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1 Introduction

In 1972, Stein [15] published a new method for bounding the distance of a random variable, X,
from a standard normal random variable, Z, in terms of a test function, h. He observed that, under
certain conditions, there exists a function f such that

E[h(X) = W(Z)] = E[f(X) = X f(X)] (1)

For example, if h(z) = [{,ca) for some set A C R, where I;., denotes the indicator of a set, then
we are considering

E[h(X) - h(Z)] =P (X € 4) - ﬁ /A e /2dz = E[/(X) - X f(X)]

Often, the right-hand side of (1) is easier to bound than the left and, in this situation, Stein’s
observation leads us to a new way of bounding rates of convergence in distribution.

It was quickly shown that this approach is not restricted to a normal limit. Chen [6] showed that
the analogue of (1) for the Poisson distribution (i.e. Z ~ Po(})) is

E[A(X) = h(Z)] = E[M(X +1) - XF(X)]

where, this time, f and h are functions defined on Z™*. For this reason, Stein’s method applied to
the Poisson limit is usually referred to as the Chen-Stein method. Since the 1970’s, Stein’s method
has been used to bound rates of convergence to many distributions. It has, comparatively recently,
been applied to stochastic processes, notably the Poisson process and diffusions.

Once we have an equation like (1), it is often reasonably straightforward to bound the right-hand
side using estimates on f and its derivatives (often obtained by Taylor expansion) or, in the discrete
case, backward differences. Couplings are the probabilistic tool most commonly used to implement
this stage of Stein’s method.

The advantage of the method over alternatives, e.g. Fourier techniques, is that we have immediate
access to a bound. In certain cases, we may not be able to evaluate this bound numerically but
often we can, to great effect.

Stein’s method is now a well-developed field of research, with a large literature. I am not going to
attempt to provide a comprehensive survey of that literature. I would, however, like to convey some
feeling for how and why the method works. I will do this via a series of examples which I think
demonstrate the beauty and power of the method, as well as some of its drawbacks. I also aim to
give some insight into the use of couplings.

Section 2 covers Stein’s method for the normal distribution. As this is the first time we use the
method, we cover the major steps in detail. Initially, we use a standard approach to bound the
right-hand side of (1) for a general function h. Then we specialise to the case h(z) = Iy, 43, which
gives us a bound on the rate of convergence in the Central Limit Theorem. This bound does not turn
out to be the best possible (the correct rate is given by the Berry-Esséen Theorem, Theorem 2.4).
Extra complication is required to prove the Berry-Esséen Theorem using Stein’s method and we
sketch this proof at the end of the section. Finally, we make a brief comparison with the usual proof
of the theorem.



Section 3 covers the details of the Chen-Stein method for the Poisson limit. We consider the
approximation of a sum of Bernoulli random variables by the Poisson distribution, under various
conditions. Our primary aim in this section is to demonstrate the ease with which Stein’s method
may be adapted to deal with the distribution of sums of dependent quantities. We consider two
types of dependence structure in the Bernoulli random variables. The section concludes with two
simple examples of the use of couplings in the case of dependence.

Section 4 is an elegant application of Stein’s method to bounding the rate of convergence of a simple
random walk on the discrete circle to its stationary distribution. This section includes an example
of the exchangeable pair coupling.

Section 5 is a discussion of the theoretical basis of Stein’s method. We look at a procedure for
applying Stein’s method in general which has been proposed by Barbour, using ideas from semigroup
theory. We also consider a connection between Stein’s method and the Martingale Problem.

Finally, in Section 6, we look at the current state of the field.

1.1 Technicalities

We shall make much use of the supremum norm and the total variation distance.

Definition 1.1. The supremum norm of a function f: R — R is defined as follows:
11l = sup [f ()]
z€ER

Definition 1.2. The total variation distance between two probability measures u and v on a mea-
surable space (E,&) is defined to be

drv (p,v) = sup{|v(4) — p(A)| : A € £}

It should be noted that a sequence of random variables (X,,),>1, defined on a discrete space, with
associated measures (i, )n>1, converges in distribution to p if and only if drv (pin, #) = 0 as n = oco.
If the random variables are defined on a continuous space, e.g. R, then dry (s, ) = 0 as n — oo is,
in fact, a stronger condition than convergence in distribution. Other metrics can be used but they
are less natural and beyond the scope of this essay. Our use of the total variation distance means
that we will mostly be interested in h(z) = I,c4) for some set A € £, i.e. we want to consider the
distance between the distribution of X and that of Z as

P(XeA)-P(ZeA

As T have mentioned, couplings are very important in Stein’s method. We give here a basic definition
and refer the reader to Torgny Lindvall’s accessible introduction to the subject [11].

Definition 1.3. Suppose we have two random variables X and X' defined on the probability spaces
(Q,F,P) and (', F',P") respectively. Then a coupling of X and X' in a measurable space (E,E) is
a random element (Y,Y"), defined on a single probability space (Q,]}, ]IAD), taking values in (E?,£2),
such that Y ~ X and Y' ~ X'.

This definition is not very easy to comprehend at first sight and gives no idea of why couplings are
useful but it will become much clearer when they are used.



2 Stein’s Method for the Normal Distribution

The Central Limit Theorem is of fundamental importance in probability and statistics. However,
it does not give any indication of the rate of convergence to a normal limit. In this section, I will
discuss the use of Stein’s method for finding this rate.

We will find the following characterisation of a normal random variable useful:
Proposition 2.1. A random variable, X, is standard normal if and only if it satisfies

E[f(X) - Xf(X)]=0 (2)
for all continuous and piecewise continuously differentiable functions f : R — R with E[|f'(Z)]] < oo
for Z ~ N(0,1).

Proof. Suppose X ~ N(0,1). Then

E[f(X) - Xf(X)] = \/%/_oo f’(a:)e_””zﬂdm—\/%/_oo of(z)e"dz

_ LT e L z2/2]m R T LR
= m/mf(a:)e dm+[mf( )e N \/ﬂ/mf(:r)e dx

by integration by parts
=0

Conversely, suppose E[f'(X) — X f(X)] = 0 for all continuous and piecewise continuously differen-
tiable, real-valued f such that E[|f'(Z)|] < oo for Z ~ N(0,1). Then this equation holds in particular
for

w) = e [ (e = (0) e oy

— 00

where ®(t) = fjoo \/%e*?fﬂdy and ¢t is fixed. Then

fi(X) = X fi(X) + Ty x <y — ®(2)
and so, for all t € R,
E[fi(X) = Xfe(X)] =P (X < t) - ®(t) =0
which implies that X ~ N(0,1). O

Proposition 2.2. For any piecewise continuous, real-valued function h, there is a function f solving
the Stein equation

h(z) — ®h = f'(z) — () (3)

where ®h = \/Lz—nffooo h(y)e’yzﬂdy is the expectation of h with respect to the standard normal
distribution.



Proof. Let f(z) = e® /2 [* (h(y) — ®h) e~¥*/2dy. Then
fi) = af(x)+e”/? (h(z) — Bh)e /2
zf(z) + h(z) — Ph

and the result follows. O

Taking expectations in (3) gives
E[h(X) — @h] =E[f'(X) - X f(X)] (4)

The quantity E[h(X) — ®h] gives a measure of the distance of X from the normal in terms of the
test function, h. It is often easier to bound the right-hand side of the equation than the left and,
when this is the case, we may proceed with Stein’s method.

2.1 A First Attempt at Bounding the Rate in the Central Limit Theorem

Following Reinert [13] and Stein [16], we introduce a powerful tool: the exchangeable pair coupling.
A pair of random variables defined on a single probability space is said to be exchangeable if, for all
measurable sets A and A’,

P(XeA X eA)=P(XeA, X €A (5)
Suppose we have independent random variables Y7,Ys,...,Y, with E[Y;] = 0, E[Y?] = o7,
Sr,or =1L E[Y’] <ooand E[V!] < co. Let W = 3" Y; and W; = W —Y;. Let I be
a random variable, independent of the Y;’s, which is uniformly distributed on {1,2,... ,n}. Now

define W' = W — Y7 4+ Y} where Y;* is an independent copy of Y;. Then (W, W') is an exchangeable

K3
pair. (W, W') are two copies of the same random variable which are “coupled” by the relationship

(5). (W, W) satisfies
E[W/|W] =E[W — Y, + Y7 |W] = <1 - %) W
This expression and the tower law give us
E[W f(W)] = SE[(W = W)(F(W) = F(W))
Hence,
E[h(W) = ®h] = E[f'(W) = Wf(W)] = E[ /(W) = S(W = W)(F(W) = f(W"))

Taylor expansion gives



where |R| < || f"||(W — W')? and || - || denotes the supremum norm. So

[E[A(W) - ®h]| < \E['W) SOV =W W] [+ SN E W - W]
< E[|(1-3E[v W’)ﬂW])f’(W)H+Z||f"||E[|W—W'|3]
< ||f||\/ (1- ZEI W—W’)?lW]ﬂ+§||f”||E[IW—W’I3]

by the Cauchy-Schwarz inequality

We can bound the expectations:

Proposition 2.3.

A
ANy
NgE
)
=
5
|
Q
N

E {(1 — SE[(W - W’)2|W])1

E[W - W]

A
S
-~ ~ |l
(]
B
=
=
+
o
)
N
~_

This proposition is proved in the Appendix. Using the bounds
Il <2[|h—®h]| and [If"]| < 2|7

which are proved on pp.25-28 of Stein [16], we obtain

n

IE[h(W)—‘I’h]ISIIh—‘I’hIIJZ( (V] —o}) +||h'||Z [[Yi]’] + 307)

i=1 i=1

Now, as set out in the introduction, we are primarily interested in h(w) = I;,<;; for some fixed
t € R but we need to get around the fact that h is not differentiable at ¢. Following Stein [16], we

introduce the function

1 ifw<t
hea(w)=q1 -2 ift<w<t+A
0 ifw>t+A

Then E[hi—a a(W)] <P (W <t) <E[ht,a(W)]. It is clear that

1
lht,a = @heall <1 and by Al < A
Then
Elht,a(W)] < @hya + [[he,a — MAIIJ > (B[] - ob) + [k Al Z [1Yi?] +307)
i=1 i=1
< B(t)+ 2 + zn: (E[YA] — o) + 1 zn: (E[|Y:[*] + 303)
B V2m i—1 ' ' A i=1 '



We minimise this expression by differentiation:
d
A (RHS) = —271- re Z [1Y;]*] +307) =0 at the minimum

which implies that
(2w 1/42 [1Y;]*] + 307)

and so

n

E [y, (W)] < 9(8) + ;@[Yﬂ—afnﬁ >~ @[N] +301)

Similarly, E[h;—a,a(W)] is bounded by the same quantity and so

n n

POV <8) = 80 < [0 €N - l) + G | 3 EIVF] + 30)

For the Central Limit Theorem, we want independent and identically distributed random variables
X1, Xa,..., X, such that E[X;] =0 and E[Xf] = 1. Take ¥; = 4= X; for 1 < i < n, which means

Vn
W = ﬁ > X;. Hence,

P(%i}&» gt) _a()| <

This expression is O(n’l/ %), which demonstrates convergence, but we know that by other methods
we can obtain a bound which is C’)(nil/z) so, in this case, Stein’s method does not provide a sharp
rate. A more complicated approach is needed to obtain the better rate.

B =L, 2 R (7

n (27n)

2.2 The Berry-Esséen Theorem

We conclude this section with a sketch of the proof of the Berry-Esséen Theorem (the Central Limit
Theorem with a rate) in the case of independent and identically distributed random variables. It
was Bolthausen [5] who first obtained the correct rate in this theorem using Stein’s Method, in 1984.
We give a somewhat different version, the whole of which may be found in Stein [16].

Theorem 2.4 (Berry-Esséen). Suppose that X1, X, ..., X, are independent, identically distributed
random variables with E[X;] = 0, E[X?] = 1 and E[|X;?] < co for 1 <i < n. Then forn € N
and all x € R,
< OE[IX)]

Vn

(gne)

Note that the bound in this theorem has a twofold advantage over our previous result, (7): the
bound is @(n~'/?) and we do not require finite fourth moments.

We will need two lemmas.



Lemma 2.5. Suppose that

fe(z) = er/? / (Tgy<ey — 2(1)) e_yz/Qdy

Then ||fill < 1 and ||f{]] < 1.

The need for this sort of lemma is typical in applications of Stein’s method.

Proof.

fi(z)

e/ ( / g, \/%p(t)@(x)) (8)

e 20(x — if ©
_ { 2 O(z) (L-2(t) ifaw<t )

2me® 20(t) (1 — ®(z)) ifax >t

Now, f; > 0 and we want to find its maximum. First note that f;(x) is increasing in x for z < ¢
and decreasing in x for z > t. Hence, fi(z) < fi(t) for all z. Taking ¢ to be the standard normal

density function,

d
aft(t) =

V27 [t 2o (1)(1 - B(1) + e P(1)(1 - (1) — e 2o(1) 2 (1)

V2re 2 [t (1) (1 — (1) + $(t) — 26(t)D(t)]
Oatt=0

and so we see that fi(¢) is maximised at 0, where fo(0) = @ < 1. This gives the bound on || f¢]|.

To obtain the bound on ||f{||, we observe that:

For z > 0: 1 — ®(x)

For z < 0: ®(x) <

From (9) we see that

1
< Vor

1 T
\/—Q*ﬁffoo

2
ooy —y2/2 _ o= /2
fz z€ dy V2w
2 —22/2
YoV /2y =
z dy = {7

fé(:v)z{ (1— (1)) (1+x 27rer2/2<1>(a;)) if 7 <t

B(1) (a: 2mer’12(1 — () — 1) if o>t

We need only consider ¢t > 0 as fi(z) = f_¢(—x). Then

Case z < 0:

Case 0 <z <t

Case x > t:

Hence, ||£{]| < 1.

—z2/2

1> (1= (1) > fi() > (1- (1) [1 - |z]varer’ /22 ] =0

0< fl(z) < 1-®(x) + (1 — &(x))®(z)av2me /2
< 1-®(z) + ex_\m/%zq)(w)m 2mer’ /2 =1
2 6—22/2
—1<—®(t) < fi() < B(t) |2v/2met 2 _1] =0



The next lemma is used at the end of the proof of the Berry-Esséen Theorem. I shall just quote it
from Stein [16, p.99] as it adds nothing to a discussion of Stein’s method.

Lemma 2.6 (Stein’s Unsmoothing Lemma). Suppose that F, G and H are cumulative distri-
bution functions on the real line and that A and p are real numbers such that H' < A, |(F—H)*G| <
p and v = [ |t|dG(t) < co then

|F — H| < 3u+ 1274

Now we are ready to sketch the proof of the Berry-Esséen Theorem.

Proof of Theorem 2.4. Suppose that Y7,Ys,...,Y,41 are independent and identically distributed
random variables with distribution function p such that E[Y;] = 0 and E[Y?] = L. It can be
checked that

o) =n [ adnt) =—n [ ' wdp(a)

—00

is a probability density function. Suppose Z, has density g independent of Y7,Y5,... .Y}, and let
w=3" Y.

Suppose that we are given a function h and that f solves the Stein equation (3) involving h. Then
some algebraic manipulation and use of this Stein equation gives

E[W(W + Zp)] = ®h+E[W(f(W + Yog1) — f(W + Zn))] = E[Znf(W + Zy,)]

The idea is that, using this equation, we can bound E[h(W + Z,,)] — ®h and then use Lemma 2.6
to remove the Z,, leaving a bound on E[h(TW) — ®h].

Define Y; = \/LEX,' and take p to be the distribution function of the Y;. Then it can be shown that

3
E[|Z.]] = E[g)\;—l ] Now let the function h be hi(z) = I;,<4}, which corresponds to fi(z) as defined

above.

By Taylor expansion, |fi(W + Yyi1) — fi(W + Z5)| < (Ya41 — Zn)|| f]| and so

P(W+Z,<t) -t = [E[h(W + Z,) — ®hy]|

|E[W(fe(W + Yot1) — W + Z0)) — Zn f:(W + Zy,)]|
IFNEWNE[Yas1 — Znl] + | | E[1 Za]

E[|[W|] E[|Yn41|+ |Zn|] + E[|Zy|] by Lemma 2.5

= Ve + 25 ) + S

_ (L . E[lXiP]) L EIXP]

INIA

IN

vn 2y/n 2y/n
1+ E[|X;]%]
Jn

Applying Lemma 2.6 with H = ®, F the distribution of W, G the distribution of Z,,, A = 1/4/2m,



3 ;|3
7:E[z|)i(/lﬁ‘] andu:%\/?l],we obtain
1+E[|X,3 E[1X;?] 1
POV <o) < 3 [IX:P] o ElXF]

NG 2yn V2r
BIGPT o1 —m[x2] <E[X0f]
O

For the purposes of comparison, we consider briefly the original proof of this theorem by Berry
(1941); see [9, pp.504-517] for the details. Berry approached the problem via Fourier techniques and
an innovative smoothing method which allowed him to obtain the inequality
24
—dzx

n z —22/2 1
JR— —e + JE—
7 (ﬁ) 2l " Trvar
for T' > 0, where ¢ is the characteristic function of the X;’s. The quantities on the right-hand side
may be bounded to show that

|P<W5t>—¢><t>|s1/T
T™J_T

33 E[1X:[°]

P(W<t)—o(t)]| < ————

POV < -2l < T

which gives the theorem. This method relies fundamentally on the assumption of independence
which, as we will see in the next section, Stein’s method does not. Moreover, it involves theory
which is considerably more complicated.

3 Stein’s Method for the Poisson Distribution

In this section, we outline Stein’s method for Poisson approximation. The general procedure is
similar to that for the normal distribution but here we emphasise the suitability of Stein’s method
for approximating the distributions of sums of dependent quantities. The ease with which the
assumption of independence may be removed is one of the key advantages of the method over other
rate estimation procedures.

The well-known “law of small numbers” says that the Binomial distribution Bin(n, p) converges to the
Poisson distribution Po(\), where p = A/n for some A > 0, as n — co. A Bin(n, p) random variable
may be thought of as the sum of n independent and identically distributed Bernoulli random variables
and so there are two constraints that we may be interested in removing: identical distribution and
independence. As a result, a more general formulation is as follows: let Iy, I5, ... , I, be such that
E[L] = pi, 0 < p; < 1Vi. Let A = Y. ;pi. Then > 1" | I; tends to Po(\) in distribution as
n — oo. This is the result that we are interested in proving (and providing a rate for) for various
types of interdependence between the I;’s. This section follows Barbour, Holst and Janson [4], the
comprehensive reference on Stein’s method for the Poisson distribution.

Proposition 3.1. A random variable Z ~ Po()\) if and only if, for all bounded functions g : Z7 —
R

7

E[Ag(Z +1) - Zg(Z)] =0

10



As in the normal case, this proposition leads us to a Stein equation:
hz) —Eplh] = Af(z + 1) — xf(x)

where Ep[h] = Y32 h(k)e *X¥/k!l. We will look in detail at the case h(z) = I,cay for some
A C Z*. Hence, we are looking for a function f which satisfies

Tzeay —Pa(4) = Af(z+1) —xf(x)

where Py (A) = Y4 e *A¥/kl. We can construct such a solution, fa, recursively. Without loss
of generality, we can take f4(0) = 0. Let Ux, = {0,1,... ,k} and let S° denote the complement of a
set S.

fatk+1) = X' (Igkeay + kfa(k) — Pa (A))

= (A—lﬂ{keA} +E I oreay + o + KL A‘(’““)H{oeA})
¥ (xl FEN T o R x“””) Py (4)
= KIATFEDA [Py (ANTUL) — Py (A) Py (Uk)] (10)
EIATFFD APy (AN UL) P (Uk) + Pr (AN UR) Py (UF)

—Px(ANUk) Pr (Ur) = Px (AN Ug) Px (Up)]
E'ATRHD A Py (AN UL) P (UF) — Pr (ANUE) Py (U)] (11)

3.1 The Independent Case

Initially, suppose that the indicator random variables Iy, I5,...,I, are independent. Put W =
>or I and W; = W — I;. Then

E[LfaW)] =E[Lfa(W; +1)] = p;E[fa(W; +1)] by independence (12)
and so
EAW +1) = W] = 3 Elpifa(W +1) = Lifa(W)]

= Y piE[fa(V +1) = fa(Wi +1)]

i=1

= ZP?E[fA(W +1) = fa(Wi + |1 = 1]
i=1

- ZpglE[fA(W+ 1) — fa(W)|I; = 1]

which gives

n

[P(W € 4)=Pr(A)] < 2sup|falk)] > v}

i=1

11



and
P(WeA)-Pr(4)]| < suprA(k+1 |sz

So we need to find bounds on [|fa|| = supy> |fa(k)| and Afa = supysq [fa(k+1) — fa(k)|.

Lemma 3.2. f4 satisfies the following bounds:

Ifall STANTY? and Afa <A7'(1—e?) <1ANT!

We will prove the bound for Af4; the bound on ||f4]| is proved in Section 5 by a more instructive
probabilistic method.

Proof. fa(k) =3_,ca fj3(k) and so we need to look at fy;; for some fixed j. Let k > 1.

Fry(k 4+ 1) = EA"EDAP (k) [Ti<ry — Pa (U]

So fa(k + 1) is negative and decreasing for k < j and positive and decreasing for k > j. Therefore,
the only point at which fi;3(k+ 1) — f;;3(k) > 0in k > 1is when k = j, i.e.

foinG+1) = fnG) = j!A*U“)e*m(m( O+ (G — DINTEMPA(5) Pa (Uj—1)]

e 7)\/\1 1 e~ M\
A Z ! _Z il
i=j+1 =0
i A
- [z - 54]

i=7+1

7AOO

SAZ
:)\(l—e)

So, for j > 1 we can say that fi(j+1) — fin(j) <AH1 —e™). For j =0,k > 1, fij(k+1)is
positive and decreasing and so fioy(k +1) — fro3(k) < 0. Hence, for k > 1,

falk+1) = fa(k) = D (fip(k+1) = f;p(k)
jea
< fugplk+1) = fragy(k)
Now, fa(k) = —fac(k) and so —fa(k) < fyxy(k + 1) — fy (k) which gives

sup [fa(k+1) — fa(k)| S AT (1 —e™) <1AXT!
E>1

So we have proved

12



Theorem 3.3. If I, I>,... I, are independent then

P(Wed) —Pr(4)] < Xxti-e™) pl

n

< (IANHY p

i=1

— 0 asn — oo as long as max p; = o(n"'/?)
(2

for any set A C ZT. O

3.2 The Dependent Case

Let us now relax the independence assumption. There are two ways of doing this, corresponding to
two types of dependence structure in the set of random variables. The first is when each indicator
I; has a set I'{ such that I; is strongly dependent on I; for j € I'{ and another set I'}” such that I; is
weakly dependent on I; for j € I'}. This is local dependence and the corresponding implementation of
Stein’s Method is referred to as the local approach. The alternative is that the dependence structure
is global and, here, it turns out that coupling is more effective. We will begin by discussing the case
of local dependence, which was first investigated by Chen [6].

3.2.1 Local Dependence

The only place in the above calculation where independence has been used is at (12). We may
modify this to give

E[Lf(Wi+ )] =E[Lf(Yi + DI+ E[L(f(Yi+ Zi +1) - f(Yi+1))]
where Z; = . cr. Iy and Y; = W — I; — Z; = 3 crw Ij. The following lemma is proved in the
Appendix: ' '
Lemma 3.4.
E[LfYi+ Zi+ 1) = fYa+ D)]| < AfE[L:Z]
E[fYi+1) —fW+D] < Af(pi+E[Z])
B[Lf(Yi+1) —pif (Vi + D] < IFIIE[[E[L](T; - 5 € TY)] - pil]

O
We may then obtain
Theorem 3.5.
P(WeAd)=Pr(4)| < (AN (0] +nE[Z]+E[1Z)])
i=1
+A AN CE[E[L|I : j € TY)] - pi] (13)

i=1

13



Proof.

EN(W+1) =WfW)] = 3 Elpif(W+1) = Lf(W)]
= ZE[pif(W+1)_Iif(Wi+1)]
= D (PELFOV +1) = fVi+ D] = EIL( (Vi + Zi+1) = f(¥i + 1)]

FE[pif (Vi + 1) = LS (Vi + 1))

which implies that

n

EDSW +1) = WFW)| < (A pilpi + E[Z]) + Af E[L2)]

i=1
+IFIE(ELLIU; : j € T - pil])
by Lemma 3.4. This, with the bounds from Lemma 3.2, gives the result. O

Of course, the expression (13) in Theorem 3.5 simplifies considerably if I; is independent of {I; :
j € T%}. In this case, the bound is O(A~') which is much better than the @(A~'/?) bound above.

One instance when this occurs is when I, I, ... , I, form a stationary m-dependent sequence, i.e.
when the distribution of (I;, I;11, ... , Ii+;) does not depend on i for any j > 0 and (I1,... ,I}) and
(I4m+1s- - - > Ig+m+j) are independent for all j, k > 0. Here we take I'f = {I; : j #i,|j —i| < m}

and p to be the common value of the p;’s. Then
and so

Corollary 3.6. For a stationary m-dependent sequence, Iy, I5,... , I,

P(Wed)=Pr(A)] < (1LA@mp)~")n @ +2mp® + pE[Z]]; = 1))
< (2m+1)p+E[Z]|]; =1]

3.2.2 Global Dependence

We now turn to the case of global dependence. We need to adapt (12) again and, here, we put
E[Lf(W; + 1)] = pE[f(W)|I; = 1]
which gives

PWeA) -Pr(4) = ENW+1)-WfW)]

ZpilE[f(W +1) —E[f(W)|; = 1]]

Now, suppose we can construct random variables U; and V; such that U; ~ W and V;+1 ~ W|I; = 1.
Then (U;, V;) is a coupling for each i.

14



Theorem 3.7. Let (U;, V;) be any choice of couplings satisfying the conditions of the previous para-
graph. Then

IP(W e A)—Pr(4)| = sz U +1) = f(Vi+1)]

IN

AfZPiEHUi - Vil
< (aAx? Zp, [U; — Vil

Note that this reduces to the bound in Theorem 3.3 in the independent case.

If it is possible to construct pairs (U;, V;) such that U; > V; a.s. then
STpE(U - Vi) = Zpl (Ui +1) = (Vi +1)]
i=1
= R 1 -3 pEWIL = 1]

i=1

= AE[W +1]— zn:E[IiW]

i=1
= AE[W+1]-E [Wz]
= N +A-E[W?]
= A —var(W)
This leads us to the following corollary:
Corollary 3.8. If U; > V; a.s. then
POW € 4) =Py (4)] < A1 = e N)(A - var(D))

= (1-e?) (1 - %V;H(W))

O

We are now in a position to give some examples to show that such a coupling can be constructed.
We consider a two simple probabilistic models. Suppose first that we have N boxes arranged in a
row and b balls, where b < N. Take the b balls and distribute them uniformly in the boxes. If there
is a ball in the ith box then take I; to be 1; otherwise take I; = 0. Let W = Z?Zl I; be the number
of balls in the first n boxes. It is a well-known result that W has the hypergeometric distribution:

e (/) oot

If % and are small then it seems reasonable to approximate this distribution by Po(\) where
A =E[W] = 2. The variance is var(W) = =228 (1 — L) and the probability that I; = 1 is b/N.

23
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We need to construct an explicit coupling such that U; > V; a.s.. We use one given by Lindvall
[11, pp.65-66]. Fix a k such that 0 < k < n and construct a vector (Jl(k), Jék), ., 7)) as follows.
Assume that we start with all the boxes empty. Take one of the balls and put it in box k. Then
distribute the remaining b — 1 balls uniformly in the other boxes. Take Ji(k) to be 1 if there is a
ball in box ¢ and 0 otherwise. Then ) ., Ji(k) ~ W|I, = 1. Now we construct a second vector
(a® 1o 1)), With probability, b/N, take (I 189 1F)y = (g% g0 7F). With
probability (1 —b/N), remove the ball from the kth box and put in one of the empty boxes (chosen
uniformly from all the empty boxes). Let I; *) he 1 if box i contains a ball under the new configuration
and 0 otherwise. Then > 7 I") W, Take U; = S I and v; = Dotk Ji(k). By construction,

i=1"14 i=1 "1

U ~W,Vi+1~W|I; =1and U; >V, as. for all i. Hence, we may apply Corollary 3.8 to obtain

P(WeA)-Pr(4) < (1-e?) <1‘§un_b (1_3»

WN—1N N
N n b 1 nb

= —~ (l-eMN[=4=-=-—
Nogd—e )<N+N N N2>

< n+b

= N-1

which is small, provided that % and & are small, as proposed above.

Our second example is Pdlya’s Urn. The urn contains IV balls of n different colours in proportions
M, T2, ... ,Ty. Balls are drawn at random. When a ball is sampled, it is put back into the urn with
another ball of the same colour. Let I; = 1 if no balls of colour i are drawn in the first r samplings
and I; = 0 otherwise. So W = Z?Zl I; is the number of colours which have not appeared in the first
r samplings. Then

p; =E[I;] = P (No balls of colour ¢ are drawn in the first r samplings)
(N—N?TZ)(N-FI—N’]Q) (N+7“—1—N7Ti)

N N (N +1) (N+r-1)
. —N(1—m;) -N
- ()

pir = E[L;I;] = P (No balls of colours i or k are drawn in the first r samplings)
N (N—Nﬂi—Nﬂk)(N-f‘].—N’/Ti—N’/Tk) (N+T—].—N’/Ti—N7rk)

N (N +1) (N+r-1)

_ (—N(l —Tm - 7rk)>/<—;\7>

We have A\ =E[W]=>" | p; and

var(W) = E[W?] — X\? lz I;| + ZE L] — Z;Dl Zpipk
i#£k i=1 i#k

= sz 1—pi) + > (pik — pipr)

i#k

So, if we can find couplings (U;, V;) such that U; > V; a.s. for all ¢, we can apply Corollary 3.8 with
these values of A and var(1W). We use a coupling from Barbour and Holst [3, pp.80-81]. Instead

16



of just putting a sampled ball back in the urn with another of the same colour, imagine that we
keep the sampled ball and put two of the same colour back in the urn. Then W is the number of
colours which do not appear in our sample. Now fix k and construct a vector (Jl(k), JQ(k), e T(Lk))
as follows. If I, = 1 then take (J¥), ¥ . JW)) = (I, I,... ,I,). Otherwise, withdraw all balls
of colour k from the urn and throw them away. Replace the balls of colour & in the sample by balls
sampled as above from the remaining balls in the urn. Set Ji(k) = 1 if the new sample has no ball
of colour i and 0 otherwise. Let U; = W and let V; = Y°,; J\*). Then (U;, V;) is a coupling which
satisfies our requirements.

4 Stein’s Method for the Discrete Uniform Distribution

In this section, we show that Stein’s method is by no means restricted to the normal and Poisson
limits and we include another example of the power of coupling.

Suppose we have a simple random walk on the discrete circle Z, where p is an odd integer. The ran-
dom walk is generated by the vector X = (X, Xo,...,X,,) where X;, X»,...,X,, are independent
and identically distributed random variables such that

Y. — +1 with probability
" ]-1 with probability

MM

The position of the random walk is given by S(X) (mod p) where S(X) = X; + Xo +---+ X,,. It
is intuitively obvious that P (S(X) =j (mod p)) — % asn — oo for 0 < j < p— 1. Using Stein’s
Method, we can prove that this is the case and bound the rate of convergence. This section follows
an idea of Diaconis [7] but provides a different proof of Theorem 4.1.

Theorem 4.1. Using the definitions of the previous paragraph,

F(S(X) (mod p) € A) - % < Q‘ﬁl

for any A C Zy,.

As usual, we start by characterising the uniform distribution on {0,1,...,p — 1} by a particular
equation.

Proposition 4.2. Let p be an odd integer. Then a random variable Z is uniform on Z, if and only

if
E[f(Z2) - f(Z-a)]=0

for all functions f : Z, = R and all a € Z, such that a and p are coprime.

Proof. Suppose that Z ~ U{0,1,... ,p— 1}. Then



Conversely, suppose that E[f(Z) — f(Z —a)] = 0 for all real-valued f. Then it holds for f; such
that fi(i) = [{j— for some fixed t € Z,,.

E[ft(Z) - ft(Z - a)] = : [H{i:t} - H{i—a:t}]]P (Z = Z)
= ED_(Z:t)—P(Z:t+a (mod p))
= 0

But a and p are coprime, so the numbers ¢ + na (mod p), n € Z range over all of Z,. Hence,
P(Z=0)=P(Z=1)=---=P(Z=p—1)andso Z ~U{0,1,...,p—1}. O
For simplicity, we will take a = 2 which we know is always coprime to odd p.

Proposition 4.3. For every function h : Z, — R, there exists a function f :Z, = R such that
h(W) —Ey[h] = f(W) = f(W —2) (14)

where Ey [h] = %Z’Zg h(i), the expectation of h with respect to the uniform distribution.

(3

(14) is the Stein equation for this problem.

Proof. Define f by
271

f(@) =) (M2j) — Eu[h]) (15)

Jj=0
where 271 denotes the inverse of 2 modulo p. Then

2—1; 271(i-2)

O - fG-2) = Y () -Eulh) - Y (h(2)) - B[]
= h(i) ~Eo[t]

O

Now, we want to consider the distance between the distribution of S(X) (mod p) and the uniform.
We will use the total variation distance and so want to find a bound on

sup
ACZ,

]P’(S(X) (mod p) € A) - %"

Take h(w) = T,eay for a fixed set A C Zy,.

Proposition 4.4. |f(i)| < % where [ is the function defined in (15).

18



Proof.

p—1 . B p—1 ‘ _ﬂ
-t = X (pen )
= i~ 14
0

and so for any set S C Z,,

> (a(j) —Eu[hl) = = > (h(j) —Eu[h])

JjES JjES*®

Obviously, |>-;cs(h(j) —Ey[h])| < [S] and so supgcz, ‘Ejes(h(j) —EU[h])‘ < L. Taking S =
{j €Z,:0<j <27'}, we obtain

1F@) = |>_ (h(2k) —Eu[h])

kes
p—1

- 2

O

As it causes no ambiguity, we introduce the convention that the arguments of f and h are taken
modulo p, to simplify notation. Now, we have the equation

E[(S(X)) — Eu [h]] = E[£(S(X)) = f(S(X) = 2)]

We also have a bound on |f| which we need to use to bound the right-hand side of this equation.
We clearly cannot just say that [E[f(S(X)) — f(S(X) —2)]| < 2|f] < p—1 as this does not give
convergence. It turns out that it is useful to construct an exchangeable pair in this situation. The
following calculation is typical when using Stein’s Method; see, for example, Stein [16, p.85].

Proof of Theorem 4.1. Suppose that the random variable I is uniformly distributed on {1,2,... ,n}
and independent of X. Define Y = (Y1,Y5,...,Y},) by

v — X; fori #1
Y l1—2X; fori=1

Then P (X ==z,Y =y) =P (X = y,Y = z) which is the definition of an exchangeable pair. It follows
that

E[f(S(X)isx)=s(v)=23] = E[f(SY)is(v)=s(x)-2}] (16)
where we do not take the quantities under the indicators modulo p. Now consider the expression

2E [ f(S(X){sx)=s(v)—21 — F(SON{svy=s(x)—23] X ]
— 2£(S(X)) B(S(X) = S(V) —2) — 2f(S(X) — 2 P(S(Y) = S(X) - 2)
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It is easy to see that

P(S(X)=S(Y)-2) = P(X;=-1) =

and

P(S(Y) = S(X)-2) = P(X; = +1) =

where N_(X) and N4 (X) are the number of coordinates of X which are equal to —1 and +1
(

respectively. N_(X) + Ny (X) = n by definition and so N_(X) — § = § — N, (X). Therefore,

2f(S(X))P(S(X) = S(Y) —2) — 2f(S(X) -2)P(S(Y) = S(X) - 2)

= 25(5(x) =) ap(s(x) - o M)
= 27(500) EEE L ap(s0 -9 TR L [4s0x)) - £(5(0) -2
N_(X) -2

= 2 =2 [£(S(X)) + A(S(X) —2)] + [£(S(X) = F(S(X) - 2)]

Now, E [QE [f(S(X))]I{S(X):S(Y)fﬂ — f(S(Y))]I{S(y):S(X),Q}|X]] =0, by (16) and the tower law,
and so

E[S(S(X) - f(S(X) - 2)] = —2E[ (V-(%) - 5) (F(S(X) + £(S(X) - 2))]
which implies that

[E[f(S(X)) = f(S(X) = 2)]|

IN

-1
2 E HN,(X) - g” e by Proposition 4.4

2
< 20 e (-5

We have
e - S0 0G)

- () ()G

= 1
and so

ELS0) - f(500 -2 < 2222 [h 2ot
Hence,
PS(Y) (mod p) € )~ 1) < 22



for all A C Zy,. O

Diaconis [7] generalises this result to the case of a general step-size distribution. The bound is good
in that it shows that n must be roughly p? for the distance to be small. However, Diaconis shows
that some improvement is possible and notes that, in the case n = p?, Fourier analysis arguments
give the bound to be O(e~°V™) for some ¢ > 0, whereas our bound is, in this case, O(n~1/%). Thus,
it is instructive to have both the Fourier analysis methods and Stein’s method at our disposal.

5 Discussion

The preceeding examples will have raised some questions concerning Stein’s method. In this section,
I will give a more detailed discussion of the method in general. The theory mostly comes from
Barbour [1, 2], Barbour, Holst and Janson [4] and Reinert [14].

5.1 The Generator Method

The heart of Stein’s method is the identification of a suitable Stein equation and the bounding of the
quantities on the right-hand side. But how should we go about this for a general distribution? So
far, we have only dealt with simple distributions and have been able to find characterising equations
and bounds easily but this is the case in general. Barbour [1] proposed a procedure which has
become known as the Generator Method. He observed that the right-hand sides of Stein equations
look like the infinitesimal generators of certain Markov processes. The normal Stein equation is

h(z) — ®h = f'(z) — o f ()

whose right-hand side is very similar to the infinitesimal generator Af(z) = f"(z) — zf'(z) of an
Ornstein-Uhlenbeck process. The Stein equation for the Poisson distribution is

h(z) = Pyxh=Af(z+1) —zf(z)

whose right-hand side is Ag(z) = A[g(z + 1) — g(x)] — z[g(z) — g(z — 1)] when we take f(z) =
g(x) — g(xz — 1), which is the infinitesimal generator of an immigration-death process. The stationary
distribution of the relevant Ornstein-Uhlenbeck process is N(0,1); the stationary distribution of the
immigration-death process is Po(A). So, in the Stein equation we are using the fact that the target
random variable can be imbedded in a Markov process in equilibrium. This observation not only
provides us with the beginnings of a theory to justify Stein’s method in general but also gives us
a practical way of making estimates for the function f. For this purpose, we need some facts from
semigroup theory, which may be found in Ethier and Kurtz [8].

Suppose that (X (t))¢>0 is a Markov process with associated transition semigroup (T'(t)):>0 and
equilibrium distribution 7. Then the infinitesimal generator, A, is given by
1
Ah = %51[1) 7 (T(t)h — h)

Proposition 1.5 of Ethier and Kurtz [8, p.9] tells us that
Tth—h=A (/ T(s)hds)
0
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and that, under certain conditions, we may take the limit as t — 0o to obtain

I&W—h:A<Amﬂ@m§

But the Stein equation is
h— Eﬂ' [h] = Af

for some f and so we expect that we can take
f = - / T(s)hds
0
ie. f(z) = _/ B, [h(X (s))]ds (17)
0

where E, [h(X (s))] = E[h(X (s))]X(0) = z]. This expression does not necessarily provide the easiest
way to determine f: for example, in the Poisson case, it was very easy to construct a solution to
the Stein equation recursively when h(z) = Iy,c4;. However, by the use of appropriate couplings,
we can at least estimate quantities associated with f. Often, it is useful to produce a coupling of
the Markov process started at one point with the same process started at a different point, e.g.
equilibrium.

In order to demonstrate the effectiveness of this approach, I shall look at the Poisson example in
detail. First, I will show that the expression A[g(z + 1) — g(z)] — z[g(x) — g(z — 1)] is the generator
equation of an immigration-death process, (X (t));>0 with immigration rate A and unit per capita
death rate. The transition probabilities, p; ;(h) =P (X (t + h) = j|X () = 9), are

Dii+1(h) Ah o+ o(h)

pii—1(h) = ih+o(h)
pii(h) = 1—(A+i)h+o(h)
pij(h) = o(h) for |j—i|>1

Let the matrix P(h) = (p;,j(h)). Then the generator matrix, A4, is given by

—A A 0 0 0
1 1 —-1-X A 0 0
A=lim —(P(h)-1) = 0 2 —-2-A A 0
and so, taking g = (g(0), g(1),...)7T,
Ag = ag(z—1)— (z+Ng(z) + Ag(z + 1)

= Mgz +1) —g(z)] —z[g(z) — g(z - 1)]
In order to find the stationary distribution, 7, we solve the equation mA = 0. This gives

Alte™n

n!

Tn

which is Po()), as expected.
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When we considered the Poisson example in Section 3, in Lemma 3.2 we needed to find a bound on
lfIl = sup,>o |f(z +1)|, i.e. a bound on Ag = sup,q [g(z + 1) — g(z)|. By (17), we should have

o) =~ | " B [(X (1)t

We take h(x) = I{,cay for some set A C Z*. Then
se+)=ge) = [ (BB~ Een OXON) e
= [ (Px () € )~ Pura(X(0) € )t
0

Adapting the method used in Barbour, Holst and Janson [4, p.209, pp.221-223] for the Poisson pro-
cess, we construct processes X; and X, with distributions P, and P, ;. Let Xy be the immigration-
death process with the same rates as X but started from 0 (so Xy has distribution Pg) and D be a
pure death process with unit per capita death rate such that D(0) = z. Then define

X.(t) = Xo(t)+D(t)

where E is an exponential random variable with mean 1, independent of everything else, which
represents the extra starting particle under P,41. Then

gl +1) — g(z) /Ooo (u» (X1(t) € A) — P (Xa(t) € A))dt

/OO]P(E > 1) [P(X1(t) € A) —P(X1(t) + 1 € A)]at
0
= /ooeft[ED(Xl(t)EA)—]P)(X1(t)+1€A)]dt

from which it is obvious that |g(z + 1 z)| < fo e tdt = 1. But we can find another bound,
involving A~1/2,

P(X,(t) e A) —P (X (t) +1€ A) = Z]P n) [P (Xo(t) +n € A) —P(Xo(t) +n+ 1 € A)]

- ZP(D(t)=n>2<mo<t>=k—n>—P<Xo<t>=k—n—1>>

keA

<
< (Z]P’ ):I?axﬂb(xo() k)
= rggch(Xo()—k)
Now, Xo(t) ~ Po(A(1 —e?)): (Xo(t)) may be viewed as an M/M/oo queue with arrival rate X

and service rate 1; see Norris [12, pp.191-192] for the distributional result. By Proposition A.2.7 of
Barbour, Holst and Janson [4], if Z ~ Po(v) then max;>o P (Z = k) < \/% and so

1

maxP (Xo(t) = k) < ———
k>0 (Xo(t) = k) < 2ed(1 —et)
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Hence,

lg(z +1) —g(z)] < dt

\/% [2(1 _ e—t)l/Q]zo
2

ex
< A2

So, overall, ||f|| = Ag < 1 AX~'/2, which was the bound given in Lemma 3.2.

In a comparatively simple manner, we have obtained a good bound for use in an approximation
theorem by using the Generator Method. The calculation above is used in Barbour, Holst and
Janson [4] to obtain bounds for Poisson process approximation and similar calculations may be
used for general distributions. Of course, there may be more than one Markov Process which has
the target distribution as its stationary distribution and which one we should use is still an open
problem.

5.2 The Martingale Problem

Suppose we have a generator equation and we want to find the corresponding Markov process. Then
we need to solve the Martingale Problem for the process (X (¢)):>o0: under certain conditions (which
can be made precise — see Ethier and Kurtz [8]),

—/tAf(X s))ds
0

is a (possibly local) martingale for all “nice” functions f.

Suppose we have Af(z) = f"(x) —xf'(x), which is the right-hand side of the normal Stein equation.
We restrict attention to continuous processes X and functions f € C?(R). Then, It6’s formula tells
us that

f(Xt)zf(Xo)+/0tf’( )dA, +/ F(X)dM, + /f" M),

where we use X; = X (t) for convenience of notation and X has Doob-Meyer decomposition X; =
Xo+ Ar+ M, with A a continuous process of finite variation and M a continuous (local) martingale.
Thus,

F(X0) - /OtAﬂX(s))ds = F(Xo)+ /Otf’( )dA, + / (X )dM, + 5 / (X d(M),
-/ s + / X, f(X,)ds
0 0

is a (local) martingale. Hence, the finite variation part must be zero:

/f DA, + /f" >s—/0tf”(Xs)dS+/0thf'(X ds =
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This must hold for all f € C*(R) and so we must have

dA, = —X.ds and %d(M)S =ds
= M, = V2B,
where B is a standard Brownian Motion. This gives
dX; = —X,ds + V2dBs,

an Ornstein-Uhlenbeck process. If Xo ~ N(0,1) then X is a stationary zero-mean Gaussian process
with cov(Xy, X,) = e~ l*=sl ie. X; ~ N(0,1) (see Karatzas and Shreve [10, p.358]).

Thus, we can apply the theory that has been developed for dealing with the Martingale Problem to
obtain a Markov Process when we are given a generator.

6 Concluding Remarks

Stein’s method is applicable in many more situations than just those which have been demonstrated
above. Reinert [13] gives a good summary of the different distributions which have been covered.
Many applications are combinatorial in nature (see, for example, Stein [16]). Stein’s method can
often be used where other methods have failed, particularly, as in Section 3, when dependent random
variables are considered. It does not, however, necessarily provide sharp rates without some extra
work, as shown in Section 2.

Much recent research has focused on Stein’s method for processes and it is here that the Generator
Method has proved invaluable (see Barbour, Holst and Janson [4] for the Poisson process and
Barbour [2] for diffusions). Reinert [14] has developed Stein’s method for measure-valued random
elements and here, too, the Generator Method comes into play. It is clear that Stein’s method is an
invaluable technique for finding rates of convergence in distribution which is still finding new areas
of application.

7 Appendix

This section contains the proofs of some results that I have used above. The proofs consist of
unilluminating calculations.
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Proof of Proposition 2.3.

E [(1 - SE[W - W’)2|W])2]

IN
&=
—~
—
|
| S
&=
=
|

g
=
5
~—

3

E[|W - W'|’]

|
= o
=
|
=3

Y} — YY) + 3Y,Y}?
2E [|Y7]?] + 6E [|Y7Y/]]

IAN

IN

2 n
= E[IYif'] + 6E[Y7]\/E[Y7]
i=1
as Y/ ~ Y] and they are independent

- (Z (E[1¥i[* +30?>>

i=1

Proof of Lemma 3.4.

ELFYi+Zi+ )~ fY+ D] = E[LFEi+ L+ + L) = fVi+ Ly + -+ L)
+f(1/7:+‘["/1+.-.+I’Yk—1)_f()/i+]—"/1+“'+I"{k_2)
+o = Y+ )]

IiZIj

jers

= AfE[L;Z]

IN

AfE

E[f(Yi+1)— f(W+1)]| E[f(W —I; = Zi + 1) — f(W + 1)]|
AfE[Z; + ]

Af(pi +E[Zi])

VAN

[E[Lf(Yi+1) —pif (Vi + 1] | [ELf(Yi+ DE[L —pil(L; - 5 € T)]]|

IFIEELL](L : 5 € TE)] = pil]

IN
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