Esercizi di Istituzioni di Probabilità a.a. 2021-2022 nono foglio di esercizi

M. Isopi

Esercizio 1

Sia Z_1, Z_2, \ldots una successione di variabili i.i.d. con $\mathbf{P}(Z_i = -1) = \frac{3}{4}$ e $\mathbf{P}(Z_i = c) = \frac{1}{4}$. Sia $X_n = 5 + \sum_{i=1}^n Z_i$.

- a) Determinare c in modo che X_n sia una martingala.
- **b)** Dire se, per il valore di c trovato al punto precedente, X_n converge quasi certamente a una variabile aleatoria X.

Esercizio 2.

Sia
$$Z_1, Z_2, ...$$
 una successione di variabili i.i.d. con $\mathbf{P}(Z_n = a_n) = \mathbf{P}(Z_i = -a_n) = \frac{1}{2}n^{-2} \in \mathbf{P}(Z_n = 0) = 1 - n^{-2},$ con $a_1 = 2$ e $a_n = 4 \sum_{j=1}^{n-1} a_j$

- a) Mostrare che $X_n = \sum_{i=1}^n Z_i$ è una martingala.
- b) Mostrare che X_n converge quasi certamente a una variabile aleatoria X, ma non esiste alcun M tale che $\mathbf{E}(|X_n|) < M$.

Esercizio 3. (Urna di Polya)

Una scatola contiene r palle rosse e b palle blu con rb > 0. A ogni passo una palla viene estratta e reinserita nella scatola assieme a un'altra palla dello stesso colore. Sia R_n il numero di palle rosse dopo n passi.

- a) Mostrare che $X_n := \frac{R_n}{n+r+b}$ è una martingala.
- b) Sia T il numero di estrazioni sino alla prima palla blu e supponiamo r=b=1. Mostrare che $\mathbf{E}((T+2)^{-1})=\frac{1}{4}$
- c) Supponiamo r = b = 1. Mostrare che $\mathbf{P}(Y_n \ge \frac{3}{4} \text{ per qualche } n) \le \frac{2}{3}$.

Esercizio 4.

Siano X_1, X_2, \ldots variabili indipendenti con

$$X_n = \begin{cases} 1 & \text{con probabilità } 1/2n \\ 0 & \text{con probabilità } 1 - 1/n \\ -1 & \text{con probabilità } 1/2n \end{cases}$$

Sia $Y_1 = X_1$ e per $n \geq 2$

$$Y_n = \begin{cases} X_n & \text{se } Y_{n-1} = 0\\ nY_{n-1}|X_n| & \text{se } Y_{n-1} \neq 0 \end{cases}$$

Mostrare che Y_n è una martingala rispetto a $\sigma(Y_1, Y_2, \ldots, Y_n)$. Mostrare che Y_n non converge quasi certamente. Y_n converge in qualche altro senso? Perchè non si applica il teorema di convergenza?

Esercizio 5.

Sia $\{Y_n\}$ una martingala con $\mathbf{E}(Y_n)=0$ e $\mathbf{E}(Y_n^2)<\infty$ per ogni n. Mostrare che per x>0 si ha

$$\mathbf{P}\left(\max_{1\leq k\leq n} Y_k > x\right) \leq \frac{\mathbf{E}(Y_n^2)}{\mathbf{E}(Y_n^2) + x^2}$$

(ricordate la disuguaglianza di Cantelli)

Esercizio 6. (Sistema di Labouchere)

Consideriamo il seguente sistema per scommettere in un gioco equo: Scegliamo una successione finita $x_1, x_2, \ldots x_n$ di numeri positivi. Puntiamo la somma del primo e dell'ultimo numero in una scommessa equa. Se vinciamo li cancelliamo dalla lista, altrimenti scriviamo la loro somma in fondo alla lista $(x_{n+1} = x_1 + x_n)$. Giochiamo sempre con questa regola. Se rimane un solo termine nella successione, scommettiamo quell'ammontare e se vinciamo il gioco termina. Se perdiamo, copiamo la cifra in fondo alla lista.

Mostrare che, con probabilità 1, il gioco termina con un profitto di $\sum_{i=1}^{n} x_i$ e che il tempo di arresto ha media finita.

Mostrare che il valore medio dell'ultima puntata prima di vincere è infinito.

Esercizio 7.

Sia X_1, X_2, \ldots una successione di variabili indipendenti e quasi certamente positive (ovvero $\mathbf{P}(X_i > 0) = 1$) con $\mathbf{E}(X_i) = 1$ per ogni i.

a) Mostrare che

$$Z_n = X_1 X_2 \dots X_n$$

è una martingala.

- **b)** Cosa possiamo dire del $\lim_{n\to\infty} Z_n = Z$?
- c) Mostrare che P(Z=0)=0 oppure 1.
- d) Mostrare che se le X_i sono identicamente distribuite e non degeneri, Z = 0 quasi certamente.
- e) La condizione

$$\prod_i \mathbf{E}[X_i^{-a}] < \infty$$

per qualche a>0 è sufficiente per concludere $Z\neq 0$?