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Objectives
Present a polynomial realization of some Hopf algebras constructed from operads.

Main points:

1. Combinatorial Hopf algebras.

2. Polynomial realizations.

3. Nonsymmetric operads.

4. Natural Hopf algebras of nonsymmetric operads.

5. Polynomial realization of natural Hopf algebras of free operads.

6. Polynomial realization of natural Hopf algebras of non-free operads.

Samuele Giraudo 2/41 Realizations of natural Hopf algebras



Combinatorial Hopf algebras
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All algebraic structures are over a field K of characteristic zero.

A combinatorial Hopf algebra (CHA) H is a graded vector space decomposing as

H =
⊕
n∈N

H(n)

such that dim H(0) = 1 and each H(n) is finite dimensional, and endowed with

□ an associative unital graded product

⋆ : H(n1) ⊗ H(n2) → H(n1 + n2)

□ a coassociative counital cograded coproduct

∆ : H(n) →
⊕

n=n1+n2

H(n1) ⊗ H(n2)

such that

∆(x1 ⋆ x2) = ∆(x1) ⋆̄ ∆(x2).
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Let WQSym be the space such that WQSym(n) is the linear span of P(n), the set of packed words of size n

(words on [n] where each letter from 1 to n appears at least once, like 13223 but not 131).

The set {Mp : p ∈ P} is a basis of WQSym.

Let ⋆ be the convolution product on WQSym.

Example — Product of WQSym on the M-basis
M11 ⋆ M121 = M11121 + M11232 + M22121 + M22131 + M33121

Let ∆ be the packed unshuffling coproduct on WQSym.

Example — Coproduct of WQSym on the M-basis
∆(M2312411) = Mϵ ⊗ M2312411 + M111 ⊗ M1213 + M21211 ⊗ M12 + M231211 ⊗ M1 + M2312411 ⊗ Mϵ

[1, 2], [3, 4]
21211, 34

This is the CHA of word quasi-symmetric functions [Hivert, 1999].
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Polynomial realizations
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For any alphabet A, let K⟨A⟩ be the space of noncommutative polynomials on A having a possibly infinite
support but a finite degree.

Example — Some noncommutative polynomials
Set AN := {a0, a1, a2, . . .}.

□ An element of K⟨AN⟩:

∑
0⩽i1<i2

ai1ai2 = a0a1 + a0a2 + · · · + a1a2 + a1a3 + · · ·

□ An element which is not in K⟨AN⟩:

∑
n⩾0

an
0 = 1 + a0 + a2

0 + a3
0 + · · ·

The space K⟨A⟩, endowed with the product of noncommutative polynomials, is a unital associative algebra.
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A polynomial realization of a CHA H is a map

rA : H → K⟨A⟩

defined for any alphabet A of C, a class of alphabets possibly endowed with n-ary relations, such that

1. rA is a graded unital associative algebra morphism;

2. there exists an alphabet A of C such that rA is injective;

3. there exists a sum operation ++ on C such that for any x ∈ H and any alphabets A1 and A2 of C,

rA1++A2(x) = (rA1 ⊗ rA2) ◦ ∆(x),

where the variables of A1 and A2 are considered mutually commuting in K⟨A1 ++ A2⟩.

Point 3. offers a way to compute the coproduct of H by expressing the realization of x on the sum of two alphabets.
This is the alphabet doubling trick.
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Let A be an alphabet endowed with a total order ≼.

The packing of u ∈ A∗ is the word of positive integers pck(u) such that

pck(u)i = #{uj : uj ≼ ui}.

pck(u) is the packed word obtained by projecting u on the segment [1, max(u)].

Example — Packing of a word
Let, on the alphabet AN, the total order relation ≼ satisfying ai1 ≼ ai2 iff i1 ⩽ i2.

pck(a6 a2 a0 a0 a2 a4 a2 a0 a4) = pck(6 2 0 0 2 4 2 0 4) = 4 2 1 1 2 3 2 1 3

6
5
4
3
2
1
0


• · · · · · · · ·
· · · · · · · · ·
· · · · · • · · •
· · · · · · · · ·
· • · · • · • · ·
· · · · · · · · ·
· · • • · · · • ·

 7→

6
5
4
3
2
1
0


· · · · · · · · ·
· · · · · · · · ·
• · · · · · · · ·
· · · · · • · · •
· • · · • · • · ·
· · • • · · · • ·
· · · · · · · · ·
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Let p ∈ P. A word u ∈ A∗ is p-compatible, denoted by u ⊩A p, if pck(u) = p.

Let rA : WQSym → K⟨A⟩ be the map defined by

rA(Mp) :=
∑

u∈A∗

u ⊩A p

u.

Example — The polynomial of a basis element

rAN(M3121) =
∑

ℓ1<ℓ2<ℓ3∈N
aℓ3aℓ1aℓ2aℓ1 = a2a0a1a0 + a3a0a1a0 + a3a0a2a0 + a3a1a2a1 + · · ·

The sum A1 ++ A2 of the totally ordered alphabets A1 and A2 is the disjoint ordinal sum of A1 and A2.

Theorem [Novelli, Thibon, 2006]

The map rA is a polynomial realization of WQSym.
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Example — An alphabet doubling in WQSym

rA1++A2 (M2131) =
∑

u∈(A1++A2)∗

pck(u)=2131

u =
∑

u1,u2,u3∈A1++A2
u1≺u2≺u3

u2u1u3u1

=
∑

u1,u2,u3∈A1
u1≺u2≺u3

u2u1u3u1 +
∑

u1,u2∈A1,u3∈A2
u1≺u2≺u3

u2u1u3u1 +
∑

u1,u3∈A1,u2∈A2
u1≺u2≺u3

u2u1u3u1 +
∑

u2,u3∈A1,u1∈A2
u1≺u2≺u3

u2u1u3u1

+
∑

u1∈A1,u2,u3∈A2
u1≺u2≺u3

u2u1u3u1 +
∑

u2∈A1,u1,u3∈A2
u1≺u2≺u3

u2u1u3u1 +
∑

u3∈A1,u1,u2∈A2
u1≺u2≺u3

u2u1u3u1 +
∑

u1,u2,u3∈A2
u1≺u2≺u3

u2u1u3u1

= rA1 (M2131) ⊗ rA2 (Mϵ) + rA1 (M211) ⊗ rA2 (M1) + 0 + 0

+ rA1 (M1) ⊗ rA2 (M12) + 0 + 0 + rA1 (Mϵ) ⊗ rA2 (M2131)

= (rA1 ⊗ rA2 ) ◦ ∆(M2131)
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There are many CHAs defined on linear spans of various families of combinatorial objects endowed with very
different products and coproducts, admitting polynomials realizations (very incomplete list, sorry):

□ NCSF, the noncommutative symmetric functions CHA [Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon, 1995];

□ FQSym, the Malvenuto-Reutenauer CHA [Malvenuto, Reutenauer, 1995], [Duchamp, Hivert, Thibon, 2002];

□ PQSym⋆, the dual parking functions CHA [Novelli, Thibon, 2007];

□ CK and NCK, the commutative and noncommutative Connes-Kreimer CHAs [Connes, Kreimer, 1998],
[Foissy, 2002], [Foissy, Novelli, Thibon, 2014];

□ HFG , the CHA on Feynman graphs [Foissy, 2020].

Polynomials realizations are interesting at least because

1. they provide a unified encoding of these CHAs as spaces of polynomials;

2. they provide families of polynomials generalizing symmetric functions.
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Nonsymmetric operads
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A nonsymmetric operad (operad) is a set

O =
⊔

n∈N
O(n)

endowed with

□ a unit 1 ∈ O(1);

□ a composition map −[−, . . . , −] : O(n) × (O(m1) × · · · × O(mn)) → O(m1 + · · · + mn)

such that

1[x] = x = x[1, . . . ,1]

and

x[y1, . . . , yn][z1,1, . . . , z1,m1 , . . . , zn,1, . . . , zn,mn ] = x[y1[z1,1, . . . , z1,m1 ], . . . , yn[zn,1, . . . , zn,mn ]].

The arity ar(x) of x ∈ O is the unique integer n such that x ∈ O(n).
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Let O be an operad.

An element x ∈ O(n) is finitely factorizable if the set of pairs (y, (z1, . . . , zn)) satisfying

x = y[z1, . . . , zn]

is finite.

When all elements of O are finitely factorizable, by extension, O is finitely factorizable.

A map dg : O → N is a grading of O if

□ dg−1(0) = {1};

□ for any y ∈ O(n) and z1, . . . , zn ∈ O,

dg(y[z1, . . . , zn]) = dg(y) + dg(z1) + · · · + dg(zn).

When such a map exists, O is graded.
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The nonsymmetric associative operad As is the operad such that

□ As := {αn : n ∈ N} with ar(αn) := n + 1;

□ the unit is α0;

□ the composition map satisfies

αn[αm1 , . . . , αmn ] = αn+m1+···+mn .

Example — A composition in As
α4[α1, α0, α2, α1, α0] = α4+1+0+2+1+0 = α8

The map dg defined by dg(αn) := n is a grading of As.

The operad As is finitely factorizable.
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Natural Hopf algebras of operads
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Let O be an operad.

The reduced rd(v) of v ∈ O∗ is the word obtained by removing the letters 1 in v.

Example — The reduced word of a word of As∗

rd(α1 α1 α0 α3 α0 α0) = α1 α1 α3

The natural space N(O) of O is the linear span of the set of reduced elements of O∗.

The set {Ev : v ∈ rd(O∗)} is the elementary basis of N(O).

If O admits a grading dg, then N(O) becomes a graded space by setting

dg(Ev1...vℓ
) := dg(v1) + · · · + dg(vℓ).

Note that dg(Eϵ) = 0.
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Let ⋆ be the product on N(O) defined by

Ev ⋆ Ev′ := Evv′ .

Let ∆ be the coproduct on N(O) defined by

∆(Ex) =
∑
n⩾0

∑
(y,v)∈O(n)×On

x=y[v1,...,vn]

Erd(y) ⊗ Erd(v).

Theorem [van der Laan, 2004] [Méndez, Liendo, 2014]

For any finitely factorizable operad O, N(O) is a bialgebra.

Moreover, if O is graded, then N(O) is a Hopf algebra.

Under these two conditions on O, N(O) is the natural Hopf algebra of O.
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Let us apply this construction on As endowed with the grading dg satisfying dg(αn) = n.

For any n ⩾ 1, dim N(As)(n) = 2n−1.

Example — A product in N(As)
Eα2α1α1α4 ⋆ Eα3α1 = Eα2α1α1α4α3α1

Example — A coproduct in N(As)
∆(Eα3) = Eϵ ⊗ Eα3 + 2Eα1 ⊗ Eα2 + Eα1 ⊗ Eα1α1 + 3Eα2 ⊗ Eα1 + Eα3 ⊗ Eϵ.

Contributions to the coefficient 2 of Eα1 ⊗ Eα2 :

α3 = α1[α0, α2], α3 = α1[α2, α0].

Contributions to the coefficient 3 of Eα2 ⊗ Eα2 :

α3 = α2[α0, α0, α1], α3 = α2[α0, α1, α0], α3 = α2[α1, α0, α0].

N(As) is the noncommutative Faà di Bruno Hopf algebra FdB [Figueroa, Gracia-Bondía, 2005] [Foissy, 2008].
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Terms and forests
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A signature is a set S decomposing as S =
⊔

n⩾0
S(n).

An S-term is an ordered rooted tree decorated on S such that an internal node decorated by s ∈ S(n) has
exactly n children.

Let T(S) be the set of S-terms.

For any t ∈ T(S),

□ the degree dg(t) of t is the number of internal nodes of t;

□ the arity ar(t) of t is the number of leaves of t.

Example — An S-term

Let the signature S := S(1) ⊔ S(3) with S(1) := {a} and S(3) := {b, c}.

This S-term has degree 5 and arity 7.

b
a c

a c
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Let S be a signature.

The free operad on S is the set T(S) such that

□ T(S)(n) is the set of S-terms of arity n;

□ the unit is the S-term containing exactly one leaf ;

□ the composition map is such that t[t1, . . . , tn] is the S-term obtained by grafting simultaneously each ti on
the i-th leaf of t.

Example — A composition in a free operad

b
a c

 b , ,
a

a
,

b
c

 =

b
a

b

c

a

a
b

c

The map dg is a grading of T(S) and this operad is finitely factorizable.
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Let S be a signature.

An S-forest is a word on T(S). Let F(S) be the set of S-forests.

The internal nodes of an S-forest f are identified by their positions during the preorder traversal.

Let f→j be the binary relation on the set of internal nodes of f such that i1
f→j i2 if i1 is the j-th child of i2 in f.

Example — An S-forest

f :=

c

a b

a

b

b

a

1

2 3

4

5

6

7

For instance, 1 f→1 2, 1 f→3 3, and 5 f→2 6.
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Natural Hopf algebras of free operads
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Let S be a signature.

The bases of N(T(S)) are indexed by the set of reduced S-forests.

Example — A product in N(T(S))
E

a

b

c

a

⋆ E
b

a

= E
a

b

c

a
b

a

Example — A coproduct in N(T(S))
∆E

c

a
b

= Eϵ ⊗ E
c

a
b

+ E
c

⊗ E
a b

+ E
b

⊗ E
c

a

+ E
c

a

⊗ E
b

+ E
c b

⊗ E
a

+ E
c

a
b

⊗ Eϵ
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Polynomial realization
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Let S be a signature.

The class of S-forest-like alphabets is the class of alphabets A endowed with relations R, Ds, and ≺j such that

1. R is a unary relation called root relation;

2. for any s ∈ S, Ds is a unary relation called s-decoration relation;

3. for any j ⩾ 1, ≺j is a binary relation called j-edge relation.
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Let S be a signature, A be an S-forest-like alphabet, and f be a reduced S-forest.

A word u ∈ A∗ is f-compatible, denoted by u ⊩A f, if

1. ℓ(u) = dg(f);

2. if i is a root of f, then ui ∈ R;

3. if i is decorated by s ∈ S in f, then ui ∈ Ds;

4. if i
f→j i′, then ui ≺j ui′ .

Example — An f-compatible word

c

a b

a

b

b

a

1

2 3

4

5

6

7

Considering this reduced forest f, any f-compatible word u ∈ A∗ satisfies

□ ℓ(u) = 7;

□ u1, u5 ∈ R;

□ u2, u4, u7 ∈ Da, u3, u5, u6 ∈ Db, u1 ∈ Dc;

□ u1 ≺1 u2, u1 ≺3 u3, u3 ≺1 u4, u5 ≺2 u6, u6 ≺1 u7.
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Let S be a signature and A be an S-forest-like alphabet.

Let rA : N(T(S)) → K⟨A⟩ be the linear map defined for any f ∈ rd(F(S)) by

rA(Ef) :=
∑

u∈A∗

u ⊩A f

u.

This polynomial is the A-realization of f.

Lemma
For any signature S and any S-forest-like alphabet A, rA is a graded unital associative algebra morphism.
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Let S be a signature, and A1 and A2 be to S-forest-like alphabets.

The sum A1 ++ A2 of A1 and A2 is the S-forest-like alphabet

A := A1 ⊔ A2

endowed with the relations R, Ds, and ≺j such that

1. R := R(1) ⊔ R(2);

2. Ds := D(1)
s ⊔ D(2)

s ;

3. a ≺j a′ holds if one of the three following conditions hold:

□ a ∈ A1, a′ ∈ A1, and a ≺j
(1) a′;

□ a ∈ A2, a′ ∈ A2, and a ≺j
(2) a′;

□ a ∈ A1, a′ ∈ A2, and a′ ∈ R(2).
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Lemma
For any signature S, any S-forest-like alphabets A1 and A2, and any S-forest f,

rA1++A2(Ef) = (rA1 ⊗ rA2) ◦ ∆(Ef).

Example — An alphabet doubling in N(T(S))

rA1++A2 E
c

a b
a

=
∑

u1,u2,u3,u4∈A1++A2
u1∈R

u2,u4∈Da, u1∈Dc, u3∈Db
u1≺1u2, u1≺3u3, u3≺1u4

u1u2u3u4 = · · · +
∑

u1,u3∈A1, u2,u4∈A2
u1,u2,u4∈R

u2,u4∈Da, u1∈Dc, u3∈Db
u1≺3u3

u1u2u3u4 + · · ·

= · · · + rA1E
c

b

⊗ rA2E
a a

+ · · ·
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The S-forest-like alphabet of positions is the S-forest-like alphabet

Ap(S) := {as
v : s ∈ S and v ∈ N∗}

such that

1. the root relation is defined by R :=
{

as
0ℓ ∈ Ap(S) : ℓ ⩾ 0

}
;

2. the s-decoration relation Ds is defined by Ds :=
{

as′
v ∈ Ap(S) : s′ = s

}
;

3. the j-edge relation ≺j is defined by as
v ≺j as′

v j 0ℓ where ℓ ⩾ 0.

Example — An alphabet Ap(S)
Let the signature S := S(1) ⊔ S(3) such that S(1) = {a, b} and S(3) = {c}. For instance,

□ aa
000 ∈ R, ab

10021 /∈ R;

□ ac
1706001 ∈ Dc, ab

0211 /∈ Dc;

□ aa
103 ≺1 ab

103 1 00, ac
1 ≺2 aa

1 2.
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Example — Ap(S)-realizations of some reduced forests

rAp(S)E
b

=
∑
ℓ1∈N

ab
0ℓ1

rAp(S)E
b a

=
∑

ℓ1,ℓ2∈N
ab

0ℓ1 aa
0ℓ2

rAp(S)E
b

a

=
∑

ℓ1,ℓ2∈N
ab

0ℓ1 aa
0ℓ1 10ℓ2

rAp(S)E
c

b a
c

b
a

=
∑

ℓ1,...,ℓ6∈N
ac

0ℓ1 ab
0ℓ1 10ℓ2 aa

0ℓ1 30ℓ3 ac
0ℓ1 30ℓ3 10ℓ4 ab

0ℓ5 aa
0ℓ5 1ℓ6
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Let f be an S-forest.

The decoration deci(f) of a node i of f is the element of S decorating it.

The address adri(f) of a node i of f is the word specifying the positions of the edges to reach i from the root.

If f has n internal nodes, let the monomial

m(f) := adec1(f)
adr1(f) . . . adecn(f)

adrn(f).

Example — Decorations and addresses of a node in an S-forest

c

a

b

b

c

a

c

b

6

For this S-forest f, we have dec6(f) = a and adr6(f) = 213.

We have also
m(f) = ac

0 aa
1 ab

11 ab
2 ac

21 aa
213 ac

2131 ab
3.
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The weight wt(u) of a monomial u = as1
v1 . . . asn

vn
is ℓ(v1) + · · · + ℓ(vn).

Lemma
For any signature S and any reduced S-forest f,

rAp(S)(Ef) = m(f) +
∑

u∈Ap(S)∗

u ⊩Ap(S) f
wt(u)>wt(m(f))

u.

Lemma
For any signature S, the map rAp(S) : N(T(S)) → K⟨Ap(S)⟩ is injective.

Theorem [G., 2024+]

For any signature S, the map rA is a polynomial realization of N(T(S)).
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Case of non-free operads
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A congruence ≡ of the free operad T(S)

□ is compatible with the degree if t1 ≡ t2 implies dg(t1) = dg(t2);

□ is of finite type if the ≡-equivalence class [t]≡ of any S-term t is finite.

Theorem [G., 2024+]

Let S be a signature and ≡ be a congruence of T(S) which is compatible with the degree and of finite type.
The associative algebra morphism

ϕ : N(T(S)/≡) → N(T(S))

satisfying

ϕ
(
E[t]≡

)
=

∑
t∈[t]≡

Et

for any [t]≡ ∈ T(S)/≡ is an injective Hopf algebra morphism.
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We have As ≃ Mag/≡ where Mag := T(S)/≡, S := S(2) = {a}, and ≡ satisfies t1 ≡ t2 whenever dg(t1) = dg(t2).

Each ≡-equivalence class [t]≡ is represented by the element αdg(t) of As.

The map

ϕ : N(Mag/≡) ≃ FdB → N(Mag)

satisfies

ϕ(Eαn) =
∑

t∈T(S)
dg(t)=n

Et.

Example — An image by ϕ

ϕEα3 = E
a

a
a

+ E
a

a
a

+ E
a

a a

+ E
a

a
a

+ E
a

a
a
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By setting r̄A := rA ◦ ϕ, we obtain a polynomial realization of FdB.

Example — The Ap(S)-polynomial of an element of FdB

r̄Ap(S)Eα3 =
∑

ℓ1,ℓ2,ℓ3∈N
aa

0ℓ1 aa
0ℓ1 10ℓ2 aa

0ℓ1 10ℓ2 10ℓ3 +
∑

ℓ1,ℓ2,ℓ3∈N
aa

0ℓ1 aa
0ℓ1 10ℓ2 aa

0ℓ1 10ℓ2 20ℓ3

+
∑

ℓ1,ℓ2,ℓ3∈N
aa

0ℓ1 aa
0ℓ1 10ℓ2 aa

0ℓ1 20ℓ3 +
∑

ℓ1,ℓ2,ℓ3∈N
aa

0ℓ1 aa
0ℓ1 20ℓ2 aa

0ℓ1 20ℓ2 10ℓ3

+
∑

ℓ1,ℓ2,ℓ3∈N
aa

0ℓ1 aa
0ℓ1 20ℓ2 aa

0ℓ1 20ℓ2 20ℓ3

Using the specialization π : aa
v 7→ aℓ(v), we obtain

πr̄Ap(S)Eα3 = 4
∑

ℓ1<ℓ2<ℓ3∈N
aℓ1aℓ2aℓ3 +

∑
ℓ1,ℓ2,ℓ3∈N

ℓ1<ℓ2, ℓ1<ℓ3

aℓ1aℓ2aℓ3 .

This map π ◦ r̄Ap(S) is still injective and is hence another polynomial realization of FdB.

By using similar methods, it is possible to build a polynomial realization of the double tensor CHA, constructed
in [Ebrahimi-Fard, Patras, 2015].
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Grazie mille!
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