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1 Setting, motivation, and main result

The course relies on joint work with A. Gloria, S. Neukamm, and D. Marahrens.
In particular, we refer to the three preprints, which are available on my web
page:

MO
[3] requires the least machinery and will be closest to the course,

GNO1
[1]

gives an extensive introduction next a couple of quantitative results, and
GNO2
[2]

uses both to give a full error estimate.

The first definition introduces discrete differential operators on the lattice
Zd. Vertices are typically called x, y, and z. Edges, that we think of as
unoriented, are typically called b and e. If x and y are neighbors, we write
[x, y] for the connected edge. The unit vectors are denoted by ei, i = 1, · · · , d.
Definition 1. For a field u(x), x ∈ Zd, we define the field ∇u(b), where b
runs through all edges, as

∇u(b) = u(x+ ei)− u(x) if b = [x, x+ ei].

For a field g(b), where b runs through all edges b, we define the field ∇∗g(x),
x ∈ Zd, as

∇∗g(x) =
d∑

i=1

(g(bi,−)− g(bi,+)) if bi,+ = [x, x+ ei] and bi,− = [x− ei, x].

We think of ∇u as the gradient field of u and of ∇∗g as the (negative)
divergence of g. The operator ∇∗ is the !2-transpose of ∇ in the sense that
for compactly supported u the following integration by parts formula holds:

∑

b

g(b)∇u(b) =
∑

x

u(x)(∇∗g)(x).

We fix a number 0 < λ ≤ 1.
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Definition 2. We denote by Ω the space of all a(b), where b runs through
all edges, with the property

∀ edges b λ ≤ a(b) ≤ 1.

For a ∈ Ω, we will be interested in the operator ∇∗a∇, that is defined on
fields u(x), x ∈ Zd, and can be thought of as a discrete elliptic operator. In
this sense, we think of a ∈ Ω as a coefficient field a(b), where b runs through
all edges.

Each a describes a network of resistors, where two neighboring sites x and y
are connected by a resistor of conductivity a(b = [x, y]), that is, of resistivity
1

a(b) . Within this interpretation, a field u(x), x ∈ Zd, can be interpreted as

describing the potential u(x) at a site x; and j(b) = a(b)∇u(b) the ensuing
current along the edge b = [x, x + ei]. This current is stationary provided
∇∗j = 0.

We now consider an ensemble of coefficients

Definition 3. Endow Ω with the product topology. Denote by 〈·〉 a probability
measure on Ω. Note that Zd acts on Ω by shift: For a “shift vector” z ∈ Zd,
a(·+ z) denotes the shifted a ∈ Ω.
We call 〈·〉 stationary if for every z ∈ Zd, a and its shifted version a(· + z)
have the same distribution.

We call 〈·〉 ergodic if any measurable function ζ(a) that is shift invariant,
that is, has the property ζ(a) = ζ(a(·+ z)) for all z ∈ Z, is constant almost
surely.

Told Theorem 1. [Kozlov, Papanicolaou & Varadhan ’79]
Suppose 〈·〉 is stationary and ergodic. Then there exists a symmetric d × d
matrix ahom with λid ≤ ahom ≤ id and the following property: For any
bounded and compactly supported function f̂(x̂), x̂ ∈ Rd, consider

fε(x) = ε2f̂(εx).

For a ∈ Ω consider the decaying solution uε(a; x)
short
= uε(x) of

∇∗a∇uε = fε.
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Then we have

lim
ε↓0

(
εd

∑

x∈Zd

|uε(a; x)− û(εx)|2
) 1

2

= 0 for 〈·〉-a. e. a ∈ Ω,

where û(x̂), x̂ ∈ Rd, is the decaying solution of the homogeneous (continuum)
elliptic equation

−∇̂ · ahom∇̂û = f̂ .

Can we obtain an error estimate? Here: At least for the random part of the
error, that is, for the fluctuations uε(x)− 〈uε(x)〉.

T’ Theorem 2. Suppose 〈·〉 is stationary and satisfies the Logarithmic Sobolev
Inequality with constant ρ > 0. For any bounded and compactly supported
function f̂(x̂), x̂ ∈ Rd, consider

fε(x) = ε2f̂(εx).

For a ∈ Ω consider the decaying solution uε(a; x)
short
= uε(x) of

∇∗a∇uε = fε.

i) Suppose d > 2. For all 2 ≤ p < ∞ and r < ∞ it holds

〈(

εd
∑

x∈Zd

|uε(x)− 〈uε(x)〉|p
) r

p
〉 1

r

≤ C(d, λ, ρ, r, p, f̂)ε.

ii) Suppose d ≥ 2. For all bounded and compactly supported function ĝ(x̂),
x̂ ∈ Rd, and r < ∞ it holds

〈(
εd

∑

x∈Zd

(uε(x)− 〈uε(x)〉)ĝ(εx)
)r〉 1

r

≤ C(d, λ, ρ, r, ĝ, f̂)ε
d
2 .

[Yurinskii ’86] first algebraic, but suboptimal estimates.
[Conlon & Naddaf ’00] case of small ellipticity contrast, that is, 1 − λ + 1
(more precisely 1− λ ≤ 1

C(d)).

[Gloria ’12] i) suboptimal for d > 3
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2 The Logarithmic Sobolev Inequality

Definition 4. We say that 〈·〉 satisfies LSI with constant ρ > 0 if for all
ζ(a) ≥ 0 we have

〈ζ ln ζ

〈ζ〉〉 ≤ 1

2ρ
〈1
ζ
|∂ζ |2"2〉.

Here |∂ζ |2"2 :=
∑

b(
∂ζ

∂a(b))
2.

The following lemma and remark provide a first interpretation of LSI:

L2.1bis Lemma 1. The definition can also be reformulated as: For all ζ(a) we have

〈ζ2 ln ζ2〉 − 〈ζ2〉 ln〈ζ2〉 ≤ 2

ρ
〈|∂ζ |2"2〉. (1) L2.a

Suppose that 〈·〉 satisfies LSI with constant ρ > 0. Then 〈·〉 has a Spectral
Gap (SG) with constant ρ, meaning that for all ζ(a) it holds

ρ〈(ζ − 〈ζ〉)2〉 ≤ 〈|∂ζ |2"2〉. (2) L2.b

Formulation (
L2.a
1) motivates the name of Sobolev inequality: Like the tradi-

tional Sobolev inequality, it encodes a gain in integrability, which however
is just logarithmic. Inequality (

L2.b
2) is a Poincaré inequality with mean value

zero, it is called Spectral Gap, because ρ is a lower bound on the spectral
gap of the operator

∑
b

∂
∂a(b)

∗ ∂
∂a(b) , where

∂
∂a(b)

∗
denotes the 〈·〉-adjoint of ∂

∂a(b) .
This operator is the generator of a stochastic process for a called Glauber
dynamics. Hence, analytically speaking, LSI is a combination of a Poincaré
inequality (cf. (

L2.b
2)) and a Sobolev inequality.

R1.1 Remark 1. Suppose that 〈·〉 is stationary and satisfies SG with constant
ρ > 0. Let S be a finite subset of edges and consider

ζ(a) = |S|− 1
2

∑

b∈S

(a(b)− 〈a〉).

Then

〈ζ2〉 ≤ 1

ρ
.

4



In this sense, SG encodes the scaling of the Central Limit Theorem. In fact,
by “concentration of measure”, that follows from LSI via Herbst’s argument,
ζ has even Gaussian moments.

There are many criteria for LSI. The probably most relevant for us is based on
the tensorization principle, due to Gross, and thus applies to independently
and identically distributed coefficient fields {a(b)}.

L2.2 Lemma 2. [Gross ’75] Let 〈·〉0 be a probability measure on [λ, 1] that satisfies
LSI with constant ρ in the sense that such that for all ζ(a) > 0, a ∈ [λ, 1],
we have

〈ζ ln ζ

〈ζ〉0
〉0 ≤

1

2ρ
〈1
ζ
|dζ
da

|2〉0.

Let 〈·〉 denote the corresponding product measure on {a(e)}eedges. Then 〈·〉
satisfies LSI with constant ρ.

The most elementary example of a single-edge distribution that satisfies LSI
is the uniform distribution.

R1.2 Remark 2. Let 〈·〉0 denote the uniform distribution on [λ, 1]. Then 〈·〉0
satisfies LSI with constant ρ = 1

2(1−λ)2 in the sense that for all ζ(a) > 0,

a ∈ [λ, 1], we have

〈ζ ln ζ

〈ζ〉0
〉0 ≤

1

2ρ
〈1
ζ
|dζ
da

|2〉0.

LSI also holds in non-iid situations. Morally speaking, the dependencies
between a(b1) and a(b0) should decay sufficiently fast in the distance between
the edges b1 and b0. Loosely speaking, the correlations should be integrable
as the following remark hints at.

R1.3 Remark 3. Let 〈·〉 satisfy LSI with constant ρ. For {φ(x)}x∈Zd ∈ !1 consider
the probability measure 〈·〉′ that describes the distribution of a′ defined through
convolution with φ, i. e. a′(b) =

∑
x∈Zd φ(x)a(x + b), under 〈·〉. Then 〈·〉

satisfy LSI with constant ρ
|φ|!1

.

The only way we will use LSI is through the following lemma

L2.3 Lemma 3. Let 〈·〉 satisfy LSI with constant ρ. Then for any random variable
ζ(a), any integrability exponent p < ∞ and any δ > 0 we have

〈|ζ |2p〉 ≤ C(ρ, p, δ)〈|ζ |〉2p + δ〈|∂ζ |2p"2 〉.
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If a random variable satisfies 〈|∂ζ |2p"2 〉 ! 〈|ζ |2p〉, as will be the case in our
application, then the preceding lemma yields the reverse Jensen inequality
〈|ζ |2p〉 ! 〈|ζ |〉2p.

Proof of Lemma
L2.1bis
1

Let ζ(a) be given. By an approximation argument, we may assume that ζ
is bounded. W. l. o. g. we may assume |ζ | ≤ 1 and 〈ζ〉 = 0. For 0 < ε < 1
apply LSI with ζ replaced by 1 + εζ > 0:

〈(1 + εζ) ln(1 + εζ)〉 ≤ 1

2ρ
〈 1

1 + εζ
ε2|∂ζ |2"2〉. (3) L2.1.1bis

We note that

ln(1 + εζ) = εζ − 1
2(εζ)

2 +O(ε3),
thus (1 + εζ) ln(1 + εζ) = εζ + 1

2(εζ)
2 +O(ε3),

thus 〈(1 + εζ) ln(1 + εζ)〉 = 1
2ε

2〈ζ2〉+O(ε3).

Hence if we divide (
L2.1.1bis
3) by ε2 and send ε to zero, we obtain as desired

1

2
〈ζ2〉 ≤ 1

2ρ
〈|∂ζ |2"2〉.

Proof of Lemma
L2.2bis
5

Select an enumeration {en}n∈N of all edges. Let 〈·〉n denote the operation of
taking the expectation of a(en) according to the (identical) distribution 〈·〉0.
Define {ζn(a)}n∈N0 recursively by successively integrating out: ζ0 := ζ and

ζn = 〈ζn−1〉n.

By an approximation argument, we may assume that ζ only depends on
finitely many of the arguments {a(b)}b edges, say, only on {a(en)}n=1,··· ,N for
some N ∈ N. Hence in particular

ζN = 〈ζ〉.

Therefore, we can write the l. h. s. as a finite telescoping sum:

〈ζ ln ζ

〈ζ〉
〉 = 〈ζ ln ζ〉 − 〈ζ〉 ln〈ζ〉 =

N∑

n=1

(〈ζn−1 ln ζn−1〉 − 〈ζn ln ζn〉).
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Using 〈·〉 = 〈〈·〉n〉 and the definition of ζn we have

〈ζn−1 ln ζn−1〉 − 〈ζn ln ζn〉 = 〈〈ζn−1 ln ζn−1〉n − 〈ζn−1〉n ln〈ζn−1〉n〉.

We now use our assumption that the 1-d distribution 〈·〉n = 〈·〉0 of a(en)
satisfies LSI, which we apply to the function ζn−1:

〈ζn−1 ln ζn−1〉n−〈ζn−1〉n ln〈ζn−1〉n = 〈ζn−1 ln
ζn−1

〈ζn−1〉n
〉n ≤ 1

2ρ
〈 1

ζn−1
(
∂ζn−1

∂a(en)
)2〉n,

so that we obtain

〈ζn−1 ln ζn−1〉 − 〈ζn ln ζn〉 ≤
1

2ρ
〈 1

ζn−1
(
∂ζn−1

∂a(en)
)2〉.

We note that ζn−1 = 〈ζ〉<n, where 〈·〉<n denotes the expectation w. r. t.
{a(ek)}k=1,··· ,n−1. Hence we obtain by Cauchy-Schwarz w. r. t. 〈·〉<n

1

ζn−1
(
∂ζn−1

∂a(en)
)2 =

1

〈ζ〉<n
(〈 ∂ζ

∂a(en)
〉<n)

2 ≤ 〈1
ζ
(

∂ζ

∂a(en)
)2〉<n,

so that, using 〈〈·〉<n〉 = 〈·〉,

〈 1

ζn−1
(
∂ζn−1

∂a(en)
)2〉 ≤ 〈1

ζ
(

∂ζ

∂a(en)
)2〉.

Argument for Remark
R1.1
1

By definition 〈ζ〉 = 0 and

∂ζ

∂a(b)
=

{
|S|− 1

2 if b ∈ S
0 else

}
,

so that | ∂ζ
∂a(b) |

2
"2 = 1.

Argument for Remark
R1.2
2

W. l. o. g. we may assume that 〈ζ〉0 = 1 so that we have for the l. h. s.

〈ζ ln ζ

〈ζ〉0
〉0 = 〈ζ ln ζ − ζ + 1〉0.

Since ζ ln ζ − ζ + 1 ≤ (ζ − 1)2 we have

〈ζ ln ζ − ζ + 1〉0 ≤ sup
a∈[λ,1]

(ζ − 1)2.
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Thanks to our 1-d situation and the uniform distribution, we have

sup
a∈[λ,1]

|ζ(a)− 1| ≤ sup
a,a′∈[λ,1]

|ζ(a)− ζ(a′)| ≤
∫ 1

λ

|dζ
da

|da = (1− λ)〈|dζ
da

|〉0.

Finally, we have by Cauchy-Schwarz

〈|dζ
da

|〉20 ≤ 〈1
ζ
|dζ
da

|2〉0〈ζ〉0 = 〈1
ζ
|dζ
da

|2〉0.

Argument for Remark
R1.3
3

The convolution with φ defines a linear map T : a ,→ a′ on the space of
coefficient fields. By definition, 〈·〉′ is the push forward of 〈·〉 under T . This
means that for some given ζ(a′) we have

〈ζ〉′ = 〈ζ ◦ T 〉.

By our assumption on 〈·〉 we thus have

〈ζ ln ζ

〈ζ〉′
〉′ = 〈ζ ◦ T ln

ζ ◦ T
〈ζ ◦ T 〉

〉 ≤ 1

2ρ
〈 1

ζ ◦ T
|∂(ζ ◦ T )|2"2〉.

We note that by the chain rule ∂(ζ ◦ T ) = T ∗(∂′ζ) ◦ T , where T ∗ denotes
the !2-transpose of T and ∂′ denotes the !2-gradient w. r. t. the a′-variable.
Hence we have

〈 1

ζ ◦ T |∂(ζ ◦ T )|2"2〉 ≤ |T ∗|L("2,"2)〈
1

ζ ◦ T |(∂′ζ) ◦ T )|2"2〉 = |T ∗|L("2,"2)〈
1

ζ
|∂′ζ |2"2〉′,

where |T ∗|L("2,"2) denotes the operator norm of T ∗. Since T ∗ is the convolution
with x ,→ φ(−x), its operator norm is indeed estimated by |φ|"1.

Proof of Lemma
L2.3
3

Let p < ∞ and δ > 0 be given. At first, we think of ζ(a) as being strictly
positive. We start with the elementary real-variable estimate

ζ ≤ C0(p, δ)ζ
1
2p + δ(ζ ln ζ − ζ + 1),

(note that the last term on the r. h. s. is non-negative and vanishes only for
ζ = 1). Taking the expectation yields

〈ζ〉 ≤ C0(p, δ)〈ζ
1
2p 〉+ δ〈ζ ln ζ − ζ + 1〉.
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By Young’s inequality we have

C0(p, δ)〈ζ
1
2p 〉 ≤ C1(p, δ)〈ζ

1
2p 〉2p + 1

2
.

Combining the last two estimates yields

〈ζ〉 ≤ C1(p, δ)〈ζ
1
2p 〉2p + 1

2
+ δ〈ζ ln ζ − ζ + 1〉.

In case of 〈ζ〉 = 1, this estimate can be rewritten as

1

2
〈ζ〉 ≤ C1(p, δ)〈ζ

1
2p 〉2p + δ〈ζ ln ζ〉.

We use the latter estimate with ζ replaced by ζ
〈ζ〉 and rearrange:

1

2
〈ζ〉 ≤ C1(p, δ)〈ζ

1
2p 〉2p + δ〈ζ ln ζ

〈ζ〉〉.

We now are in the position to insert LSI:

1

2
〈ζ〉 ≤ C1(p, δ)〈ζ

1
2p 〉2p + δ

2ρ
〈1
ζ
|∂ζ |2"2〉.

We use the last estimate with ζ replaced by |ζ |2p:

1

2
〈|ζ |2p〉 ≤ C1(p, δ)〈|ζ |〉2p +

δ

2ρ
〈 1

|ζ |2p |∂|ζ |
2p|2"2〉.

Appealing to the chain rule in form of |∂|ζ |2p|"2 = 2p|ζ |2p−1|∂ζ |"2p, this turn
into

1

2
〈|ζ |2p〉 ≤ C1(p, δ)〈|ζ |〉2p + 4p2

δ

2ρ
〈|ζ |2p−2|∂ζ |2"2〉.

Using Young’s inequality in form of

4p2
δ

2ρ
|ζ |2p−2|∂ζ |2"2 ≤

1

4
|ζ |2p + C2(p, ρ)δ

p|∂ζ |2p"2

yields
1

4
〈|ζ |2p〉 ≤ C1(p, δ)〈|ζ |〉2p + C2(ρ, p)δ

p〈|∂ζ |2p"2 〉.

It remains to rename 4C2(ρ, p)δp with δ.
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3 Quenched estimates on Green’s function

Let us start by motivating why the Green function comes up. Recall that for
some right hand side f(x), we are interested in the solution u(a; x) of

∇∗a∇u = f. (4) m.1

More precisely, we are interested in estimating the fluctuations u(x)−〈u(x)〉.
Focussing on the variance 〈(u(x)−〈u(x)〉)2〉, we are lead to use SG, cf. Lemma
L2.1bis
1:

〈(u(x)− 〈u(x)〉)2〉 ≤ 1

ρ
〈
∑

b

(
∂u(x)

∂a(e)
)2〉.

Hence we are lead to consider the partial derivative ∂u(x)
∂a(e) , which measures

how sensitively the value u(x) of the solution u of (
m.1
4) evaluated at site x

depends on the value a(e) of the coefficient field a at edge e. This sensitivity
can be expressed in terms of the elliptic Green function, cf. Definition

m.2
5

below. Indeed, applying ∂
∂a(e) to (

m.1
4), we obtain

∇∗a∇ ∂u

∂a(e)
+∇∗δ(·, e)∇u(e) = 0,

where δ(b, e) is the discrete Dirac distribution on edges, i. e. δ(e, e) = 1 and
δ(b, e) = 0 for b /= e. Hence we obtain the representation

∂u(x)

∂a(e)
= −∇G(x, e)∇u(e).

Hence in order to carry out this program, we need decay estimates on the gra-
dient of the elliptic Green’s function G(a; x, y). In fact, it will be important
to get estimates that depend on a ∈ Ω only through λ. This automatically
leads to the theory of Nash, De Giorgi and Moser. For our purposes, it will
be most convenient to use its parabolic, i. e. Nash, version.

m.2 Definition 5. Let δ(x) =

{
1 for x = 0
0 else

}
denotes the (discrete) Dirac dis-

tribution.

The parabolic Green’s function G(a; t, x, y)
short
= G(t, x, y) is defined as fol-

lows: For any a ∈ Ω, y ∈ Zd, [0,∞)× Zd 0 (t, x) ,→ G(a; t, x, y) is differen-
tiable in t, decaying in x and satisfies

∂tG(t, x, y) + (∇∗a∇G(t, ·, y))(x) = 0 for t ≥ 0,

G(t = 0, x, y) = δ(x− y).
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The elliptic Green’s function G(a; x, y)
short
= G(x, y) is defined as follows:

For any a ∈ Ω, y ∈ Zd, Zd 0 x ,→ G(a; x, y) is the decaying solution of

(∇∗a∇G(·, y))(x) = δ(x− y). (5) P.5

The following lemma establishes decay rates for the parabolic Green function
in time and space. They are optimal in the sense that the constant-coefficient
Green function would not decay at a better rate. They are “quenched” in
the sense that they do not depend on a ∈ Ω. However, in particular the
gradient bound is not pointwise in space, but expresses spatial decay only in
an !2-sense.

L2.1 Lemma 4. [Nash ’59] It holds for all a ∈ Ω, α < ∞, y ∈ Zd, and t ≥ 0

∑

x

(
|x− y|2

t+ 1
+ 1)αG2(t, x, y) ≤ C(d, λ, α)(t+ 1)−

d
2 ,

∑

b

(
|x(b)− y|2

t+ 1
+ 1)α(∇G)2(t, b, y) ≤ C(d, λ, α)(t+ 1)−

d
2
−1, (6)

where x(b) denotes the coordinate of the midpoint of the edge b.

The following lemma establishes spatial decay rates for the elliptic Green
function. As for Lemma

L2.1
4, both estimates are quenched but non-pointwise.

The first estimate is optimal in the sense that even for the constant-coefficient
Green function, the weight exponent α can not be increased. The second
estimate is not-optimal in this sense, but cannot be improved as a quenched
estimate.

L2.2bis Lemma 5. i) For all a ∈ Ω, α < d
2 − 1 (α is allowed to be negative), y ∈ Zd

we have ∑

b

(|x(b)− y|+ 1)2α(∇G)2(b, y) ≤ C(d, λ, α). (7) L2.2.1

ii) There exists an α > d
2 − 1 only depending on d and λ such that for all

edges e we have

∑

b

(|x(b)− x(e)|+ 1)2α(∇∇G)2(b, e) ≤ C(d, λ), (8) L2.2.3

where ∇∇G(b, e) denotes the mixed derivative.
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Proof of Lemma
L2.1
4

W. l. o. g. we may assume that y = 0; we write G(t, x)
short
= G(t, x, 0). We

will show the statement of the lemma in form of
∑

x

(|x|α + 1)G2(t, x) ≤ C(d, λ, α)(t+ 1)−
d
2+

α
2 ,

∑

b

(|x(b)|α + 1)(∇G)2(t, b) ≤ C(d, λ, α)(t+ 1)−
d
2+

α
2 −1.

By Hölder’s inequality, it is enough to consider either α = 0 or α > d+ 2.

Step 1. The interpolation estimate

(
∑

x

u2

) 1
2

≤ C(d)

(
∑

b

(∇u)2
) 1

2
d

d+2
(
∑

x

|u|
) 2

d+2

,

which we use in form of

∑

b

(∇u)2 ≥ 1

C(d)

(
∑

x

u2

) d+2
d

for
∑

x

|u| = 1.

Here, we only give the argument for d > 2. The interpolation estimate is a
combination of the discrete Sobolev estimate (inverse exponents related by
1
2 −

1
d = d−2

2d )
(
∑

x

|u|
2d
d−2

) d−2
2d

≤ C(d)

(
∑

b

(∇u)2
) 1

2

and Hölder’s inequality (inverse exponents are related by 1
2 = θ d−2

2d +(1−θ)11
with θ = d

d+2)

(
∑

x

u2

) 1
2

≤ C(d)

(
∑

x

|u|
2d
d−2

) d−2
2d

d
d+2

(
∑

x

|u|
) 2

d+2

.

The discrete version of the Sobolev inequality can be derived from the con-
tinuum one by identifying u with a finite element function on a triangulation
subordinate to the lattice Zd.
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Step 2. Unweighted estimates of G and unweighted, time-integrated esti-
mates of ∇G. We claim that

∑

x

G(t, x)2 ≤ C(d, λ)(t+ 1)−
d
2 , (9)

∫ ∞

t

∑

b

a(b)(∇G)2(t′, b)dt′ ≤ C(d, λ)(t+ 1)−
d
2 . (10)

We need the three ingredients

1) From the maximum principle: ∀ x ∈ Zd G(t = 0, ·) ≥ 0 implies
∀ x ∈ Zd G(t, ·) ≥ 0.

2) From the equation d
dt

∑
x G(t, x) = 0, so that

∑
x G(t = 0, x) = 1 yields∑

xG(t, x, 0) = 1. Together with 1), we get
∑

x |G(t, x)| = 1.

3) From the equation d
dt

∑ 1
2G

2(t, x) = −
∑

b a(b)(∇G)2(t, b) ≤ −λ
∑

b(∇G)2(t, b),
where we used a(b) ≥ λ. In particular, (

L21.2
10) follows from (

L21.1
9).

Applying Step 1 to u(x) = G(t, x) we obtain the differential inequality

d

dt

∑

x

G2(t, x) ≤ − 1

C(d, λ)

(
∑

x

G2(t, x)

) d+2
d

,

which can be rewritten as

d

dt

(
∑

x

G2(t, x)

)− 2
d

≥ 1

C(d, λ)

and thus yields ∑

x

G(t, x)2 ≤ C(d, λ)t−
d
2 .

Moreover, thanks to discreteness, we have

∑

x

G(t, x)2 ≤
(
∑

x

|G(t, x)|
)2

= 1,

which we use for t ≤ 1.

13



Step 3. Unweighted estimates on ∇G. We claim that
∑

b

(∇G)2(t, b) ≤ C(d, λ)(t+ 1)−
d
2−1. (11) L21.3

Indeed, because of

d

dt

∑

b

a(b)(∇G)2(t, b) = −
∑

x

(∇∗a∇G)2(t, x) ≤ 0,

which implies

λ
∑

b

(∇G)2(t, b) ≤
∑

b

a(b)(∇G)2(t, b) ≤ 2t−1

∫ t

t
2

∑

b

a(b)(∇G)2(t′, b)dt′,

we may upgrade the time-integrated estimate (
L21.2
10) in Step 2. This establishes

(
L21.3
11) for t ≥ 1. The range t ≤ 1 follows from discreteness:

(
∑

b

(∇G)2(t, b)

) 1
2

≤ 2d

(
∑

x

G2(t, x)

) 1
2

≤ 2d
∑

x

|G(t, x)| = 2d.

Step 4. Weighted estimates on G. We claim that for any d < α < ∞
∑

x

(|x|α + 1)G2(t, x) ≤ C(d, λ, α)(t+ 1)
d
2+

α
2 . (12)

We start by using the equation in form of

d

dt

1

2

∑

x

(|x|α + 1)G(t, x)2 = −
∑

b

a(b)∇G(t, b)∇[(| · |α + 1)G(t, ·)](b).

We now need the following discrete analog on of Leibniz’ rule

∇(vu) = v∇u+ u∇v,

where we introduced the notation u(b) = 1
2(u(x)+u(y)) if the edge b connects

the vertices x and y.

∇G(t, b)∇[(| · |α + 1)G(t, ·)](b)
= | · |α + 1(b)(∇G)2(t, b) +∇G(t, b)G(t, ·)(b)(∇| · |α)(b)

≥ −1

4

(G(t, ·)∇| · |α)2(b)
| · |α + 1(b)

≥ −C(α)(| · |α−2 + 1)G2(t, ·)(b).

14



Together with λ ≤ a(b) ≤ 1, and Hölder’s inequality (where we use α > d ≥
2) this yields the differential inequality

d

dt

∑

x

(|x|α + 1)G(t, x)2

≤ C(α)
∑

x

(|x|α−2 + 1)G2(t, x)

≤ C(α)

(
∑

x

G2(t, x)

) 2
α
(
∑

x

(|x|α + 1)G2(t, x)

)1− 2
α

.

We rewrite the differential inequality as

d

dt

(
∑

x

(|x|α + 1)G(t, x)2
) 2

α

≤ C(α)

(
∑

x

G2(t, x)

) 2
α

,

so that we may plug in the result of Step 3:

d

dt

(
∑

x

(|x|α + 1)G(t, x)2
) 2

α

≤ C(d, λ, α)(t+ 1)−
d
α .

We integrate this differential inequality over (0, t); since − d
α > −1 and∑

x(|x|α + 1)G2(t = 0, x) = 1, this yields as desired (
L2.1.2
12).

Step 5. Weighted estimates on ∇G. We claim that for any d+ 2 < α < ∞
∑

b

(|x(b)|α + 1)(∇G)2(t, b) ≤ C(d, λ, α)(t+ 1)−
d
2−1+α

2 .

We start by using the equation in form of

d

dt

1

2

∑

b

| · |α + 1 a(∇G(t, ·))2 = −
∑

x

(∇∗a∇G(t, ·))(∇∗(| · |α + 1 a∇G(t, ·)).

We note that by duality, the discrete Leibniz rule for the divergence assumes
the form

∇∗(vg) = v∇∗g − g∇v
∗
,

15



where g∗ denotes the dual operation to v; it is given by d times the arithmetic
mean of g over the adjacent edges to x. We obtain

(∇∗a∇G(t, ·))(x)(∇∗(| · |α + 1 a∇G(t, ·))(x)
= (|x|α + 1)(∇∗a∇G(t, ·))2(x)− (∇∗a∇G(t, ·))(x)(∇| · |α) a∇G(t, ·)

∗
(x)

≥ −1

4

1

|x|α + 1
(∇| · |α) a∇G(t, ·)∗

2
(x)

≥ −C(d, α)| · |α + 1
α−2
α a(∇G(t, ·))2

∗

(x).

Hence we obtain with help of Step 3

d

dt

∑

b

| · |α + 1 a(∇G(t, ·))2

≤ C(d, α)
∑

b

| · |α + 1
α−2
α a(∇G(t, ·))2

≤ C(d, α)

(
∑

b

(∇G)2(t, b)

) 2
α
(
∑

b

| · |α + 1a(∇G(t, ·))2
)1− 2

α

≤ C(d, λ, α)(t+ 1)−
d
α− 2

α

(
∑

b

| · |α + 1 a(∇G(t, ·))2
)1− 2

α

,

that is,

d

dt

(
∑

b

| · |α + 1 a(∇G(t, ·))2
) 2

α

≤ C(d, λ, α)(t+ 1)−
d
α− 2

α .

Since by assumption − d
α − 2

α > −1 and
∑

b | · |α + 1 a(∇G(t = 0, ·))2 ≤
C(d, α), we obtain upon integration as desired

λ
∑

b

(|x(b)|α + 1)(∇G(t, b))2 ≤
∑

b

| · |α + 1 a(∇G(t, ·))2

≤ C(d, λ, α)(t+ 1)−
d
2
−1+α

2 .

Proof of Lemma
L2.2
2
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We only give the argument in case of d > 2, the case of d = 2 is more subtle.
We start with (

L2.2.1
7); since d > 2 we may restrict ourselves to α ≥ 0. We use

Lemma
L2.1
4, more precisely (

L2.2.2
6), in form of

(
∑

b

(|x(b)− y|+ 1)2α(∇G)2(t, b, y)

) 1
2

≤ C(d, λ, α)(t+ 1)−
d
4−

1
2+

α
2 .

Because of G(x, y) =
∫∞
0 G(t, x, y)dt, this yields by the triangle inequality w.

r. t. !2b
(
∑

b

(|x(b)− y|+ 1)2α(∇G)2(b, y)

) 1
2

≤ C(d, λ, α)

∫ ∞

0

(t+ 1)−
d
4−

1
2+

α
2 dt.

The time integral is finite for α < d
2 − 1.

We now turn to (
L2.2.3
8) and only give the (easy) argument for α < d

2 − 1 (which
is all we later need to treat the case d > 2): Writing e = [y−, y+], we see that
(
L2.2.3
8) follows from (

L2.2.1
7) (with y = y±) via the triangle inequality w. r. t. !2b .

4 Annealed estimates on Green’s function and
proof of main result

In this section, we bring the concepts from statistical mechanics (LSI, SG)
together with the tools from elliptic/parabolic regularity theory. The first
result only relies on the latter and establishes optimal spatial decay of the
elliptic Green function. It is superior to Lemma

L2.2bis
5 in the sense that the esti-

mate is pointwise in space. But, as opposed to Lemma
L2.2bis
5, it is not “quenched”

(i. e. uniform in a ∈ Ω), but only “annealed” in the sense that the pointwise
quantities are only optimally estimated after taking the expectation.

L4.1 Lemma 6. [Delmotte & Deuschel ’05] Let 〈·〉 be stationary. Then we have
for all y ∈ Zd and edges b and e:

〈|∇G(b, y)|〉 ≤ C(d, λ)(|x(b)− y|+ 1)1−d,

〈|∇∇G(b, e)|〉 ≤ C(d, λ)(|x(b)− x(e)|+ 1)−d. (13)

The main role of the assumption of LSI for 〈·〉 is to upgrade the annealed
bounds of Lemma

L4.1
6 to higher stochastic moments — in fact, to any stochastic

moment 2p. This way, we almost get a pointwise quenched estimate.
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P Proposition 1. Let 〈·〉 be stationary and satisfy LSI with constant ρ > 0.
Then we have for all p < ∞, y ∈ Zd and edges b and e:

〈|∇G(b, y)|2p〉
1
2p ≤ C(d, λ)(|x(b)− y|+ 1)1−d, (14)

〈|∇∇G(b, e)|2p〉
1
2p ≤ C(d, λ)(|x(b)− x(e)|+ 1)−d. (15)

Theorem
T’
2 is an immediate consequence of the ε-free version of the following

Theorem, which itself is an easy consequence of the annealed Green’s function
estimates of Proposition

P
1.

T Theorem 3. Suppose 〈·〉 is stationary and satisfies the Logarithmic Sobolev
Inequality with constant ρ > 0. For any compactly supported function f(x),

x ∈ Zd and for a ∈ Ω consider the decaying solution u(a; x)
short
= u(x) of

∇∗a∇u = f.

i) Suppose d > 2. For all 2 ≤ p < ∞ and r < ∞ it holds

〈(
∑

x

|u(x)− 〈u(x)〉|p
) r

p
〉 1

r

≤ C(d, λ, ρ, r, p)

(
∑

x

|f(x)|q
) 1

q

,

where q is related to p via 1
q = 1

p +
1
d .

ii) Suppose d ≥ 2. For all compactly supported function g(x), x ∈ Zd and
r < ∞ it holds

〈(
∑

x

(u(x)− 〈u(x)〉)g(x)
)r〉 1

r

≤ C(d, λ, ρ, r, p)

(
∑

x

|g(x)|p
) 1

p
(
∑

x

|f(x)|q
) 1

q

, T.1

provided 1 < p, q < ∞ are related by 1
p +

1
q = 2

d +
1
2 .

Proof of Lemma
L4.1
6

We will just give the argument for (
L4.1.1
13), the argument for the first estimate

is similar.
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Step 1. Representation formula

∇∇G(b, e) =

∫ ∞

0

∑

x

∇G(
t

2
, b, x)∇G(

t

2
, e, x)dt

This follows from

• the relation between parabolic and elliptic Green’s function

G(y, z) =

∫ ∞

0

G(t, y, z)dt,

• the semi group property of the parabolic Green’s function

G(t, y, z) =
∑

x

G(
t

2
, y, x)G(

t

2
, x, z),

• and the symmetry of the parabolic Green’s function

G(
t

2
, x, z) = G(

t

2
, z, x).

It remains to take the gradient w. r. t. the variables y and z.

Step 2. From Step 1 we obtain the inequality

|∇∇G(b, e)|

≤
∫ ∞

0

(
|x(b)− x(e)|2

t+ 1
+ 1)−

α
2

(
∑

x

(
2|x(b)− x|2

t+ 1
+ 1)α(∇G)2(

t

2
, b, x)

) 1
2

×
(
∑

x

(
2|x(e)− x|2

t + 1
+ 1)α(∇G)2(

t

2
, e, x)

) 1
2

dt.

We start from the triangle inequality |x(b) − x(e)| ≤ |x(b) − x| + |x(e) − x|
and its square |x(b)−x(e)|2

t+1 ≤ 2|x(b)−x|2
t+1 + 2|x(e)−x|2

t+1 , which we use in form of

1 ≤ (
|x(b)− x(e)|2

t+ 1
+ 1)−

α
2 (
2|x(b)− x|2

t+ 1
+ 1)

α
2 (
2|x(e)− x|2

t + 1
+ 1)

α
2 .
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Hence we obtain from Step 1:

|∇∇G(b, e)| ≤
∫ ∞

0

(
|x(b)− x(e)|2

t+ 1
+ 1)−

α
2

∑

x

(
2|x(b)− x|2

t+ 1
+ 1)

α
2 ∇G(

t

2
, b, x)(

2|x(e)− x|2

t+ 1
+ 1)

α
2 ∇G(

t

2
, e, x)dt.

It remains to apply Cauchy-Schwarz in x.

Step 3. Using stationarity, we upgrade Step 2 to

〈|∇∇G(b, e)|〉

≤
〈∫ ∞

0

(
|x(b)− x(e)|2

t + 1
+ 1)−

α
2

∑

b′

(
2|x(b′)|2

t + 1
+ 1)α(∇G)2(

t

2
, b′, 0)dt

〉

.

Indeed, taking the expectation of Step 2 and using Cauchy Schwarz w. r. t.
〈·〉, we obtain

〈|∇∇G(b, e)|〉

≤
∫ ∞

0

(
|x(b)− x(e)|2

t + 1
+ 1)−

α
2

(
∑

x

(
2|x(b)− x|2

t + 1
+ 1)α〈(∇G)2(

t

2
, b, x)〉

) 1
2

×
(
∑

x

(
2|x(e)− x|2

t+ 1
+ 1)α〈(∇G)2(

t

2
, e, x)〉

) 1
2

dt.

By stationarity of 〈·〉 and G, we have

〈(∇G)2(a;
t

2
, b, x)〉 = 〈(∇G)2(a(·+ x);

t

2
, b, x)〉 = 〈(∇G)2(a;

t

2
, b− x, 0)〉,

so that by a change of variables

∑

x

(
2|x(b)− x|2

t + 1
+1)α〈(∇G)2(

t

2
, b, x)〉 ≤

∑

b′

(
2|x(b′)|2

t+ 1
+1)α〈(∇G)2(

t

2
, b′, 0)〉.

Step 4. Using Lemma
L2.1
4, Step 3 allows to conclude. Indeed, by (

L2.2.2
6), Step 3

yields

〈|∇∇G(b, e)|〉 ≤ C(d, λ, α)

∫ ∞

0

(
(|x(b)− x(e)|+ 1)2

t+ 1
+ 1)−

α
2 (t + 1)−

d
2−1dt.
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By the change of variables t̂ = t+1
(|x(b)−x(e)|+1)2 , this turns into

〈|∇∇G(b, e)|〉 ≤ C(d, λ, α)(|x(b)− x(e)| + 1)−d

∫ ∞

0

t̂
α
2 −

d
2−1

(t̂ + 1)
α
2
dt̂.

The last integral is finite for α > d.

Proof of Proposition
P
1.

We only prove (
P.11
15). The proof of (

P.10
14) relies on (

P.11
15) and uses similar argu-

ments.
Step 1. Formula for partial derivatives

∂

∂a(e)
G(x, x′) = −∇G(x, e)∇G(x′, e), (16)

∂

∂a(e)
∇G(b, x′) = −∇∇G(b, e)∇G(x′, e),

∂

∂a(e)
∇G(b, b′) = −∇∇G(b, e)∇G(b′, e). (17)

Taking the partial derivative of (
P.5
5) w. r. t. a(e), we obtain

∇∗a∇ ∂G

∂a(e)
(·, x′) +∇∗(δ(· − e)∇G(·, x′)) = 0,

which we rewrite as

∇∗a∇ ∂G

∂a(e)
(·, x′) = −∇∗(δ(· − e)∇G(e, x′)).

Hence we obtain the Green’s function representation

∂

∂a(e)
G(x, x′) = −

∑

y

G(x, y)∇∗(δ(· − e)∇G(e, x′))(y)

= −
∑

b

∇G(x, b)δ(b− e)∇G(e, x′) = −∇G(x, e)∇G(e, x′).

Because of the symmetry of G, this yields (
P.6
16). The two other identities are

obtained upon differentiating (
P.6
16).
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Step 2. There exists p0(d, λ) < ∞ such that for any p ≥ p0(d, λ):

(|x(b)− x(b′)|+ 1)2pd〈|∂∇∇G(b, b′)|2p"2 〉
≤ C(d, λ, p) sup

b′′,b′′′
(|x(b′′)− x(b′′′)|+ 1)2pd〈|∇∇G(b′′, b′′′)|2p〉.

We start from (
P.1
17) in Step 1

|∂G(b, b′)|2"2 =
∑

e

(
∂

∂a(e)
∇∇G(b, b′))2

≤
∑

e:|x(e)−x(b)|≤|x(e)−x(b′)|

(∇∇G(b, e))2(∇∇G(b′, e))2

+
∑

e:|x(e)−x(b′)|≤|x(e)−x(b)|

(∇∇G(b′, e))2(∇∇G(b, e))2

=: |∂+G(b, b′)|2"2 + |∂−G(b, b′)|2"2 .

In the sequel, we only treat the term |∂+G(b, b′)|2"2 , since the second term
|∂+G(b, b′)|2"2 is estimated the same way, just exchanging the roles of b and b′.
We now apply Hölder’s inequality in e with dual exponents p and q, where
we smuggle in a weight:

|∂+∇∇G(b, b′))|2p"2

≤
(
∑

e

|(|x(b)− x(e)|+ 1)α∇∇G(b, e)|2q
)p−1

×
∑

e:|x(e)−x(b)|≤|x(e)−x(b′)|

|(|x(b)− x(e)|+ 1)−α∇∇G(b′, e)|2p. (18)

Using discreteness, we have for the first factor
∑

e

|(|x(b)− x(e)|+ 1)α∇∇G(b, e)|2q

≤
(
∑

e

((|x(b)− x(e)|+ 1)α∇∇G(b, e))2
)q

≤ C(d, λ, p)

by the second estimate in Lemma
L2.2bis
5 for some α > 0 only depending on d and

λ. Hence (
P.2
18) turns into

|∂+∇∇G(b, b′)|2p"2
≤ C(d, λ, p)

∑

e:|x(e)−x(b)|≤|x(e)−x(b′)|

(|x(b)− x(e)| + 1)−2pα|∇∇G(b′, e)|2p.
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We take the expectation

〈|∂+∇∇G(b, b′)|2p"2 〉
≤ C(d, λ, p)

∑

e:|x(e)−x(b)|≤|x(e)−x(b′)|

(|x(b)− x(e)|+ 1)−2pα〈|∇∇G(b′, e)|2p〉

≤ C(d, λ, p)
∑

e:|x(e)−x(b)|≤|x(e)−x(b′)|

(|x(b)− x(e)|+ 1)−2pα(|x(b′)− x(e)|+ 1)−2pd

× sup
b′′

(|x(b′)− x(b′′)|+ 1)2pd〈|∇∇G(b′, b′′)|2p〉.

We conclude by noting that because |x(e) − x(b)| ≤ |x(e) − x(b′)| implies
|x(b′)− x(e)| ≥ 1

2 |x(b)− x(b′)| we have for the first factor

∑

e:|x(e)−x(b′)|≤|x(e)−x(b)|

(|x(b)− x(e)| + 1)−2pα(|x(b′)− x(e)|+ 1)−2pd

≤ (
1

2
|x(b)− x(b′)|+ 1)−2pd

∑

e

(|x(b)− x(e)|+ 1)−2pα,

and that the last sum converges provided p > d
2α .

Step 3. Conclusion for ∇∇G, that is: For p ≥ p0(d, λ) we have

sup
b
(|x(b)− x(b′)|+ 1)2pd〈|∇∇G(b, b′)|2p〉 ≤ C(d, λ, ρ, p).

Indeed, we apply Lemma
L2.3
3 to ζ = G(b.b′):

〈|∇∇G(b, b′)|2p〉 ≤ C(ρ, p, δ)〈|∇∇G(b, b′)|〉2p + δ〈|∂∇∇G(b, b′)|2p"2 〉.

We apply Lemma
L4.1
6 to the first r. h. s. term and obtain

〈|∇∇G(b, b′)|2p〉
≤ C(d, λ, ρ, p, δ)(|x(b)− x(b′)|+ 1)−2pd + δ〈|∂∇∇G(b, b′)|2p"2 〉.

We multiply by (|x(b)− x(b′)|+ 1)2pd and apply Step 2 to the second r. h. s.
term and obtain

(|x(b)− x(b′)|+ 1)2pd〈|∇∇G(b, b′)|2p〉
≤ C(d, λ, ρ, p, δ) + C(d, λ, p)δ sup

b′′,b′′′
(|x(b′′)− x(b′′′)|+ 1)2pd〈|∇∇G(b′′, b′′′)|2p〉
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and take the sup over (b, b′):

sup
b,b′

(|x(b)− x(b′)|+ 1)2pd〈|∇∇G(b, b′)|2p〉

≤ C(d, λ, ρ, p, δ) + C(d, λ, p)δ sup
b,b′

(|x(b)− x(b′)|+ 1)2pd〈|∇∇G(b, b′)|2p〉.

For δ = δ(d, λ, p) we may buckle.

Proof of Theorem
T
3.

Here, we only prove (
T.1
16) for r = 2.

Step 1. Application of SG. We claim that
〈(

∑

x

(u− 〈u〉)g
)2〉

≤ 1

ρ

∑

e

∑

x,x′

∑

y,y′

〈|∇G(e, x)|4〉 1
4 〈|∇G(e, x′)|4〉 1

4 〈|∇G(e, y)|4〉 1
4 〈|∇G(e, y′)|4〉 1

4

×|g(x)g(x′)f(y)f(y′)|. (19)

Indeed, we apply Lemma
L2.1bis
1 to ζ =

∑
x ug. Since g does not depend on a, we

obtain by expanding the square
〈(

∑

x

(u− 〈u〉)g
)2〉

≤ 1

ρ

∑

e

∑

x,x′

〈∂u(x)
∂a(e)

∂u(x′)

∂a(e)
〉g(x)g(x′). (20) T.2

We now represent u(x) with help of the elliptic Green’s function; since f does
not depend on a, we obtain

∂u(x)

∂a(e)
=

∑

y

∂G

∂a(e)
(x, y)f(y) = −

∑

y

∇G(e, x)∇G(e, y)f(y),

where we used the formula in Step 1 of the proof of Proposition
P
1. Inserting

this into (
T.2
20) yields

〈(
∑

x

(u− 〈u〉)g
)2〉

≤ 1

ρ

∑

e

∑

x,x′

∑

y,y′

〈∇G(e, x)∇G(e, x′)∇G(e, y)∇G(e, y′)〉 1
4

×g(x)g(x′)f(y)f(y′).
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An application of Hölder’s inequality w. r. t. 〈·〉 yields (
T.3
19).

Step 2. Application of Proposition
P
1. We claim that

〈(
∑

x

(u− 〈u〉)g
)2〉

≤ C(d, λ, ρ)
∑

e

(
∑

x

|x(e)− x|1−d|f(x)|
)2(∑

y

|x(e)− y|1−d|g(y)|
)2

.(21)

Indeed, inserting the estimate of Proposition
P
1 for p = 4 into Step 1, one

obtains
〈(

∑

x

(u− 〈u〉)g
)2〉

≤ C(d, λ, ρ)
∑

e

∑

x,x′

∑

y,y′

|x(e)− x|1−d|x(e)− x′|1−d

×|x(e)− y|1−d|x(e)− y′|1−d|g(x)g(x′)f(y)f(y′)|

=
∑

e

(
∑

x

|x(e)− x|1−d|f(x)|
)2(∑

y

|x(e)− y|1−d|g(y)|
)2

.

Step 3. Conclusion by Hardy-Littlewood-Sobolev’s inequality. Hölder’s in-
equality applied to the last estimate yields
〈(

∑

x

(u− 〈u〉)g
)2〉

≤ C(d, λ, ρ)




∑

e

(
∑

x

|x(e)− x|1−d|f(x)|
)q̃





2
q̃



∑

e

(
∑

y

|x(e)− y|1−d|g(y)|
)p̃





2
p̃

,

provided 1
p̃ + 1

q̃ = 1
2 . Estimate (

T.4
21) now follows from an application of the

(discrete version of the) Hardy-Littlewood-Sobolev inequality, that is,



∑

e

(
∑

x

|x(e)− x|1−df(x)

)q̃




1
q̃

≤ C(d, q)

(
∑

x

|f(x)|q
) 1

q

,

which holds for 1
q̃ +

1
d = 1

q .
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