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1. Tensor product of vector spaces

If E, F are vector spaces on a field K, we define their tensor product
E ⊗K F on K. What matters is that if E has base (ei)i∈I and F has base
(fj)j∈J , then E ⊗K F has for basis the vectors denoted ei ⊗ ej , i ∈ I, j ∈ J .
For any e ∈ E and any f ∈ F , there is a vector e ⊗ f . The following
properties hold for any e ∈ E, f ∈ F , α ∈ K:

• (e+ e′)⊗ f = e⊗ f + e′ ⊗ f ;
• f ⊗ (e+ e′) = f ⊗ e+ f ⊗ e′;
• α(e⊗ f) = (αe)⊗ f = e⊗ (αf).

With the basis described above, every vector in E⊗F can be written uniquely
as a linear combination:∑

i∈I
j∈J

αijei ⊗ fj , αij ∈ K.

Observe that if E and F are finite dimensional over K then

dimKE ⊗ F = dimKE · dimKF

Universal property of the tensor product
For any bilinear map B : E × F → G there exists a unique linear map

B̃ : E ⊗ F → G such that the following diagram commutes:

E × F E ⊗ F

G

φ

B
B̃

where φ : (e, f) 7→ e⊗ f . In other words, B factors via φ, i.e. B = B̃ ◦ φ.

Canonical identifications
1. Canonical identification of K ⊗E with E. One identifies α⊗ v with αv

(for α ∈ K, v ∈ E). In the same way one identifies the space E ⊗K with E:
v ⊗ α 7→ αv. Notice that K is of dimension 1 over K, with canonical basis
{1}. The canonical identification α⊗ v 7→ αv is equivalent to identiying the
base (1⊗ ei)i∈I of K ⊗ E with the basis (ei)i∈I of E.

2. Canonical identification of (E⊗F )⊗G with E⊗(F⊗G). One identifies
the vectors (e⊗ f)⊗ g and e⊗ (f ⊗ g) and write e⊗ f ⊗ g.

3. Canonical identification for linear maps. Let L(E,F ) be the K-vector
space of linear maps from E to F . Then one can identify

L(E,F )⊗ L(E′, F ′)→ L(E ⊗ E′, F ⊗ F ′).

For α ∈ L(E,F ), β ∈ L(E′, F ′), define α⊗ β ∈ L(E ⊗ E′, F ⊗ F ′) as

α⊗ β(e⊗ e′) = α(e)⊗ β(e′).
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Exercise 1. Justify this identification with the universal property. (Or,
simply, use a dimension argument.)

Tensor product and duality. Let E be a K-vector space. Its dual is the
set E∗ of linear forms, i.e. linear maps from E to K. It is also a K vector
space. Recall that if dimKE = n <∞, then dimKE

∗ = dimKE: if (ei)i∈[n]
is a basis of E, then the canonical dual basis (e∗i )i∈[n] is defined by

e∗i (c1e1 + . . .+ cnen) = ci i = 1, . . . , n,

that is
e∗i (ej) = δij ,

where δij is the so-called Kronecker delta, which is 1 if i = j, 0 otherwise.

Exercise 2. Find an example of infinite dimensional K-vector space E
for which E∗ 6' E.

Proposition 1. if E and F are bot vector spaces of finite dimension over
K, then

(E ⊗ F )∗ ' E∗ ⊗ F ∗.

Proof. The above spaces have the same dimension dimKE · dimKF . Fur-
thermore, for u ∈ E∗, v ∈ F ∗, then

µK ◦ (u⊗ v)

is a linear form on E ⊗ F , where µK : K ⊗ K → K,α ⊗ β 7→ αβ is the
multiplication of the base field K. One can omit µK using the canonical
identification K ⊗K ' K: for x ∈ E, y ∈ F ,

µK ◦ (u⊗ v)(x⊗ y) = u(x)v(y).



4 CLAUDIA MALVENUTO

2. Algebras

Let K be a field. A K-algebra A is a ring containing K in its center.
It is hence a vector space over K. Some examples are: the ring K[x] of
commutative polynomials in one variable, the ring K[x, y] of commutative
polynomials in two variables, the n×n (square) matricesMn(K) with entries
in K.

The non-commutative polynomials.
Let X be a set, called alphabet, X2 = {xy : x, y ∈ X} the set of sequences

of length 2, more generally Xn = {x1x2 . . . xn : xi ∈ X, i = 1, 2, . . . n} the
sequences of length n on the letters of X. Set

X∗ :=
∞⋃
i=0

Xi =

be the set of all finite length sequences on X, or words in the alphabet X,
including the so-called empty word denoted by | (or sometime ε), so that
X0 = {|}. With respect to the concatenation of words, X∗ is a monoid,
where the identity element is the empty word. For instance, forX = {a, b, c},
u = abbacb and v = accba, the concatenation of u and v is the word w =
abbacbaccba. It is a non commutative product.

Now, consider the vector space on K whose basis is X∗; we denote it by
K〈X〉; an element of K〈X〉 is called a non commututive polynomial. For
example, for K = Q, X = {x, y}, 1− 2x+ 12

y + 3xy − 23
y x+ x3, (x+ y)2 =

x2 + xy + yx+ y2 are such a polynomial. With the concatenation product,
extended linearly from the base of words to all polynomials, and identity 1K ,
K〈X〉 is a non-commutative K-algebra (except when |X| = 1) and of center
K. It is called the K-algebra of non-commutative polynomials.

The plactic congruence. The monoid X∗ is freely generated by X as
monoid, and its product is non-commutative. As defined by Lascoux and
Schützenberger in [?], on X∗ one can define the plactic congruence as the
smallest congruence ∼ containing the so-called Knuth relations (see Knuth
[?]):

if x < y < z then yzx ∼ yxz
and zxy ∼ xzy

and if x < y then yxx ∼ xyx
and yyx ∼ yxy.

The plactic class of a word w ∈ X∗ is the set of words congruent to w.
A subset of words L ⊆ X∗ is closed under the plactic congruence if for any
w ∈ L such that w ∼ v then v ∈ L: in other words, L is disjoint union of
plactic classes of its elements.

Exercise 3. Let Sn = {σ : [n] → [n] : σ a bijection} the set of permu-
tations: here a permutation σ is seen as words, i.e. the list of successive
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images of the elements of [n], that is σ = σ(1)σ(2) . . . σ(n). Compute S3/ ∼,
S4/ ∼, the set of congruence classes of S3 and S4. Compute as well the class
of 3152476 ∈ S7.

If A is a K-algebra, the map
A×A → A
(a, b) 7→ ab

is bilinear on K. For the universal property of tensor product there exists a
unique linear map µ : A⊗A→A such that µ(a⊗ b) = ab.
Denote by ηA the K-linear map

K
ηA−→ A

α 7→ α1:
in other words, it is the canonical injection K ↪→ A, since we suppose that
K is contained in the center of A. To be more precise: ηA(1K) = 1A is
the identity element of the product of the algebra A. Hence, the following
diagrams are commutative:

A⊗A⊗A A⊗A

A⊗A A

idA⊗µ

µ⊗idA µ

µ

K ⊗A A⊗A

A

η⊗idA

'
µ

A⊗K A⊗A

A

idA⊗η

'
µ

The first diagram indicate exactly that the product is associative. The two
others, that 1A is the left and right identity element with respect to the
multiplication. In the second of these last ones, for example, for a ∈ A:

1K ⊗ a 1A ⊗ a

a = 1A · a

Tensor product of algebras. Let A and B be two K-algebras, we define
the K-algebra A ⊗ B. It is already a vestor space over K. The product is
defined “componentwise”, that is by

(a⊗ b)(a′ ⊗ b′) = (aa′)⊗ (bb′).

The identity element is 1A ⊗ 1B. In other words, µA⊗B = idA ⊗ τA,B ⊗ idB
and ηA⊗B = ηA ⊗ ηB.

Example. The commutative polynomials in two variables:
K[x]×K[x] ' K[x, y]
xi ⊗ xj 7→ xiyj
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and (xi ⊗ xj)(xi′ ⊗ xj′) = (xi+i
′ ⊗ xj+j′), (xiyj)(xi

′
xj
′
) = (xi+i

′
xj+j

′
).

Example. Mn(K)⊗Mp(K) 'Mnp(K). We generalize the notion of matrix
as follows. Let KI×J = the set of I×J matrices: the rows are indexed by I,
the columns by J (for I, J finite sets). ThenKI×J⊗KI′×J ′ ' K(I×I′)×(J×J ′).

Homomorphisms of algebras. Let A1, A2 two K algebras; a homomor-
phism f : A1 → A2 is a K-linear map such that

∀x, y ∈ A f(xy) = f(x)f(y) and f(1A1) = fA2 .

This is equivalent to say that f is K-linear and that the following diagrams
are commutative:

A1 ⊗A1 A1 ⊗A1

A1 A2

f⊗f

µ1 µ2

f

and

K A1

A2.

η1

η2
f

In other words: f ◦ µ1 = µ2 ◦ (f ⊗ f) and f ◦ ηA1 = ηA2 .

3. Coalgebras

Let C be a K-vector space. A coproduct is a linear map δ : C → C ⊗ C.
A coalgebra is a vector space C with a coproduct δ : C → C ⊗ C which is
coassociative and endowed with a counity map, that is:

(i) (δ ⊗ idC) ◦ δ = (idC ⊗ δ) ◦ δ (coassociativity of δ);
(ii) there exists a linear map ε : C → K such that

(ε⊗ idC) ◦ δ = idC = (idC ⊗ ε) ◦ δ.

Example. K[x] with the following coproduct ∆ and counity map ε is a
coalgebra:

(i) Define the coproduct on the linear base elements of K[x]:

∆ : K[x] → K[x]⊗K[x]
xn 7→ xn ⊗ 1 + xn−1 ⊗ x+ xn−2 ⊗ x2 + . . .+ 1⊗ xn.
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We prove the coassociativity of ∆.

(∆⊗ id) ◦∆(xn) = (∆⊗ id)(
∑
i+j=n

xi ⊗ xj)

=
∑
i+j=n

∆(xi)⊗ xj

=
∑
i+j=n

(
∑
a+b=i

xa ⊗ xb)⊗ xj

=
∑

i+j=n
a+b=i

xa ⊗ xb ⊗ xj

=
∑

s+t+u=n

xs ⊗ xt ⊗ xu

We obtain the same result when computing (id⊗∆) ◦∆(xn).
(ii) Define the counity map as:

ε : K[x] → K
xn 7→ δn,0.

In other words, if P ∈ K[x], then ε(P ) is the constant term of the
polynomial P . Then:

(ε⊗ id) ◦∆(xn) = (ε⊗ id)(
∑
i+j=n

xi ⊗ xj)

=
∑
i+j=n

ε(xi)⊗ id(xj)

=
∑
i+j=n

(δi,0 ⊗ xj)

= 1⊗ xn = xn (identification).

The axioms (i) and (ii) in the definition of a coalgebra are equivalent to
the commutativity of the following diagrams:

C ⊗ C ⊗ C C ⊗ C

C ⊗ C C

idC⊗δ

δ⊗idC
idC⊗δ

δ

K ⊗ C C ⊗ C

C

ε⊗idC

' δ

C ⊗K C ⊗ C

C

idC⊗ε

' δ

We observe that the diagrams above are the same diagrams expressing
the associative law and the unit law for algebras, except that the arrow are
inverted. This fact has consequences that we will see later for the duality.

Example. (This example generalizes the preceding one.) LetX be an alpha-
bet, and K〈X〉 the non-commutative polynomials in X. Define a coproduct
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by:
∆ : K〈X〉 → K〈X〉 ⊗K〈X〉

w ∈ X∗ 7→
∑
w=uv

u,v∈X∗

u⊗ v

For example, ∆(xyz) = 1⊗ xyz+ x⊗ yz+ xy⊗ z+ xyz⊗ 1, for x, y, z ∈ X.
This coproduct is called deconcatenation. We verify the co-associativity by
showing that

(∆⊗ 1) ◦∆(w) = (1⊗∆) ◦∆

=
∑

w=abc
a,b,c∈X∗

a⊗ b⊗ c (we wrote 1 instead of id).

Observe that for a word w of length n there are n+ 1 terms in ∆(w). Define
now the counity map for this coproduct as being:

ε : K〈X〉 → K
| 7→ 1

w 6= | 7→ 0.

The axiom of counity is trivial:

(ε⊗ 1) ◦∆(w) = (ε⊗ 1)(
∑
w=uv

u⊗ v)

=
∑
w=uv

ε(u)⊗ v

=
∑
w=uv

ε(u)v = w.

We say that a coalgebra (C, δ, ε) is cocommutative if τC,C ◦ δ = δ, where

τC,C : C ⊗ C → C ⊗ C
x⊗ y 7→ y ⊗ x.

The deconcatenation is not cocommutative if |X| ≥ 2.

Example. (A new coproduct on the non-commutative polynomials.) Let
δ : K〈X〉 → K〈X〉 ⊗ K〈X〉 be defined on the linear basis of words w =
x1 . . . xn ∈ X∗ by the following:

δ(w) =
∑

wI ⊗ wJ ,

where the sum is extended to pairs (I, J) with I ∪ J = [n], I ∩ J = ∅, with
the notation wI = xi1xi2 . . . xip if I = {i1 < i1 . . . ip}. We call this coproduct
the unshuffling. For example for x, y, z ∈ X, δ(xyz) = 1 ⊗ xyz + x ⊗ yx +
y⊗ x2 + x⊗ xy + xy⊗ x+ x2 ⊗ y + yx⊗ x+ xyz ⊗ 1. Observe that in δ(w)
there are 2n terms if |w| = n.

It is easy to see that if |W | = n, then (δ ⊗ 1) ◦ δ(w) =
∑

(I,J,K)wI ⊗
wJ ⊗ wK , with [n] = I ∪ J ∪K, I, J,K disjoint. From this one deduces the
coassociativity of the coproduct.

Exercise 4. Show that the coalgebra (K〈X〉, δ, ε) is cocommutative.
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Sweedler notation. For a coassociative coproduct δ, it is useful sometimes
to indicate the coproduct of a specific element using this notation:

δ(x) =
∑
(x)

x′ ⊗ x′′,

or
δ(x) =

∑
(x)

x(1) ⊗ x(2).

More generally, when applying the coproduct twice:

δ(3) = (δ ⊗ 1) ◦ δ(x) =
∑
(x)

x′ ⊗ x′′ ⊗ x′′′

or
δ(3) = (δ ⊗ 1) ◦ δ(x) =

∑
(x)

x(1) ⊗ x(2) ⊗ x(3).

Finally, one defines by recurrence

δ(n)(x) = (δ ⊗ 1) ◦ δ(n−1)(x) =
∑
(x)

x(1) ⊗ x(2) ⊗ . . .⊗ x(n).

Tensor product of coalgebras.
Let (C1, δ1, ε1) and (C2, δ2, ε2) two coalgebras on K. Then the K-linear

space C1⊗C2 becomes a coalgebra with coproduct δ : C1⊗C2 → C1⊗C2⊗
C1 ⊗ C2 defined by:

δ = (1⊗ τC1,C2 ⊗ 1) ◦ (δ1 ⊗ δ2),
that is

δ(x1 ⊗ x2) =
∑

(x1)(x2)

x′1 ⊗ x′2 ⊗ x′′1 ⊗ x′′2,

and counit ε : C1 ⊗ C2 → K given by:

ε = µK ◦ (ε1 ⊗ ε2),
in other words, ε(x1 ⊗ x2) = ε1(x1)ε2(x2).

Homomorphism of coalgebras.
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