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Reduced Basis Method: Motivations

✓ Parametrized PDEs problems (parameters  μ can be physical - 
as material properties, boundary data, source terms - or 
geometrical)

✓ Prediction of engineering outputs associated with PDEs

✓ Many query (e.g. control, optimization) and 
     Real-time (e.g. parameter estimation, rapid simulation) contexts

✓ Improve computational performance by using problems of lower 
dimensions

✓ Offline/Online decomposition stratagem. Heavy computations 
(μ-independent) carried  out offline provide a database of solutions 
used for each new online evaluation (μ-dependent)
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Formulation

PDEμ (weak formulation) 

Truth Approximation (FEM)

Reduced Basis approximation

Sampling
Space Construction

Galerkin Projection

OFFLINE

ONLINE
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Ingredients

 = degrees of freedom in finite element approximation space

Reduced Basis Approach

 = degrees of freedom in reduced basis approximation space 

Classical Approach (e.g. Finite Element Method)
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Finite Element “vs” Reduced Basis Methods

Locally supported basis functions
Generic, for different problems
Big linear systems / sparse matrices
A priori estimates readily available

Globally supported basis functions
Constructed for specific problem
Small linear systems / full matrices
A posteriori estimates provide reliability of approximation

FE basis functions

RB basis functions
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Spaces

X
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Spaces

O(hr)
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Spaces

O(e-kN)  wishful
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Ingredients

1. Guess: low dimensional manifold        - smooth dependence on μ
2. (Adaptive) sampling procedure for parameter exploration 

(greedy algorithm)
3. Evaluation procedure: (optimal) Galerkin projection
4. Offline/Online computational stratagem
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Potential accuracy (based on a-priori analysis)

(Maday, 
Patera,...)

For an elliptic coercive problem,  with P = 1 parameter,  we have the 
following a priori result:

for with the following (equi-ln) parameter

distribution:

is the energy norm given by:

Note:  no dependence on spatial regularity,
          no dependence on      ; weak dependence on 
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Reliability (based on a-posteriori error estimates)

✓  dual norm of the residual
✓  lower bound       of the coercivity constant (in the elliptic, coercive case):

✓  In the more general case, if                                   , is replaced
by the lower bound of the Babuska inf-sup constant

1.  depends on quality/meaningfulness of XN

2.   is based on the quality of the sampling
3.  relies on rigorous a posteriori error analysis:



EPFL Lausanne & Politecnico di MilanoAlfio Quarteroni

Mathematical Formulation

For                        , evaluate

where

Elliptic coercive PDEs (affinely parametrized)
Weak formulation (Diffusion-advection-reaction problem)

satisfies:

with

Our problem is originally posed on the “original” domain
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Formulation
Elliptic coercive PDEs (affinely parametrized)
Parametrized formulation

For                        , evaluate

where satisfies:

with

and (transformation tensor)

Problem reduced to a parametric PDEs system on Ω (reference domain)

All the parametric “dirtyness” is now embedded into   tensor



EPFL Lausanne & Politecnico di MilanoAlfio Quarteroni

Formulation
Elliptic coercive PDEs (affinely parametrized)
Parametrized formulation: definitions

: input parameter
: parameter domain in 
: function space,

: output

: field variable 

: output functional (linear, affine in    ,           - bounded,                ) 

: bilinear form (linear, affine in    , X-continue, X-coercive,                ) 
: linear form (linear, affine in    , X-bounded, X-coercive,                ) 

We transform, piecewise affinely,

Assumption: affine parametric dependence

where            represent coefficients and geometry
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The reduced basis (RB) approximation will be built in lieu of the FE solution, 
error will be measured (and certified)  wrt the FE solution 

Elliptic coercive PDEs (affinely parametrized)
FEM (truth) approximation

For                        , evaluate

where satisfies:

Other discretization techniques instead of finite elements may also be used.

Finite element (“truth”) solution (never computed!!)

being a sequence of (conforming) finite elements FE approximation 

spaces  indexed by 
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The RB Galerkin approximation
Elliptic coercive PDEs (affinely parametrized)
Reduced Basis Approximation

For                        , evaluate

where satisfies:

Reduced linear system

Since and

we look for s.t.
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Formulation
Elliptic coercive PDEs (affinely parametrized)
Offline/Online computational stratagem

OFFLINE

ONLINE

Heavy computations (solutions database / structures), 
performed once
Fast solution/output evaluation 
(for each new parameter value)
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Selection of basis functions
Elliptic coercive PDEs (affinely parametrized)
RB space construction: greedy sampling
Given a train sample                 ,                 and a tolerance

Strategy for train sample construction: uniform sample, log-uniform sample, MonteCarlo, ...

Worst case scenario 
selection
Space enrichment

In the Proper Orthogonal Decomposition (POD) FE solution 
would be computed 
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Model Problem: a thermal fin

✓  Heat sink designed for thermal management of high-density electronic components
✓  Shaded computational domain due to assumed periodicity/symmetry (multi-fin sink)
✓  Output of interest : temperature at the base of the spreader

Physical and geometrical parametrization
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Model Problem: a thermal fin
Geometry Temperature field

Output of interest
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Model Problem: a thermal fin
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Greedy sampling: convergence

Selected parameter points 
(plot referred to the (μ1, μ2) - axis, being the 

radius of the points proportional to μ3 ) 

Greedy sampling procedure

Error bound on solution as measure of the 
convergence of the sampling procedure 

( stop tolerance = 0.01)

Number of FE dof 1116
Number of RB functions N (tol = 0.01) 12
Reduction in linear system dimension 100:1
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Model Problem: a thermal fin

RB temperature field for different 
choices of parameters (fixed geometry μ2): 
μ =(0.5, 2, 1), μ = (0.5, 2, 5), μ = (0.01, 2, 10)

RB output and RB error bars 

as a function of μ1 for μ2 =2, μ3 =1

Computed output and solution visualization
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Formulation

✓  Our problem is originally posed on the “original” domain

✓ If a subset of parameters μ is made of geometrical parameters, we need a 
reference domain to compare (and combine) FE solutions that would be 
otherwise computed on different domains and grids

✓ The parametrized original domain            is the image of a reference domain Ω 
through an affine parametric mapping 
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Formulation
Elliptic coercive PDEs (affinely parametrized)
Parametrized formulation

✓ Our global transformation                                  can be seen as 
the union of local affine mapping on subdomains (triangles, 
elliptical/curvy triangles)

✓ A fixed reference domain                         is used for all FE 
computations, with  

Problem reduced to 
a parametric PDEs 

system on Ω 
(reference domain)
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1. Reduced basis methods

2. Shape parametrization techniques

3. Reduced framework for optimal 
control/shape optimization

4. Applications in haemodynamics
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Shape Parametrization Techniques

Left: Different carotid bifurcation specimens obtained by autopsy (adults aged 30-75); 
picture taken from Z. Ding et al., Journal of Biomechanics 34 (2001),1555-1562. 

Right: Different carotid bifurcation obtained through radial basis functions techniques.

✓ RB framework requires a geometrical map T(· ; µ): Ω → Ωo(µ) in order 
to combine discretized solutions for the space construction 

✓ This procedure enables to avoid shape deformation and remeshing (that, 
e.g. normally occur at each step of an iterative optimization procedure) 

✓ Reduction in the complexity of parametrization: versatility, low-
dimensionality, automatic generation of maps, capability to represent 
realistic configurations, ... 
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Option 1: shape parametrization by FFD

Parameters                     are chosen according to a given prolem-dependent criterium.
 They induce the displacements of some (selected) control points.

Only a subset of them can be used as active unknowns - they univocally identify the map.

FFD mapping

where
(Bernstein 
polynomials)

Free-Form Deformation techniques
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Shape Parametrization by FFD

Free-Form Deformation (reference configuration and deformed configuration) for an airfoil problem. 
Parameters are given by the vertical displacements of the eight central control points 

(only eight active parameters are used).
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Option I1: shape parametrization by RBF

RBF mapping

Radial Basis Functions technique

Ingredients

Construction
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global deformations
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localized deformations

Shape parametrization by RBF

✓ Control positions can be freely chosen 
(they can be scattered in the domain and 
do not have to reside on a regular lattice)

✓ RBF techniques are interpolatory: each 
control point of the initial shape is mapped 
onto the corresponding control point of 
the deformed one

✓ Depending on the choice of control points, 
either global or localized deformations can 
be described

Radial Basis Functions techniques
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1. Reduced basis methods

2. Shape parametrization techniques

3. Reduced framework for optimal 
control/shape optimization

4. Applications in haemodynamics

Outline
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High computational costs because: 

• optimal control/shape optimization problems require multiple evaluations of outputs 
depending on state variables (or even domain geometry) during iterative procedures

• classical discretization techniques are expensive when geometry keeps changing 

Framework:  optimal control/shape optimization or more general inverse problems 
                       related with geometry/shape variation 

Goal:  optimize some output of interest 

- control variable 

- original domain                    , control function 

- state variable                                     solution of

How to make profit of RB in the framework of optimal control?



Improving computational efficiency by (e.g.): 

• introducing a low-dimensional parametrization to describe the control space (and 
reduce the geometrical complexity in the case of shape optimization)

• optimal control:           u = u(µ)              (straightforward...)                

• shape optimization:  Ωo = Ωo(µ)        (shape parametrization) 

being

• solving parametric PDEs using reduced basis methods for computational reduction
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How to make profit of RB in the framework of optimal control?

Parametric optimization problem

Assumption: we focus on shape optimization problems, with 



Step 1: parametrized formulation on a reference (parameter independent) domain: 

since the reduced basis method relies on the combination of pre-computed solutions, 
that would be otherwise computed on different domains.
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How to make profit of RB in the framework of optimal control?

Step 2: solve the reduced basis (RB) problem

Recipe
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1. Reduced basis methods

2. Shape parametrization techniques

3. Reduced framework for optimal 
control/shape optimization

4. Applications in haemodynamics
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The Context

1. From clinical imaging 
to computational grid

2. Mathematical 
Modeling

3. Computing

4. Verification
Validation

5. Clinical
Applications
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Handling Complexity

38

NS equations, rigid walls, 
one heartbeat

FSI in carotid artery, 
one heartbeat
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Blood flow FSI - The equations

Equations for the geometry:

Equations for the fluid:

Equations for the structure:

A coupled fluid-structure problem
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Shape Optimization of a bypass graft
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• Shape optimization of cardiovascular geometries may help to 
prevent post-surgical complications 

• Local fluid patterns (vorticity) and wall shear stress are 
strictly related to the thickening caused by atherosclerotic 
obstructions, which  is the principal disease process in venous 
bypass grafting

• Blood flow in coronary arteries can be modeled by means of 
Stokes equations (low velocity in vessels of small diameter)

Shape optimization by flow control 
(minimization of blood vorticity in the down-field region of the bypass)

Shape Optimization of a bypass graft
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Shape Optimization of a bypass graft

Parametric Shape Optimization

✓  Input parameters as variables describing the boundary shape

✓  Input parameters as geometrical properties
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✓ Many-query problem: shape optimization by iterative procedure
✓ Several analyses show a deep impact of the graft-artery diameter ratio Φ and anastomotic 

angle α on shear stress and vorticity distributions.

A RB + FFD approach 

Oscillatory shear stress with different graft-artery diameter ratios Φ and anastomotic angles α. Picture taken from F.L. Xiong, C.K. 
Chong, Med. Eng. & Phys. 30 (2008), 311-320.

✓ In order to get a low-dimensional FFD parametrization we need to maximize the 
influence of the control points by placing them close to the sensitive regions

✓ We choose 8 parameters (7 vertical ● and 1 horizontal ● displacements) to control the 
anastomotic angle, the graft-artery diameter ratio, the upper side, the lower wall.

Shape Optimization of a bypass graft
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Construction of the RB space

Reduction in linear system dimension 500:1

Computational speedup (single flow simulation 107

Reduct. in param. complexity (w.r.t. mesh motion) 102:1

Computational Reduction

Shape Optimization of a bypass graft

Initial and optimal bypass configuration

20
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Shape Optimization of a bypass graft
✓   Automatic iterative minimization procedure (SQP, sequential quadratic programming) 
✓   Vorticity evaluation by using the reduced basis velocity at each step

Vorticity reduction (downfield) = 45%

A. Manzoni, G. Rozza,  A.Q., Shape optimization for viscous flows by reduced basis methods and free-form deformation, submitted

Velocity and pressure field (RB approximation) for the optimal bypass configuration

Vorticity field (magnitude) for the initial and the optimal bypass configuration
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Fast blood flow simulation
Vessels geometry strongly influences haemodynamics behaviour

• Study the influence of the vessel shape on blood flow

• Real-time evaluation of flow indexes related with geometry 
variation that assess/measure arteries occlusion risk (e.g. 
vorticity, viscous energy dissipation)

Interesting case:  stenosed carotid artery bifurcation

• Shape analysis can be useful also for carotid stenting

• The curved (proximal) portions of the internal carotid arteries 
exhibit a great shape variety
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CPU-Shape reconstruction CPU-RB flow simulation CPU-Output evaluation

Construction of the RB space

t = 5.35s t = 2.31s t = 1.54s

Fast blood flow simulation
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✓ Blood flows in different stenosed parametrized geometries, described by P = 4 
parameters (horizontal displacements of the ● control points)

✓ Each RB online evaluation takes about 2.5 seconds

Local deformations - 4 localized control points (stenosis). Radial Basis with Gaussian 
kernel

Fast blood flow simulation
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Output error bound Δs
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Viscous energy dissipation sN(dc,db)
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Shape Sensitivity

dc

db

✓ Viscous energy dissipation for 1000 different parametrized 
configurations

✓ Flow disturbances caused by stenoses lead to higher values of the 
dissipated energy, the maximum occurring for the smallest diameters 
on both sections. 

Viscous energy dissipation and estimated error between RB and FE approximations for 1000 parametrized configurations

Fast blood flow simulation


