T3

|∇un|.

Coulombic term is continuous
∫

T3

∫

T3

G (x , y)un(x) un(y) dx dy

−→
∫

T3

∫

T3

G (x , y)u(x) u(y) dx dy .

Thus u ∈ BV (T3, {0, 1}) is a minimizer.
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New Phenomena – modulated phases on an intrinsic scale

Fourier (take |T3| = 1):

‖u −m‖2
H−1(T3) =

∑

k6=0

|ûk|2
|k|2

For convenience, take u ∈ BV (T3,±1). Consider 1D, m=0.

∃ w such that w ′ = u.

NLIP in terms of w where w ′ = ±1:

∫ 1

0
|w ′′| + w2 dx .
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First Variation

boundary regularity of a (local) minimizer
(Topaloglu-Sternberg ’11) 3

necessary condition for a minimizer u = χΩ is

H(x) + 4γv(x) = λ for all x ∈ ∂Ω

H(x) is the mean curvature of ∂Ω
v(x) = G (x , y) ∗ u(y), the potential.

in 1D, vanishing first variation implies periodicity.

very hard to get a handle on this condition in higher D.



Diffuse Interface Version: The Ohta Kawasaki Functional

Minimize

∫

T3

ε |∇u|2 +
1

ε
u2(1− u)2 + γ | ∇v |2 dx

where u ∈ H1(T3), −
∫

T3

u = m, −4v = u −m on T3

∫

T3

|∇v |2dx =

∫

T3

∫

T3

G (x , y)u(x) u(y) dx dy

= ‖u −m‖2
H−1

Gradient term: constant phases
Double-well: phases of 0 or 1
Nonlocal term: oscillations between phases 0 and 1 with mean m.

All three =⇒ “nearly periodic” phase separation on an intrinsic scale.
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A Few Words on H−1

|T3| = 1. Define the H−1 inner product and norm on

H = {f ∈ L2(T3)
∣∣
∫

T3

f = 0}.

Given f , g ∈ H take v ,w such that

−4v = f −4w = g on T3.

Then we define

〈f , g〉H =

∫

T3

∇v · ∇w dx ‖f ‖2
H =

∫

T3

|∇v |2 dx .

Dual space structure: Dual of H1
0 (T3) (H1 with average 0) with

respect to the distributional L2 pairing, i.e..

‖f ‖2
H = sup

φ∈H1
0

(∫
T3 f φ dx

)2

‖∇φ‖2
L2(T3)
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H−1 Gradient Flow Dynamics

Aside: a word on gradient flows.

The H−1 gradient flow gives the modified Cahn-Hilliard equation

ut = 4
(
−ε24u − u + u3

)
− σ(u −m).

simulation for σ = 0 simulation for σ > 0
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Diversion: A Physical Application



Self Assembly of Diblock Copolymers

BA

Material Parameters:
χ (Flory-Huggins interaction parameter)
N (index of polymerization)
f (molecular weight)
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Experimental phase diagram for polystyrene-isoprene
Khandpur et al ’(Macromolecules ’93)

8904 Khandpur et al. Macromolecdes, Vol. 28, No. 26, 1995 
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Figure 13. XN versus f p ~  diagram for PI-PS diblock copolymers. Open and filled circles represent the order-order (00") and 
order-disorder (ODT) transitions, respectively, calculated using eq 1 and the rheologically determined transition temperatures 
(see Table 1). The dash-dot curve is the mean field prediction5 for the ODT. Solid curves have been drawn to delineate the 
different phases observed but might not correspond to precise phase boundaries. Five different ordered microstructures (shown 
schematically) have been observed by us for this chemical system. 

projected images from thin films of this microstructure 
are nearly indistinguishable from those produced by the 
OBDD a r c h i t e c t ~ r e ? ~ . ~ ~  (However, for sufficiently thin 
films, or large domains, it  may he possible to discrimi- 
nate between the local connector topology, i.e., tripod 
versus tetrapod.) With few  exception^'^ the OBDD state 
has been established based on TEM alone. Recently, 
Hajduk et  aLZ7 have concluded that an f p ~  = 0.67 PI- 
PS diblock exhibits a reversible LAM-to-la$d bicontinu- 
ous phase transition based on SAXS as well as TE-M 
analyses. (These authors refer to the hicontinuous Ia3d 
state as the "Gyroid*" phase.) This result is consistent 
with our phase diagram with one exception: we have 
not identified a direct lamellae-cubic transition. At 
least two explanations for this disparity can be ad- 
vanced (i) the HPL is a nonequilibrium (metastable) 
phase, or (ii) the HPL window was missed in the 
experiments by Hajduk et  alJ7 We cannot dismiss 
either possibility at  this time nor resolve this issue with 
the data at hand. Nevertheless, both studies draw the 
same conclusion regarding the symmetry of the high- 
temperature ordered phase. Since then, Hadjuk et  a1.46 
reexamined several PI-PS (starblock) samples origi- 
nally associated with the OBDD micro~tructure13~~7~~ 

and concluded that the Pngm space group assignmeGt 
was flawed, SAXS measurements now indicate the Ia3d 

symmetry. 

The second complicating factor deals with the pro- 
found hysteresis assoeiated with the HEX - la% and, 
to a lesser degree, the HPL - Ia$d phase transitions. 
We have discussed this effect in detail in a previous 
publication.26 Here we merely reiterate that the bicon- 
tinuous cubic phase can he supercooled far below the 
apparent equilibrium order-order phase transition. 
This behavior is most dramatic when dealing with 
cylinders as the low-temperature phase (see also below). 
In a separate report that describes experiments con- 
ducted with polyethylene-poly(ethylethy1ene) (PE- 
PEE) diblocks, we discuss the HEX - Ia3d transition 
and metastability in more detail.37 Here we suggest 
that the identification of bicontinuity in the strong 
segregation limit (SSL) may reflect such metastability 
due to solvent casting or cooling from elevated temper- 
atures. RecenJ theory also predicts the absence of either 
OBDD or Ia3d bicontinuous phases in the SSL at 
e q ~ i l i b r i u m ? ~ , ~ ~  Note, however, that we cannot rule out 
the possibility of a metastable OBDD phase, particularly 
in high molecular weight specimens that would order 

Ability for self-assembly → materials with designer mechanical,
optical, electrical ... properties



Modelling

BA

Include two interacting effects:

chains like to be randomly coiled – behave like Brownian
motion sample paths.

part of the chain (A sub-chain) wants to separate from the
other part (B sub-chain), without ever severing the covalent
bond.

Hopefully captures:

phase geometry – depending on the material parameters.



Self-Consistent Mean Field Theory
Transforms formidable task of integrating contributions to the
partition function from many-chain interactions to the computation
of the contribution of one polymer in a self-consistent field .

State of the art: Fredrickson group at Santa Barbara (with help
from C. Garcia-Cevera)



Derivation of Ohta Kawasaki

cf. Ohta-Kawasaki (Macromolecules ’86),
C.-Ren (J. Stat. Phys. ’03)

Self-Consistent Mean Field Theory: The monomer density u
order parameter is coupled with self-consistent external field
via modified diffusion equation (Feynman-Kac). Linearize this
dependence about the disordered state (Random Phase
Approximation).

validity is good close to order/disorder transition (weak
segregation regime), i.e. not in the strong segregation regime
where ε� 1 (i.e. NLIP!!)



Back to Minimizers of OK and NLIP



Heuristic for Minimizers on Sufficiently Large Domain

periodic structures on an intrinsic scale (� domain size)

within a periodic cell, interfaces resemble a CMC surface
GLOBAL MINIMIZERS WITH LONG-RANGE INTERACTIONS 521

Fig. 4. Zero level sets of the final state for some sample 3D simula-
tions attempting to access the ground state; cf. [13].

by ϵ and σ. Herein lies the fidelity of (NLCH) to the diblock copolymer problem, with

the intrinsic scale being the consequence of the connectivity of the A and B subchains.

Note that this connectivity is now imposed as a soft constraint via minimization rather

than a hard constraint. The intrinsic length scale emulates the effective chain length of

a single diblock macromolecule.

It is convenient to compute the gradient flow of (NLCH) with respect to the Hilbert

space H−1. In doing so we obtain the following modified Cahn-Hilliard equation:

(MCH) ut = △
(
−ϵ2△u − u + u3

)
− σ(u − m).

Since we compute the gradient flow in the H−1 norm, the presence of the nonlocal term

in the functional (NLCH) simply gives rise to a local zeroth order perturbation of the

well-known Cahn-Hilliard equation. However, as is illustrated in Figures 2 and 3, this

term favors u = m and significantly changes the dynamics and steady states. Figure 2

shows the solution at different times for the Cahn-Hilliard equation (i.e. σ = 0) with a

fixed value of m, random initial conditions, and periodic boundary conditions. Figure 3

gives the analogous picture for σ > 0 wherein an intrinsic length scale, independent of

the domain size, between the drops is eventually set. Note that for all simulations we

adopt periodic boundary conditions and deliberately take the domain size to be much

larger than this intrinsic length.

The precise geometry of the interfacial region will depend on m, and the range of

possibilities in 3D is significantly larger than in 2D. Numerical simulations suggest that

minimizers are periodic on some fixed scale independent of domain size and, within a

period cell, the structure appears to minimize surface area between the two phases. Thus

in 3D, the interface associated with minimizers resembles a triply periodic constant mean

curvature surface. Sample 3D simulations attempting to access the ground state are

shown in Figure 4.

Interfaces of low energy states for different M
cf. C.-Peletier-Williams SIAP 2009



Remark: metastability is a big problem

Examples of 2D metastable states and their energy densities for
the same parameters:
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Relation with the LD Problem (Rediscovery)
Send m to 0: Asymptotic limit in which number of particles
remains O(1) but size tends to zero.

LD

1

More details in Lecture 2



What can we hope to prove about. global minimizers of
NLIP and OK?

Intrinsic Periodicity?

Nature of phase structure – geometry of the interface?



Intrinsic Periodicity – 1D Done
(NLIP): follows from vanishing first variation.

(OK):

m = 0 and wells ±1: w s.t. u = w ′:
∫ 1

0
ε2w2

xx + (w2
x − 1)2 + σ w2 dx ,

cf. Müller (Cal. Var. ’93)

all m: Ren-Wei ’03

Higher D: VERY HARD and only weaker statement exists.
Let’s move to “simpler” finite dimensional problem to see some of
the reasons why.
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Substantial Digression to discuss a Finite Dimensional
Nonlocal Geometric Problem

Centroidal Voronoi Tessellation (CVT)

Why introduce and discuss this now?

fundamental nonlocal, geometric variational problem – famous
in Computer Science

one which exhibits the difficulty of proving a crystallization
result in 3D

one which is directly connected to Wasserstein distances
(∼ talks of Carrillo and Peletier)

this connection will lead us to state a rare full crystallization
result by Bourne, Peletier and Theil for a novel problem which
lies between (CVT) and (NLIP).
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Simple Finite Dimensional Nonlocal Geometric Problem:
Centroidal Voronoi Tessellation

Take N points at positions xi ∈ Ω ⊂ Rn. Among all such points

Minimize

∫

Ω
dist2

(
y , {xi}

)
dy

=
N∑

i=1

∫

Vi

|y−xi |2 dy

Vi = Voronoi cell of xi .
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Simple characterization of a critical point and Lloyds’
Method

∃ a simple elegant algorithm (Lloyd’s Method) for generating CVTs.
Click (A. Rand)

cf. Du, Faber & Gunzburger (SIAM Rev. ’99)
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Complex Energy Landscape
CVTs (critical points) on the flat torus with 15 generators.



Global Minimizer

Hard to infer any geometric property of CVTs for generic
(finite) n...

So, what about n→ +∞? Some questions:

Are Voronoi cells “almost congruent”?

What should be the shape of such Voronoi cells?
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Crystallization and Gersho’s Conjecture

Gersho’s Conjecture

There exists a polytope V with |V | = 1 which tiles the space with
congruent copies such that the following holds: let Xn be a
sequence of global minimizers (i.e. Xn is the minimizer over n
points), then the Voronoi cells of points Xn are asymptotically
congruent to a scaled V as n→ +∞.

Note:

1 the polytope V can depend on the dimension d .

2 Nothing is said about the geometry of V .

3 This conjecture is for n→ +∞. Nothing is said, or expected,
for finite n.
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2D

Known results:

1 Gersho’s conjecture is fully proven in 2D (T’oth, Gruber,
etc.): the optimal Voronoi tessellation is the triangular lattice
(”honeycomb”).

2 Open for higher dimensions.



Gersho in 3D

Conjecture

The optimal lattice in 3D is the body centered cubic (BCC) lattice.

8 nearest neighbours

6 next-nearest neighbours

reference point

Numerical results seem to support this (Du et al. 2005).

Note that

1 Gersho’s conjecture is nonlocal and infinite dimensional.

2 No a priori bounds on the geometric complexity of Voronoi
cells until very recent work with Xin Yang Lu.
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Connection with Optimal Transport

Let µ = ρ(y)dy and ν a Borel probability measure. Consider the
set M(µ, ν) of measures π on the product space Ω× Ω such that

π(y ,Ω) = µ(y) and π(Ω, ·) = ν.

We call π a transport plan.

Kantorovich’s reformulation of optimal transportation for
Euclidean cost is given as

W 2
2 (µ, ν) = inf

π

{∫

Ω×Ω
|y − z |2dπ(y , z)

∣∣∣∣ π ∈M(µ, ν)

}
,

also known as the Wasserstein-2 distance
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Classical Formulation of Monge

Transport map q : supp(µ)→ supp(ν)

Push forward probability measure q# µ

(q# µ)(A) = µ
(
q−1(A)

)
∀ Borel subsets A.

Denoting ψ(y) = (y , q(y)), the transport plan π can be recovered
as π = µ ◦ ψ−1.

W 2
2 (µ, ν) = inf

q

{∫

Ω
|y − q(y)|2dµ(y)

∣∣∣∣ ν = q# µ

}
.

Brenier’s Theorem proves two formulations are equivalent and ∃
unique transport map q which is the gradient of a convex function.
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Connection with CVT
Fix µ = ρ(y) dy and for a selection of N points in Ω, x = {xi},

νx =
N∑

i=1

miδxi , where mi = |Vi |
(

N∑

i=1

mi = |Ω| = 1

)
.

Unique optimal transport map is

q∗(y) = y − d
(
y , {xi}

)
∇d
(
y , {xi}

)
.

W 2
2 (µ, νx) = inf

q

{∫

Ω
|y − q(y)|2dy , µ ◦ q−1 = νx

}

=

∫

Ω
|y − q∗(y)|2dy

=

∫

Ω
d2
(
y , {xi}

)
dy =

N∑

i=1

∫

Vi

|y − xi |2dy .
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Thus finding CVTs via minimization of the CVT energy is
equivalent to minimizing W 2

2 (µ, νx) (with µ having a constant
density) over all possible x = {xi}.
i.e.

min
x={xi}Ni=1

W 2
2 (µ, νx).



Aside – rigid shapes

Minimize the previous Wasserstein distance where the weighted
measure at points is replaced with rigid shapes parametrized by
centroids and rotation angles.

Thesis of Lisa Larsson (Larsson, C, Nave SISC ’15, SIAP ’16):
quick way to simulate energy minimization.

click

click

click
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A Modified NLIP Problem with Wasserstein Interactions
recall OK

Bourne, Peletier and Theil CMP 2014

Ω ⊂ R2 with |Ω| = 1. Minimize over

µ =
∑

x∈Z
vxδx vx > 0,

∑

x∈Z
vx = 1, Z any finite subset of Ω

E (µ) = λ
∑

x∈Z
(vx)1/2 + W 2

2 (dy , µ).

Note:

weights are now free

number of particles and the length scale not fixed but set by
energy minimization (like in NLIP)
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Heuristic/Numerics for Minimizers
Optimal number of particles ∼ λ−2/3.

As λ→ 0: regular hexagonal pattern (triangular lattice)



Rigorous Crystallization

For the first, Ω polygon with at most 6 sides.

Theorem:

For any λ > 0, energy of any configuration is bounded below
by the energy of an optimal hexagonal pattern (triangular
lattice.
If the energy bound can be achieved then the structure is
exactly on a triangular lattice.

Let Ω bounded and connected. Then as λ→ 0 the bound can
be asymptotically attained.



Key Constant: Optimal Energy over a Polygon

cn = inf
P

{
min
y∈P

∫

P
|x − y |2dx

∣∣∣∣P a n-gon with area 1

}

Naturally, c6 plays a key role in their proof.



Next Lecture: an intrinsic periodicity result for NLIP in Rn.


