Natural Hopf algebras and polynomial realizations THROUGH RELATED ALPHABETS

Samuele Giraudo

LACIM, Université du Québec à Montréal

giraudo.samuele@uqam.ca

Workshop Cetraro Algebraic **Com**binatorics and Finite Groups III

July 11, 2024

Objectives

Present a **polynomial realization** of some Hopf algebras constructed from operads.

Main points:

- 1. Combinatorial Hopf algebras.
- 2. Polynomial realizations.
- 3. Nonsymmetric operads.
- 4. Natural Hopf algebras of nonsymmetric operads.
- 5. Polynomial realization of natural Hopf algebras of free operads.
- 6. Polynomial realization of natural Hopf algebras of non-free operads.

Combinatorial Hopf algebras

All algebraic structures are over a field K of characteristic zero.

A combinatorial Hopf algebra (CHA) H is a graded vector space decomposing as

 $\mathcal{H} = \bigoplus \mathcal{H}(n)$ *n*∈N

such that $\dim \mathcal{H}(0) = 1$ and each $\mathcal{H}(n)$ is finite dimensional, and endowed with

□ an associative unital graded **product**

 $\star : \mathcal{H}(n_1) \otimes \mathcal{H}(n_2) \rightarrow \mathcal{H}(n_1 + n_2)$

a coassociative counital cograded **coproduct**

$$
\Delta: \mathcal{H}(n) \to \bigoplus_{n=n_1+n_2} \mathcal{H}(n_1) \otimes \mathcal{H}(n_2)
$$

such that

$$
\Delta(x_1 \star x_2) = \Delta(x_1) \star \Delta(x_2).
$$

Let \mathbf{WQSym} be the space such that $\mathbf{WQSym}(n)$ is the linear span of $\mathcal{P}(n)$, the set of **packed words** of size n (words on [*n*] where each letter from 1 to *n* appears at least once, like 13223 but not 131).

The set $\{M_p : p \in \mathcal{P}\}\$ is a basis of **WQSym**.

Let \star be the convolution product on $WQSym$.

Example — Product of WQSym on the M**-basis** M_{11} \star M₁₂₁ = M₁₁₁₂₁ + M₁₁₂₃₂ + M₂₂₁₂₁ + M₂₂₁₃₁ + M₃₃₁₂₁

Let Δ be the packed unshuffling coproduct on **WQSym**.

Example — Coproduct of WQSym on the M**-basis** $\Delta(M_{2312411}) = M_{\epsilon} \otimes M_{2312411} + M_{111} \otimes M_{1213} + M_{21211} \otimes M_{12} + M_{231211} \otimes M_1 + M_{2312411} \otimes M_{\epsilon}$ $[1, 2]$, $[3, 4]$ 21211*,* 34

This is the CHA of word quasi-symmetric functions [**Hivert**, 1999].

Polynomial realizations

For any alphabet A, let $\mathbb{K}\langle A \rangle$ be the space of noncommutative polynomials on A having a possibly *infinite* **support** but a **finite degree**.

Example — Some noncommutative polynomials Set $A_{\mathbb{N}} := \{a_0, a_1, a_2, \ldots\}.$ \Box An element of $\mathbb{K}\langle A_{\mathbb{N}}\rangle$: $\sum \textbf{a}_{i_1} \textbf{a}_{i_2} = \textbf{a}_0 \textbf{a}_1 + \textbf{a}_0 \textbf{a}_2 + \dots + \textbf{a}_1 \textbf{a}_2 + \textbf{a}_1 \textbf{a}_3 + \dots$ $0 \leq i_1 < i_2$ An element which is not in $\mathbb{K}\langle A_{\mathbb{N}}\rangle$: $\sum \mathbf{a}_0^n = 1 + \mathbf{a}_0 + \mathbf{a}_0^2 + \mathbf{a}_0^3 + \cdots$ $n > 0$

The space $\mathbb{K}\langle A \rangle$, endowed with the product of noncommutative polynomials, is a unital associative algebra.

A polynomial realization of a CHA $\mathcal H$ is a map

 $r_A : \mathcal{H} \to \mathbb{K} \langle A \rangle$

defined for any alphabet *A* of C, a class of alphabets possibly endowed with *n*-ary relations, such that

- 1. r*^A* is a graded unital associative **algebra morphism**;
- 2. there exists an alphabet $\mathbb A$ of C such that $r_{\mathbb A}$ is **injective**;
- 3. there exists a **sum operation** ++ on C such that for any $x \in \mathcal{H}$ and any alphabets A_1 and A_2 of C,

 ${\sf r}_{A_1\!+\!A_2}(x)=({\sf r}_{A_1}\otimes{\sf r}_{A_2})\circ\Delta(x),$

where the variables of A_1 and A_2 are considered **mutually commuting** in $\mathbb{K}\langle A_1+A_2\rangle$.

Point [3.](#page-7-0) offers a way to compute the coproduct of H by expressing the realization of x on the sum of two alphabets. This is the alphabet doubling trick.

Let *A* be an alphabet **endowed with a total order** ≼.

The packing of $u \in A^*$ is the word of positive integers $\text{pck}(u)$ such that

 $pck(u)_i = #{u_i : u_i \leq u_i}.$

 $pck(u)$ is the packed word obtained by projecting *u* on the segment $[1, max(u)]$.

Example — Packing of a word Let, on the alphabet $A_{\mathbb{N}}$, the total order relation \preccurlyeq satisfying $\mathbf{a}_{i_1} \preccurlyeq \mathbf{a}_{i_2}$ iff $i_1 \leqslant i_2.$ pck(a_6 a_2 a_0 a_0 a_2 a_4 a_2 a_0 a_4) = pck(6 2 0 0 2 4 2 0 4) = 4 2 1 1 2 3 2 1 3 6 5 4 3 2 1 $\overline{0}$ \lceil $\overline{}$ \bullet .

 • \bullet : \bullet : \bullet

 • \bullet : \bullet : \bullet : \bullet : \bullet : · · · · · · · · · · · · · · • · · • · · · · · · · · · · • · · • · • · · · · · · · · · · · · · • • · · · • · 1 \mapsto 6 5 4 3 2 1 0 $\sqrt{ }$ · · · · · · · · · · · · · · · · · · \bullet .

 • \bullet : \bullet : \bullet

 • \bullet : \bullet : \bullet : \bullet : \bullet : · · · · · • · · • · • · · • · • · · · · • • · · · • · · · · · · · · · · 1

Let $\mathfrak{p} \in \mathcal{P}$. A word $u \in A^*$ is \mathfrak{p} -compatible, denoted by $u \Vdash^A \mathfrak{p}$, if $\mathrm{pck}(u) = \mathfrak{p}$.

Let $r_A : WQSym \rightarrow K\langle A \rangle$ be the map defined by

$$
r_A(\mathsf{M}_{\mathfrak{p}}) := \sum_{\substack{u \in A^* \\ u \Vdash^A \mathfrak{p}}} u.
$$

Example — The polynomial of a basis element ${\sf r}_{A_{\mathbb{N}}}({\sf M}_{3121}) = \quad \ \ \sum \quad \ \mathbf{a}_{\ell_3} \mathbf{a}_{\ell_1} \mathbf{a}_{\ell_2} \mathbf{a}_{\ell_1} = \mathbf{a}_2 \mathbf{a}_0 \mathbf{a}_1 \mathbf{a}_0 + \mathbf{a}_3 \mathbf{a}_0 \mathbf{a}_1 \mathbf{a}_0 + \mathbf{a}_3 \mathbf{a}_0 \mathbf{a}_2 \mathbf{a}_0 + \mathbf{a}_3 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 + \cdots$ $\ell_1 < \ell_2 < \ell_3 \in \mathbb{N}$

The sum $A_1 + A_2$ of the totally ordered alphabets A_1 and A_2 is the **disjoint ordinal sum** of A_1 and A_2 .

Theorem [Novelli, Thibon, 2006]

The map r_A is a polynomial realization of $WQSym$.

Samuele Giraudo 11[/41](#page-40-0) 11/41 REALIZATIONS OF NATURAL HOPF ALGEBRAS

There are many CHAs defined on linear spans of **various families** of combinatorial objects endowed with very **different products and coproducts**, admitting polynomials realizations (very incomplete list, sorry):

□ **NCSF**, the noncommutative symmetric functions CHA [**Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon**, 1995];

□ **FQSym**, the Malvenuto-Reutenauer CHA [**Malvenuto, Reutenauer**, 1995], [**Duchamp, Hivert, Thibon**, 2002];

□ **PQSym***[⋆]* , the dual parking functions CHA [**Novelli, Thibon**, 2007];

□ *CK* and **NCK**, the commutative and noncommutative Connes-Kreimer CHAs [**Connes, Kreimer**, 1998], [**Foissy**, 2002], [**Foissy, Novelli, Thibon**, 2014];

 \Box **H**_{FG}, the CHA on Feynman graphs [Foissy, 2020].

Polynomials realizations are interesting at least because

- 1. they provide a **unified encoding** of these CHAs as spaces of polynomials;
- 2. they provide families of polynomials **generalizing symmetric functions**.

Nonsymmetric operads

A nonsymmetric operad (operad) is a set

$$
\mathcal{O} = \bigsqcup_{n \in \mathbb{N}} \mathcal{O}(n)
$$

endowed with

 \Box a unit $\mathbb{1} \in \mathcal{O}(1)$;

 \Box a composition map $-[-, \ldots, -]$: $\mathcal{O}(n) \times (\mathcal{O}(m_1) \times \cdots \times \mathcal{O}(m_n)) \rightarrow \mathcal{O}(m_1 + \cdots + m_n)$

such that

$$
\mathbb{1}[x] = x = x[\mathbb{1}, \dots, \mathbb{1}]
$$

and

 $x[y_1,\ldots,y_n][z_{1,1},\ldots,z_{1,m_1},\ldots,z_{n,1},\ldots,z_{n,m_n}]=x[y_1[z_{1,1},\ldots,z_{1,m_1}],\ldots,y_n[z_{n,1},\ldots,z_{n,m_n}]].$

The arity $ar(x)$ of $x \in \mathcal{O}$ is the unique integer *n* such that $x \in \mathcal{O}(n)$.

Let $\mathcal O$ be an operad.

An element $x \in \mathcal{O}(n)$ is finitely factorizable if the set of pairs $(y,(z_1,\ldots,z_n))$ satisfying

$$
x=y[z_1,\ldots,z_n]
$$

is finite.

When all elements of $\mathcal O$ are finitely factorizable, by extension, $\mathcal O$ is finitely factorizable.

```
A map dg: \mathcal{O} \to \mathbb{N} is a grading of \mathcal{O} if
     \Box dg<sup>-1</sup>(0) = {1};
     \Box for any y \in \mathcal{O}(n) and z_1, \ldots, z_n \in \mathcal{O},
```

```
dg(y[z_1, \ldots, z_n]) = dg(y) + dg(z_1) + \cdots + dg(z_n).
```
When such a map exists, $\mathcal O$ is graded.

The nonsymmetric associative operad As is the operad such that

```
\Box As := {\alpha_n : n \in \mathbb{N}} with ar(\alpha_n) := n + 1;
```
 \Box the unit is α_0 ;

 \Box the composition map satisfies

 $a_n[\alpha_{m_1}, \ldots, \alpha_{m_n}] = \alpha_{n+m_1+\cdots+m_n}.$

Example — A composition in As

 $\alpha_4[\alpha_1, \alpha_0, \alpha_2, \alpha_1, \alpha_0] = \alpha_{4+1+0+2+1+0} = \alpha_8$

The map dg defined by $dg(\alpha_n) := n$ is a grading of As.

The operad As is finitely factorizable.

Natural Hopf algebras of operads

Let O be an operad.

The reduced $\text{rd}(v)$ of $v \in \mathcal{O}^*$ is the word obtained by removing the letters 1 in v .

Example — The reduced word of a word of As[∗] $\text{rd}(\alpha_1 \alpha_1 \alpha_0 \alpha_3 \alpha_0 \alpha_0) = \alpha_1 \alpha_1 \alpha_3$

The natural space $\mathbf{N}(\mathcal{O})$ of $\mathcal O$ is the linear span of the set of reduced elements of $\mathcal O^*$.

The set $\{E_v : v \in \text{rd}(\mathcal{O}^*)\}$ is the elementary basis of $\mathbf{N}(\mathcal{O})$.

If $\mathcal O$ admits a grading dg, then $\mathbf N(\mathcal O)$ becomes a **graded space** by setting

 $dg(E_{v_1...v_{\ell}}) := dg(v_1) + \cdots + dg(v_{\ell}).$

Note that $dg(E_{\epsilon}) = 0$.

Let \star be the **product** on $N(\mathcal{O})$ defined by

$$
\mathsf{E}_v\star\mathsf{E}_{v'}:=\mathsf{E}_{vv'}.
$$

Let Δ be the **coproduct** on **N**(\mathcal{O}) defined by

$$
\Delta(\mathsf{E}_x) = \sum_{n \geqslant 0} \sum_{\substack{(y,v) \in \mathcal{O}(n) \times \mathcal{O}^n \\ x = y[v_1, \dots, v_n]}} \mathsf{E}_{\mathrm{rd}(y)} \otimes \mathsf{E}_{\mathrm{rd}(v)}.
$$

Theorem [van der Laan, 2004] [Méndez, Liendo, 2014]

For any finitely factorizable operad \mathcal{O} , $N(\mathcal{O})$ is a bialgebra.

Moreover, if $\mathcal O$ is graded, then $\mathbf N(\mathcal O)$ is a Hopf algebra.

Under these two conditions on \mathcal{O} , $N(\mathcal{O})$ is the natural Hopf algebra of \mathcal{O} .

Samuele Giraudo 19[/41](#page-40-0) 19/41 REALIZATIONS OF NATURAL HOPF ALGEBRAS

Let us apply this construction on As endowed with the grading dg satisfying $dg(\alpha_n) = n$. For any $n \ge 1$, $\dim N(As)(n) = 2^{n-1}$.

> **Example — A product in N**(As) $E_{\alpha_2 \alpha_1 \alpha_2 \alpha_4} \star E_{\alpha_3 \alpha_1} = E_{\alpha_3 \alpha_1 \alpha_2 \alpha_3 \alpha_4}$

Example — A coproduct in N(As)

 $\Delta(\mathsf{E}_{\alpha_3}) = \mathsf{E}_{\epsilon} \otimes \mathsf{E}_{\alpha_3} + 2\mathsf{E}_{\alpha_1} \otimes \mathsf{E}_{\alpha_2} + \mathsf{E}_{\alpha_1} \otimes \mathsf{E}_{\alpha_1 \alpha_1} + 3\mathsf{E}_{\alpha_2} \otimes \mathsf{E}_{\alpha_1} + \mathsf{E}_{\alpha_3} \otimes \mathsf{E}_{\epsilon}.$

Contributions to the coefficient 2 of $\mathsf{E}_{\alpha_1}\otimes \mathsf{E}_{\alpha_2}$:

 $\alpha_3 = \alpha_1[\alpha_0, \alpha_2], \quad \alpha_3 = \alpha_1[\alpha_2, \alpha_0].$

Contributions to the coefficient 3 of $\mathsf{E}_{\alpha_2} \otimes \mathsf{E}_{\alpha_2}$:

 $\alpha_3 = \alpha_2[\alpha_0, \alpha_0, \alpha_1], \quad \alpha_3 = \alpha_2[\alpha_0, \alpha_1, \alpha_0], \quad \alpha_3 = \alpha_2[\alpha_1, \alpha_0, \alpha_0].$

N(As) is the **noncommutative Faà di Bruno Hopf algebra FdB** [**Figueroa, Gracia-Bondía**, 2005] [**Foissy**, 2008].

Terms and forests

A signature is a set ${\mathcal S}$ decomposing as ${\mathcal S} = \ \bigsqcup$ $n \geqslant 0$ S(*n*).

An S-term is an **ordered rooted tree** decorated on S such that an internal node decorated by $s \in S(n)$ has exactly *n* children.

Let $\mathfrak{T}(\mathcal{S})$ be the set of S-terms.

For any $\mathfrak{t} \in \mathfrak{T}(\mathcal{S})$,

 \Box the degree $\mathrm{dg}(t)$ of t is the number of internal nodes of t;

the arity $ar(t)$ of t is the number of leaves of t.

Let S be a signature.

The free operad on S is the set $\mathfrak{T}(S)$ such that

- \Box $\mathfrak{T}(\mathcal{S})(n)$ is the set of S-terms of arity *n*;
- the unit is the S-term containing exactly one leaf $\sqrt{ }$;
- the composition map is such that $t[t_1, \ldots, t_n]$ is the S-term obtained by grafting simultaneously each t_i on the *i*-th leaf of t.

The map dg is a grading of $\mathfrak{T}(\mathcal{S})$ and this operad is finitely factorizable.

Let S be a signature.

An S-forest is a word on $\mathfrak{T}(\mathcal{S})$. Let $\mathfrak{F}(\mathcal{S})$ be the set of S-forests.

The internal nodes of an S-forest f are identified by their positions during the **preorder traversal**.

Let $\frac{f}{\to_j}$ be the binary relation on the set of internal nodes of f such that $i_1\stackrel{f}{\to_j}i_2$ if i_1 is the j -th child of i_2 in f .

Natural Hopf algebras of free operads

Let S be a signature.

The bases of $\mathbf{N}(\mathfrak{T}(\mathcal{S}))$ are indexed by the set of **reduced** S-forests.

Example — A product in $N(\mathfrak{T}(\mathcal{S}))$

$$
E_{\begin{matrix}\n\phi & \phi \\
\phi & \phi \\
\phi & \phi\n\end{matrix}} \star E_{\begin{matrix}\n\phi \\
\phi \\
\phi \\
\phi\n\end{matrix}} = E_{\begin{matrix}\n\phi & \phi \\
\phi & \phi \\
\phi & \phi\n\end{matrix}} \star \phi
$$

Polynomial realization

Let S be a signature.

The class of $\cal S$ -forest-like alphabets is the class of alphabets A endowed with relations $\rm R,~D_s$, and \prec_j such that

- 1. R is a unary relation called root relation;
- 2. for any $s \in \mathcal{S}$, D_s is a unary relation called s-decoration relation;
- 3. for any $j \geq 1$, \prec_j is a binary relation called *j*-edge relation.

Let S be a signature, A be an S-forest-like alphabet, and f be a reduced S-forest.

A word $u \in A^*$ is f-compatible, denoted by $u \Vdash^A \mathfrak{f}$, if

1. $\ell(u) = dg(f)$;

- 2. if *i* is a root of f, then $u_i \in \mathbb{R}$;
- 3. if *i* is decorated by $\mathbf{s} \in \mathcal{S}$ in \mathfrak{f} , then $u_i \in D_{\mathbf{s}}$;
- 4. if $i \stackrel{\mathfrak{f}}{\rightarrow}{}_{j}i^{\prime}$, then $u_{i} \prec_{j} u_{i^{\prime}}$.

Let S be a signature and A be an S -forest-like alphabet.

Let $r_A : \mathbf{N}(\mathfrak{T}(\mathcal{S})) \to \mathbb{K}\langle A \rangle$ be the linear map defined for any $f \in \mathrm{rd}(\mathfrak{F}(\mathcal{S}))$ by

$$
\mathsf{r}_A(\mathsf{E}_{\mathfrak{f}}) := \sum_{\substack{u \in A^* \\ u \Vdash^A \mathfrak{f}}} u.
$$

This polynomial is the *A*-realization of f.

Lemma

For any signature S and any S-forest-like alphabet A, r_A is a graded unital associative algebra morphism.

Let S be a signature, and A_1 and A_2 be to S-forest-like alphabets.

The sum $A_1 + A_2$ of A_1 and A_2 is the S-forest-like alphabet

 $A := A_1 ∪ A_2$

endowed with the relations $\mathrm R_\cdot$ $\mathrm D_{\mathsf s}$, and \prec_j such that 1. $R := R^{(1)} \sqcup R^{(2)}$;

2. $D_s := D_s^{(1)} \sqcup D_s^{(2)}$;

3. $a \prec_j a'$ holds if one of the three following conditions hold:

 \Box $a \in A_1$, $a' \in A_1$, and $a \prec_j^{(1)} a';$ \Box $a \in A_2$, $a' \in A_2$, and $a \prec_j^{(2)} a'$; \Box $a \in A_1$, $a' \in A_2$, and $a' \in \mathbb{R}^{(2)}$.

Lemma

For any signature S, any S-forest-like alphabets A_1 and A_2 , and any S-forest f,

 ${\sf r}_{A_1\!+\!A_2}({\sf E}_{\frak f})=({\sf r}_{A_1}\otimes{\sf r}_{A_2})\circ\Delta({\sf E}_{\frak f}).$

The S-forest-like alphabet of positions is the S-forest-like alphabet

 $\mathbb{A}_{\text{p}}(\mathcal{S}):=\{\mathbf{a}^{\mathsf{s}}_v:\mathsf{s}\in\mathcal{S}\text{ and }v\in\mathbb{N}^*\}$

such that

- 1. the root relation is defined by $\mathrm{R} := \left\{ \mathbf{a}_0^{\mathrm{s}} \right\}$ $\frac{\mathsf{s}}{0^\ell} \in \mathbb{A}_{\mathrm{p}}(\mathcal{S}):\ell \geqslant 0\Big\};$
- 2. the s-decoration relation D_s is defined by $D_\mathsf{s} := \left\{ \mathbf{a}^{\mathsf{s}'}_v \in \mathbb{A}_\mathrm{p}(\mathcal{S}) : \mathsf{s}' = \mathsf{s} \right\};$
- 3. the *j*-edge relation \prec_j is defined by $\mathbf{a}_v^{\mathsf{s}} \prec_j \mathbf{a}_v^{\mathsf{s}'}$ $v^{\mathsf{s}'}$ where $\ell \geqslant 0$.

Example — An alphabet $\mathbb{A}_p(\mathcal{S})$

Let the signature $S := S(1) \sqcup S(3)$ such that $S(1) = \{a, b\}$ and $S(3) = \{c\}$. For instance,

$$
\Box\ \mathbf{a}_{000}^{a}\in R,\quad \mathbf{a}_{10021}^{b}\notin R;\\[2mm] \Box\ \mathbf{a}_{1706001}^{c}\in D_{c},\quad \mathbf{a}_{0211}^{b}\notin D_{c};\\[2mm] \Box\ \mathbf{a}_{103}^{a}\prec_{1} \mathbf{a}_{103100}^{b},\quad \mathbf{a}_{1}^{c}\prec_{2} \mathbf{a}_{12}^{a}.
$$

Example — $\mathbb{A}_{p}(\mathcal{S})$ -realizations of some reduced forests

$$
r_{\mathbb{A}_{\mathrm{p}}(\mathcal{S})}E_{\underset{\mathcal{S}\backslash\{0\}}{\varphi}}\ =\ \underset{\ell_1\in\mathbb{N}}{\sum}a_{0^{\ell_1}}^b
$$

$$
r_{\mathbb{A}_p(\mathcal{S})}E \underset{\mathcal{S}}{\underset{\mathbf{b}}{\mathfrak{b}}} \underset{\mathbf{b}}{\underset{\mathbf{b}}{\mathfrak{b}}} \underset{\mathbf{b}}{\underset{\mathbf{b}}{\mathfrak{b}}} = \underset{\ell_1,\ell_2 \in \mathbb{N}}{\sum} a_{0^{\ell_1}}^b \; a_{0^{\ell_2}}^a
$$

$$
r_{\mathbb{A}_p(\mathcal{S})}E \underset{\underset{\theta}{\uparrow} }{\uparrow} \qquad \qquad = \quad \underset{\ell_1,\ell_2 \in \mathbb{N}}{\sum} \mathbf{a}_{0^{\ell_1}}^b \mathbf{a}_{0^{\ell_1}10^{\ell_2}}^a
$$

$$
r_{\mathbb{A}_p({\cal S})}E \underset{\tiny{\begin{array}{c} \beta \downarrow \\ \beta_1 \downarrow \\ \beta_2 \end{array}}} {\beta} \underset{\tiny{\begin{array}{c} \beta \downarrow \\ \beta_2 \end{array}}} {\beta} \in \sum_{\ell_1,\ldots,\ell_6 \in \mathbb{N}} a_{0^{\ell_1}}^c \; a_{0^{\ell_1}10^{\ell_2}}^b \; a_{0^{\ell_1}30^{\ell_3}}^a \; a_{0^{\ell_1}30^{\ell_3}10^{\ell_4}}^c \; a_{0^{\ell_5}}^b \; a_{0^{\ell_5}1^{\ell_6}}^a
$$

Samuele Giraudo 34[/41](#page-40-0) Samuele Giraudo 84/41 REALIZATIONS OF NATURAL HOPF ALGEBRAS

Let f be an S -forest.

The decoration $dec_i(f)$ of a node *i* of f is the element of S decorating it.

The address $adr_i(f)$ of a node *i* of f is the word specifying the positions of the edges to reach *i* from the root.

If f has *n* internal nodes, let the monomial

$$
\mathrm{m}(\mathfrak{f}):=\mathbf{a}_{\mathrm{adr}_1(\mathfrak{f})}^{\mathrm{dec}_1(\mathfrak{f})}\ldots \mathbf{a}_{\mathrm{adr}_n(\mathfrak{f})}^{\mathrm{dec}_n(\mathfrak{f})}.
$$

The weight $\mathrm{wt}(u)$ of a monomial $u = \mathbf{a}_{v_1}^{\mathsf{s}_1} \dots \mathbf{a}_{v_n}^{\mathsf{s}_n}$ is $\ell(v_1) + \dots + \ell(v_n)$.

Lemma

For any signature S and any reduced S-forest f,

$$
r_{\mathbb{A}_p(\mathcal{S})}(E_f) = m(f) + \sum_{\substack{u \in \mathbb{A}_p(\mathcal{S})^* \\ u \parallel F^{\mathbb{A}_p(\mathcal{S})} f \\ \text{wt}(u) > \text{wt}(m(f))}} u.
$$

Lemma

For any signature S, the map $r_{\mathbb{A}_p(S)} : \mathbf{N}(\mathfrak{T}(S)) \to \mathbb{K}(\mathbb{A}_p(S))$ is injective.

Theorem [G., 2024+]

For any signature S, the map r_A is a polynomial realization of $\mathbf{N}(\mathfrak{T}(\mathcal{S}))$.

Case of non-free operads

A congruence \equiv of the free operad $\mathfrak{T}(\mathcal{S})$

□ is compatible with the degree if $t_1 \equiv t_2$ implies $dg(t_1) = dg(t_2)$;

 $□$ is of finite type if the \equiv -equivalence class $[t]$ = of any S-term t is finite.

Theorem [G., 2024+] Let S be a signature and \equiv be a congruence of $\mathfrak{T}(S)$ which is compatible with the degree and of finite type. The associative algebra morphism $\phi: \mathbf{N}(\mathfrak{T}(\mathcal{S})/_{=}) \to \mathbf{N}(\mathfrak{T}(\mathcal{S}))$ satisfying $\phi(E_{[t]_{\equiv}}) = \sum E_t$ t∈[t][≡]

for any $[t]$ _{$\equiv \in \mathfrak{T}(\mathcal{S})/_{\equiv}$ is an injective Hopf algebra morphism.}

We have As \simeq Mag/_{\equiv} where Mag := $\mathfrak{T}(\mathcal{S})/_{\equiv}$, $\mathcal{S} := \mathcal{S}(2) = \{a\}$, and \equiv satisfies $\mathfrak{t}_1 \equiv \mathfrak{t}_2$ whenever $\text{dg}(\mathfrak{t}_1) = \text{dg}(\mathfrak{t}_2)$.

Each \equiv -equivalence class $[t]_{\equiv}$ is represented by the element $\alpha_{dg(t)}$ of As.

The map

 ϕ : $N(Mag/\equiv) \simeq$ **FdB** \rightarrow $N(Mag)$

satisfies

$$
\phi(\mathsf{E}_{\alpha_n}) = \sum_{\substack{\mathfrak{t} \in \mathfrak{T}(\mathcal{S}) \\ \deg(\mathfrak{t}) = n}} \mathsf{E}_{\mathfrak{t}}.
$$

By setting $\bar{r}_A := r_A \circ \phi$, we obtain a **polynomial realization of FdB**.

Example — The $\mathbb{A}_p(\mathcal{S})$ -polynomial of an element of FdB $\bar{\mathsf{r}}_{\mathbb{A}_\mathrm{p}(\mathcal{S})} \mathsf{E}_{\alpha_3} = \quad \sum_{}^{} \quad \mathbf{a}_{0^{\ell_1}}^{\mathsf{a}}\, \mathbf{a}_{0^{\ell_1} 10^{\ell_2}}^{\mathsf{a}}\, \mathbf{a}_{0^{\ell_1} 10^{\ell_2} 10^{\ell_3}}^{\mathsf{a}} + \quad \sum_{}^{} \quad \mathbf{a}_{0^{\ell_1}}^{\mathsf{a}}\, \mathbf{a}_{0^{\ell_1} 10^{\ell_2}}^{\mathsf{a}}\, \mathbf{a}_{0^{\ell_1} 10$ *ℓ*1*,ℓ*2*,ℓ*3∈N *ℓ*1*,ℓ*2*,ℓ*3∈N $+\sum_{\mathbf{a}_0,\mathbf{a}_1} \mathbf{a}_0^{\mathbf{a}_1} \mathbf{a}_{0^{\ell_1}10^{\ell_2}} \mathbf{a}_0^{\mathbf{a}_1} \mathbf{a}_{120^{\ell_3}}^{\mathbf{a}_2} + \sum_{\mathbf{a}_0,\mathbf{a}_1} \mathbf{a}_0^{\mathbf{a}_1} \mathbf{a}_{120^{\ell_2}}^{\mathbf{a}_1} \mathbf{a}_{0^{\ell_1}120^{\ell_2}10^{\ell_3}}^{\mathbf{a}_2}$ *ℓ*1*,ℓ*2*,ℓ*3∈N *ℓ*1*,ℓ*2*,ℓ*3∈N $+\quad \sum \quad \mathbf{a}_{0^{\ell_1}}^{\mathsf{a}} \mathbf{a}_{0^{\ell_1} 2 0^{\ell_2}}^{\mathsf{a}} \mathbf{a}_{0^{\ell_1} 2 0^{\ell_2} 2 0^{\ell_3}}^{\mathsf{a}}$ ℓ_1 , ℓ_2 , $\ell_3 \in \mathbb{N}$ Using the specialization $\pi : \mathbf{a}_v^{\mathsf{a}} \mapsto \mathbf{a}_{\ell(v)},$ we obtain $\pi \bar{\mathsf{r}}_{\mathbb{A}_\mathrm{p}(\mathcal{S})}\mathsf{E}_{\alpha_3} = 4 \quad \sum \quad \mathbf{a}_{\ell_1} \mathbf{a}_{\ell_2} \mathbf{a}_{\ell_3} + \quad \sum \quad \mathbf{a}_{\ell_1} \mathbf{a}_{\ell_2} \mathbf{a}_{\ell_3}.$ $\ell_1 \hspace{-0.05cm}<\hspace{-0.05cm} \ell_2 \hspace{-0.05cm}<\hspace{-0.05cm} \ell_3 \hspace{-0.05cm} \in \hspace{-0.05cm} \mathbb{N}$ $\ell_1 < \ell_2, \quad \ell_1 < \ell_3$ This map $\pi \circ \bar{\mathsf{r}}_{\mathbb{A}_\mathrm{p}(\mathcal{S})}$ is still injective and is hence another polynomial realization of $\mathrm{FdB}.$

By using similar methods, it is possible to build a **polynomial realization of the double tensor CHA**, constructed in [**Ebrahimi-Fard, Patras**, 2015].

Samuele Giraudo 40[/41](#page-40-0) REALIZATIONS OF NATURAL HOPF ALGEBRAS

Preprint Polynomial realizations of Hopf algebras built from nonsymmetric operads available at

 $r_{A_{URL}}E$ = <https://arxiv.org/abs/2406.12559>

Grazie **m**ille!

