6th Summer School in Analysis and Applied Mathematics Rome 20-24 June 2011

Modeling and Complexity Reduction in PDES for Multiphysics Modeling the Circulatory System

Alfio Quarteroni

EPFL, Lausanne (Switzerland) MATHICSE Mathematics Institute of Computational Science and Engineering

> POLITECNICO di MILANO (Italy) MOX Modellistica e Calcolo Scientifico

POLITECNICO DI MILANO

The Context

I. From clinical imaging to computational grid

2. Mathematical Modeling

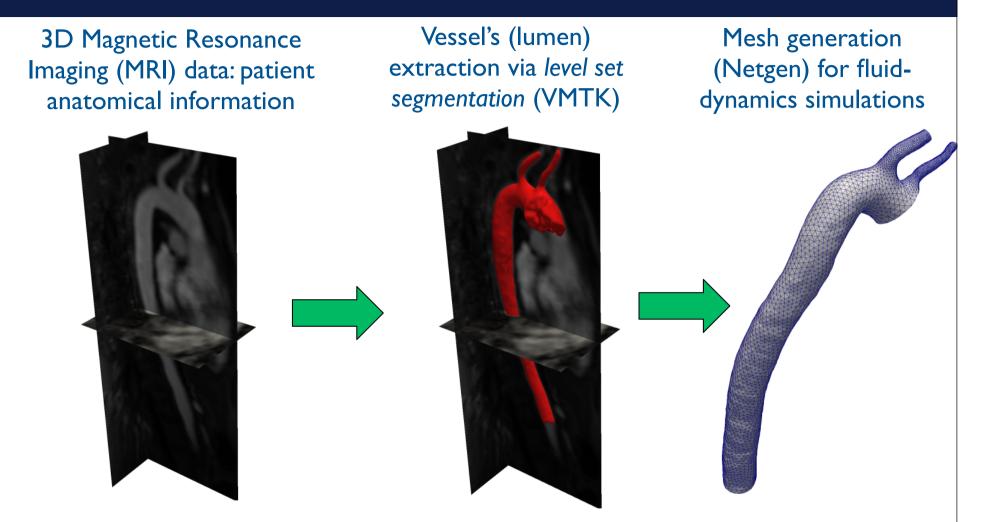
3. Computing

4. Verification Validation

5. Clinical Applications

From Images to Grid

Image Processing and Volume Reconstruction



This "snapshot" has been obtained as an average over the cardiac cycle that could be considered as the diastolic configuration

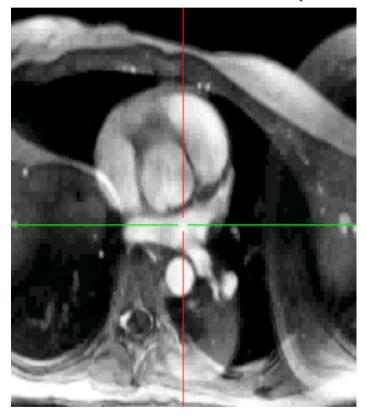
Aortic arch (courtesy of MD Luciani and MD Puppini, Ospedale Borgo Trento, Verona, Italy) (E.Faggiano, G.B.Luciani, G.Puppini, C.Vergara, 2010)

Alfio Quarteroni

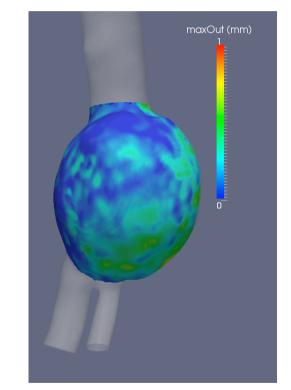
Image Processing (cont'd) 4D Displacement Data

AAA - Aneurysm in the Abdominal Aorta

4D MRI data: anatomical information of the patient at 10-20 instants over the cardiac cycle



Vessel segmentation and surface registration → displacement analysis (VMTK)



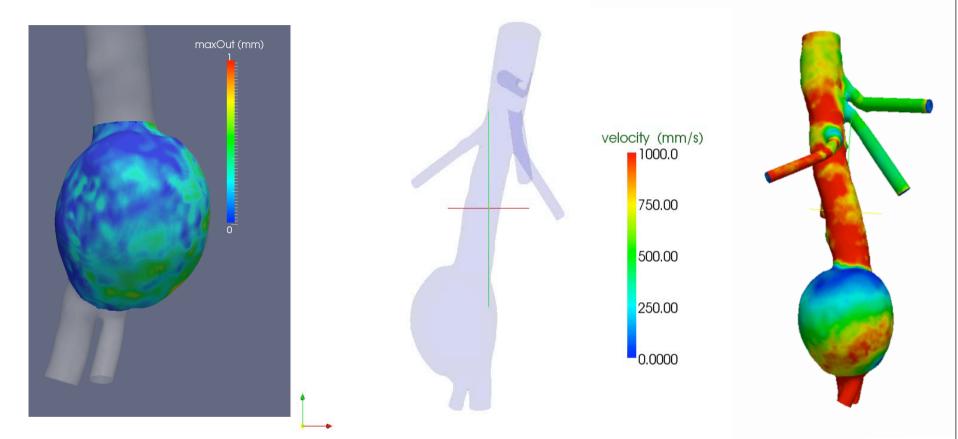
Normalized maximum (in time) displacement with respect to the diastolic configuration

Aortic arch, courtesy of MD M. Domanin, Policlinico di Milano, Italy

Alfio Quarteroni

Image Processing (cont'd) 4D Displacement Data

AAA - Aneurysm in the Abdominal Aorta



Normalized maximum (in time) displacement with respect to the diastolic configuration

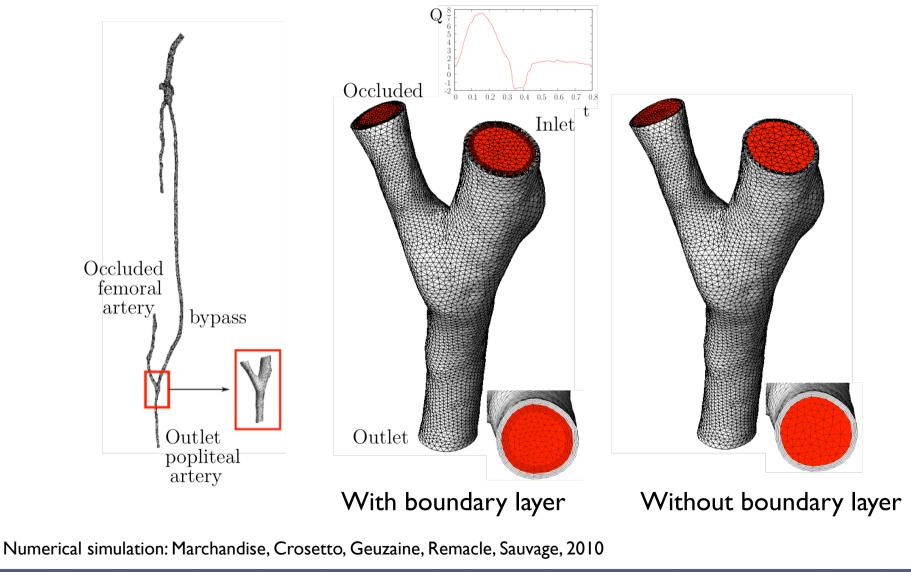
Numerical simulation (LIFEV): blood velocity pattern and WESS (Courtesy: M.Piccinelli and C.Vergara)

The zone of highest jet's incidence is the one of maximum displacement on the figure on the left

Alfio Quarteroni

Importance of grid quality: FSI simulation in a femoral bypass

Patient-specific geometry and boundary conditions



Alfio Quarteroni

FSI in a femoral bypass

Influence of boundary layer grid on wall shear stress (WSS)

Three different grids, meshes with and without BL

Boundary layer grids

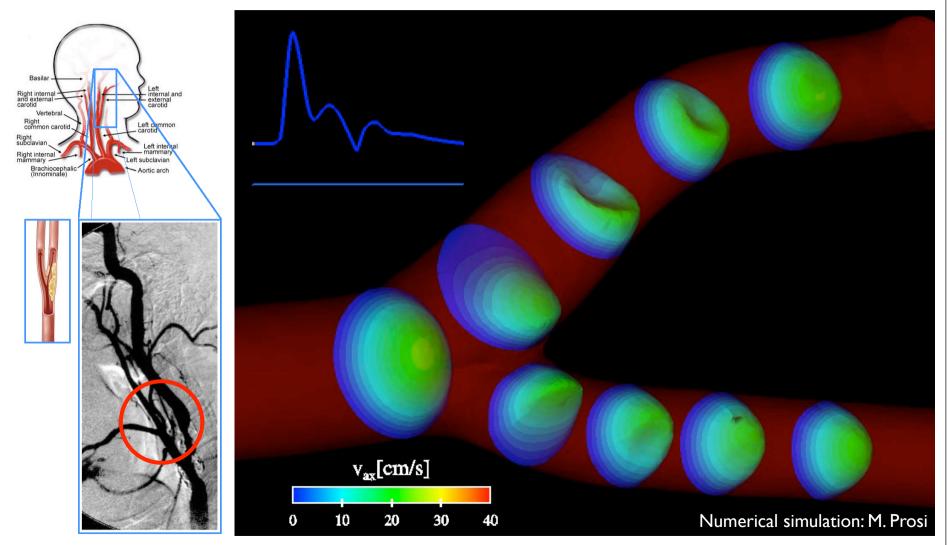
Grids without boundary layer WSS (dyn/cm^2) 10

All three meshes without boundary layer (lower) fail to capture the correct WSS. Fluid meshes ranging from 9,000 to 213,000 nodes

Modeling

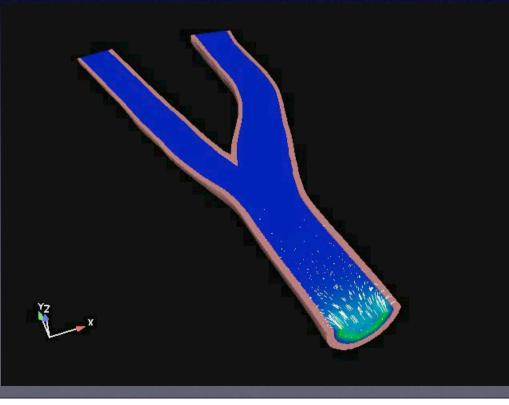
Local flow analysis - Incompressible Newtonian Flow

- Navier-Stokes equations in carotid artery with rigid walls
- Pulsatile inflow defective b.c at outflow



Alfio Quarteroni

Modeling: Vessel Compliance



Abstract setting - FSI: the ALE frame of reference

$$\Omega_{f,0}$$
 \mathcal{A}_t $\Omega_f(t)$

• ALE mapping

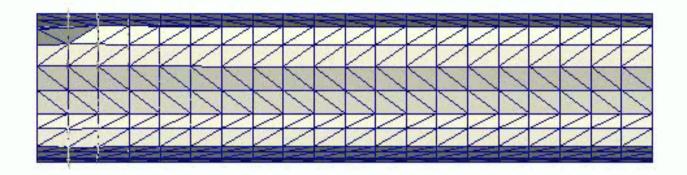
The computational domain Ω in the Eulerian formulation. It is a fixed portion of space filled by the medium during its motion

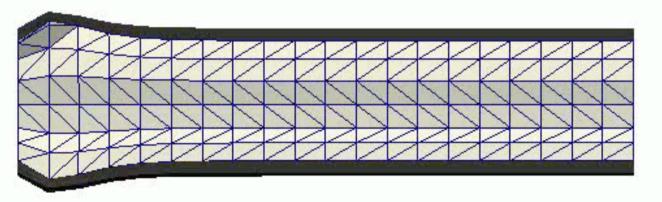
ALE derivative

$$\left. \frac{\partial q}{\partial t} \right|_{\widetilde{\mathcal{A}}} = \mathbf{w} \cdot \nabla q + \frac{\partial q}{\partial t}$$

The moving grid and the ALE velocity

A coupled fluid-structure problem





Alfio Quarteroni

Politecnico di Milano & EPFL Lausanne

Let $\widetilde{\omega}_0 \subset \widetilde{\omega}$ be a subdomain in the ALE reference configuration and $\omega_0(t) = \widetilde{\mathcal{A}}(\widetilde{\omega}_0, t) \subset \omega(t)$ it image by the ALE map. Then for any continuously differentiable field:

$$\frac{\mathrm{d}}{\mathrm{d}\,t} \int_{\omega_0(t)} f \,\mathrm{d}\mathbf{x} = \int_{\omega_0(t)} \left(\frac{\partial f}{\partial t} \bigg|_{\widetilde{\mathcal{A}}} + f \,\mathrm{div}\,\boldsymbol{w} \right) \mathrm{d}\mathbf{x}$$
$$= \int_{\omega_0(t)} \left(\frac{\partial f}{\partial t} + \mathrm{div}\,(f\boldsymbol{w}) \right) \mathrm{d}\mathbf{x}$$

Alfio Quarteroni

Politecnico di Milano & EPFL Lausanne

Blood flow FSI - The equations

A coupled fluid-structure problem

Equations for the geometry:

$$\hat{\eta}_f = \mathsf{Ext}(\hat{\eta}_{s|\Gamma}), \ \hat{\mathbf{w}} = \frac{\partial \hat{\eta}_f}{\partial t}, \ \Omega_f(t) = (I + \hat{\eta}_f)(\hat{\Omega}_f)$$

Equations for the fluid:

$$\frac{\rho_{f}}{J_{\hat{\mathcal{A}}}} \frac{\partial J_{\hat{\mathcal{A}}} \mathbf{u}_{f}}{\partial t}_{|_{\hat{\mathbf{x}}}} + \operatorname{div}(\rho_{f} \mathbf{u}_{f} \otimes (\mathbf{u}_{f} - \mathbf{w}) - \sigma_{f}(\mathbf{u}_{f}, P)) = 0, \text{ in } \Omega_{f}(t)$$

$$\operatorname{div} \mathbf{u}_{f} = 0, \text{ in } \Omega_{f}(t)$$

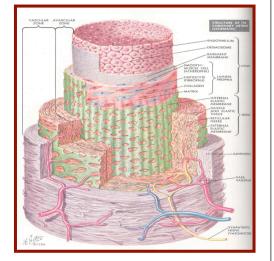
$$\mathbf{u}_{f} = \mathbf{u}_{D}, \text{ on } \Gamma_{f,D}$$

$$\sigma_{f}(\mathbf{u}_{f}, P) \mathbf{n}_{f} = \mathbf{g}_{f,N}, \text{ on } \Gamma_{f,N}$$

$$\mathbf{u}_{f} = \mathbf{w}, \text{ on } \Gamma(t)$$

Equations for the structure:

$$\begin{split} \widehat{\rho}_{s,0} \frac{\partial^2 \widehat{\eta}_s}{\partial t^2} - \operatorname{div}_{\widehat{\mathbf{x}}}(\widehat{\mathbf{F}}_s \widehat{\boldsymbol{\Sigma}}) &= 0, & \text{in } \widehat{\Omega}_s \\ \widehat{\eta}_s &= 0 & \text{on } \widehat{\Gamma}_{s,D} \\ \widehat{\mathbf{F}}_s \widehat{\boldsymbol{\Sigma}} \widehat{\mathbf{n}}_s &= \widehat{J}_s |\widehat{\mathbf{F}}_s^{-T} \widehat{\mathbf{n}}_s| \widehat{\mathbf{g}}_{s,N}, & \text{on } \widehat{\Gamma}_{s,N} \\ \widehat{\mathbf{F}}_s \widehat{\boldsymbol{\Sigma}} \widehat{\mathbf{n}}_s &= \widehat{J}_s \widehat{\sigma}_f(\mathbf{u}_f, P) \widehat{\mathbf{F}}_s^{-T} \widehat{\mathbf{n}}_s, & \text{on } \widehat{\Gamma} \end{split}$$



Surface registration

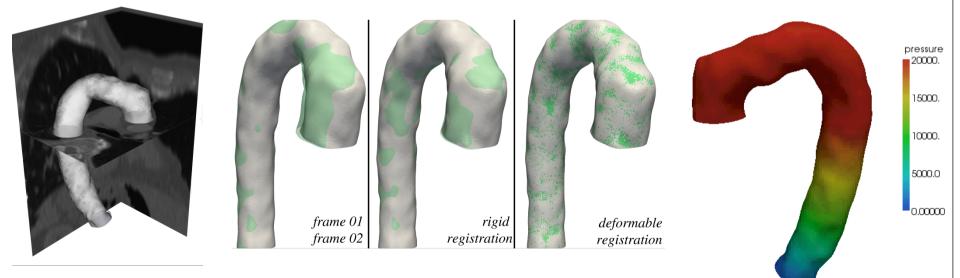
Surface registration:

find the alignment of the surfaces of two consecutive time frames

• construction of a **displacement field** η_{meas} which maps the surface points

Surface registration could be used to solve a FSI problem without solving the structure:

Solve the ALE fluid problem in a moving domain with known boundary



Acknowledgement: A. Veneziani, M. Piccinelli, L. Mirabella, T. Passerini

Alfio Quarteroni

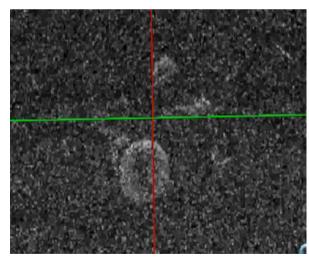
(Variational) data assimilation

I) Based on surface registration Example: determine the rigidity of a vessel Find the minimum of c

$$\mathcal{J} = \int\limits_{\Sigma} \left(oldsymbol{\eta}_{meas}(oldsymbol{x}, au_k) - oldsymbol{\eta}(oldsymbol{x}, au_k)
ight)^2 d\sigma.$$

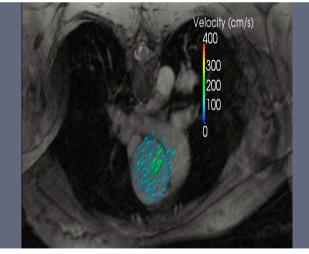
under the constraint given by the **FSI** problem

II) Based on volumetric data



4D Phase-contrast MRI data: blood velocity at specific slices at 10-20 instants over the cardiac cycle

> Velocity vectors extraction



(M.Perego, A.Veneziani, C.Vergara, A variational approach for estimating the compliance of the cardiovascular tissue, SIAM J Sci Comp, 2011)

Alfio Quarteroni

Computing -Complexity

Geometric Multiscaling

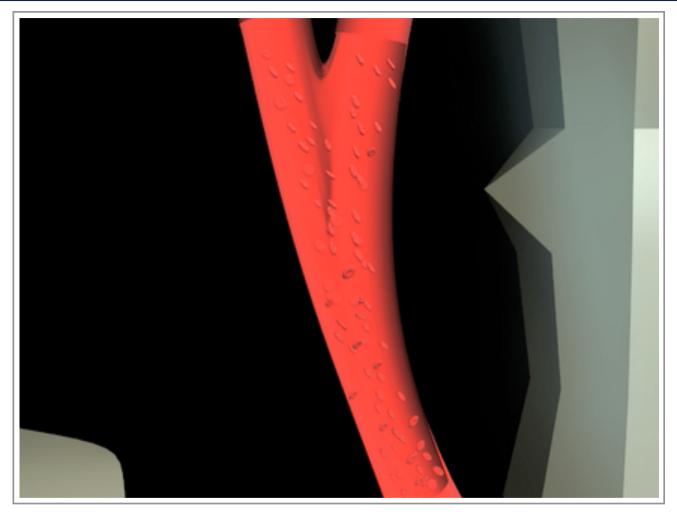
Global Flow Analysis: System's Complexity

Morphological complexity: the diameter of blood vessels ranges from 10⁻² m down to 10⁻⁶ m. Consequently, the flow regime varies considerably.

Vessel	Radius(cm)	Number	Reynolds number
Aorta	1.25	1	3400
<u>Arteries</u>	0.2	159	55
Arterioles	1.5 x 10 ⁻³	5.7 x 10 ⁷	0.7
<u>Capillaries</u>	3 x 10 ⁻⁴	1.6 x 10 ¹⁰	0.002
Venules	1 x 10 ⁻³	1.3 x 10 ⁹	0.01
<u>Veins</u>	0.25	200	140
Vena cava	1.5	1	3300

• **Functional complexity**: the cardiovascular system is able to react to changes in the external environment and presents several 'non-linear' components (e.g. valves). We need to account for the local/systemic interactions.

Geometric multiscaling in the circulatory system

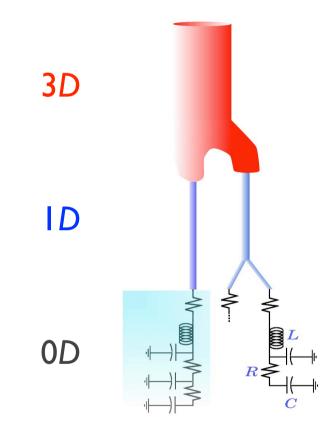


Local: 3D FSI flow model

Global: ID network of arteries and veins (Euler hyperbolic system) Global: 0D capillary network (DAE system)

Alfio Quarteroni

Geometric multiscaling in the circulatory system



3D Navier-Stokes (F) + 3D ElastoDynamics (V-W) ID Euler (F) + Algebraic pressure law 0D lumped parameters

(system of linear ODEs)

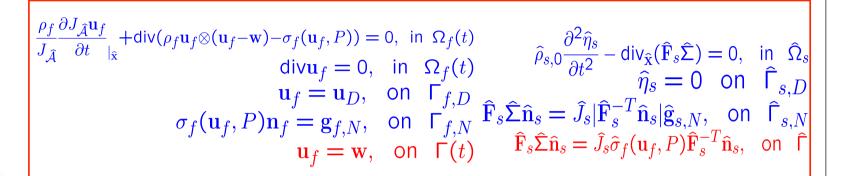
(L. Formaggia, A.Q, A. Veneziani: Cardiovascular Mathematics, Springer, 2009)

Alfio Quarteroni

Mathematical Model

3D

3D Navier-Stokes (F) + 3D ElastoDynamics (V-W)



Assume to:

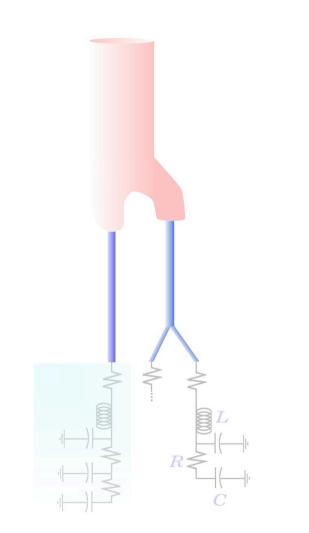
- $u_z >> u_x, u_y$
- u_z has a prescribed steady profile
- average over axial sections
- static equilibrium for the vessel

Then we obtain a ID problem

Mathematical Model

ID

ID Euler(F) + Algebraic pressure law



$$\partial_t A + \partial_x Q = 0,$$

$$\partial_t Q + \partial_x \left(\frac{\alpha Q}{A}\right) + \frac{A}{\rho} \partial_x P = -K_r \frac{Q}{A},$$

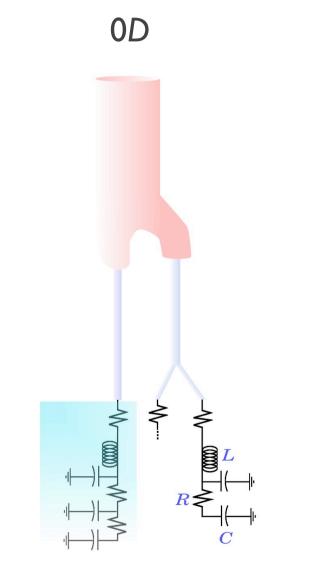
$$P(A) = \beta \frac{\sqrt{(A) - \sqrt{(A_0)}}}{A_0}$$

Assume to:

- linearize ID equations
- consider average internal variables
- relate interface values to averaged ones

Then we obtain a 0D problem (ODE)

Mathematical Model



0D Lumped parameters (system of linear ODE's)

$$C\frac{dP_i}{dt} = -(Q_{i+1} - Q_i),$$
$$L\frac{dQ_i}{dt} = -(P_i - P_{i-1}) - RQ_i$$

Fluid dynamics	Electrical circuits	
Pressure	Voltage	
Flow rate	Current	
Blood viscosity	Resistance R	
Blood inertia	Inductance L	
Wall compliance	Capacitance C	

- RLC circuits model "large" arteries
- RC circuits account for capillary bed
- Can describe compartments (such as peripheral circulation)

Alfio Quarteroni

24

The ID Network

At a bifurcation we prescribe

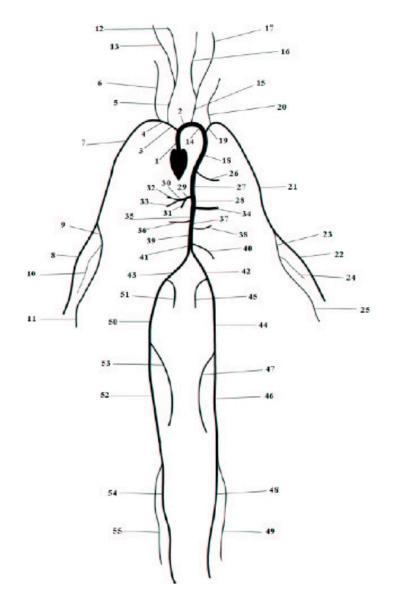
- ✓ Continuity of total pressure: $p_{t,l} = p_{t,2} = p_{t,3}$
- ✓ Conservation of mass: $\Sigma_i Q_i = 0$

Mathematical Analysis

The coupled problem satisfies a stability estimate similar to that of the single artery model. No shock waves developing, explicit form of characteristic variables available

In principle, it is possible to account for curvature, tapering, and for the bifurcation angle through an energy loss term.

In practice, this has a minor impact on numerical results

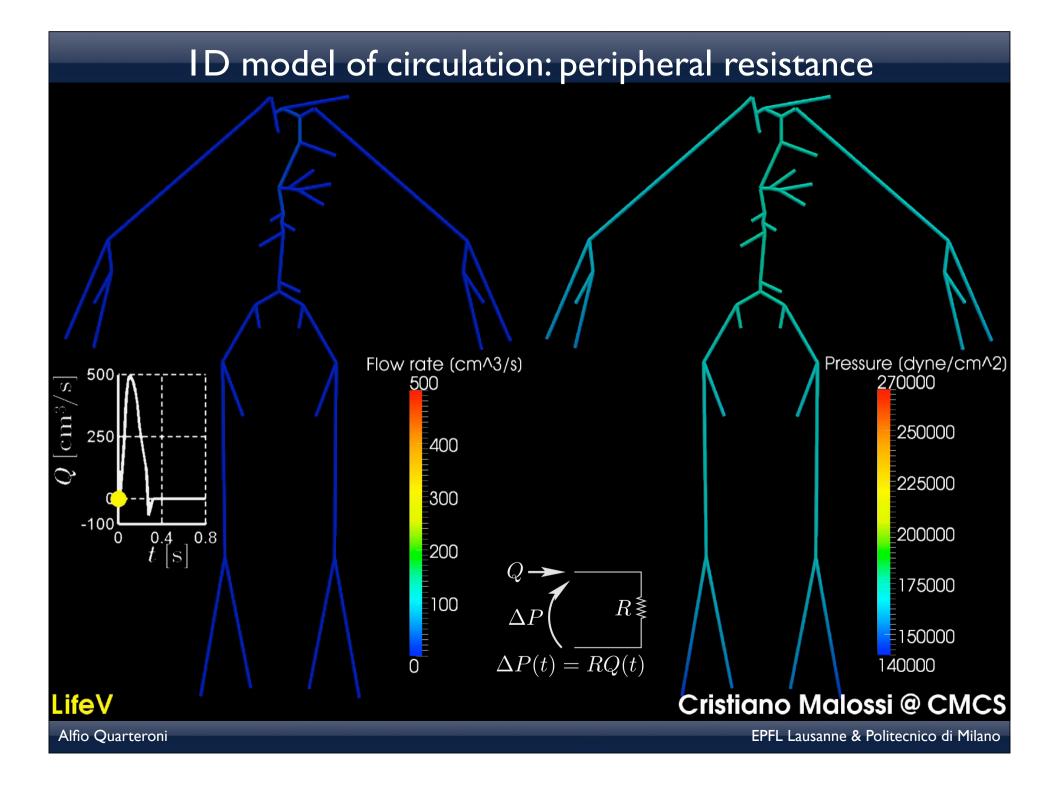


Peripheral branches: Absorbing b.c Colormap: A/A₀-I

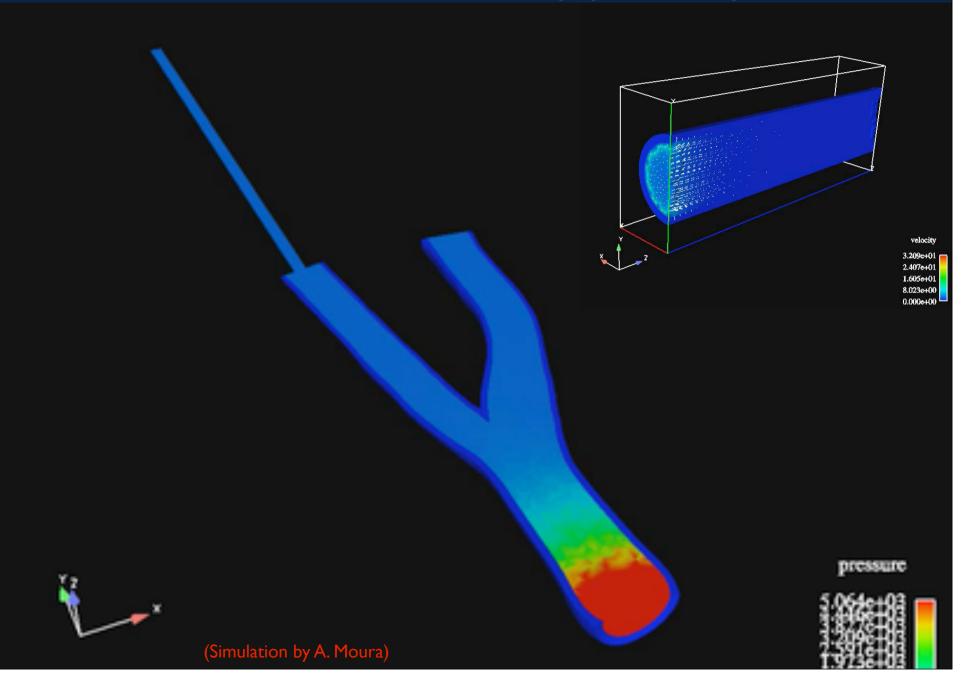
LifeV

Cristiano Malossi @ CMCSLifeV Cristiano Malossi @ CMCS

Alfio Quarteroni



3D-ID for the carotid artery: pressure pulse



Geometric Multiscale - an Instance

LifeV

Malossi - Crosetto @ CMCS

Models:

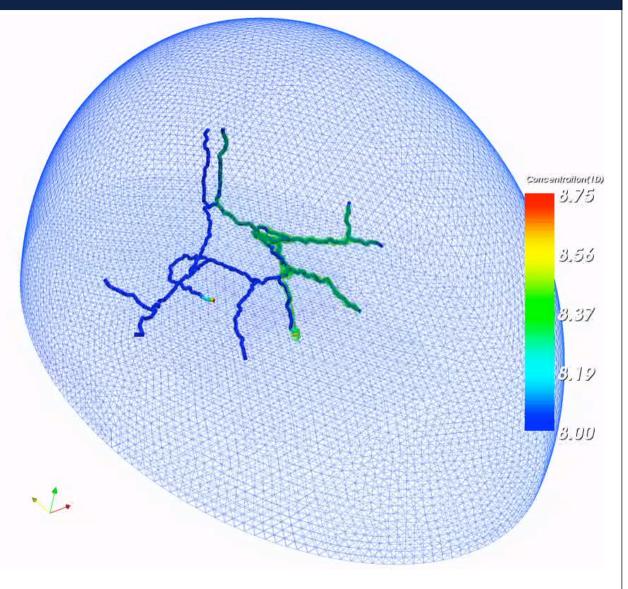
- 3-D FSI Aorta & Iliac Artery
- I-D arterial tree
 92 tapered elements
 - viscoelastic wall
- 0-D terminals
 47 Windkessel elements (RCR)

Coupling:

- averaged/integrated quantities at the interfaces (flow rate or normal stress)
- segregated approach for the solution of the coupled problem (Newton, inexact-Newton, or Broyden methods)

Imbedded ID-3D

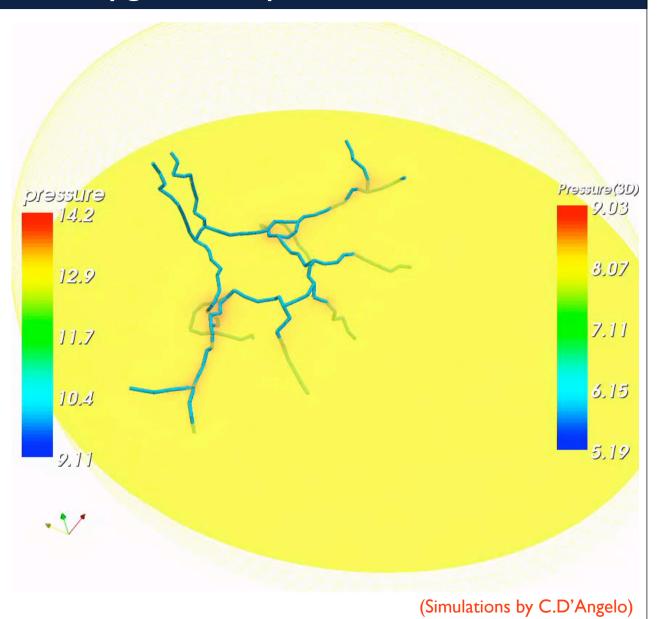
Application to oxygen transport in the brain: isosurface of oxygen concentration. Impairment due to left carotid artery occlusion.



(Simulations by C. D'Angelo)

Blood Flow and Oxygen Transport in the Brain

ID (vessels) and 3D (brain tissue) blood pressures with pulsatile input blood flow rate and left carotid artery occlusion



ID-3D Perfusion Model

A realistic time-dependent ID-3D model:

$$\begin{pmatrix} C_{t} \frac{\partial}{\partial t} p_{t} + \nabla \cdot (K_{t} \nabla p_{t}) + \alpha p_{t} - \phi(p_{t}, p_{v}) \delta_{\Lambda} = 0 \ t > 0, \ x \in \Omega, \\ \frac{\partial}{\partial t} \begin{bmatrix} p_{v} \\ q_{v} \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{c} \\ \frac{1}{l} & 0 \end{bmatrix} \frac{\partial}{\partial s} \begin{bmatrix} p_{v} \\ q_{v} \end{bmatrix} + \begin{bmatrix} \frac{1}{c} \phi(p_{t}, p_{v}) \\ rq_{v} \end{bmatrix} = 0, \qquad t > 0, s \in \Lambda,$$

 $p_{t}: \Omega \to \mathbb{R} \text{ blood pressure in the tissue (3D)}$ $p_{V}: \Lambda \to \mathbb{R} \text{ blood pressure in the vessel (ID)}$ $q_{V}: \Lambda \to \mathbb{R} \text{ blood flow rate in the vessel (ID)}$ $\phi: \Lambda \to \mathbb{R} \text{ the exchange term}$

ID-3D Perfusion Model

Flow model

$$\begin{cases} C_{\mathsf{t}} \frac{\partial}{\partial t} p_{\mathsf{t}} + \nabla \cdot (K_{\mathsf{t}} \nabla p_{\mathsf{t}}) + \alpha p_{\mathsf{t}} - \phi(p_{\mathsf{t}}, p_{\mathsf{v}}) \delta_{\mathsf{\Lambda}} = 0 \ t > 0, \ \mathbf{x} \in \Omega, \\ \frac{\partial}{\partial t} \begin{bmatrix} p_{\mathsf{v}} \\ q_{\mathsf{v}} \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{c} \\ \frac{1}{l} & 0 \end{bmatrix} \frac{\partial}{\partial s} \begin{bmatrix} p_{\mathsf{v}} \\ q_{\mathsf{v}} \end{bmatrix} + \begin{bmatrix} \frac{1}{c} \phi(p_{\mathsf{t}}, p_{\mathsf{v}}) \\ r q_{\mathsf{v}} \end{bmatrix} = \mathbf{0}, \qquad t > 0, s \in \mathsf{\Lambda}, \end{cases}$$

Venous transmission coefficients [range: 10⁻³ kPa⁻¹ s⁻¹]

Capillary compliance [10⁻³ kPa⁻¹]

Tissue conductivity [0.05 mm² kPa⁻¹ s⁻¹]

Vessel Windkessel parameters

ID-3D Perfusion Model

ID-3D mass transport and diffusion models:

$$\begin{cases} \frac{\partial}{\partial t} u_{t} - D_{t} \Delta u_{t} + v \cdot \nabla u_{t} - \theta(u_{t}, u_{v}) \delta_{\Lambda} = f, \ t > 0, \ x \in \Omega, \\ A_{0} \frac{\partial}{\partial t} u_{v} - A_{0} D_{v} \frac{\partial^{2} u_{v}}{\partial s^{2}} + q_{v} \frac{\partial}{\partial s} u_{v} = 0, \qquad t > 0, s \in \Lambda, \end{cases}$$

$$u_{t} : \Omega \to \mathbb{R} \text{ mass concentration in the tissue (3D)}$$

$$u_{v} : \Lambda \to \mathbb{R} \text{ mass concentration in the vessel (1D)}$$

$$\theta = \frac{1}{\epsilon} (u_{v} - \overline{u}_{t}) \text{ is a penalization term.}$$

$$- \text{ Same form as } \phi$$

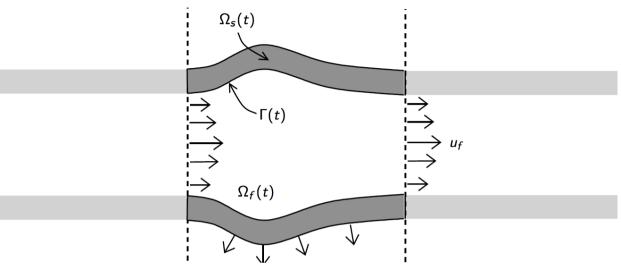
$$- \text{ Enforces} \qquad u_{v} = \overline{u}_{t}$$

Alfio Quarteroni

Computing -Complexity

FSI algorithms

The Coupled FS system in compact form



• FS system

With variables (u_f, d_f, d_s) for the fluid solution and displacements of the fluid and structure domain respectively, the fluid-structure interaction problem is

$$F(u_f, d_s, d_f) = 0,$$

$$S(u_f, d_s) = 0,$$

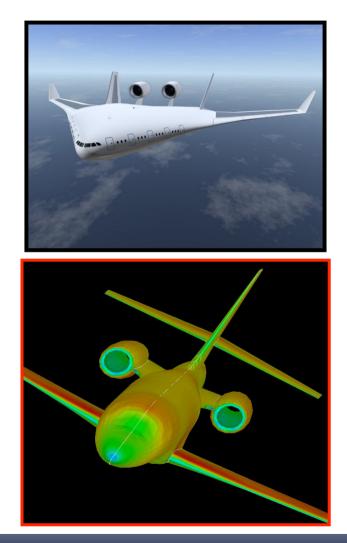
$$G(d_s, d_f) = 0$$

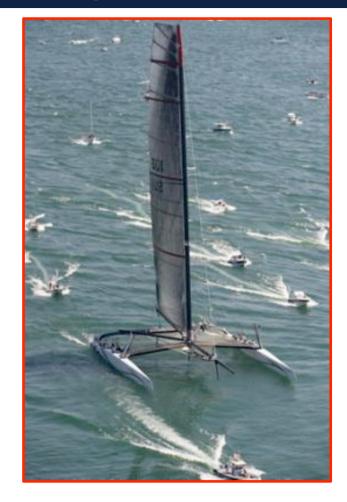
fluid subproblem structure subproblem geometry subproblem.

Fluid structure Interaction (FSI) - Not only blood flow

Aerodynamics

Aircrafts, Flying Bodies



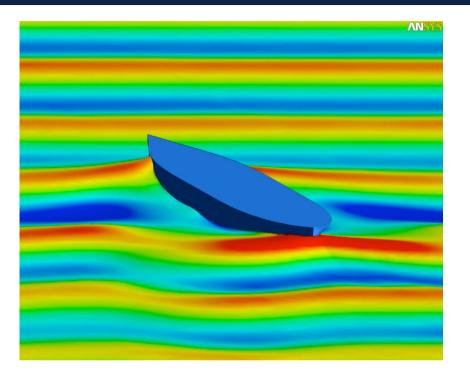


Wing Multihulls
 Wind-sail interaction

Alfio Quarteroni

Fluid structure Interaction (FSI)

Rowing and sea-keeping



Alfio Quarteroni

Swinsuits optimization (A.Veneziani, N.Parolini)

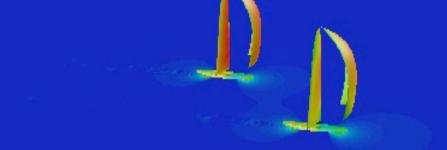
Fluid structure Interaction (FSI)

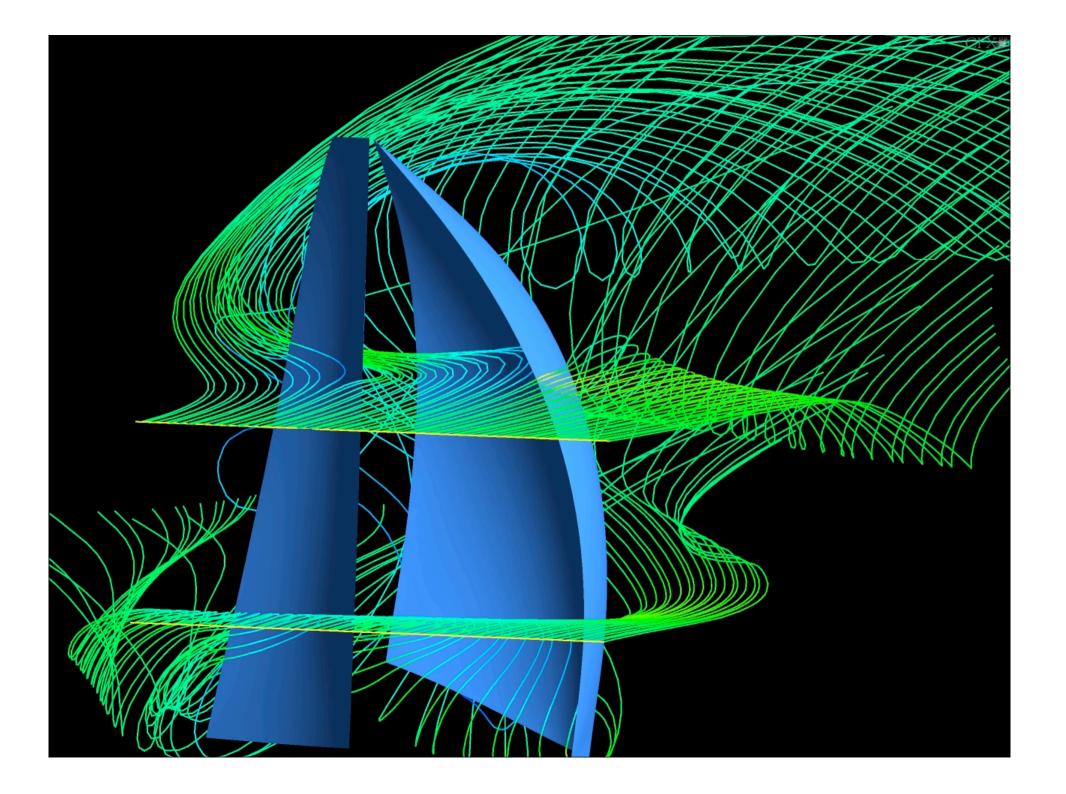
Wind/sails interaction

OFFICIAL SCIENTIFIC ADVISOR ALINGHI DEFENDER 32nd AMERICA'S CUR

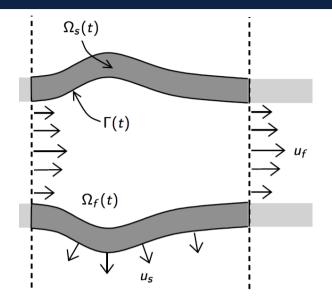
Alfio Quarteroni

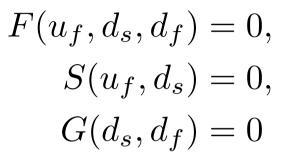
Politecnico di Milano & EPFL Lausanne





FSI - Numerical Algorithms





Solution approach: FEM in space, FD in time, then:

Segregated / Monolithic / Hybrid

- Newton linearization
- Krylov iterative methods
- Domain Decomposition preconditioners

based on blockwise parallel Schwarz preconditioners

(P.Crosetto, S.Deparis, G.Fourestey, A.Q, Parallel Algorithms for Fluid Structure Interaction Problems in Haemodynamics, SIAM J. Sci. Comp., 2011)

Alfio Quarteroni

Politecnico di Milano & EPFL Lausanne

Reduction to the interface problem

Goal: eliminate fluid, structure and geometric variables

Let us define The Steklov-Poincaré operators for the fluid and structure subdomains as

$$S_{f}: H^{1/2}(\Gamma)^{3} \rightarrow H^{-1/2}(\Gamma)^{3}$$

$$\lambda = \mathbf{d}_{s\Gamma} \quad \mapsto \quad \boldsymbol{\sigma}_{f}^{o}|_{\Gamma}$$

$$S_{s}: H^{1/2}(\Gamma)^{3} \rightarrow H^{-1/2}(\Gamma)^{3}$$

$$\lambda = \mathbf{d}_{s\Gamma} \quad \mapsto \quad \boldsymbol{\sigma}_{s}|_{\Gamma}$$

$$(17)$$

that map the trace space of displacements on the interface Γ to the dual space of the normal stresses exerted on Γ .

Applications

Understanding Physiology

Subdomain partition for lumen and wall

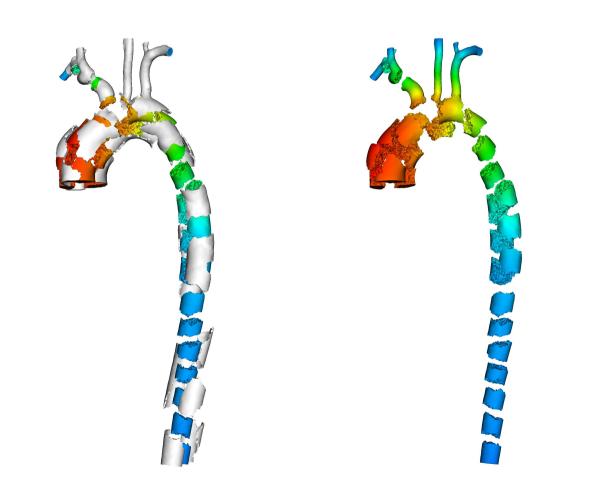
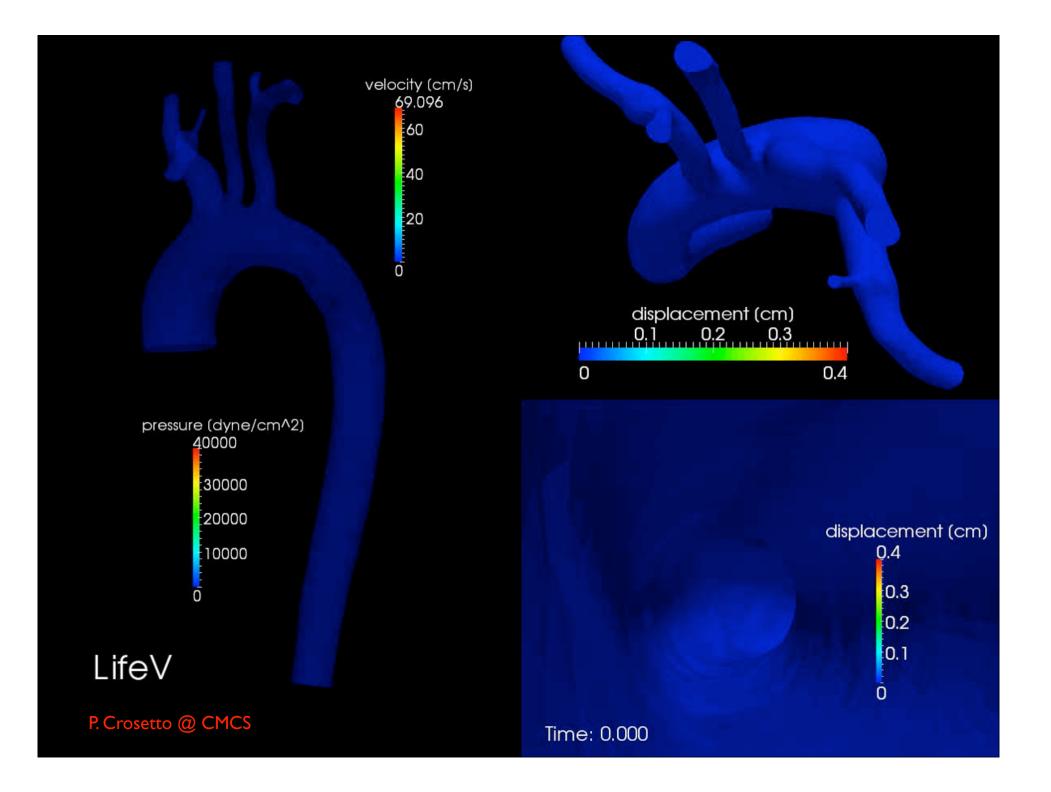


FIGURE: The fluid and the solid meshes are partitioned in 2×32 subdomains. 380'690 tetrahedra and 324'000 dofs



FSI in the aortic arch: WSS comparisons

Compliant versus rigid walls: WSS pattern at systole

The rigid walls simulation (middle) shows important differences in WSS



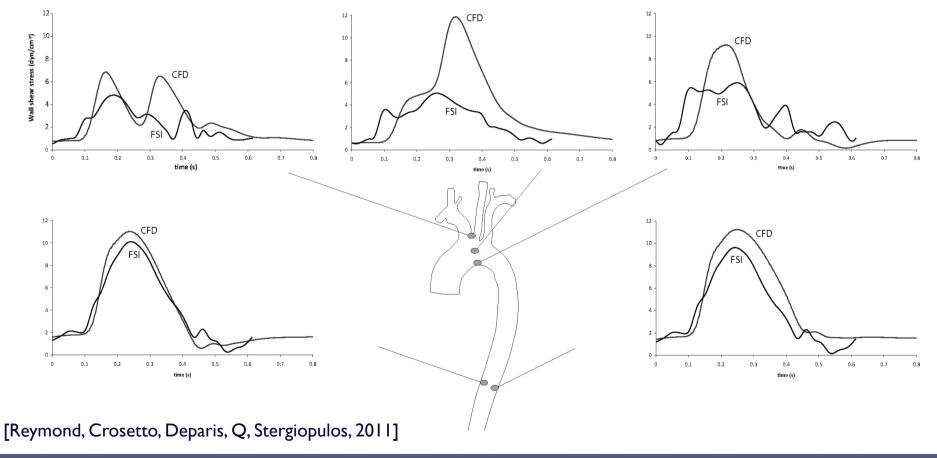
Patient-specific geometry and boundary conditions. Simulation run for 3 heartbeats, timings: about 30s per timestep, 6.6h per heartbeat (800 timesteps), using 128 processors on Cray XT6 cluster HECToR (www.hector.ac.uk)

(Crosetto, Reymond, Deparis, Kontaxakis, Stergiopulos, AQ, submitted, 2011)

FSI in the aortic arch: WSS comparisons

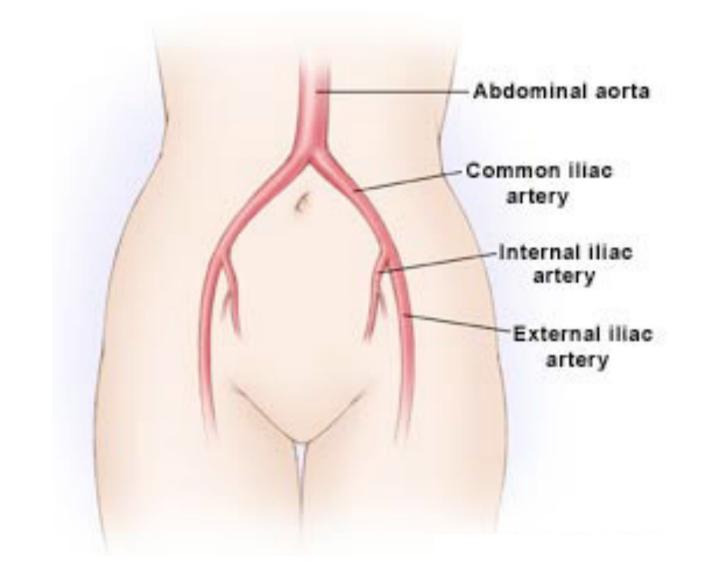
Compliant versus rigid walls: history of space averages at different locations

WSS mainly overestimated by the rigid wall simulation, differences in magnitude and waveform

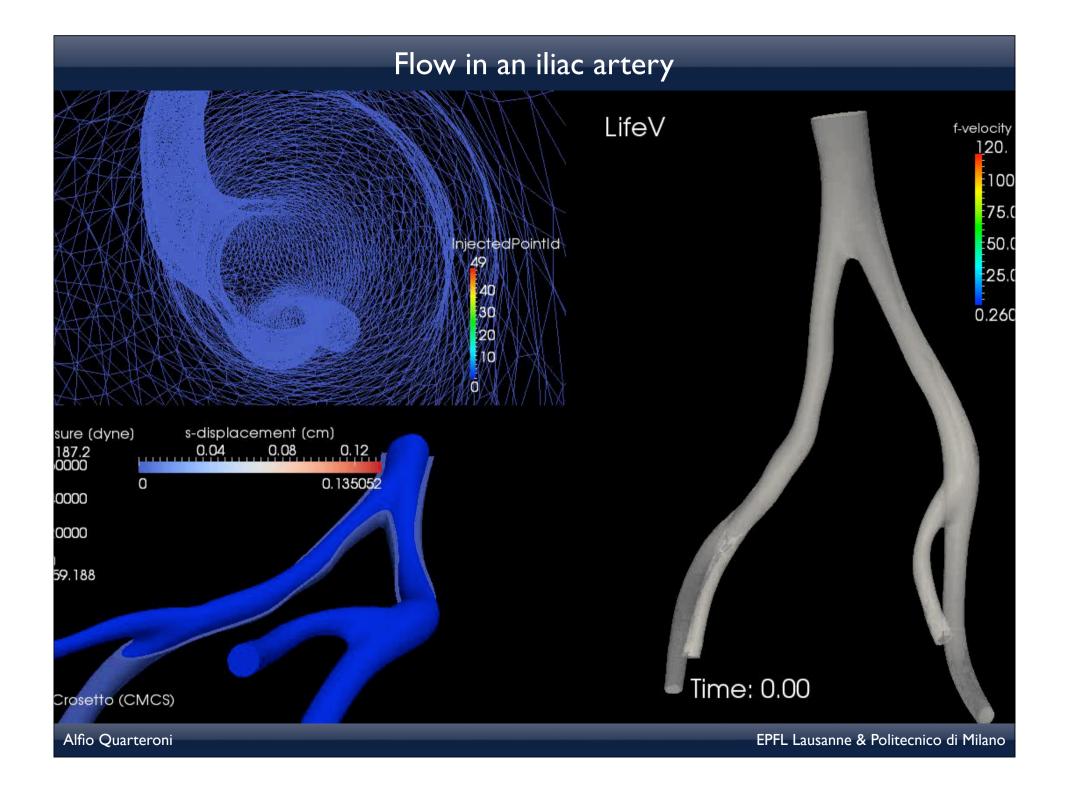


Alfio Quarteroni

Flow in the iliac artery

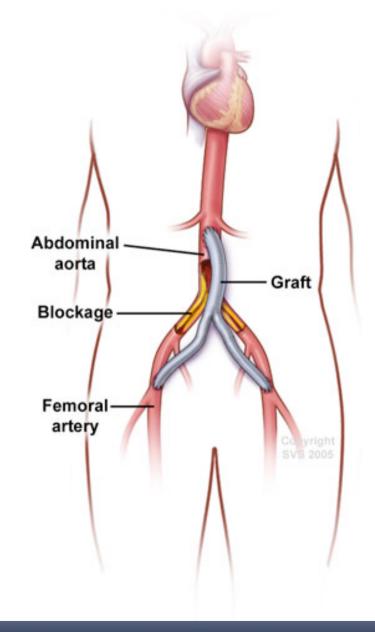


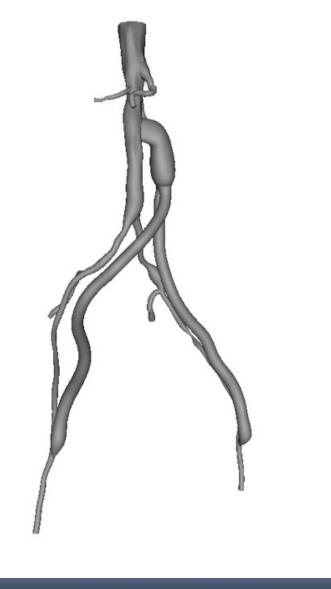
Alfio Quarteroni



Applications Surgical Planning

Bypass graft in abdominal artery



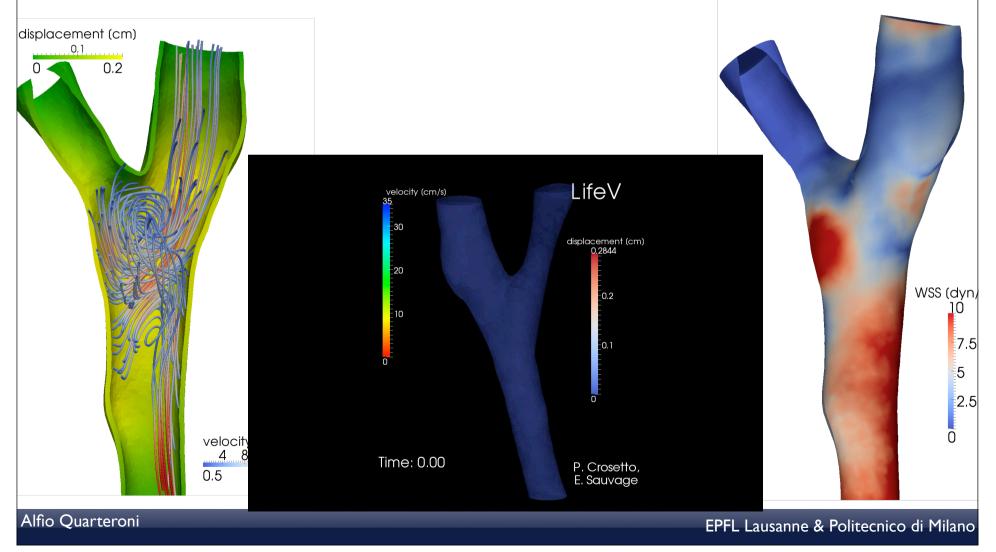


Alfio Quarteroni

FSI in a femoral bypass

WSS and streamlines at systole

Recirculation zone at the bypass anastomosis (left) produces modification in the WSS pattern (right)



Flow in Cerebral Aneurysms

Cerebral aneurysms: deformations of cerebral arteries, mostly placed on vessels belonging to or connected to the Circle of Willis.

EPIDEMIOLOGICAL STATISTICS

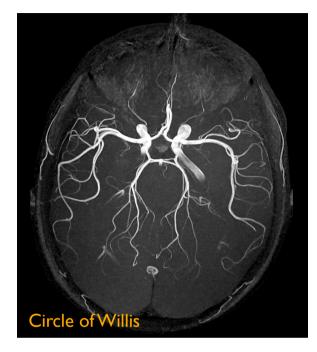
• Incidence rate of cerebral aneurysms:

I/20 people

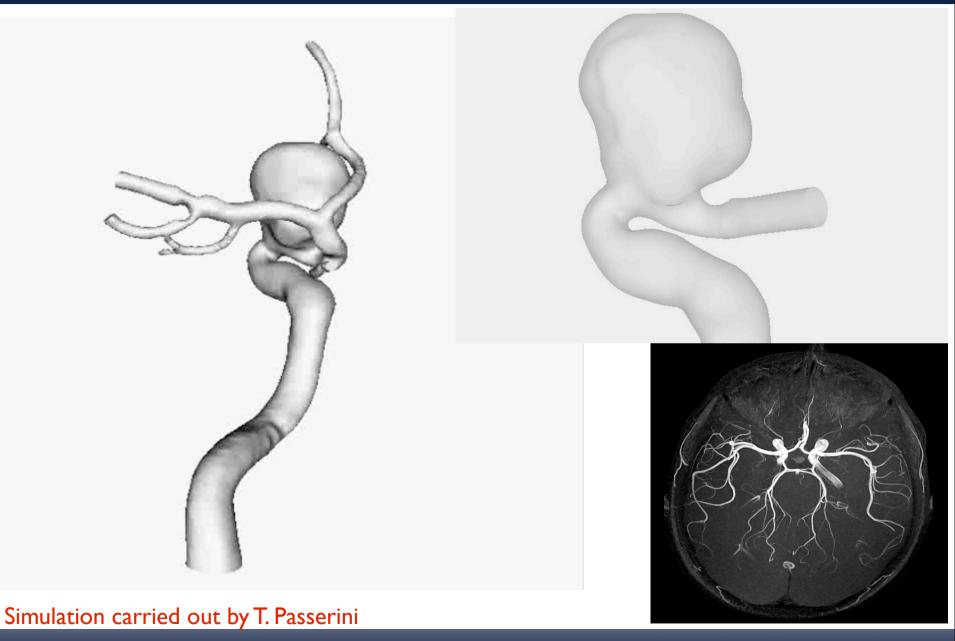
- Incidence rate of ruptured cerebral aneurysms per year: I/10000 people per year
- Mortality due to a ruptured aneurysm:
 > 50%:

Out of 9 patients with a ruptured aneurysm:

- 3 are expected to die before arriving at the hospital
- 2 to die after having arrived at the hospital
- 2 to survive with permanent cerebral damages
- 2 to survive without permanent cerebral damages

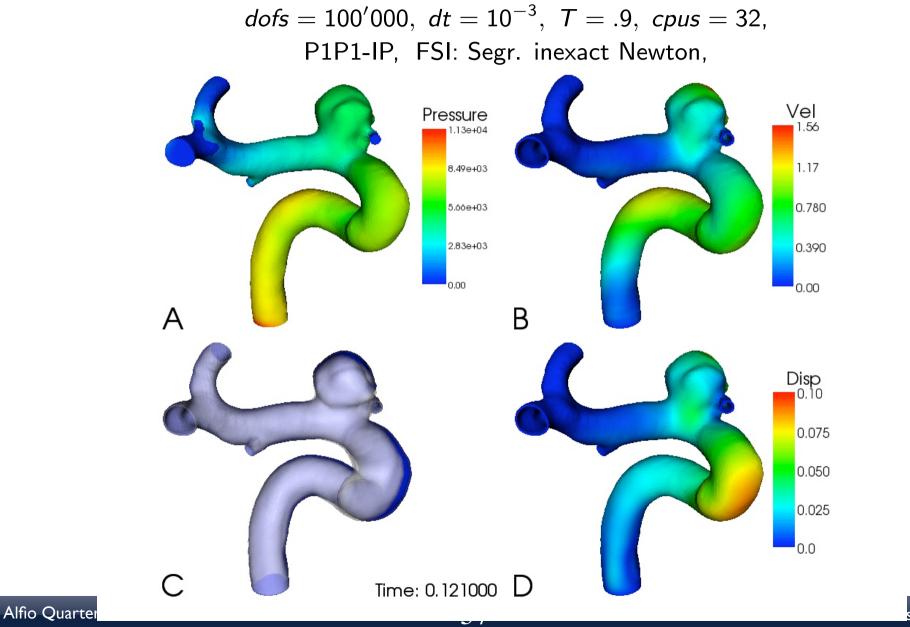


Flow in a cerebral aneurysm during a full cardiac pulse

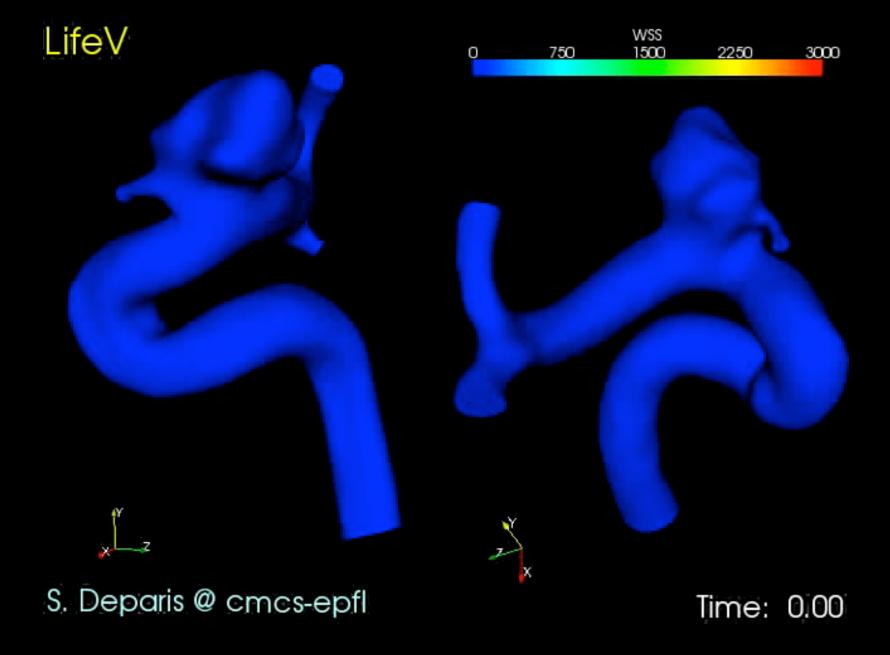


Alfio Quarteroni

Pressure, velocity and wall displacement



WSS - Wall Shear Stress



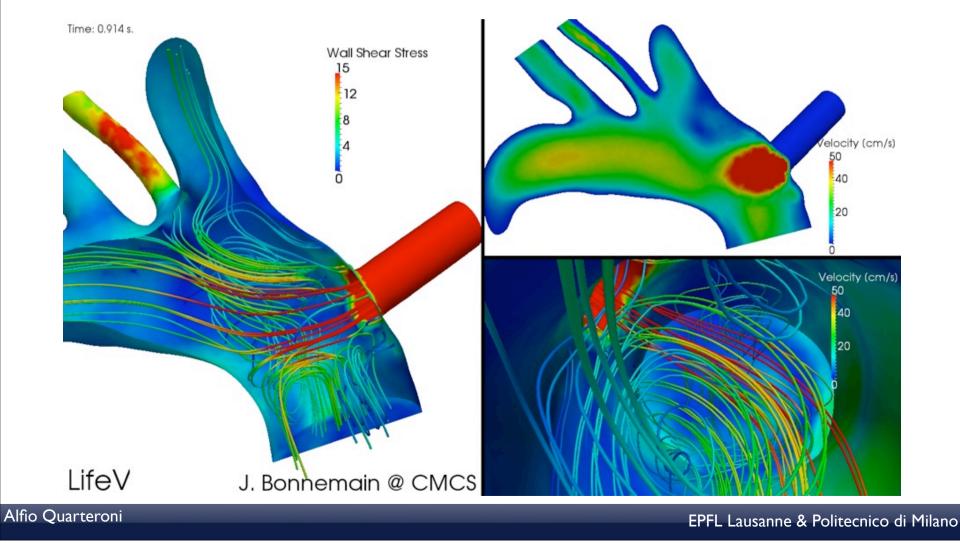
Applications Prosthetic Devices

Cannula of a Ventricular Assisted Device (VAD)

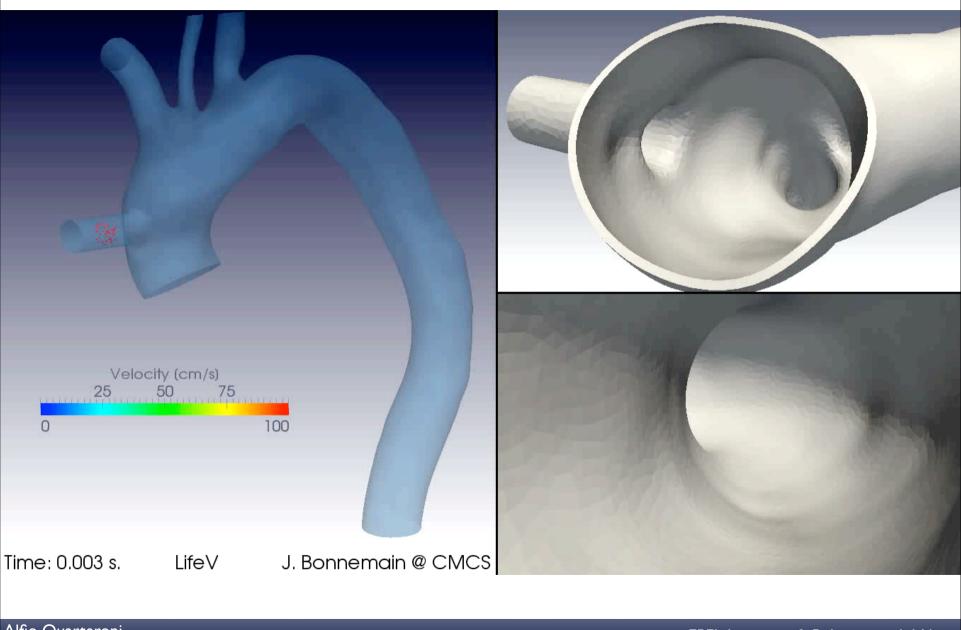
VAD connection to an Aorta (6 lt/min blood supply)

WSS and streamlines (steady state simulation)

Recirculation and secondary flows (left/lower right) velocity magnitude (upper right)

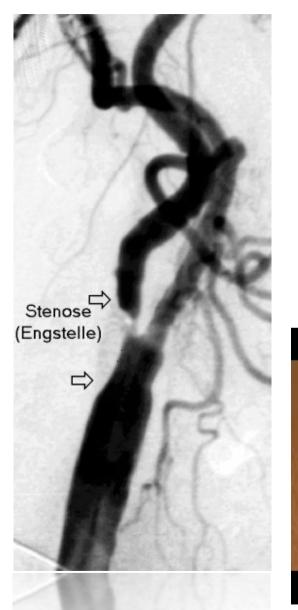


Cannula of a Ventricular Assisted Device to Aorta

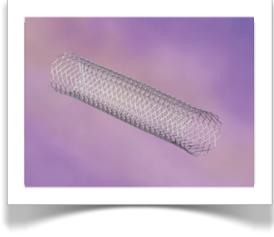


Alfio Quarteroni

Drug release from Stents

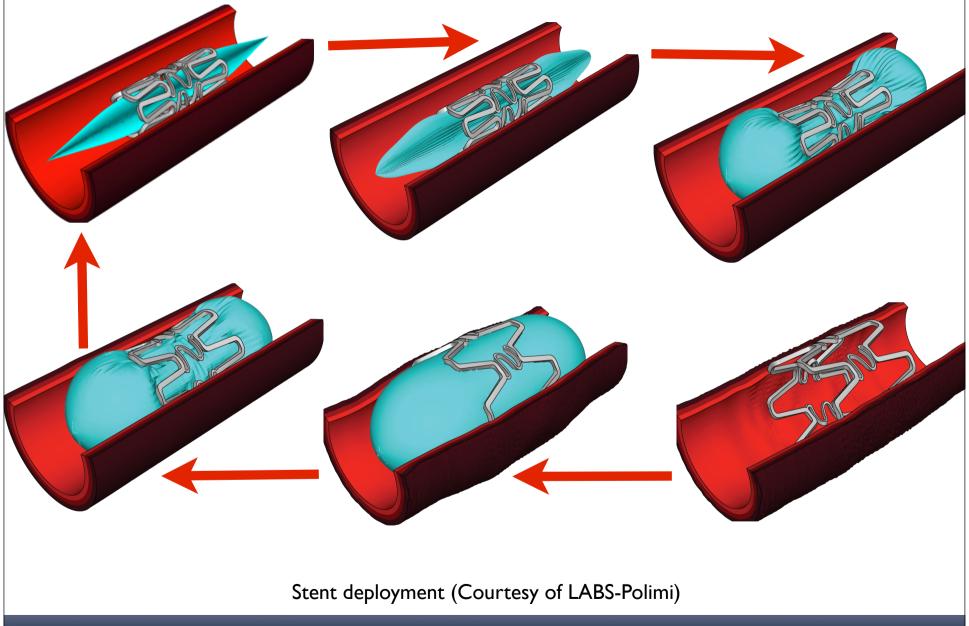


Angiography after stent placement



Alfio Quarteroni

Drug release from Stents

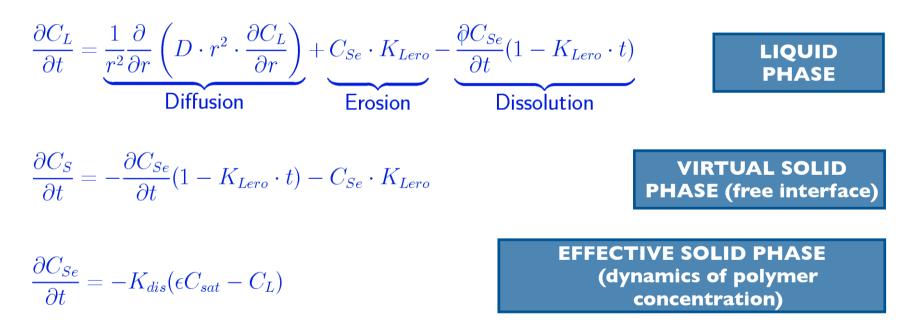


A Multi-Domain/Multi-Phase Problem

Macroscale, mm (in the arterial wall)

$$\frac{\partial c}{\partial t} = D\Delta c + \mathbf{u}\nabla c$$

Macroscale, µm (in the coating matrix)

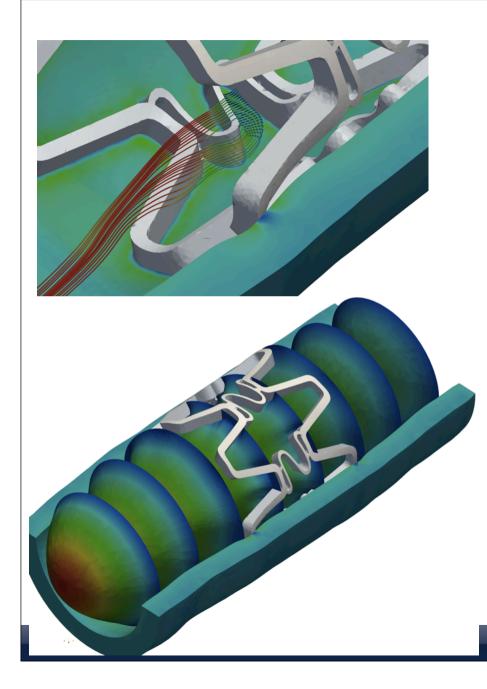


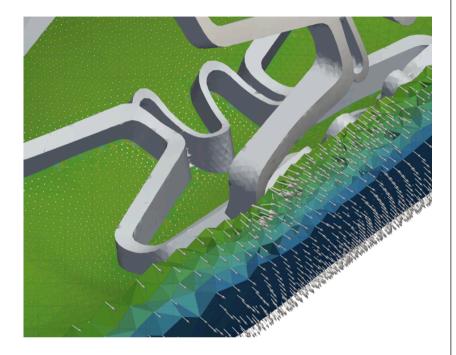
 K_{dis}, K_{Lero}, D

Depend on polymer characteristics (porosity, tortuosity,...) Determined by stochastic models

Alfio Quarteroni

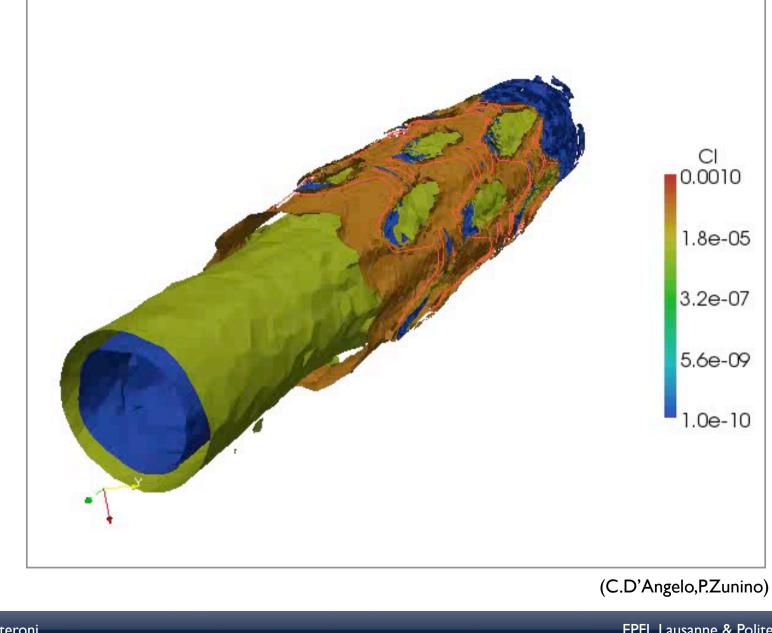
Flow Field Around a Stent: Numerical Simulation





- Simulations by C.D'Angelo,
- P.Zunino, MOX in collaboration
- with LABS, PoliMi

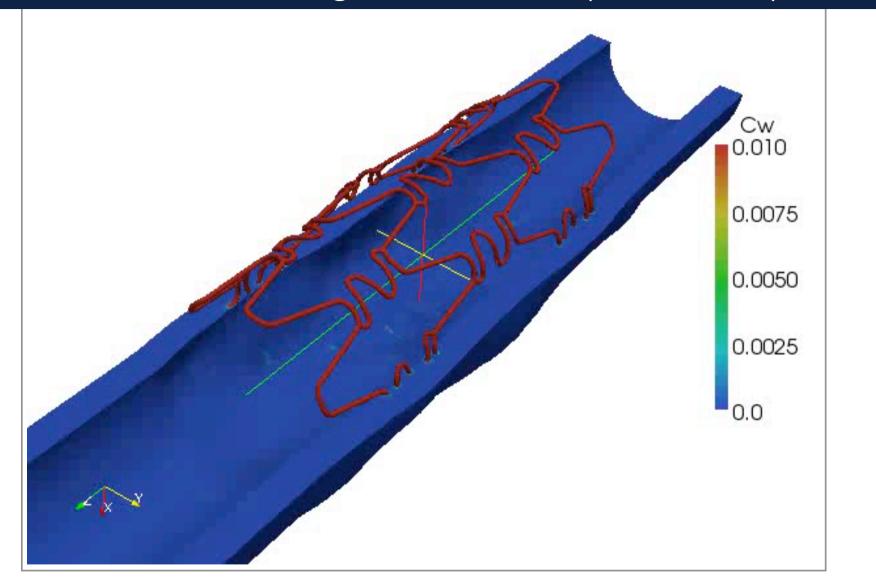
Isosurfaces of drug concentration (lumen)



EPFL Lausanne & Politecnico di Milano

Alfio Quarteroni

Isosurfaces of drug concentration (arterial wall)



(C.D'Angelo, P.Zunino)

Alfio Quarteroni