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Modeling Strategies: Outlook

Alfio Quarteroni

g Lu; = fi

Homogeneous Pomain Pecomposition

in Ql
Q2 LUQ = fg n QQ

+ coupling conditions on I’

Heterogeneous Pomain Pecomposition

Lu1 = fl n Ql
LUQ = f2 n QQ

+ coupling conditions on I’

Multiphysics

Llul — fl in Ql
L2U2 = f2 in QQ

+ coupling conditions on I

Sequential Multiscale

I v Lu1 — fl in Ql
0 Lyuy = fyon vy
+ coupling conditions on I
Embedded Multiscale 1
= Liuy = f1in Oy
#
5 Lyu, = f,on v
1 + coupling conditions on 7
Reduced Basis Method
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Heterogeneous Domain Decomposition

Advection-Diffusion Equations




ON THE COUPLING OF HETEROGENEOUS PROBLEMS

(with P. Gervasio, University of Brescia, ltaly)

MOTIVATIONS

Consider a simple advection-diffusion equation with boundary layer

Au =div(—vVu +bu) + bou =f
u=20

e

in 2
on S

,,,,,,,,,

___________
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. \

L

b
Pe, (x) = - 2(2” > 1

(advection-dominated case)

Let 7 be a characteristic parameter: e.g.

- =thermal diffusivity
in heat transfer problems, or
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Alfio Quarteroni

Q. 2o C Q: §:§1U§2, QLN =10,

Solve a reduced problem as follows:

Aru =div(bu) + bou = f

-

T

N4
S e
—~
g 0 r 4 layer
o 1 e A y
(OQ \T)" | 2
: e

2 main steps:

Q [Find interface conditions s.t.

@ the new reduced problem is well posed
@ its solution is “close to" the original one

1. Split the domain (SHARP INTERFACE) as:

[ = 0 N oL

\Agu = div(—vVu +bu) + bpu = f

Q |Set up efficient solution algorithms of the reduced problem
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2. Split the domain as: (with OVERLAP)
Q, LCQ: Q=Q U, UNQW=0Qn, =02\
Solve a reduced problem as follows:

Aju =div(bu) + bpu = f

. k. Lrl layer
ey 7L
_ N
- Q4 ] \A2U=diV(—l/Vu—l—bu)+bou: f

@ Find efficient solution algorithms

Q Use Dirichlet conditions at subdomain boundaries

M@ X ; IS
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Methodological framework

Heterogeneous Problem
Advection - Advection Diffusion

WITHOUT OVERLAP WITH OVERLAP
Sharp Interface

y

Asymptotic Analysis Virtual Control Schwarz Virtual Control

2 controls 3 controls

I I
| I
| I
L__1___|
|
I

Bi-CGStab on the
Optimality System

|
|
|
|
|
Solution Strategies :
|
|

I
Bi-CGStab on the
Optimality System

—I Steklov-Poincaré I —_ I Dirichlet/Dirichlet I

P — —— — — — — — — — — — —

Dirichlet/Neumann — | Dirichlet/Robin

D)
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Alfio Quarteroni

ENGINEERING PRACTICE (on overlapped subdomains)

SCHWARZ METHOD: decompose 2 in two
overlapping subdomains and then iterate on the [
Dirichlet data on the interfaces. . [
Q o
The algorithm reads: . ’
given u%o) and ugo), for n > 1 do
(A =f inQ [ A" =f inQ
14y " = In 1 . 2Ur T = n 2
{ b.c. on (0Qq \ )" { b.c. on I \ I
ugn) = uén_l) on [1 \ ugn) = ugn_l) on [

A possible alternative consists in using Robin data instead of Dirichlet on
interface I'». (Houzeaux, Codina '03)

up = u on F1

1 du»
— —(b-nuy; =v—=
2( ) ! an

ouq
on [»

1%

1
— —(b-
an 2( n)u:
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ASYMPTOTIC ANALYSIS (sharp interface)

v. — 0
(-0

(F. Gastaldi, A. Quarteroni, G. Sacchi Landriani 1989) [69589]

B Define the global original problem Pq(r)

and the coupled problem T,

Pa(i) = [P, () /Po. ()]

Regularization on the data. Let = > O
div(—-Vus . +buy )+ boup . = f in
Iy M .
E(.Ul" —b-nru . =1, (,UQ" —b-nru,. onl
(_)nr (_)nr
Ule = UDc on [
boundary conditions on 0N

Alfio Quarteroni

(1)

s INCPHS
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ASYMPTOTIC ANALYSIS (sharp interface)

B V(=) is the variational formulation associated to Pq(<)
B By asymptotic analysis on Vo, (), recover the reduced problem

PQl(O)’

Pa(r2) — [Pa,(0)/Pa,(v)]  when e —0

The new coupled problem [Pq,(0)/Pq,(17)] inherits from the limit process
a proper set of interface conditions

up e — upin L2(Q1),  woe — o in HY(Q2) , when € — 0

The limit (uy, up) satisfies the reduced coupled problem:

div(buy) + bouy = f in Q4 M ={xerl: b_(_x)__nr(x) < 0}

-

div(—vVup +bup) + bgur = in Qo / , \

our .

—b -nfuy =v— —b - -nrw on I /
onr _ 0 /
U = on [ . 2__/
b.c on 9f) (9Qy \ )" i
.C. ¢

M@ X , I
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POSSIBLE SOLUTION ALGORITHMS

The previous interface conditions are used to define a
Dirichlet/Neumann algorithm (DN)

Given v € LZ(TM) = {v:T"" —R: [ b-nrv? < +oc}, for n >0 do

{ -
Al“inﬂ) =f in Q1
solve §ou" =g on (99 \ )
L UYHI) = () on in
( A2u:(2n+1) — f in Qb
Ugnﬂ) =8 on O \ T
o (n+1)
ou, _
solve < 2 —0 on "
(i‘)l‘)r
(")u(”H) 1
—v- ,2 +b- nruf(,'hL ) —b. nruinﬂ) on [out
\ c)n,— <
compute ("D = (1 — ) (") 4 911»(3”H)|rm

For suitable choices of the real parameter # (depending on the data of
the problem), the Dirichlet-Neumann algorithm converges to the
heterogeneous solution (u1, u2) ([GQS89])

- P
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(C.Carlenzoli, A.Q., 1995)

Adaptive Robin/Neumann algorithm (ARN)
Given (0 € [Z(TM) ={v:T" —R: [(b-nrv? < +oc},
10 € [2(rout), uéo) in Q
for n > 0 do
( Aq u("+1) =1 in 4
solve { Uinﬂ) =8 . on (99 \ )"
—b - nf u (n+1) _ %" . np)() on "
\ anr -
( A2u§"+1) =f in Qo
u:(Z"H) =g on 9 \ T
(")u(”H) 1)
solve { v—2 —b- nrug"+ —b - nppl on [out
(‘_’)nr
aué”“) :
v = =0 on [n
L (i')ﬁr
compute Ln+l) — (1 . ) L(n) + 0u n+1 ||’v"n
p(MD) = (1 — 9)p(m +ml” D rout

Alfio Quarteroni Politecnico di Milano & EPFL Lausanne
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CONTINUITY ACROSS THE INTERFACE

Conforming coupling Mortar coupling
Uy = tr» = Aonl /(ul — )1 = 0 Y1) € constraint space
r
T s
QL 01 55
= & o
slave master

The nodal values on I 175 are the active d.o.f.
Those on [ M7 are obtained through the mortar coupling

o IS




MORTAR COUPLING

The differential problem reads: :
given f € H71(Q), find v s.t —Au=1Fin
) ’ o u=20 on X2

Variational Formulation:

find u e V = Hy(9) : / Vu-VvdQ = / fvdQ Vv eV
Q Q

Discrete Variational Formulation

2 2
find us € Vs : Z Vus - VvsdQ = Z/ fusdQ) Yvs € Vs
Q m

m=1 m m=1

Q=Q, U0, QNQ =0,
[ =00 Mo, ul™ =

= usq, T
Vs = {vs € L2(Q) : vs

Qm S CO (ﬁm)

and piecewise polynomial of degree N, on each spectral element of £2,,:

1) (2 L .
/(u,(\ )—u,(.i ))1' =0, 71 € the constraint space}
Jr

(il
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® V. = {pcTinl:pisend-point of a spectral-element edge in 77}
(71= mesh in Q)

A= span{ty € L2(I') : 1), discontinuous piecewise polynomials of degree
N1 — 2 on each spectral-element edge of '}, dim(/\) = Nave—dim(Vr)

In our example: dim(Vf) =
3, N]_ — 5 and ,"\"rslave — 9

Set: /\(1‘) - “((51)‘[_ and /\(3) — l]((gh]lr

~
-

A ~\ slave
conds.

M

Global weak | _ / (AD — XNdl =0 Yy
continuly \(p) = \)(p) p e Ve

How can we get the nodal values of AtY) in terms of those of A\(2)?
that is

How to characterize the matrix = such that AL — =)@ ”

We have to use basis functions of Vi

. I




Basis functions in V
Vs = span({e4e)} U {2} U L))

and
V (1) (1) - (2), (2)
OBU(SX_)/ Zuk/ it (X.y)—l-Zuk,,quxy +Zuk ,kay
ku
where:

9 ,:il,) are the characteristic Lagrange functions in €2, associated to the
Legendre-Gauss-Lobatto (LGL) nodes of 7; \ [ (they vanish on I')

> ;ﬁz,,) are the characteristic Lagrange functions in {2,, associated to the
LGL nodes of 75 \ [ (they vanish on I')

O\
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fork:1

/711':' are N paster cONtinuous piecewise polynomials of degree N; on each
Spectral Element (SE) of

/112;' are N master linearly independent continuous piecewise polynomials of degree
N> on each SE of €2, (characteristic Lagrange functions associated to the nodes

Yix.y) in 4y

2)

fik(x,y) = { H

/

e

x,y) inQ

—

~—

of 7,1 T), and
/(/75(1) - /15(2))1;’p —0 Wiy e A (weak cont. on each SE edge)
r
/"zf(l)(p) = /15(2)(p) Vp € Vr (strong cont. at SE edge end-points)

M@ X |

At
i \

Three different instances of i .« I
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) (1)
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By writing /'7,5(1) as linear combinations of /1,1(-1 . where y1;" are Njave
linearly independent continuous piecewise polynomials of degree Ny on
each SE of ; (characteristic Lagrange functions associated to the nodes
of 7y N T):
-"\"’slave
~ (1 - 1
i 0y) =Y G (x.y)
j=1
the Ny constraint conditions read for k =1...... N master:
-"\'rslave . . »
Z ik / //j(.‘l‘)z',.' = ///E:]z‘,' t=1,..., dim(A)
- T Jr
-"\'"slave
e (1) (2) o
Z\'jk/’j (p) = 1. (p) “peVr
j=1
fOI’ ( — 1 ...... / '\‘:"slave, k — 1 ...... / '\':’[n aster
-"\"’sfave
Z:jkpij:d)ik &l =2=P 1o
j=1
. IS




The Nyave values of A are used to built the Dirichlet data for u(l)

When the discretization is conforming, then

= = ldentity matrix

and  |strong continuity is imposed on I_”
Here, //f:) = /N/E’(l)
> S
e

Alfio Quarteroni

. I
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Alfio Quarteroni

Algebraic formulation of Mortar Coupling

Es

) X |

The master trace is A\(?) the slave trace is A1)
Find u® = [u]7. u® = [u2]7. A®) = N7 st

A1l 0 Al = u) f1
0 Ao Ao r, u® | = f> (2)
=TAr1 Ano ETALNRE+Ann| [A® =", + fr,

Amm, Amr, and Ar ., are blocks of the stiffness matrix on £2,,.
Let S, = Ar,r,, — Arm,,,,A;,,lnA,,,‘rm be the Schur complement matrix
with respect to the interface unknowns of Q,, (m =1, 2).

We eliminate the unknowns u"), u® from the system (2) and set

S=2'S2+5.  x=Z(fn —Ay'f) +fr. — An'F |

(2) is equivalent to the SCHUR COMPLEMENT SYSTEM

.« IS
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Theoretical and Computational aspects

® Error estimate: if ujq, € H*(Q) with s, > 1, then
(Bernardi, Maday, Patera, '93, '94)

2
||U a U‘S”Hl(Q)-brOken < C Z ern—s,,,

m=1

Ul Hsm (Qm)

D 50\ = X can be solved, e.g., by Krylov methods and it can be

preconditioned by S, (the Schur complement associated to the master
domain)

4C; > 0 indep of ¢ s.t. K(S)71S) < G

® = is built once the discretization is known
® ot n — thiteration, with x(") known, the computation of the
matrix-vector product Sx(") requires the solution of one differential

problem in Q; and one in Q,, starting from the discrete traces =x(") and
x(") | respectively

) X , NS
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Numerical results

—Au = f in Q, with Dirichlet boundary conditions
Q =(0.2)%, Q; =(0,1) x (0,2), Q2 = (1.2) x (0.2)
Discretization:

in €21: 5 x 5 spectral elements with N; = 3

in €25: 3 x 3 spectral elements with N, = 10

Master domain: 2>

|
- o = MmN ow

Numerical solution Traces on [

M@ X » P




lterations

M@ X
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Ny =1

Numerical results

4 fixed

,dmega1='2x2, Orhega2=2'x2

LOmega, =2x2, Omega,=2x3

10 12 14 16 18 20

—
(=]
T

I ,Omega1=2x2, IOmega2=2x2

LOmega, =2x2, Omega,=2x3

10 N 15 20
2

lterations

Krylov solver: Preconditioned Bi-CGStab (van der Vorst)
Errors in broken H1(Q) norm

N> = 14 fixed

,dmega1='2x2, Oﬁ1ega2=2x2

_Pmega,=2x2, Omega,=2x3

1i2 N1i4 1-6 1;8

_jOmega,=2x2, blnega2=2x2

LOmega, =2x2, Omega,=2x3

10
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THE INTERFACE HETEROGENEOUS PROBLEM

Let )\, denote the unknown trace on [ of the solution uy
Write the solution (u1, u2) of the heterogeneous problem as

up = uf‘l +wl, u= ui}z + wi,

o~ pgl/2 ) A2 :
where: YA € HOO/ (), u7" and 1.12\~ are solutions of:

Alu{\l = in Azué\2 = in 5
ut =0 on (0Q\ )" u? =0 on O\ T (3)
ui‘l = Aq|rin 0N [in u§\2 =\ on [.

while w{ and w} are solution of

Alwlf =f in{y | A2W2f =f in$» (4)
wi =0 on JQY wi =0 on 0.

f out ~ f
—b-nrw;  onT ows

X2 = —V on [, X = X1+ X2

., l'_-)
0 on ", anr 22 .(Pﬂ!

Alfio Quarteroni
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STEKLOV-POINCARE' equation

Define the Steklov-Poincaré operators (Dirichlet to Neumann maps):

ous? .
0 I—in —v > 2 on "
. on . onr
S\ = { \ . S = |4 o Ao
—b-nrut on o : Aus? X
! — | v—2 —b-nru? on [
(')nr -
\
At continuous level:
0U2 .
i =tr, v——=0 onl",
C)nr
()UQ
—b-nfuy =v—=—b-nru, on o
()nr

)

S1A1 + 2N = X1+ x2
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Mortar Steklov-Poincaré equation for A-AD coupling

Continuity is enforced only on "
the matrix = is built to transform A5 = /\2|r;n in A" = /\1|r;n

On [°“" no continuity is enforced on the traces, but only on fluxes
through the SP equation and the interpolation matrix @ from 77 N e
to To M o,

The mortar Steklov-Poincaré equation reads:

an — E/\I2n

([ Dslout:_ 0 ] +52> [ )\gut ] — [ D'\fUt—F\SUt ]

A

N

S X

where: D = M{" Q(M")~ 1,

02
M$!*= one-dimensional mass matrix on [°“* N 7T},

! If @ =1, = =1, we recover the conforming couplin
R (il |
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PRECODITIONING of SP equations

SP equation SA, = x can be solved by preconditioned Bi-CGStab
method.

If either " = () or [t = (), then the convergence is achieved in 2
iterations. Otherwise #it grows with #d.o.f.
B S, is coercive = S, can be used to precondition SP equations

Conforming coupling (Z = 1/):
(F. Gastaldi, A. Quarteroni, G. Sacchi Landriani, 1989)

34C; > 0 indep of 0, . b s.t. K((S)71S) < G

Mortar coupling:
(experimentally)

34C > 0 indep of 4. v, b s.t. IC((SQ)_15) < G

M@ X » IS
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PBi-CGstab iterations on SP equation

b=[y—-01 —x]"

V//ssr s " e o g o
V' /S r s - o ::::\\‘::‘\
TIPS NN N
"////: \\\\\\\\ NN AN
rrrriisiso bk layer
Pttt e, .o NN
N NN B
AR
D Qg
‘.‘.'.‘.'.\\\A.,,,,:..J.‘,
TR B
LI T Y Yy
RSN SRS P o
NN <0477
NN NN~ - s L
—eerrr s AV
! S — ,
AN LN . R PV
NN e Vo
107
.09
0.932
0,365
0,792
[R5
0665
0509
053
0,465
0.4
(R
0,265
02
0.133
0065
6.065-18

Stopping test: |[r9]|/|[¢?]] < 1071

|3-4 iterationsm

for both conforming and mortar coupling

versus  the  polynomial  degree

Ny = 16, except Noy =
close to the right vertical side.
5 x 5 spectral elements in each Q, v = 10

,v.

=7

versus # of elem: M, =
and Ny =N, =8, v = 102

versus viscosity: v

N:
64

-2

- IR
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A1. \» solutions of the MINIMIZATION PROBLEM

with

on [:

Aivn=Ff  in{y Aotr = f

b.c. on (O \ )" b.c.

=\ on [ Uy, = A\

93
Ani i

I' Ql 7 I_
95

VIRTUAL CONTROL APPROACH (without overlap)

Introduce two functions A1 and \» to be used as unknown Dirichlet data

in €2
on OQ, \ I
on [
TN

[ Q5

/\llr?/f\2 J(A1,\2)

1 1
J()‘1~/\2) — 5””1 — U2H%ﬁ([’in) + 5 Hb -Nrup + (I/ -

0U2
- —b- nru
(‘)I’Ir

2

H=1/2(T)

Alfio Quarteroni Politecnico di Milano & EPFL Lausanne
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We have to solve a control problem with both control and observation on
the boundary (the interface).

THEOREM (P.Gervasio, J.-L. Lions, A.Q., 2001)
There exists a unique solution of the minimum problem infy, , J(A1, \2)

We can define the inner product in H=/2(T) as

(@0 vay = [ (=BT 40)(=A0) T4 0)dr = [ ((~ar)opudr

r r

where —Ar is the Laplace-Beltrami operator on I
The operator (—Ar)~/? could be replaced by any isomorphism

, 1/2 1/2
Pt (Hoo™ (M) — Hog ()
e.g.
@ a Dirichlet to Neumann map,
Q the inverse of the Steklov-Poicaré 5S> on I.

The operator P plays the role of the preconditioner for the dual state
problems.

M@ X| » IS
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RECOVERING INTERFACE CONDITIONS

If A = (A1, \>) is the solution of the minimization problem

/\|1r.1£2 J(A1.\2)

then the state solutions u; and wup satisfy the interface conditions

du 2

—b -nru; =v —b-nru, onl

i

anr '
Uy = Uo on [

and the Euler-Lagrange equation can be written in terms of SP operators:

J(A) =0+ S*'S;'SA =%

S5* is the Steklov-Poincaré operator associated to the dual problems
P = S5 is an optimal preconditioner for 5*52_15

Alfio Quarteroni Politecnico di Milano & EPFL Lausanne




Q = (1.1 Q = (-1.0.8) x
***** | layer  (=1,1), 2> =(0.8.1) x (-1,1).

b= (10y.0)", by =1, f =0.
Neumann b.c. on horizontal sides of
(2

up = 0 on the right vertical side of 2,
u; = 1 on the inflow left side of {4

o I

Alfio Quarteroni Politecnico di Milano & EPFL Lausanne




Number of iterations

D/N: Dirichlet Neumann;  SP: PBi-CGStab on Steklov-Poincaré eq. with P = So;
VC: PBi-CGStab on Virtual-Control Optimality System with P = 57

r = 0.1 v = 0.01
N | D/N| SP VC N | D/N | SP VC
it | #it | #it infJ it | #it | #it infJ
6| 2 1 | 4 4.14e00 6 | 2 1 | 4 1.27e09
8| 2 1 | 4 1.69e10 8| 2 1 | 2 4.70e11
10 | 2 1 | 4 6.56e-12 10 | 2 1 | 2 17312
12| 2 1 | 4 20813 12 | 2 1 | 2 5.28el14
14 | 2 1 | 4 4.95e15 14 | 2 1 | 2 1.24e15
16 | 2 1 | 4 86lel7 16 | 2 1 | 2 21217
v D/N | SP VC

#it | #it | #it inf J Stopping test:

2 1 3 279%-09 [[AKFD_\K)|| < 10710 for DN

2 1 | 2 127e09 | k+1)| i

2 | 1| 2 067el0 T S 107" for SP and

2 1 | 2 544e10 ¢

2 1 | 1 236e10

» I
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VIRTUAL CONTROL (without overlap)

REMARKS
B The Virtual Control approach with

1 ) 1 O ’
J(/\l/\Q) = §HU1—U2HL%(I—,-,,)—|—§ b- nru; + <]/('_)r|r —b- anQ) Mo

is formally equivalent to the heterogeneous problem by asymptotic
analysis

® Virtual Control approach provides a numerical algorithm (through the
solution of the optimality system) alternative to the solution of the
Steklov-Poincaré equation

® The cost functional is set up starting from known interface conditions,
it is problem dependent and it requires a-priori knowledge of the problem.
Alternative: Virtual Control with overlap: the a-priori knowledge of the
interface problem is NOT required

Alfio Quarteroni Politecnico di Milano & EPFL Lausanne



TS
r 2
2 I_l /\1, !
€2
Aiup=1Ff in ( Aotr = f
b.c. on (0 \ )" b.c
up =\ on ['{ | w2 =
A1. Ao, solutions of ,\ini Ja, (A1s A2) with
1.12

VIRTUAL CONTROL APPROACH (with overlap)
(Glowinski et al. '80, '90, J.-L. Lions et al. 2000)

Q. 2 C Q, lezﬂlﬂfb#w, rk:é?Qk\{9Q,k:1,2.

/\2

| %
In Qz
on ()Qz \ F2
on >

Jle (/\1' /\2)

1

2

/ (1 — u2)?
J Q12

Alfio Quarteroni Politecnico di Milano & EPFL Lausanne

DISTRIBUTED OBSERVATION ON THE OVERLAP i, . ("




VIRTUAL CONTROL (with overlap)

THEOREM (P.Gervasio, J.-L. Lions, A.Q., 2001)
Under suitable assumptions on the data,

there exists a unique solution of this minimum problem.

Moreover ¢(v) = inf Jo,,(A1.A\2) — 0 when v — 0

0.5

®n general wu; # wus in Qo

0.45F
04r
0.35F
03
0.25F
02F
0.15F

01k

o

Alfio Quarteroni

nosk

1 o2

04F

0.3F

01k

0.1 02

0.3

0.4

/=

0.

01

e e
7 0.8

b
0.9

. I
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VIRTUAL CONTROL (distributed observation on the overlap)

% it ) it N | #it
10~1 24 0.1 | 20 8 | 20
102 19 0.04 | 21 12 | 31
103 19 0.02 | 25 16 | 45

5.107% | 18 0.01 | 70 20 | 50

N = polynomial degree, d = xr; — xr, = meas,(Q12).
Number of BiCG-Stab iterations needed to satisfy the stopping criterion
on the residual with tolerance ¢ = 107°

v =510"% b =[10y.0]".
bp =1, f=1

it grows w.r.t.
the polynomial degree N
— and 1/0
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M\1. Mo, solutions of | inf I (A1, A2) with
A1.A2

Q, 7= I
B e B
2 rl /\1, A
25
A1U1 = f in Ql ( A2U2 = f
b.c. on ((“?Ql \ry)m (b
U = A\ on [} | w2 = \>

OBSERVATION ON THE INTERFACES 1 U T

Q1 W CQ Qo= N #£0, Tp=0Q\0Q, k=1,2.

Ao
A
In Q2
on O \ >
on >

1
deAgzzﬁ'Jm—wf
urs

Alfio Quarteroni Politecnico di Milano & EPFL Lausanne

« IR




Comparison between distributed and interface observation

25

ldistributed

distributed | .
“ton _mterf_aces '

on _interfaces

20F

® Virtual control with overlap
does not require a-priori knowl-
edge of interface conditions

(distributed —
slPON |‘n te rfa Ces‘

® Interface observation per-

T forms better than distributed

o—— IN — mainly fgr small overlap and high
polynomial degree
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