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The Multivariate Normal Distribution

1 Preliminaries from Linear Algebra

In Chapter 1 we studied how to handle (linear transformations of) random vec-
tors, that is, vectors whose components are random variables. Since the normal
distribution is (one of) the most important distribution(s) and since there are
special properties, methods, and devices pertaining to this distribution, we
devote this chapter to the study of the multivariate normal distribution, or,
equivalently, to the study of normal random vectors. We show, for example,
that the sample mean and the sample variance in a (one-dimensional) sample
are independent, a property that, in fact, characterizes this distribution and is
essential, for example, in the so called t-test, which is used to test hypotheses
about the mean in the (univariate) normal distribution when the variance is
unknown. In fact, along the way we will encounter three di↵erent ways to
show this independence. Another interesting fact that will be established is
that if the components of a normal random vector are uncorrelated, then they
are in fact independent. One section is devoted to quadratic forms of normal
random vectors, which are of great importance in many branches of statistics.
The main result, Cohran’s theorem, states that, under certain conditions, one
can split the sum of the squares of the observations into a number of quadratic
forms, each of them pertaining to some cause of variation in an experiment
in such a way that these quadratic forms are independent, and (essentially)
�2-distributed random variables. This can be used to test whether or not a
certain cause of variation influences the outcome of the experiment. For more
on the statistical aspects, we refer to the literature cited in Appendix A.

We begin, however, by recalling some basic facts from linear algebra.
Vectors are always column vectors (recall Remark 1.1.2). For convenience,
however, we sometimes write x = (x1, x2, . . . , xn)0. A square matrix A =
{aij , i, j = 1, 2, . . . , n} is symmetric if aij = aji and all elements are real.
All eigenvalues of a real, symmetric matrix are real. In this chapter all matrices
are real.
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118 5 The Multivariate Normal Distribution

A square matrix C is orthogonal if C0
C = I, where I is the identity matrix.

Note that since, trivially, C
�1

C = CC
�1 = I, it follows that

C
�1 = C

0. (1.1)

Moreover, detC = ±1.

Remark 1.1. Orthogonality means that the rows (and columns) of an orthog-
onal matrix, considered as vectors, are orthonormal, that is, they have length
1 and are orthogonal; the scalar products between them are zero. 2

Let x be an n-vector, let C be an orthogonal n ⇥ n matrix, and set y =
Cx; y is also an n-vector. A consequence of the orthogonality is that x and
y have the same length. Indeed,

y
0
y = (Cx)0Cx = x

0
C
0
Cx = x

0
x. (1.2)

Now, let A be a symmetric matrix. A fundamental result is that there exists
an orthogonal matrix C such that

C
0
AC = D, (1.3)

where D is a diagonal matrix, the elements of the diagonal being the eigen-
values, �1,�2, . . . ,�n, of A. It also follows that

detA = detD =
nY

k=1

�k. (1.4)

A quadratic form Q = Q(x) based on the symmetric matrix A is defined by

Q(x) = x
0
Ax

⇣
=

nX

i=1

nX

j=1

aijxixj

⌘
, x 2 R

n. (1.5)

Q is positive-definite if Q(x) > 0 for all x 6= 0 and nonnegative-definite
(positive-semidefinite) if Q(x) � 0 for all x.

One can show that Q is positive- (nonnegative-)definite i↵ all eigenvalues
are positive (nonnegative). Another useful criterion is to check all subdeter-
minants of A, that is, detAk, where Ak = {aij , i, j = 1, 2, . . . , k} and k =
1, 2, . . . , n. Then Q is positive- (nonnegative-)definite i↵ detAk > 0 (� 0)
for all k = 1, 2, . . . , n.

A matrix is positive- (nonnegative-)definite i↵ the corresponding quadratic
form is positive- (nonnegative-)definite.

Now, let A be a square matrix whose inverse exists. The algebraic com-
plement Aij of the element aij is defined as the matrix that remains after
deleting the ith row and the jth column of A. For the element a�1

ij of the
inverse A

�1 of A, we have
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a�1
ij = (�1)i+j detAji

detA
. (1.6)

In particular, if A is symmetric, it follows that Aij = A
0
ji, from which we

conclude that detAij = detAji and hence that a�1
ij = a�1

ji and that A
�1 is

symmetric.
Finally, we need to define the square root of a nonnegative-definite sym-

metric matrix. For a diagonal matrix D it is easy to see that the diagonal
matrix whose diagonal elements are the square roots of those of D has the
property that the square equals D. For the general case we know, from (1.3),
that there exists an orthogonal matrix C such that C

0
AC = D, that is, such

that
A = CDC

0, (1.7)

where D is the diagonal matrix whose diagonal elements are the eigenvalues
of A; dii = �i, i = 1, 2, . . . , n.

Let us denote the square root of D, as described above, by eD. We thus
have edii =

p
�i, i = 1, 2, . . . , n and eD2 = D. Set B = CeDC

0. Then

B
2 = BB = CeDC

0
CeDC

0 = CeDeDC
0 = CDC

0 = A , (1.8)

that is, B is a square root of A. A common notation is A
1/2.

Now, this holds true for any of the 2n choices of square roots. However, in
order to ensure that the square root is nonnegative-definite we tacitly assume
in the following that the nonnegative square root of the eigenvalues has been
chosen, viz., that throughout edii = +

p
�i.

If, in addition, A has an inverse, one can show that

(A�1)1/2 = (A1/2)�1, (1.9)

which is denoted by A
�1/2.

Exercise 1.1. Verify formula (1.9).

Exercise 1.2. Show that detA�1/2 = (detA)�1/2. 2

Remark 1.2. The reader who is less used to working with vectors and matrices
might like to spell out certain formulas explicitly as sums or double sums, and
so forth. 2

2 The Covariance Matrix

Let X be a random n-vector whose components have finite variance.

Definition 2.1. The mean vector of X is µ = E X, the components of which
are µi = E Xi, i = 1, 2, . . . , n.

The covariance matrix of X is ⇤ = E(X � µ)(X � µ)0, whose elements
are �ij = E(Xi � µi)(Xj � µj), i, j = 1, 2, . . . , n. 2
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Thus, �ii = Var Xi, i = 1, 2, . . . , n, and �ij = Cov(Xi, Xj) = �ji, i, j =
1, 2, . . . , n (and i 6= j, or else Cov(Xi, Xi) = Var Xi). In particular, every
covariance matrix is symmetric.

Theorem 2.1. Every covariance matrix is nonnegative-definite.

Proof. The proof is immediate from the fact that, for any y 2 R
n,

Q(y) = y
0
⇤y = y

0E(X� µ)(X� µ)0y = Var (y0(X� µ)) � 0. 2

Remark 2.1. If det⇤ > 0, the probability distribution of X is truly n-
dimensional in the sense that it cannot be concentrated on a subspace of
lower dimension. If det⇤ = 0 it can be concentrated on such a subspace; we
call it the singular case (as opposed to the nonsingular case). 2

Next we consider linear transformations.

Theorem 2.2. Let X be a random n-vector with mean vector µ and covari-
ance matrix ⇤. Further, let B be an m ⇥ n matrix, let b be a constant m-
vector, and set Y = BX + b. Then

E Y = Bµ + b and Cov Y = B⇤B
0.

Proof. We have
E Y = BE X + b = Bµ + b

and

Cov Y = E(Y � E Y)(Y � E Y)0 = E B(X� µ)(X� µ)0B0

= BE
�
(X� µ)(X� µ)0

 
B
0 = B⇤B

0 . 2

Remark 2.2. Note that for n = 1 the theorem reduces to the well-known facts
E Y = aE X + b and VarY = a2VarX (where Y = aX + b).

Remark 2.3. We will permit ourselves, at times, to be somewhat careless about
specifying dimensions of matrices and vectors. It will always be tacitly under-
stood that the dimensions are compatible with the arithmetic of the situation
at hand. 2

3 A First Definition

We will provide three definitions of the multivariate normal distribution. In
this section we present the first one, which states that a random vector is
normal i↵ every linear combination of its components is normal. In Section 4
we provide a definition based on the characteristic function, and in Section
5 we give a definition based on the density function. We also prove that the
first two definitions are always equivalent (i.e., when the covariance matrix is
nonnegative-definite) and that the three of them are equivalent in the non-
singular case (i.e., when the covariance matrix is positive-definite). A fourth
definition is given in Problem 10.1.
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Definition I. The random n-vector X is normal i↵, for every n-vector a, the
(one-dimensional) random variable a

0
X is normal. The notation X 2 N(µ,⇤)

is used to denote that X has a (multivariate) normal distribution with mean
vector µ and covariance matrix ⇤. 2

Remark 3.1. The actual distribution of a
0
X depends, of course, on a. The de-

generate normal distribution (meaning variance equal to zero) is also included
as a possible distribution of a

0
X.

Remark 3.2. Note that no assumption whatsoever is made about indepen-
dence between the components of X. 2

Surprisingly enough, this somewhat abstract definition is extremely appli-
cable and useful. Moreover, several proofs, which otherwise become compli-
cated, become very “simple” (and beautiful). For example, the following three
properties are immediate consequences of this definition:

(a) Every component of X is normal.
(b) X1 + X2 + · · · + Xn is normal.
(c) Every marginal distribution is normal.

Indeed, to see that Xk is normal for k = 1, 2, . . . , n, we choose a such
that ak = 1 and aj = 0 otherwise.

To see that the sum of all components is normal, we simply choose ak = 1
for all k.

As for (c) we argue as follows: To show that (Xi1 , Xi2 , . . . , Xik)0 is normal
for some k = (1, ) 2, . . . , n � 1, amounts to checking that all linear combi-
nations of these components are normal. However, since we know that X is
normal, we know that a

0
X is normal for every a, in particular for all a, such

that aj = 0 for j 6= i1, i2, . . . , ik, which establishes the desired conclusion.
We also observe that, from a first course in probability theory, we know

that any linear combination of independent normal random variables is normal
(via the convolution formula and/or the moment generating function—recall
Theorem 3.3.2), that is, the condition in Definition I is satisfied. It follows, in
particular, that

(d) if X has independent normal components, then X is normal.

Another important result is as follows:

Theorem 3.1. Suppose that X 2 N(µ,⇤) and set Y = BX + b. Then Y 2
N(Bµ + b,B⇤B

0).

Proof. The first part of the proof merely amounts to establishing the fact
that a linear combination of the components of Y is a (some other) linear
combination of the components of X. Namely, we wish to show that a

0
Y is

normal for every a. However,

a
0
Y = a

0
BX + a

0
b = (B0

a)0X + a
0
b = c

0
X + d, (3.1)
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where c = B
0
a and d = a

0
b. Since c

0
X is normal according to Definition I

(and d is a constant), it follows that a
0
Y is normal. The correctness of the

parameters follows from Theorem 2.2. 2

Exercise 3.1. Let X1, X2, X3, and X4 be independent, N(0, 1)-distributed
random variables. Set Y1 = X1 + 2X2 + 3X3 + 4X4 and Y2 = 4X1 + 3X2 +
2X3 + X4. Determine the distribution of Y.

Exercise 3.2. Let X 2 N +
�✓1

2

◆
,

✓
1 �2
�2 7

◆�
. Set

Y1 = X1 + X2 and Y2 = 2X1 � 3X2.

Determine the distribution of Y. 2

A word of caution is appropriate at this point. We noted above that all
marginal distributions of a normal random vector X are normal. The joint
normality of all components of X was essential here. In the following exam-
ple we define two random variables that are normal but not jointly normal.
This shows that a general converse does not hold; there exist normal random
variables that are not jointly normal.

Example 3.1. Let X 2 N(0, 1) and let Z be independent of X and such that
P (Z = 1) = P (Z = �1) = 1/2. Set Y = Z · X. Then

P (Y  x) =
1
2
P (X  x) +

1
2
P (�X  x) =

1
2
�(x) +

1
2
�
1� �(�x)

�
= �(x) ,

that is, Y 2 N(0, 1). Thus, X and Y are both (standard) normal. However,
since

P (X + Y = 0) = P (Z = �1) =
1
2
,

it follows from Definition I that X + Y cannot be normal and, hence, that
(X, Y )0 is not normal. 2

For a further example, see Problem 10.7.
Another kind of converse one might consider is the following. An obvious

consequence of Theorem 3.1 is that if X 2 N(µ,⇤), and if the matrices A

and B are such that A = B, then AX
d= BX. A natural question is whether

or not the converse holds, viz., if AX
d= BX, does it then follow that A = B?

Exercise 3.3. Let X1 and X2 be independent standard normal random vari-
ables and put

Y1 = X1+X2, Y2 = 2X1+X2 and Z1 = X1

p
2, Z2 =

3p
2
X1+

1p
2
X2.

(a) Determine the corresponding matrices A and B?
(b) Check that A 6= B.
(c) Show that (nevertheless) Y and Z are have the same normal distribution

(which one?). 2
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4 The Characteristic Function: Another Definition

The characteristic function of a random vector X is (recall Definition 3.4.2)

'X(t) = E eit0X. (4.1)

Now, suppose that X 2 N(µ,⇤). We observe that Z = t
0
X in (4.1) has

a one-dimensional normal distribution by Definition I. The parameters are
m = E Z = t

0µ and �2 = VarZ = t
0
⇤t. Since

'X(t) = 'Z(1) = exp{im� 1
2�

2} , (4.2)

we have established the following result:
Theorem 4.1. For X 2 N(µ,⇤), we have

'X(t) = exp{it0µ� 1
2t
0
⇤t}. 2

It turns out that we can, in fact, establish a converse to this result and
thereby obtain another, equivalent, definition of the multivariate normal dis-
tribution. We therefore temporarily “forget” the above and begin by proving
the following fact:
Lemma 4.1. For any nonnegative-definite symmetric matrix ⇤, the function

'⇤(t) = exp{it0µ� 1
2t
0
⇤t}

is the characteristic function of a random vector X with E X = µ and
Cov X = ⇤.

Proof. Let Y be a random vector whose components Y1, Y2, . . . , Yn are inde-
pendent, N(0, 1)-distributed random variables, and set

X = ⇤
1/2

Y + µ. (4.3)

Since Cov Y = I, it follows from Theorem 2.2 that

E X = µ and Cov X = ⇤. (4.4)

Furthermore, an easy computation shows that

'Y(t) = E exp{it0Y} = exp{� 1
2t
0
t}. (4.5)

It finally follows that

'X(t) = E exp{it0X} = E exp{it0(⇤1/2
Y + µ)}

= exp{it0µ} · E exp{it0⇤1/2
Y}

= exp{it0µ} · E exp{i(⇤1/2
t)0Y}

= exp{it0µ} · 'Y(⇤1/2
t)

= exp{it0µ} · exp
�
� 1

2 (⇤1/2
t)0(⇤1/2

t)
 

= exp
�
it0µ� 1

2t
0
⇤t
 
,

as desired. 2
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Note that at this point we do not (yet) know that X is normal.
The next step is to show that if X has a characteristic function given as

in the lemma, then X is normal in the sense of Definition I. Thus, let X be
given as described and let a be an arbitrary n-vector. Then

'a0X(u) = E exp{iua
0
X} = 'X(ua)

= exp
�
i(ua)0µ� 1

2 (ua)0⇤(ua)
 

= exp{ium� 1
2u2�2} ,

where m = a
0µ and �2 = a

0
⇤a � 0, which proves that a

0
X 2 N(m,�2) and

hence that X is normal in the sense of Definition I.
Alternatively, we may argue as in the proof of Theorem 3.1:

a
0
X = a

0�
⇤

1/2
Y + µ

�
= a

0
⇤

1/2
Y + a

0µ =
�
⇤

1/2
a
�0
Y + a

0µ ,

which shows that a linear combination of the components of X is equal to
(another) linear combination of the components of Y, which, in turn, we
know is normal, since Y has independent components.

We have thus shown that the function defined in Lemma 4.1 is, indeed,
a characteristic function and that the linear combinations of the components
of the corresponding random vector are normal. This motivates the following
alternative definition of the multivariate normal distribution.

Definition II. A random vector X is normal i↵ its characteristic function is
of the form

'X(t) = exp{it0µ� 1
2t
0
⇤t} ,

for some vector µ and nonnegative-definite matrix ⇤. 2

We have also established the following fact:
Theorem 4.2. Definitions I and II are equivalent. 2

Remark 4.1. The definition and expression for the moment generating func-
tion are the obvious ones:

 X(t) = E et0X = exp
�
t
0µ + 1

2t
0
⇤t}. 2

Exercise 4.1. Suppose that X = (X1, X2)0 has characteristic function

'X(t) = exp{it1 + 2it2 � 1
2 t21 + 2t1t2 � 6t22}.

Determine the distribution of X.

Exercise 4.2. Suppose that X = (X1, X2)0 has characteristic function

'(t, u) = exp{it� 2t2 � u2 � tu}.

Find the distribution of X1 + X2.

Exercise 4.3. Suppose that X and Y have a (joint) moment generating func-
tion given by

 (t, u) = exp{t2 + 2tu + 4u2}.
Compute P (2X < Y + 2). 2
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5 The Density: A Third Definition

Let X 2 N(µ,⇤). If det⇤ = 0, the distribution is singular, as mentioned
before, and no density exists. If, however, det⇤ > 0, then there exists a
density function that, moreover, is uniquely determined by the parameters µ
and ⇤.

In order to determine the density, it is therefore su�cient to find it for a
normal distribution constructed in some convenient way. To this end, let Y

and X be defined as in the proof of Lemma 4.1, that is, Y has independent,
standard normal components and X = ⇤

1/2
Y + µ. Then X 2 N(µ,⇤) by

Theorem 3.1, as desired.
Now, since the density of Y is known, it is easy to compute the density of

X with the aid of the transformation theorem. Namely,

fY(y) =
nY

k=1

fYk(yk) =
nY

k=1

1p
2⇡

e�y2
k/2

=
⇣ 1

2⇡

⌘n/2
e�

1
2

Pn
k=1 y2

k =
⇣ 1

2⇡

⌘n/2
e�

1
2y0y, y 2 R

n.

Further, since det⇤ > 0, we know that the inverse ⇤
�1 exists, that

Y = ⇤
�1/2(X� µ), (5.1)

and hence that the Jacobian is det⇤�1/2 = (det⇤)�1/2 (Exercise 1.2). The
following result emerges.

Theorem 5.1. For X 2 N(µ,⇤) with det⇤ > 0, we have

fX(x) =
⇣ 1

2⇡

⌘n/2 1p
det⇤

exp
�
� 1

2 (x� µ)0⇤�1(x� µ)
 
. 2

Exercise 5.1. We have tacitly used the fact that if X is a random vector and
Y = BX then ���

d(y)
d(x)

��� = detB.

Prove that this is correct. 2

We are now ready for our third definition.

Definition III. A random vector X with E X = µ and CovX = ⇤, such that
det⇤ > 0, is N(µ,⇤)-distributed i↵ the density equals

fX(x) =
⇣ 1

2⇡

⌘n/2 1p
det⇤

exp
�
� 1

2 (x� µ)0⇤�1(x� µ)
 
, x 2 R

n. 2

Theorem 5.2. Definitions I, II, and III are equivalent (in the nonsingular
case).
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Proof. The equivalence of Definitions I and II was established in Section 4. The
equivalence of Definitions II and III (in the nonsingular case) is a consequence
of the uniqueness theorem for characteristic functions. 2

Now let us see how the density function can be computed explicitly.
Let ⇤ij be the algebraic complement of �ij = Cov(Xi, Xj) and set 4ij =
(�1)i+jdet⇤ij (= 4ji, since ⇤ is symmetric). Since the elements of ⇤

�1 are
4ij/4, i, j = 1, 2, . . . , n, where 4 = det⇤, it follows that

fX(x) =
⇣ 1

2⇡

⌘n/2 1p
4

exp
n
�1

2

nX

i=1

nX

j=1

4ij

4 (xi � µi)(xj � µj)
o

. (5.2)

In particular, the following holds for the case n = 2: Set µk = E Xk and
�2

k = VarXk, k = 1, 2, and �12 = Cov(X1, X2), and let ⇢ = �12/�1�2 be the
correlation coe�cient, where |⇢| < 1 (since det⇤ > 0). Then4 = �2

1�
2
2(1�⇢2),

411 = �2
2 , 422 = �2

1 , 412 = 421 = �⇢�1�2, and hence

⇤ =

 
�2

1 ⇢�1�2

⇢�1�2 �2
2

!
and ⇤

�1 =
1

1� ⇢2

0

BB@

1
�2

1

� ⇢

�1�2

� ⇢

�1�2

1
�2

2

1

CCA .

It follows that

fX1,X2(x1, x2) =
1

2⇡�1�2

p
1� ⇢2

⇥ exp
�
� 1

2(1� ⇢2)
�
(
x1 � µ1

�1
)2 � 2⇢

(x1 � µ1)(x2 � µ2)
�1�2

+ (
x2 � µ2

�2
)2
� 

.

Exercise 5.2. Let the (joint) moment generating function of X be

 (t, u) = exp{t2 + 3tu + 4u2}.

Determine the density function of X.

Exercise 5.3. Suppose that X 2 N(0,⇤), where

⇤ =

0

B@

7
2

1
2 �1

1
2

1
2 0

�1 0 1
2

1

CA .

Put Y1 = X2 + X3, Y2 = X1 + X3, and Y3 = X1 + X2. Determine the density
function of Y. 2
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6 Conditional Distributions

Let X 2 N(µ,⇤), and suppose that det⇤ > 0. The density thus exists as
given in Section 5. Conditional densities are defined (Chapter 2) as the ratio
of the relevant joint and marginal densities. One can show that all marginal
distributions of a nonsingular normal distribution are nonsingular and hence
possess densities.

Let us consider the case n = 2 in some detail. Suppose that (X, Y )0 2
N(µ,⇤), where E X = µx, E Y = µy, VarX = �2

x, VarY = �2
y, and ⇢X,Y = ⇢,

where |⇢| < 1. Then

fY |X=x(y) =
fX,Y (x, y)

fX(x)

=

1

2⇡�x�y

p
1�⇢2

exp{� 1
2(1�⇢2) ((

x�µx

�x
)2 � 2⇢ (x�µx)(y�µy)

�x�y
+ (y�µy

�y
)2)}

1p
2⇡�x

exp{�1
2 (x�µx

�x
)2}

=
1

p
2⇡�y

p
1� ⇢2

exp
�
� 1

2(1�⇢2)

�
(x�µx

�x
)2⇢2 � 2⇢ (x�µx)(y�µy)

�x�y
+ (y�µy

�y
)2
� 

=
1

p
2⇡�y

p
1� ⇢2

exp
n
� 1

2�2
y(1� ⇢2)

�
y � µy � ⇢

�y

�x
(x� µx)

�2o
. (6.1)

This density is easily recognized as the density of a normal distribution with
mean µy + ⇢�y

�x
(x�µx) and variance �2

y(1� ⇢2). It follows, in particular, that

E(Y | X = x) = µy + ⇢
�y

�x
(x� µx),

Var(Y | X = x) = �2
y(1� ⇢2).

(6.2)

As a special feature we observe that the regression function is linear (and
coinciding with the regression line) and that the conditional variance equals
the residual variance. For the former statement we refer back to Remark 2.5.4
and for the latter to Theorem 2.5.3. Further, recall that the residual variance
is independent of x.

Example 6.1. Suppose the density of (X, Y )0 is given by

f(x, y) =
1
2⇡

exp{�1
2 (x2 � 2xy + 2y2)}.

Determine the conditional distributions, particularly the conditional expecta-
tions and the conditional variances.

Solution. The function x2� 2xy +2y2 = (x� y)2 + y2 is positive-definite. We
thus identify the joint distribution as normal. An inspection of the density
shows that
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E X = E Y = 0 and ⇤
�1 =

✓
1 �1
�1 2

◆
, (6.3)

which implies that
✓

X

Y

◆
2 N(0,⇤), where ⇤ =

✓
2 1
1 1

◆
. (6.4)

It follows that Var X = 2, Var Y = 1, and Cov(X, Y ) = 1, and hence that
⇢X,Y = 1/

p
2.

A comparison with (6.2) shows that

E(Y | X = x) =
x

2
and Var (Y | X = x) =

1
2
,

E(X | Y = y) = y and Var(X | Y = y) = 1.

The conditional distributions are the normal distributions with corresponding
parameters. 2

Remark 6.1. Instead of having to remember formula (6.2), it is often as sim-
ple to perform the computations leading to (6.1) directly in each case. In-
deed, in higher dimensions this is necessary. As an illustration, let us compute
fY |X=x(y).

Following (6.4) or by using the fact that fX(x) =
R1
�1 fX,Y (x, y) dy, we

have

fY |X=x(y) =
1
2⇡ exp{�1

2 (x2 � 2xy + 2y2)}
1p

2⇡
p

2
exp{�1

2 · x2

2 }

=
1p

2⇡
p

1/2
exp
�
�1

2
�x2

2
� 2xy + 2y2

� 

=
1p

2⇡
p

1/2
exp
n
�1

2
(y � x/2)2

1/2

o
,

which is the density of the N(x/2, 1/2)-distribution. 2

Exercise 6.1. Compute fX|Y =y(x) similarly. 2

Example 6.2. Suppose that X 2 N(µ,⇤), where µ = 1 and

⇤ =
✓

3 1
1 2

◆
.

Find the conditional distribution of X1 + X2 given that X1 �X2 = 0.

Solution. We introduce the random variables Y1 = X1+X2 and Y2 = X1�X2

to reduce the problem to the standard case; we are then faced with the problem
of finding the conditional distribution of Y1 given that Y2 = 0.
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Since we can write Y = BX, where

B =
✓

1 1
1 �1

◆
,

it follows that Y 2 N(Bµ,B⇤B
0), that is, that

Y 2 N
�✓2

0

◆
,

✓
7 1
1 3

◆�
,

and hence that

fY(y) =
1

2⇡
p

20
exp
n
�1

2

⇣3(y1 � 2)2

20
� (y1 � 2)y2

10
+

7y2
2

20

⌘o
.

Further, since Y2 2 N(0, 3), we have

fY2(y2) =
1p

2⇡
p

3
exp
n
�1

2
· y2

2

3

o
.

Finally,

fY1|Y2=0(y1) =
fY1,Y2(y1, 0)

fY2(0)
=

1
2⇡
p

20
exp{� 1

2 · 3(y1�2)2

20 }
1p

2⇡
p

3
exp{� 1

2 · 0}

=
1p

2⇡
p

20/3
exp
n
� 1

2
(y1 � 2)2

20/3

o
,

which we identify as the density of the N(2, 20/3)-distribution. 2

Remark 6.2. It follows from the general formula (6.1) that the final exponent
must be a square. This provides an extra check of one’s computations. Also,
the variance appears twice (in the last example it is 20/3) and must be the
same in both places. 2

Let us conclude by briefly considering the general case n � 2. Thus,
X 2 N(µ,⇤) with det⇤ > 0. Let eX1 = (Xi1,Xi2 , ..., Xik)0 and eX2 =
(Xj1,Xj2 , ..., Xjm)0 be subvectors of X, that is, vectors whose components
consist of k and m of the components of X, respectively, where 1  k < n
and 1  m < n. The components of eX1 and eX2 are assumed to be di↵erent.
By definition we then have

feX2| eX1=ex1
(ex2) =

feX1, eX2
(ex1, ex2)

feX1
(ex1)

. (6.5)

Given the formula for normal densities (Theorem 5.1) and the fact that the
coordinates of ex1 are constants, the ratio in (6.5) must be the density of
some normal distribution. The conclusion is that conditional distributions of
multivariate normal distributions are normal.
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Exercise 6.2. Let X 2 N(0,⇤), where

⇤ =

0

@
1 2 �1
2 6 0
�1 0 4

1

A .

Set Y1 = X1 + X3, Y2 = 2X1 �X2, and Y3 = 2X3 �X2. Find the conditional
distribution of Y3 given that Y1 = 0 and Y2 = 1.

7 Independence

A very special property of the multivariate normal distribution is the
following:

Theorem 7.1. Let X be a normal random vector. The components of X are
independent i↵ they are uncorrelated.

Proof. We only need to show that uncorrelated components are independent,
the converse always being true.

Thus, by assumption, Cov(Xi, Xj) = 0, i 6= j. This implies that the
covariance matrix is diagonal, the diagonal elements being �2

1 , �2
2 , . . . , �2

n.
If some �2

k = 0, then that component is degenerate and hence independent
of the others. We therefore may assume that all variances are positive in
the following. It then follows that the inverse ⇤

�1 of the covariance matrix
exists; it is a diagonal matrix with diagonal elements 1/�2

1 , 1/�2
2 , . . . , 1/�2

n.
The corresponding density function therefore equals

fX(x) =
⇣ 1

2⇡

⌘n/2 1Qn
k=1 �k

· exp
n
�1

2

nX

k=1

(xk � µk)2

�2
k

o

=
nY

k=1

1p
2⇡�k

· exp
n
� (xk � µk)2

2�2
k

o
,

which proves the desired independence. 2

Example 7.1. Let X1 and X2 be independent, N(0, 1)-distributed random vari-
ables. Show that X1 + X2 and X1 �X2 are independent.

Solution. It is easily checked that Cov(X1 + X2, X1�X2) = 0, which implies
that X1 + X2 and X1 �X2 are uncorrelated. By Theorem 7.1 they are also
independent. 2

Remark 7.1. We have already encountered Example 7.1 in Chapter 1; see Ex-
ample 1.2.4. There independence was proved with the aid of transformation
(Theorem 1.2.1) and factorization. The solution here illustrates the power of
Theorem 7.1. 2
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Exercise 7.1. Let X and Y be jointly normal with correlation coe�cient ⇢
and suppose that VarX = VarY . Show that X and Y � ⇢X are independent.

Exercise 7.2. Let X and Y be jointly normal with E X = E Y = 0, VarX =
VarY = 1, and correlation coe�cient ⇢. Find ✓ such that X cos ✓ + Y sin ✓
and X cos ✓ � Y sin ✓ are independent.

Exercise 7.3. Generalize the results of Example 7.1 and Exercise 7.1 to the
case of nonequal variances. 2

Remark 7.2. In Example 3.1 we stressed the importance of the assumption
that the distribution was jointly normal. The example is also suited to illus-
trate the importance of that assumption with respect to Theorem 7.1. Namely,
since E X = E Y = 0 and E XY = E X2Z = E X2 · E Z = 0, it follows that
X and Y are uncorrelated. However, since |X| = |Y |, it is clear that X and Y
are not independent. 2

We conclude by stating the following generalization of Theorem 7.1, the
proof of which we leave as an exercise:

Theorem 7.2. Suppose that X 2 N(µ,⇤), where ⇤ can be partitioned as
follows:

⇤ =

0

BBB@

⇤1 0 0 0

0 ⇤2 0 0

0 0
. . . 0

0 0 0 ⇤k

1

CCCA

(possibly after reordering the components), where ⇤1, ⇤2, . . . , ⇤k are ma-
trices along the diagonal of ⇤. Then X can be partitioned into vectors
X

(1), X
(2), . . . , X

(k) with Cov(X(i)) = ⇤i, i = 1, 2, . . . , k, in such a way
that these random vectors are independent. 2

Example 7.2. Suppose that X 2 N(0,⇤), where

⇤ =

0

@
1 0 0
0 2 4
0 4 9

1

A .

Then X1 and (X2, X3)0 are independent. 2

8 Linear Transformations

A major consequence of Theorem 7.1 is that it is possible to make linear
transformations of normal vectors in such a way that the new vector has
independent components. In particular, any orthogonal transformation of a
normal vector whose components are independent and have common variance
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produces a new normal random vector with independent components. As a
major application, we show in Example 8.3 how these relatively simple facts
can be used to prove the rather delicate result that states that the sample mean
and the sample variance in a normal sample are independent. For further
details concerning applications in statistics we refer to Appendix A, where
some references are given.

We first recall from Section 3 that a linear transformation of a nor-
mal random vector is normal. Now suppose that X 2 N(µ,⇤). Since ⇤ is
nonnegative-definite, there exists (formula (1.3)) an orthogonal matrix C,
such that C

0
⇤C = D, where D is a diagonal matrix whose diagonal elements

are the eigenvalues �1, �2, . . . , �n of ⇤.
Set Y = C

0
X. It follows from Theorem 3.1 that Y 2 N(C0µ,D). The com-

ponents of Y are thus uncorrelated and, in view of Theorem 7.1, independent,
which establishes the following result:

Theorem 8.1. Let X 2 N(µ,⇤), and set Y = C
0
X, where the orthogonal

matrix C is such that C
0
⇤C = D. Then Y 2 N(C0µ,D). Moreover, the

components of Y are independent and VarYk = �k, k = 1, 2, . . . , n, where
�1, �2, . . . , �n are the eigenvalues of ⇤. 2

Remark 8.1. In particular, it may occur that some eigenvalues are equal to
zero, in which case the corresponding component is degenerate.

Remark 8.2. As a special corollary it follows that the statement “X 2 N(0, I)”
is equivalent to the statement “X1, X2, . . . , Xn are independent, standard
normal random variables.”

Remark 8.3. The primary use of Theorem 8.1 is in proofs and for theoretical
arguments. In practice it may be cumbersome to apply the theorem when n
is large, since the computation of the eigenvalues of ⇤ amounts to solving an
algebraic equation of degree n. 2

Another situation of considerable importance in statistics is orthogonal
transformations of independent, normal random variables with the same vari-
ance, the point being that the transformed random variables also are inde-
pendent. That this is indeed the case may easily be proved with the aid of
Theorem 8.1. Namely, let X 2 N(µ,�2

I), where �2 > 0, and set Y = CX,
where C is an orthogonal matrix. Then Cov Y = C�2

IC
0 = �2

I, which, in
view of Theorem 7.1, yields the following result:

Theorem 8.2. Let X 2 N(µ,�2
I), where �2 > 0, let C be an arbitrary or-

thogonal matrix, and set Y = CX. Then Y 2 N(Cµ,�2
I); in particular,

Y1, Y2, . . . , Yn are independent normal random variables with the same vari-
ance, �2. 2

As a first application we reexamine Example 7.1.
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Example 8.1. Thus, X and Y are independent, N(0, 1)-distributed random
variables, and we wish to show that X + Y and X � Y are independent.

It is clearly equivalent to prove that U = (X+Y )/
p

2 and V = (X�Y )/
p

2
are independent. Now, (X, Y )0 2 N(0, I) and

✓
U
V

◆
= B

✓
X
Y

◆
, where B =

 1p
2

1p
2

1p
2
� 1p

2

!
,

that is, B is orthogonal. The conclusion follows immediately from Theorem
8.2.

Example 8.2. Let X1, X2, . . . , Xn be independent, N(0, 1)-distributed ran-
dom variables, and let a1, a2, . . . , an be reals, such that

Pn
k=1 a2

k 6= 0. Find
the conditional distribution of

Pn
k=1 X2

k given that
Pn

k=1 akXk = 0.

Solution. We first observe that
Pn

k=1 X2
k 2 �2(n) (recall Exercise 3.3.6 for

the case n = 2). In order to determine the desired conditional distribution,
we define an orthogonal matrix C, whose first row consists of the elements
a1/a, a2/a, . . . , an/a, where a =

pPn
k=1 a2

k; note that
Pn

k=1(ak/a)2 = 1.
From linear algebra we know that the matrix C can be completed in such
a way that it becomes an orthogonal matrix. Next we set Y = CX, note
that Y 2 N(0, I) by Theorem 8.2, and observe that, in particular, aY1 =Pn

k=1 akXk. Moreover, since C is orthogonal, we have
Pn

k=1 Y 2
k =

Pn
k=1 X2

k
(formula (1.2)). It follows that the desired conditional distribution is the same
as the conditional distribution of

Pn
k=1 Y 2

k given that Y1 = 0, that is, as the
distribution of

Pn
k=2 Y 2

k , which is �2(n� 1). 2

Exercise 8.1. Study the case n = 2 and a1 = a2 = 1 in detail. Try also to
reach the conclusion via the random variables U and V in Example 8.1. 2

Example 8.3. There exists a famous characterization of the normal distribu-
tion to the e↵ect that it is the only distribution such that the arithmetic mean
and the sample variance are independent. This independence is, for example,
exploited in order to verify that the t-statistic, which is used for testing the
mean in a normal population when the variance is unknown, actually follows
a t-distribution.

Here we prove the “if” part; the other one is much harder. Thus, let
X1, X2, . . . , Xn be independent, N(0, 1)-distributed random variables, set
X̄n = 1

n

Pn
k=1 Xk and s2

n = 1
n�1

Pn
k=1(Xk � X̄n)2.

The first step is to determine the distribution of

(X̄n, X1 � X̄n, X2 � X̄n, . . . , Xn � X̄n)0.

Since the vector can be written as BX, where
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B =

0

BBBBBBB@

1
n

1
n

1
n . . . 1

n

1� 1
n � 1

n � 1
n . . . � 1

n

� 1
n 1� 1

n �
1
n . . . � 1

n

...
...

. . .
...

� 1
n � 1

n � 1
n . . . 1� 1

n

1

CCCCCCCA

,

we know that the vector is normal with mean 0 and covariance matrix

BB
0 =

 
1
n 0

0 A

!
,

where A is some matrix the exact expression of which is of no importance here.
Namely, the point is that we may apply Theorem 7.2 in order to conclude that
X̄n and (X1 � X̄n, X2 � X̄n, . . . , Xn � X̄n) are independent, and since s2

n is
simply a function of (X1� X̄n, X2� X̄n, . . . , Xn� X̄n) it follows that X̄n and
s2

n are independent random variables. 2

Exercise 8.2. Suppose that X 2 N(µ,�2
I), where �2 > 0. Show that if B is

any matrix such that BB
0 = D, a diagonal matrix, then the components of

Y = BX are independent, normal random variables; this generalizes Theorem
8.2. As an application, reconsider Example 8.1. 2

Theorem 8.3. (Daly’s theorem) Let X2N(µ,�2
I) and set X̄n = 1

n

Pn
k=1 Xk.

Suppose that g(x) is translation invariant, that is, for all x 2 R
n, we have

g(x + a · 1) = g(x) for all a. Then X̄n and g(X) are independent.

Proof. Throughout the proof we assume, without restriction, that µ = 0 and
that �2 = 1. The translation invariance of g implies that g is, in fact, living in
the (n� 1)-dimensional hyperplane x1 + x2 + · · · + xn = constant, on which
X̄n is constant. We therefore make a change of variable similar to that of
Example 8.2. Namely, define an orthogonal matrix C such that the first row
has all elements equal to 1/

p
n, and set Y = CX. Then, by construction, we

have Y1 =
p

n · X̄n and, by Theorem 8.2, that Y 2 N(0, I). The translation
invariance implies, in view of the above, that g depends only on Y2, Y3, . . . , Yn

and hence, by Theorem 7.2, is independent of Y1. 2

Example 8.4. Since the sample variance s2
n as defined in Example 8.3 is trans-

lation invariant, the conclusion of that example follows, alternatively, from
Daly’s theorem. Note, however, that Daly’s theorem can be viewed as an
extension of that very example.

Example 8.5. The range Rn = X(n) �X(1) (which was defined in Section 4.2)
is obviously translation invariant. It follows that X̄n and Rn are independent
(in normal samples). 2
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There also exist useful linear transformations that are not orthogonal. One
important example, in the two-dimensional case, is the following, a special case
of which was considered in Exercise 7.1.

Suppose that X 2 N(µ,⇤), where

µ =

 
µ1

µ2

!
and ⇤ =

 
�2

1 ⇢�1�2

⇢�1�2 �2
2

!

with |⇢| < 1. Define Y through the relations

X1 = µ1 + �1Y1,

X2 = µ2 + ⇢�2Y1 + �2

p
1� ⇢2Y2.

(8.1)

This means that X and Y are connected via X = µ + BY, where

B =

 
�1 0

⇢�2 �2

p
1� ⇢2

!
,

which is not orthogonal. However, a simple computation shows that Y 2
N(0, I), that is, Y1 and Y2 are independent, standard normal random variables.

Example 8.6. If X1 and X2 are independent and N(0, 1)-distributed, then X2
1

and X2
2 are independent, �2(1)-distributed random variables, from which it

follows that X2
1 + X2

2 2 �2(2) (Exercise 3.3.6(b)). Now, assume that X is
normal with E X1 = E X2 = 0, VarX1 = VarX2 = 1, and ⇢X1,X2 = ⇢ with
|⇢| < 1. Find the distribution of X2

1 � 2⇢X1X2 + X2
2 .

To solve this problem, we first observe that for ⇢ = 0 it reduces to Exercise
3.3.6(b) (why?). In the general case,

X2
1 � 2⇢X1X2 + X2

2 = (X1 � ⇢X2)2 + (1� ⇢2)X2
2 . (8.2)

From above (or Exercise 7.1) we know that X1�⇢X2 and X2 are independent,
in fact,

 
X1 � ⇢X2

X2

!
=

 
1 �⇢
0 1

!
·
✓

X1

X2

◆
2 N

�
0,

 
1� ⇢2 0

0 1

!
�
.

It follows that

X2
1 � 2⇢X1X2 + X2

2 = (1� ⇢2)
n⇣X1 � ⇢X2p

1� ⇢2

⌘2
+ X2

2

o
2 (1� ⇢2) · �2(2) ,

and since �2(2) = Exp(2) we conclude, from the scaling property of the
exponential distribution, that X2

1 � 2⇢X1X2 + X2
2 2 Exp(2(1� ⇢2)).

We shall return to this example in a more general setting in Section 9; see
also Problem 10.37. 2
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9 Quadratic Forms and Cochran’s Theorem

Quadratic forms of normal random vectors are of great importance in many
branches of statistics, such as least-squares methods, the analysis of variance,
regression analysis, and experimental design. The general idea is to split the
sum of the squares of the observations into a number of quadratic forms, each
corresponding to some cause of variation. In an agricultural experiment, for
example, the yield of crop varies. The reason for this may be di↵erences in
fertilization, watering, climate, and other factors in the various areas where the
experiment is performed. For future purposes one would like to investigate, if
possible, how much (or if at all) the various treatments influence the variability
of the result. The splitting of the sum of squares mentioned above separates the
causes of variability in such a way that each quadratic form corresponds to one
cause, with a final form—the residual form—that measures the random errors
involved in the experiment. The conclusion of Cochran’s theorem (Theorem
9.2) is that, under the assumption of normality, the various quadratic forms
are independent and �2-distributed (except for a constant factor). This can
then be used for testing hypotheses concerning the influence of the di↵erent
treatments. Once again, we remind the reader that some books on statistics
for further study are mentioned in Appendix A.

We begin by investigating a particular quadratic form, after which we
prove the important Cochran’s theorem.

Let X 2 N(µ,⇤), where ⇤ is nonsingular, and consider the quadratic form
(X � µ)0⇤�1(X � µ), which appears in the exponent of the normal density.
In the special case µ = 0 and ⇤ = I it reduces to X

0
X, which is �2(n)-

distributed (n is the dimension of X). The following result shows that this is
also true in the general case.

Theorem 9.1. Suppose that X 2 N(µ,⇤) with det⇤ > 0. Then

(X� µ)0⇤�1(X� µ) 2 �2(n),

where n is the dimension of X.

Proof. Set Y = ⇤
�1/2(X� µ). Then

E Y = 0 and Cov Y = ⇤
�1/2

⇤⇤
�1/2 = I,

that is, Y 2 N(0, I), and it follows that

(X� µ)0⇤�1(X� µ) = (⇤�1/2(X� µ))0(⇤�1/2(X� µ)) = Y
0
Y 2 �2(n),

as was shown above. 2

Remark 9.1. Let n = 2. With the usual notation the theorem amounts to the
fact that

1
1� ⇢2

n (X1 � µ1)2

�2
1

� 2⇢
(X1 � µ1)(X2 � µ2)

�1�2
+

(X2 � µ2)2

�2
2

o
2 �2(2). 2
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As an introduction to Cochran’s theorem, we study the following situation.
Suppose that X1, X2, . . . , Xn is a sample of X 2 N(0,�2). Set X̄n =
1
n

Pn
k=1 Xk, and consider the following identity:

nX

k=1

X2
k =

nX

k=1

(Xk � X̄n)2 + n · X̄2
n. (9.1)

The first term on the right-hand side equals (n�1)s2
n, where s2

n is the sample
variance. It is a �2·�2(n�1)-distributed quadratic form. The second term is �2·
�2(1)-distributed. The terms are independent. The left-hand side is �2 ·�2(n)-
distributed. We have thus split the sum of the squares of the observations
into a sum of two independent quadratic forms that both follow some �2-
distribution (except for the factor �2).

The statistical significance of this is that the splitting of the sum of the
squares

Pn
k=1 X2

k is the following. Namely, the first term on the right-hand
side of (9.1) is large if the sample is very much spread out, and the second
term is large if the mean is not “close” to zero. Thus, if the sum of squares is
large we may, via the decomposition (9.1) find out the cause; is the variance
large or is it not true that the mean is zero (or both)?

In Example 8.3 we found that the terms on the right-hand side of (9.1)
were independent. This leads to the t-test, which is used for testing whether
or not the mean equals zero. More generally, representations of the sum of
squares as a sum of nonnegative-definite quadratic forms play a fundamental
role in statistics, as pointed out before. The problem is to assert that the
various terms on the right-hand side of such representations are independent
and �2-distributed. Cochran’s theorem provides a solution to this problem.

As a preliminary we need the following lemma:

Lemma 9.1. Let x1, x2, . . . , xn be real numbers. Suppose that
Pn

i=1 x2
i can

be split into a sum of nonnegative-definite quadratic forms, that is, suppose
that

nX

i=1

x2
i = Q1 + Q2 + · · · + Qk ,

where Qi = x
0
Aix and (Rank Qi =) RankAi = ri for i = 1, 2, . . . , k.

If
Pk

i=1 ri = n, then there exists an orthogonal matrix C such that, with
x = Cy, we have

Q1 = y2
1 + y2

2 + · · · + y2
r1

,

Q2 = y2
r1+1 + y2

r1+2 + · · · + y2
r1+r2

,

Q3 = y2
r1+r2+1 + y2

r1+r2+2 + · · · + y2
r1+r2+r3

,

...
Qk = y2

n�rk+1 + y2
n�rk+2 + · · · + y2

n. 2
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Remark 9.2. Note that di↵erent quadratic forms contain di↵erent y variables
and that the number of terms in each Qi equals the rank ri of Qi. 2

We confine ourselves to proving the lemma for the case k = 2. The general
case is obtained by induction.

Proof. Recall the assumption that k = 2. We thus have

Q =
nX

i=1

x2
i = x

0
A1x + x

0
A2x

�
= Q1 + Q2

�
, (9.2)

where A1 and A2 are nonnegative-definite matrices with ranks r1 and r2,
respectively, and r1 + r2 = n. Since A1 is nonnegative-definite, there exists an
orthogonal matrix C such that

C
0
A1C = D,

where D is a diagonal matrix, the diagonal elements �1,�2, . . . ,�n of which
are the eigenvalues of A1. Since RankA1 = r1, r1 �-values are positive and
n � r1 �-values equal zero. Suppose, without restriction, that �i > 0 for
i = 1, 2, . . . , r1 and that �r1+1 = �r1+2 = · · · = �n = 0, and set x = Cy.
Then (recall (1.2) for the first equality)

Q =
nX

i=1

y2
i =

r1X

i=1

�i · y2
i + y

0
C
0
A2Cy ,

or, equivalently,
r1X

i=1

(1� �i) · y2
i +

nX

i=r1+1

y2
i = y

0
C
0
A2Cy . (9.3)

Since the rank of the right-hand side of (9.3) equals r2 (= n � r1), it follows
that �1 = �2 = · · · = �r1 = 1, which shows that

Q1 =
r1X

i=1

y2
i and Q2 =

nX

i=r1+1

y2
i . (9.4)

This proves the lemma for the case k = 2. 2

Theorem 9.2. (Cochran’s theorem) Suppose that X1, X2, . . . , Xn are inde-
pendent, N(0,�2)-distributed random variables, and that

nX

i=1

X2
i = Q1 + Q2 + · · · + Qk ,

where Q1, Q2, . . . , Qk are nonnegative-definite quadratic forms in the random
variables X1, X2, . . . , Xn, that is,

Qi = X
0
AiX , i = 1, 2, . . . , k.
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Set RankAi = ri, i = 1, 2, . . . , k. If

r1 + r2 + · · · + rk = n,

then

(a) Q1, Q2, . . . , Qk are independent;
(b) Qi 2 �2�2(ri), i = 1, 2, . . . , k.

Proof. It follows from Lemma 9.1 that there exists an orthogonal matrix C

such that the transformation X = CY yields

Q1 = Y 2
1 + Y 2

2 + · · · + Y 2
r1

,

Q2 = Y 2
r1+1 + Y 2

r1+2 + · · · + Y 2
r1+r2

,

...
Qk = Y 2

n�rk+1 + Y 2
n�rk+2 + · · · + Y 2

n .

Since, by Theorem 8.2, Y1, Y2, . . . , Yn are independent, N(0,�2)-distributed
random variables, and since every Y 2 occurs in exactly one Qj , the conclusion
follows. 2

Remark 9.3. It su�ces to assume that RankAi  ri for i = 1, 2, . . . , k, with
r1 + r2 + · · · + rk = n, in order for Theorem 9.2 to hold. This follows from
a result in linear algebra, namely that if A,B, and C are matrices such that
A + B = C, then RankC  RankA + RankB. An application of this result
yields

n 
kX

i=1

RankAi 
kX

i=1

ri = n , (9.5)

which, in view of the assumption, forces RankAi to be equal to ri for all i. 2

Example 9.1. We have already proved (twice) in Section 8 that the sample
mean and the sample variance are independent in a normal sample. By using
the partition in formula (9.1) and Cochran’s theorem (and Remark 9.2) we
may obtain a third proof of that fact. 2

In applications the quadratic forms can frequently be written as

Q = L2
1 + L2

2 + · · · + L2
p , (9.6)

where L1, L2, . . . , Lp are linear forms in X1, X2, . . . , Xn. It may therefore
be useful to know some method for determining the rank of a quadratic form
of this kind.

Theorem 9.3. Suppose that the nonnegative-definite form Q = Q(x) is of the
form (9.6), where

Li = a
0
ix , i = 1, 2, . . . , p,

and set L = (L1, L2, ..., Lp)0. If there exist exactly m linear relations d
0
jL = 0,

j = 1, 2, . . . , m, then RankQ = p�m.
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Proof. Put L = Ax, where A is a p ⇥ n matrix. Then RankA = p � m.
However, since

Q = L
0
L = x

0
A
0
Ax ,

it follows (from linear algebra) that RankA
0
A = RankA. 2

Example 9.1 (continued). Thus, let X 2 N(0,�2
I), and consider the partition

(9.1). Then Q1 =
Pn

k=1(Xk � X̄n)2 is of the kind described in Theorem 9.3,
since

Pn
k=1(Xk � X̄n) = 0. 2

10 Problems

1. In this chapter we have (so far) met three equivalent definitions of a mul-
tivariate normal distribution. Here is a fourth one: X is normal if and only
if there exists an orthogonal transformation C such that the random vec-
tor CX has independent, normal components. Show that this definition is
indeed equivalent to the usual ones (e.g., by showing that it is equivalent
to the first one).

2. Suppose that X and Y have a two-dimensional normal distribution with
means 0, variances 1, and correlation coe�cient ⇢, |⇢| < 1. Let (R,⇥) be
the polar coordinates. Determine the distribution of ⇥.

3. The random variables X1 and X2 are independent and N(0, 1)-distributed.
Set

Y1 =
X2

1 �X2
2p

X2
1 + X2

2

and Y2 =
2X1 · X2p
X2

1 + X2
2

.

Show that Y1 and Y2 are independent, N(0, 1)-distributed random vari-
ables.

4. The random vector (X, Y )0 has a two-dimensional normal distribution
with VarX = VarY . Show that X + Y and X � Y are independent
random variables.

5. Suppose that X and Y have a joint normal distribution with E X = E Y =
0, VarX = �2

x, VarY = �2
y, and correlation coe�cient ⇢. Compute E XY

and VarXY .
Remark. One may use the fact that X and a suitable linear combination
of X and Y are independent.

6. The random variables X and Y are independent and N(0, 1)-distributed.
Determine
(a) E(X | X > Y ),
(b) E(X + Y | X > Y ).

7. We know from Section 7 that if X and Y are jointly normally distributed
then they are independent i↵ they are uncorrelated. Now, let X 2 N(0, 1)
and c � 0. Define Y as follows:

Y =

(
X, for |X|  c,

�X, for |X| > c.
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(a) Show that Y 2 N(0, 1).
(b) Show that X and Y are not jointly normal.

Next, let g(c) = Cov (X, Y ).
(c) Show that g(0) = �1 and that g(c) ! 1 as c ! 1. Show that

there exists c0 such that g(c0) = 0 (i.e., such that X and Y are
uncorrelated).

(d) Show that X and Y are not independent (when c = c0).
8. In Section 6 we found that conditional distributions of normal vectors are

normal. The converse is, however, not true. Namely, consider the bivariate
density

fX,Y (x, y) = C · exp{�(1 + x2)(1 + y2)}, �1 < x, y <1,

where C is a normalizing constant. This is not a bivariate normal density.
Show that in spite of this the conditional distributions are normal, that
is, compute the conditional densities fY |X=x(y) and fX|Y =y(x) and show
that they are normal densities.

9. Suppose that the random variables X and Y are independent and N(0,�2)-
distributed.
(a) Show that X/Y 2 C(0, 1).
(b) Show that X + Y and X � Y are independent.
(c) Determine the distribution of (X � Y )/(X + Y ) (see also Problem

1.43(b)).
10. Suppose that the moment generating function of (X, Y )0 is

 X,Y (t, u) = exp{2t + 3u + t2 + atu + 2u2}.

Determine a so that X + 2Y and 2X � Y become independent.
11. Let X have a three-dimensional normal distribution. Show that if X1 and

X2 + X3 are independent, X2 and X1 + X3 are independent, and X3 and
X1 + X2 are independent, then X1, X2, and X3 are independent.

12. Let X1 and X2 be independent, N(0, 1)-distributed random variables. Set
Y1 = X1� 3X2 + 2 and Y2 = 2X1�X2� 1. Determine the distribution of
(a) Y, and
(b) Y1 | Y2 = y.

13. Let X1, X2, and X3 be independent, N(1, 1)-distributed random variables.
Set U = 2X1 � X2 + X3 and V = X1 + 2X2 + 3X3. Determine the
conditional distribution of V given that U = 3.

14. Let X1, X2, X3 be independent N(2, 1)-distributed random variables. De-
termine the distribution of X1 + 3X2 � 2X3 given that 2X1 �X2 = 1.

15. Let Y1, Y2, and Y3 be independent, N(0, 1)-distributed random variables,
and set

X1 = Y1 � Y3,

X2 = 2Y1 + Y2 � 2Y3,

X3 = �2Y1 + 3Y3.
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Determine the conditional distribution of X2 given that X1 + X3 = x.
16. The random variables X1, X2, and X3 are independent and N(0, 1)-

distributed. Consider the random variables

Y1 = X2 + X3,

Y2 = X1 + X3,

Y3 = X1 + X2.

Determine the conditional density of Y1 given that Y2 = Y3 = 0.
17. The random vector X has a three-dimensional normal distribution with

mean vector 0 and covariance matrix ⇤ given by

⇤ =

0

@
2 0 �1
0 3 1
�1 1 5

1

A .

Find the distribution of X2 given that X1�X3 = 1 and that X2+X3 = 0.
18. The random vector X has a three-dimensional normal distribution with

expectation 0 and covariance matrix ⇤ given by

⇤ =

0

@
1 2 �1
2 4 0
�1 0 7

1

A .

Find the distribution of X3 given that X1 = 1.
19. The random vector X has a three-dimensional normal distribution with

expectation 0 and covariance matrix ⇤ given by

⇤ =

0

@
2 1 �1
1 3 0
�1 0 5

1

A .

Find the distribution of X2 given that X1 + X3 = 1.
20. The random vector X has a three-dimensional normal distribution with

mean vector µ = 0 and covariance matrix

⇤ =

0

@
3 �2 1
�2 2 0

1 0 1

1

A .

Find the distribution of X1 + X3 given that
(a) X2 = 0,
(b) X2 = 2.

21. Let X 2 N(µ,⇤), where

µ =

0

@
2
0
1

1

A and ⇤ =

0

@
3 �2 1
�2 2 0

1 0 2

1

A .

Determine the conditional distribution of X1 �X3 given that X2 = �1.
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22. Let X 2 N(µ,⇤), where

µ =

0

@
2
0
1

1

A and ⇤ =

0

@
3 �2 1
�2 2 0

1 0 3

1

A .

Determine the conditional distribution of X1 + X2 given that X3 = 1.
23. The random vector X has a three-dimensional normal distribution with

expectation µ and covariance matrix ⇤ given by

µ =

0

@
1
1
0

1

A and ⇤ =

0

@
4 �2 1
�2 3 0

1 0 1

1

A .

Find the conditional distribution of X1 + 2X2 given that
(a) X2 �X3 = 1.
(b) X2 + X3 = 1.

24. The random vector X has a three-dimensional normal distribution with
mean vector µ and covariance matrix ⇤ given by

µ =

0

@
1
0
�2

1

A and ⇤ =

0

@
3 �2 1
�2 4 �1

1 �1 2

1

A .

Find the conditional distribution of X1 given that X1 = �X2.
25. Let X have a three-dimensional normal distribution with mean vector and

covariance matrix

µ =

0

@
1
1
1

1

A and ⇤ =

0

@
2 1 1
1 3 �1
1 �1 2

1

A ,

respectively. Set Y1 = X1 + X2 + X3 and Y2 = X1 + X3. Determine the
conditional distribution of Y1 given that Y2 = 0.

26. Let X 2 N(0,⇤), where

⇤ =

0

@
2 1 �1
1 3 0
�1 0 5

1

A

Find the conditional distribution of X1 given that X1 = X2 and X1 +
X2 + X3 = 0.

27. The random vector X has a three-dimensional normal distribution with
expectation 0 and covariance matrix ⇤ given by

⇤ =

0

@
2 1 0
1 2 1
0 1 2

1

A .

Find the distribution of X2 given that X1 = X2 = X3.
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28. Let X 2 N(0,⇤), where

⇤ =

0

B@
1 � 1

2
3
2

� 1
2 2 �1
3
2 �1 4

1

CA .

Determine the conditional distribution of (X1, X1 +X2)0 given that X1 +
X2 + X3 = 0.

29. Suppose that the characteristic function of (X, Y, Z)0 is

'(s, t, u) = exp{2is� s2 � 2t2 � 4u2 � 2st + 2su}.

Compute the conditional distribution of X + Z given that X + Y = 0.
30. Let X1, X2, and X3 have a joint moment generating function as follows:

 (t1, t2, t3) = exp{2t1 � t3 + t21 + 2t22 + 3t23 + 2t1t2 � 2t1t3}.

Determine the conditional distribution of X1+X3 given that X1+X2 = 1.
31. The moment generating function of (X, Y, Z)0 is

 (s, t, u) = exp
ns2

2
+ t2 + 2u2 � st

2
+

3su

2
� tu

2

o
.

Determine the conditional distribution of X given that X + Z = 0 and
Y + Z = 1.

32. Suppose (X, Y, Z)0 is normal with density

C · exp
n
� 1

2
(4x2 + 3y2 + 5z2 + 2xy + 6xz + 4zy)

o
,

where C is a normalizing constant. Determine the conditional distribution
of X given that X + Z = 1 and Y + Z = 0.

33. Let X and Y be random variables, such that

Y | X = x 2 N(x, ⌧2) with X 2 N(µ,�2).

(a) Compute E Y , VarY and Cov (X, Y ).
(b) Determine the distribution of the vector (X, Y )0.
(c) Determine the (posterior) distribution of X | Y = y.

34. Let X and Y be jointly normal with means 0, variances 1, and correlation
coe�cient ⇢. Compute the moment generating function of X · Y for
(a) ⇢ = 0, and
(b) general ⇢.

35. Suppose X1, X2, and X3 are independent and N(0, 1)-distributed. Com-
pute the moment generating function of Y = X1X2 + X1X3 + X2X3.

36. If X and Y are independent, N(0, 1)-distributed random variables, then
X2 + Y 2 2 �2(2) (recall Exercise 3.3.6). Now, let X and Y be jointly
normal with means 0, variances 1, and correlation coe�cient ⇢. In this
case X2 +Y 2 has a noncentral �2(2)-distribution. Determine the moment
generating function of that distribution.
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37. Let (X, Y )0 have a two-dimensional normal distribution with means 0,
variances 1, and correlation coe�cient ⇢, |⇢| < 1. Determine the distribu-
tion of (X2 � 2⇢XY + Y 2)/(1� ⇢2) by computing its moment generating
function.
Remark. Recall Example 8.6 and Remark 9.1.

38. Let X1, X2, . . . , Xn be independent, N(0, 1)-distributed random vari-
ables, and set X̄k = 1

k�1

Pk�1
i=1 Xi, 2  k  n. Show that

Q =
nX

k=2

k � 1
k

(Xk � X̄k)2

is �2-distributed. What is the number of degrees of freedom?
39. Let X1, X2, and X3 be independent, N(1, 1)-distributed random variables.

Set U = X1 +X2 +X3 and V = X1 +2X2 +3X3. Determine the constants
a and b so that E(U � a� bV )2 is minimized.

40. Let X and Y be independent, N(0, 1)-distributed random variables. Then
X + Y and X � Y are independent; see Example 7.1. The purpose of
this problem is to point out a (partial) converse. Suppose that X and Y
are independent random variables with common distribution function F .
Suppose, further, that F is symmetric and that �2 = E X2 <1. Let ' be
the characteristic function of X (and Y ). Show that if X + Y and X � Y
are independent then we have

'(t) =
�
'(t/2)

�4
.

Use this relation to show that '(t) = e��2t2/2 . Finally, conclude that F
is the distribution function of a normal distribution (N(0,�2)).
Remark 1. The assumptions that the distribution is symmetric and the
variance is finite are not necessary. However, without them the problem
becomes much more di�cult.
Remark 2. Results of this kind are called characterization theorems. An-
other characterization of the normal distribution is provided by the follow-
ing famous theorem due to the Swedish probabilist and statistician Harald
Cramér (1893–1985): If X and Y are independent random variables such
that X + Y has a normal distribution, then X and Y are both normal.


