
Algebraic combinatorics of parking trees

Bérénice Delcroix-Oger
avec Hélène Han (ENS Saclay), Matthieu Josuat-Vergès (IRIF) et Lucas Randazzo

(Nomadic Labs)

Algebraic Combinatorics of the Symmetric Groups and Coxeter Groups II
Cetraro, July 2024



Outline

1 Parking functions and Catalan objects

2 Species of parking trees

3 Parking and Tamari-parking posets



Parking functions and Catalan objects



Outline

1 Parking functions and Catalan objects
Parking function
Parking functions and Cayley trees
Parking functions and non-crossing partitions

2 Species of parking trees

3 Parking and Tamari-parking posets



1

Let’s drive and park !

1 2 3 4 5

24123



1

Let’s drive and park !

1 2 3 4 5

24123



1

Let’s drive and park !

1 2 3 4 5

24123



1

Let’s drive and park !

1 2 3 4 5

24123



1

Let’s drive and park !

1 2 3 4 5

4123



1

Let’s drive and park !

1 2 3 4 5

4123



1

Let’s drive and park !

1 2 3 4 5

4123



1

Let’s drive and park !

1 2 3 4 5

4123



1

Let’s drive and park !

1 2 3 4 5

4123



1

Let’s drive and park !

1 2 3 4 5

123



1

Let’s drive and park !

1 2 3 4 5

23



1

Let’s drive and park !

1 2 3 4 5

:-(3



1

Let’s drive and park !

1 2 3 4 5

:-)3



1

Let’s drive and park !

1 2 3 4 5

3



1

Let’s drive and park !

1 2 3 4 5

:-(



1

Let’s drive and park !

1 2 3 4 5

:-(



1

Let’s drive and park !

1 2 3 4 5

:-)



1

Let’s drive and park !

1 2 3 4 5

Definition

If every car can park, the word, obtained by reading from the first car entering the street to
the last one, is called a parking function.

Examples and counter-examples:

Parking functions of length n Other words of length n
1

11,12,21 22
111, 112, 121, 211, 113, 131, 311,122, 222, 333, 223, 232, 322, 233, 323, 332,
212, 221, 123, 132, 213, 231, 312, 321 133, 313, 331
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Formal definition of parking functions [Konheim-Weiss, 1966]

Definition

A sequence a “ pa1, . . . , anq is a parking function of length n iff

|ti |1 ď ai ď ju| ě j .

Denoting by aÒ the non-decreasing rearrangement of a, this is equivalent to 1 ď aj ă j for any
1 ď j ď n. We call non-decreasing parking function a parking function satisfying a “ aÒ.

Theorem (Konheim-Weiss, 1966; Pollak, 1969)

There are pn ` 1qn´1 parking functions of length n.
There are Cn “ 1

n`1

`

2n
n

˘

non-decreasing parking functions of length n.
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Parking functions and Cayley trees

pn ` 1qn´1 is also the number of Cayley trees on n ` 1 vertices (or equivalently of forest
of rooted Cayley trees on n vertices)

There are several bijections between these objects (see Yan’s survey for instance) which
enable to refine the enumeration of parking functions with statistics such as
displacements, number of lucky cars, . . .

Pollak’s bijection

Consider the Cayley tree associated with the Prüfer code pc1, . . . , cn´1q where

ci ” ai`1 ´ ai rn ` 1s

11 Ø
21

12 Ø
1

2

21 Ø
2

1

123 Ø
1
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Action of the symmetric group on parking functions and Cayley forests

111,

112, 121, 211,

113, 131, 311,

122, 212, 221,

123, 132, 213, 231, 312, 321.
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Non-crossing partitions [Kreweras, 1972]

Definition

A (set) partition of E is
π “ tπ1, . . . , πku s.t. :

πk X πl ‰ H ùñ k “ l

and
Ťk

i“1 πi “ E .

ΠE “ set of partitions of E

Examples

t1, 2u, t1ut2u

t1ut2ut3u, t1, 2, 3u

t1ut2, 3u, t1, 3ut2u, t1, 2ut3u

t1, 2, 3, 4u, t1ut2ut3ut4u, t1, 3ut2, 4u

Definition (Kreweras, 1972)

A partition π “ tπ1, . . . , πku of t1, . . . , nu is
non-crossing iff

$

’

&

’

%

a ă b ă c ă d

a, c P πi

b, d P πj

ùñ i “ j

NCn “ set of non-crossing partitions of
t1, . . . , nu

a b c d

Ñ Catalan numbers 1
n`1

`

2n
n

˘
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Parking functions and non-crossing partitions

1 2 3 4 5 6 7 8 9 10 11 12

Label i by minπ for i P π

Gives a parking function as the label of the jth node is smaller or equal to j .

It is the unique parking function in the orbit which maximizes the number of lucky cars.
Call it the lucky parking function (used by Blass and Sagan to compute the Möbius
function of Tamari lattices under the name ”left bracket vector”).
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Non-crossing 2-partitions (aka. parking functions)

Definition (Edelman, 1980)

A n.c. 2-partition of size n is a pair pπ, σq P NCPn ˆ Sn s.t.

#

tb1, . . . , bku P π

b1 ă b2 ă . . . ă bk
ùñ σpb1q ă σpb2q ă . . . ă σpbkq.

1 2 3 2 1 1 7 1 9 9 11 9

2 6 5 12 9 10 7 11 3 4 1 8

in terms of parking function:

- - - - - - - - - - - -
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Parking functions also appear

as labellings of the shi arrangement

as labellings of maximal chains in the noncrossing partition poset

in two posets:
§ the poset of 2-noncrossing partitions [Edelman, 80]
§ the poset of Tamari-parking, linked with the study of diagonal coinvariants
[Chapuy–Bousquet-Mélou–Préville-Ratelle, 13]
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Parking functions also appear

as labellings of the shi arrangement

as labellings of maximal chains in the noncrossing partition poset

Our goal for today:

in two posets:
§ the poset of 2-noncrossing partitions [Edelman, 80]
§ the poset of Tamari-parking, linked with the study of diagonal coinvariants
[Chapuy–Bousquet-Mélou–Préville-Ratelle, 13]
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What are species?

Definition (Joyal, 80s; cited from Bergeron-Labelle-Leroux)

A species F is a functor from Bij to Set. To a finite set S , the species F associates a finite set
FpSq such that any bijection σ : S Ñ T gives rise to a map F pσq : F pSq Ñ F pT q satisfying

@σ : S Ñ T , τ : T Ñ U,F pτ ˝ σq “ F pτq ˝ F pσq, F pIdSq “ IdF pSq.

Species = Construction plan, such that the obtained set is invariant by relabelling

2

1

3

1

2

3

1

3

2

2

1

3

2

3

1

3

2

1

3

1

2

3

1 2

2

1 3

1

2 3
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Examples of species

tp1, 2, 3q, p1, 3, 2q, p2, 1, 3q, p2, 3, 1q, p3, 1, 2q, p3, 2, 1qu (Species of lists L on t1, 2, 3u)

tt1, 2, 3uu (Species of non-empty sets E`)

tt1u, t2u, t3uu (Species of pointed sets E‚)

"

1

2 3

, 1

2

3

, 1

3

2

, 2

1 3

, 2

1

3

, 2

3

1

, 3

1 2

, 3

1

2

, 3

2

1
*

(Species of Cayley trees T)
"

1 2

3

, 1 3

2 *

(Species of cycles)

These sets are the image by species of the set t1, 2, 3u.
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Why do we need species ?

Let F and G be two species.

pF ` G qpI q “ F pI q \ G pI q,

pF ˆ G qpI q “
Ů

I1\I2“I F pI1q ˆ G pI2q.
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Cycle index series

Definition

Given a finite set V of size n, the cycle type of a permutation σ P SV is the tuple pσ1, . . . , σnq

, where σk is the number of cycles of type k in the decomposition of σ into disjoint cycles.

Examples

The cycle type of p123qp4qp567q is p1, 0, 2, 0, 0, 0, 0q.

Definition

The cycle index series of a species F is the formal power series

ZF pp1, . . . , pn, . . .q “
ÿ

ně0

ÿ

σ

fixF pσq
pσ

zσ
, (1)

where the sum runs over a set of representatives of each cycle type of Sn, pσ “ pσ1
1 . . . pσn

n

and zσ “
ś

iě1 i
pi ˆ pi !
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Cycle index series of usual species

Definition

The cycle index series of a species F is the formal power series

ZF pp1, . . . , pn, . . .q “
ÿ

ně0

ÿ

σ

fixF pσq
pσ

zσ
, (2)

where the sum runs over a set of representatives of each cycle type of Sn, pσ “ pσ1
1 . . . pσn

n

and zσ “
ś

iě1 i
pi ˆ pi !

Examples

ZL “ 1
1´p1

,

ZE “ expp
ř

iě1
pi
i q

ZE‚ “ p1 expp
ř

iě1
pi
i q

ZT “ p1 exppZTq
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Parking trees

Definition

A parking tree on a set L is a rooted plane tree T “ pV ,E , rq such that:

V P ΠL,

v P V has |v | children.

2 9 10 11

3 4 8

1

76 12

5

Why parking ?
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Bijection between 2-noncrossing partition and parking trees

2 9 10 11

3 4 8

1

76 12

5

2 6 5 12 9 10 7 11 3 4 1 8
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Functional equation parking trees

2 9 10 11

3 4 8

1

76 12

5
Proposition (DO, Josuat-Vergès, Randazzo,
21)

Pf “
ÿ

pě1

Ep ˆ p1 ` Pf qp
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Tamari-parking poset (with M. Josuat-Vergès and H. Han)
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2-noncrossing partitions poset

Covering relation in Π2 : merge parts and rearrange labels to respect the increasing condition

Example : 1 2 3 4 ď 2 3 1 4

A1 ∪A2

F1 Fp Fp+1 Fl Fl+1 Fn
. . . . . .. . .

A1

F1 Fp

A2

FlFp+1

Fl+1
Fn

. . .
. . .
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123

12
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2

23

1

1

23

2

13

3

12

12

3

13

2

23

1

1

2

3

1

3

2

2

1

3

3

1

2

2

3

1

3

2

1
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Results

This poset is a lattice

When restricting to right combs, get the face poset of the permutohedron

New criterion to prove shellability !

Enumeration of (weak) k-chains

1 2 5 6

4 3 7

ď
2 6

4 3 7

1 5

ď
2 6

4 7

1 53

ď
6

2

4 7

1

5

3
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k-weak chains

1 2 5 6

4 3 7

ď
2 6

4 3 7

1 5

ď
2 6

4 7

1 53

ď
6

2

4 7

1

5

3

Proposition (DO, Josuat-Vergès, Randazzo, 21)

C l
k,t “

ÿ

pě1

C l ,p
k´1,t ˆ

`

tC l
k,t ` 1

˘p

Chains ϕ1 ď ¨ ¨ ¨ ď ϕk in Π2
n are in bijection with k-parking trees.

The number of chains ϕ1 ď ¨ ¨ ¨ ď ϕk in Π2
n where rkpϕkq “ ℓ is:

ℓ!

ˆ

kn

ℓ

˙

S2pn, ℓ ` 1q.
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k-parking tree

Definition

A k-parking tree on a set L is a rooted plane tree T “ pV ,E , rq such that:

V P ΠL

v P V has k|v | children.

12

476

5

3

12467

53

ď
127

43

6

5

ď 12

43

6

5

7
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1 2 5 6

4 3 7

ď
2 6

4 3 7

1 5

ď
2 6

4 7

1 53

ď
6

2

4 7

1

5

3

6

2

1

8

4 7

3
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Shelling

0̂

x

yy 1
y2

zz 1

y 1 _ z

1̂

Lemma

Let x , y , y 1, z P Π2
n such that x Ì y Ì z, x Ì y 1, and y 1 ăx y.

Then:

either there exists y2 P Π2
n such that x Ì y2 Ì z and

y2 ăx y,

or there exists z 1 P Π2
n such that y Ì z 1 ď y 1 _ z and

z 1 ăy z.
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Tamari-parking poset
Covering relations given by:

Moving a block to an arch to the left in the same part F ď F

Merging parts if there leftmost elements are adjacents F ď F

1 2 3

2 1 31 3 2 1 2 3

1 2 3 2 3 1 1 3 2

1 2 3 2 1 3 3 1 2

2 3 12 1 31 2 3 3 2 1 3 1 2 1 3 2
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Tamari-parking poset
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Known results and open questions

Proposition (Chapuy–Bousquet-Mélou–Préville-Ratelle, 12)

Say that two intervals in Tamari-parking posets are isomorphic if they have the same minimum
element and maximal elements of the same shape.
The number of class of isomorphisms of intervals is given by:

2npn ` 1qn´2.

The action of the symmetric group on these isomorphisms class of intervals are likely to be the
same as the one on the space of diagonal coinvariants in three sets of n variables.

Conjecture (DO)

Augmented Tamari-parking posets are homotopic to a sphere.

Proposition (H. Han)

Tamari-parking posets are lattices. They are neither EL-shellable nor CL-shellable.

Thank you for your attention !
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