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Schur–Weyl duality

Let V be a vector space of finite dimension d over C.
In the classical theory of Schur–Weyl a major role is played by the
action of the symmetric group Sn on n elements on the nth tensor
power V⊗n by exchanging the tensor factors.
The algebra of operators on V⊗n, generated by these permutations
will be denoted by Σn(d) and called a d–swap algebra.
It is the algebra formed by the elements which commute with the
diagonal action of GL(V ).
The name comes from the use, in the physics literature, to call
swap the exchange operator (1, 2) : u ⊗ v 7→ v ⊗ u on V⊗2.



In the literature on quantum information theory the states lying in
Σn(d) are called Werner states and widely used as source of
examples, due to fundamental work of the physicist R. F. Werner.

1. A classical theorem states that the corresponding algebra
homomorphism C[Sn]→ Σn(d) ⊂ End(V⊗n) is injective if
and only if dimV ≥ n.

2. When d = dimV < n the kernel of this map is the two sided
ideal of C[Sn] generated by the antisymmetrizer

Ad+1 :=
∑

σ∈Sd+1

εσσ, εσ the sign of the permutation.



The algebra C[Sn] decomposes as direct sum of matrix algebras
indexed by partitions, corresponding to the irreducible
representations of Sn. As for Σn(d) only the blocks relative to
partitions of height ≤ d survive.

The problem
In the case d = dimV < n an interesting problem is to describe a
basis of Σn(d) formed by permutations.

In fact in the physics literature there are several examples of
Hamiltonians lying in Σn(d). Thus it may be convenient to express
such Hamiltonian in a given special basis,



This may be done as follows.

Definition
Let 0 < d be an integer and let σ ∈ Sn.
Then σ is called d–bad if σ has a descending subsequence of
length d , namely, if there exists a sequence
1 ≤ i1 < i2 < · · · < id ≤ n such that σ(i1) > σ(i2) > · · · > σ(id ).
Otherwise σ is called d–good.

Remark
σ is d–good if any descending sub–sequence of σ is of length
≤ d − 1. If σ is d-good then σ is d ′-good for any d ′ ≥ d.
Every permutation is 1-bad.

Theorem
If dim(V ) = d the d + 1–good permutations form a basis of
Σk(V ).



Step 1 The d + 1 good permutations span.
Let us first prove that the d + 1–good permutations span Σk(d).
So let σ be d + 1–bad so that there exist
1 ≤ i1 < i2 < · · · < id+1 ≤ n such that
σ(i1) > σ(i2) > · · · > σ(id + 1).
If A is the antisymmetrizer on the d + 1 elements
σ(i1), σ(i2), · · · , σ(id + 1) we have that Aσ = 0 in Σk(V ), that is,
in Σk(V ), σ is a linear combination of permutations obtained from
the permutation σ with some proper rearrangement of the indices
σ(i1), σ(i2), · · · , σ(id + 1).

These permutations are all lexicographically < σ.

One applies the same algorithm to any of these permutations
which is still d + 1–bad. This gives an explicit algorithm which
stops when σ is expressed as a linear combination of d + 1–good
permutations



Step 2 The Robinson, Schensted correspondence

In order to prove that the d + 1–good permutations form a basis,
it is enough to show that their number equals the dimension of
Σk(d).
This is insured by the RSK correspondence Robinson, Schensted,
Knuth, a combinatorially defined bijection σ ←→ (Pλ,Qλ) between
permutations σ ∈ Sn and pairs Pλ,Qλ of standard tableaux of
same shape λ, where λ ` n.



The d + 1 good permutations are linearly independent.
By a classical theorem of Schensted, if σ ←→ (Pλ,Qλ) we have
that ht(λ) equals the length of a longest decreasing subsequence
in the permutation σ. Hence σ is d + 1-good if and only if
ht(λ) ≤ d .
Now the irreducible Mλ has a basis indexed by standard tableaux
of shape λ.
Thus the algebra Σk(V ) has a basis indexed by pairs of standard
tableaux (the matrix units) of shape λ with ht(λ) ≤ d and the
claim follows

Remark
This is just a counting argument not an explicit 1–1
correspondence between the two bases.



Dimension 2

Q–bits

Dimension of V is 2



Dimension 2

If dimV = 2 there is a different possible choice which has also
some specific merits

We call Σn(2) the n–swap algebra and denote it simply Σn.

It is known that dim Σn = Cn the nth Catalan number.
The list of the first 10 Catalan numbers is

1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796

Notice that we can consider these algebras as each included in the
next

Σ2(2) ⊂ Σ3(2) ⊂ · · · ⊂ Σn(2) ⊂ · · ·



Symmetric elements
The standard Hibert structure on V = C2 induces a Hilbert space
structure on V⊗n and the adjoint of a permutation σ is its inverse
σ−1, moreover one has a real (and also rational) structure and the
permutations are real.

Real symmetric elements play a special role
A symmetric permutation is one equal to its inverse, usually called
involution.
Main Theorem
We will see that the space of symmetric elements of Σn(2) is
linearly spanned by involutions.



Definition
The set S of special permutations is formed by the involutions and
also by the permutations with cycles only of order 2,1 plus a single
cycle of order 3.

The 3 cycle can be further normalised to be increasing.



A choice of special elements

Let us start with the basic antisymmetrizer which vanishes in
Σ3(2).

The basic identity A = 0 in Σ3(2).

1.
A = (1, 2, 3) + (1, 3, 2)− (1, 2)− (1, 3)− (2, 3) + 1

2.
(1, 2, 3) + (1, 3, 2) = (1, 2) + (1, 3) + (2, 3)− 1. (1)

3.
(1, 3, 2) = −(1, 2, 3) + (1, 2) + (1, 3) + (2, 3)− 1

4. In S3 all permutations are special, and a 3–cycle can be
normalised



In Σ3(2) this is the only relation but when we pass to
Σn(2), n > 3 we have the various relations

σAτ, σ, τ ∈ Sn

which linearly span the ideal of relations.



Our main Theorem is the following

Theorem

1. For each n the algebra Σn(2) has a basis formed by special
elements.

2. Σ+
n (2) has a basis over C formed by involutions.

3. The space of real and symmetric elements has a basis over R
formed by involutions.



Notice that items (2) and (3) are equivalent and follow from (1).
In fact the involutions are symmetric.
Take a permutation of the form g = ab with a a 3 cycle and b is a
product of 2 or 1 cycles so b = b−1 an involution.
Its symmetrization is g + g−1 = (a + a−1)b. .
Since a is a 3 cycle, by relation (1) in the algebra Σ3 we have that
a + a−1 is the sum of -1 and 3 transpositions. The claim follows.



Some numbers

The dimensions of the real symmetric elements are, n = 1, · · · , 10

1, 2, 4, 10, 26, 76, 232, 750, 2494, 8524, · · ·

(see The On-Line Encyclopedia of Integer Sequences A007123 for
many interesting informations on this sequence).

The number I(n) of involutions in Sn n = 1, · · · , 10

I(n) = 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, · · ·

which is also equal (by the RSK correspondence) to the number of
standard Young tableaux with n cells (O.E.I.S A000085).
So a curious fact is that these two sequences coincide up to n = 7.
We have thus that the involutions are a basis of the real symmetric
elements for n ≤ 7 and after that they have linear relations.



A combinatorial problem

For n ≥ 8 give some combinatorial restrictions on involutions so
that the ones satisfying these restrictions form a basis of Σ+

n (2).

We will prove the theorem by presenting an algorithm which given
as input any permutation, writes it as a linear combination of
special elements in Σn.



The algorithm

We start by writing in Σ4(2) a 4–cycle as sum of special elements,
this is a simple computation using some relations deduced from A,
which gives:

2(1, 2, 3, 4) = (2)

(1, 4)(2, 3) + (1, 2)(3, 4)− (1, 3)(2, 4) + (1, 2, 4) + (1, 3, 4) + (2, 3, 4)

+(1, 2, 3)− (1, 2)− (1, 4)− (3, 4)− (2, 3) + 1.

Since all 4 cycles are conjugate we deduce that statement (1) is
true for Σ4(2).



The algorithm

Now notice the following general fact: consider two cycles
(a,A), (a,B) of lengths h, k respectively where A and B are
strings of integers of lengths h − 1, k − 1 respectively and disjoint.
Then their product is the cycle of length h + k − 1:

(a,B)(a,A) = (a,A,B),

e.g . a = 1, (1, 2, 3)(1, 5, 4, 6) = (1, 5, 4, 6, 2, 3). (3)



The algorithm

Thus take a cycle of length p > 4 and, up to conjugacy we may
take

cp := (1, 2, 3, 4, 5, . . . , p) = (1, 5, . . . , p)(1, 2, 3, 4). (4)

In Σp we have thus that 2cp equals (1, 5, . . . , p) times the
expression of Formula (2).
But then applying again Formula (3) we see that the resulting
formula is a sum of permutations on p elements which are not full
cycles.



The algorithm

By iterating then the operation on the cycles of length ` with
4 ≤ ` ≤ p − 1 we have a preliminary.

Proposition
The cycle cp (formula (4)) is a linear combination in Σp(2) of
permutations which contain only cycles of length 1,2,3.
Hence for all n we have that Σn(2) is spanned by permutations
which contain only cycles of length 1,2,3.



Example p = 5.

4(1, 2, 3, 4, 5)
(4)
= 4(1, 5)(1, 2, 3, 4) = (5)

(1, 2)(3, 5)+(1, 2)(4, 5)−(1, 3)(2, 5)+(1, 3)(4, 5)−(1, 4)(2, 5)−(1, 4)(3, 5)+(1, 5)(2, 4)

−(1, 5)(3, 4)−(2, 3)(1, 5)+(2, 4, 5)+(1, 2, 4)+(1, 3, 5)+(3, 4, 5)+(1, 3, 4)+(1, 3, 5)+(2, 3, 5)

+(1, 2, 3)− (2, 3)− 2(4, 5)− (3, 4)− 2(1, 2)− (2, 4)− (1, 3)− (3, 5)− (1, 5) + 3

+2(1, 4, 5)(2, 3) + 2(1, 2, 5)(3, 4)− 2(1, 3, 5)(4, 2) + 2(2, 3, 4)(1, 5)



Example
2(1, 2, 3, 4, 5, 6) (4)= 2(1, 5, 6)(1, 2, 3, 4) = (6)

(1, 4, 5, 6)(2, 3) + (1, 2, 5, 6)(3, 4)− (1, 3, 5, 6)(4, 2)− (1, 4, 2, 5, 6)

+(1, 3, 4, 5, 6) + (3, 4, 2)(1, 5, 6) + (1, 2, 3, 5, 6)

+(2, 4)(1, 5, 6)− (3, 4)(1, 5, 6)− (2, 3)(1, 5, 6).

developing the 4 and the 5 cycles we have a sum of special
elements plus the element (3, 4, 2)(1, 5, 6) which is NOT special.



Writing the element (3, 4, 2)(1, 5, 6)

computer aided

and a bit of luck



Theorem 6 using Proposition 7

It is enough to prove that

In Σ6(2), a permutation of type 3, 3 can be developed as linear
combination of special elements

since then we apply recursively this to a product of k disjoint
3-cycles. If k is even we replace them all and if odd we remain
with only one 3-cycle which can be normalized if necessary using
Formula (1).

The computation in Σ6(2) in principle is similar to that in Σ4(2)
but now we have to handle a priori many more relations and I had
to be assisted by the software "Mathematica" in order to discover
the needed relations.



What I have done is to ask the computer to analyse thousands of
relation in Σ6(2) deduced from the antisymmetrizer A = 0.
After some messy and confusing results I got the following two
relations, A6 is just A but thought of as in Σ6(2) .

(5, 6, 1)(3, 4)A6 =
(1, 2, 4, 3, 5, 6)+(1, 4, 3, 2, 5, 6)− (2, 5, 6, 1)(3, 4)− (4, 3, 5, 6, 1)− (5, 6, 1)(4, 3, 2)+(5, 6, 1)(3, 4)

(6, 1)(4, 5, 3)A6 =
(1, 2, 4, 5, 3, 6) + (1, 4, 5, 3, 2, 6)−(2, 6, 1)(4, 5, 3)− (4, 5, 3, 6, 1)− (6, 1)(4, 5, 3, 2) + (6, 1)(4, 5, 3)

Each involves two 6 cycles and one permutation of type 3, 3



In Formula (6) the contribution to the expansion of
2(1, 2, 3, 4, 5, 6) of an element of type 3, 3 is +(3, 4, 2)(1, 5, 6).

Therefore the contributions of type 3, 3 of the 4 cycles of length 6
appearing in the previous Formulas are obtained by conjugating
(3, 4, 2)(1, 5, 6) with the permutation which has as string the same
form of the cycle



Therefore the previous 2 relations multiplied by 2 are of the
form
In the next Formulas by · · · I mean sum of special elements

−(3, 4, 5)(1, 2, 6)− (2, 3, 5)(1, 4, 6) + 2(2, 3, 4)(1, 5, 6) + · · ·

(3, 4, 5)(1, 2, 6)− (2, 3, 5)(1, 4, 6)− 2(3, 4, 5)(1, 2, 6) + · · ·
(7)

Subtracting the second from the first one has the desired Formula:

0 = 2(2, 3, 4)(1, 5, 6) + · · ·

a relation with a single permutation 2(2, 3, 4)(1, 5, 6) of type (3, 3)
and the remaining elements special.
This gives the desired expression



8(4, 3, 2)(5, 6, 1) = (8)

(1, 2)− 2(1, 3) + (1, 5) + 4(1, 6)− 3(2, 3) + 2(1, 5)(2, 3)− 2(1, 6)(2, 3)− 3(2, 4) +
2(1, 5)(2, 4)− 2(1, 6)(2, 4) + 7(2, 5)− 2(1, 3)(2, 5)− 4(1, 4)(2, 5)− 6(1, 6)(2, 5)−
2(2, 6)−2(1, 3)(2, 6)+4(1, 4)(2, 6)+2(1, 5)(2, 6)+(3, 4)−2(1, 5)(3, 4)−2(1, 6)(3, 4)−
4(2, 5)(3, 4)− 4(3, 5) + 4(1, 4)(3, 5) + 4(2, 4)(3, 5) + 4(2, 6)(3, 5)− 4(1, 4)(2, 6)(3, 5)−
4(3, 6) + 4(1, 2)(3, 6)− 4(1, 4)(3, 6)− 4(2, 5)(3, 6) + 4(1, 4)(2, 5)(3, 6)− 2(4, 5) +
2(1, 2)(4, 5) + 2(1, 3)(4, 5) + 4(2, 3)(4, 5) + 4(1, 3)(2, 6)(4, 5) + 4(3, 6)(4, 5)−
4(1, 2)(3, 6)(4, 5)−2(1, 2)(4, 6)+2(1, 3)(4, 6)−4(1, 3)(2, 5)(4, 6)+4(1, 2)(3, 5)(4, 6)+
6(5, 6)− 4(1, 2)(5, 6)− 4(4, 5)(1, 2, 3) + 4(5, 6)(1, 2, 3) + (1, 2, 5)− 4(3, 6)(1, 2, 5)−
2(1, 2, 6) + 4(4, 5)(1, 2, 6) + 2(1, 3, 6) + 4(2, 5)(1, 3, 6)− 4(4, 5)(1, 3, 6)−
4(3, 5)(1, 4, 2) + 4(5, 6)(1, 4, 2) + 4(2, 5)(1, 4, 3)− 4(5, 6)(1, 4, 3)− 4(2, 6)(1, 4, 5) +
4(3, 6)(1, 4, 5)− (1, 5, 2)−4(1, 5, 6)+8(3, 4)(1, 5, 6)+2(1, 6, 3)−2(1, 6, 5)+(2, 3, 5)+
2(2, 3, 6)− 4(4, 5)(2, 3, 6) + 4(1, 6)(2, 4, 3)− (2, 4, 5) + 4(1, 6)(2, 4, 5)− (2, 5, 3) +
4(1, 6)(2, 5, 3) + (2, 5, 4)− 2(2, 5, 6) + 2(1, 4)(2, 5, 6) + 2(2, 6, 4)− 4(3, 5)(2, 6, 4)−
2(1, 4)(2, 6, 5) + (3, 4, 5)− 4(1, 6)(3, 4, 5) + 2(3, 4, 6)− (3, 5, 4) + 2(1, 2)(3, 5, 6)−
2(1, 4)(3, 5, 6) + 4(2, 5)(3, 6, 4)−2(1, 2)(3, 6, 5) + 2(1, 4)(3, 6, 5)−2(4, 5, 6)−2(4, 6, 5)



General dimension

A classical problem

non commutative algebra
invariant theory



One may ask the same question for Σn(d) and d ≥ 3. The first
problem is:
Determine the minimum m = m(d) so that Σm+1(d) is spanned by
the permutations which are NOT m + 1–cycles.

This number m has also other interesting interpretations
see
E. Aljadeff, A. Giambruno, C. Procesi, A. Regev.
Rings with polynomial identities and finite dimensional
representations of algebras,
A.M.S. Colloquium Publications, vol. 66.2020; 630 pp
at page 331 also for the interesting history of this question

.



The known estimates for m(d) are the lower bound m(d) ≥
(d+1

2
)

due to Kuzmin, and the upper bound m(d) ≤ d2 due to
Razmyslov. Kuzmin conjectures that m(d) =

(d+1
2
)
which has

been verified only for d ≤ 4.

Other interpretations of m(d)

1. The same m is the maximum degree of the generators of
invariants of d × d matrices.

2. It is also the minimum degree for which, given an associative
algebra R over a field of characteristic 0, in which every
element x satisfies xd = 0 one has Rm(d) = 0.



The algorithm

Final remarks



In the algorithm one thus uses the following substitutional rules.

2(a, b, c, d) = (9)

(a, d)(b, c)+(a, b)(c, d)−(a, c)(d , b)−(a, d , b)+(a, c, d)+(b, c, d)+(a, b, c)+(b, d)−(c, d)−(b, c).

and:
(a,B)(a,A) = (a,A,B), e.g . (1, 2, 3)(1, 5, 4, 6) = (1, 5, 4, 6, 2, 3) (10)

for a cycle C := (a, b, c, d ,A) of length n + 4, where A is of length n > 0, we have

C := (a, b, c, d ,A) = (a,A)(a, b, c, d) = (11)

(a, d ,A)(b, c) + (a, b,A)(c, d)− (a, c,A)(d , b)− (a, d , b,A)

+(a, c, d ,A) + (b, c, d) + (a, b, c,A) + (b, d)− (c, d)− (b, c).

This formula now contains only cycles of length < n + 4.



Summarizing the algorithm

1. Take a permutation decomposed into cycles
2. Apply the reduction Formula to all 4–cycles
3. Split cycles of length p > 4 as product of a 4–cycle and a

p − 4 + 1 cycle.
4. Apply the reduction Formula to the resulting 4–cycle.
5. Continue until all cycles are of length ≤ 3.
6. Apply the final reduction formula to 3, 3 cycles.



8(d , c, b)(e, f , a) = (12)

(a, b)− 2(a, c) + (a, e) + 4(a, f )− 3(b, c) + 2(a, e)(b, c)− 2(a, f )(b, c)− 3(b, d) +
2(a, e)(b, d)− 2(a, f )(b, d) + 7(b, e)− 2(a, c)(b, e)− 4(a, d)(b, e)− 6(a, f )(b, e)−
2(b, f )−2(a, c)(b, f )+4(a, d)(b, f )+2(a, e)(b, f )+(c, d)−2(a, e)(c, d)−2(a, f )(c, d)−
4(b, e)(c, d)−4(c, e)+4(a, d)(c, e)+4(b, d)(c, e)+4(b, f )(c, e)−4(a, d)(b, f )(c, e)−
4(c, f ) + 4(a, b)(c, f )− 4(a, d)(c, f )− 4(b, e)(c, f ) + 4(a, d)(b, e)(c, f )− 2(d , e) +
2(a, b)(d , e) + 2(a, c)(d , e) + 4(b, c)(d , e) + 4(a, c)(b, f )(d , e) + 4(c, f )(d , e)−
4(a, b)(c, f )(d , e)−2(a, b)(d , f )+2(a, c)(d , f )−4(a, c)(b, e)(d , f )+4(a, b)(c, e)(d , f )+
6(e, f )− 4(a, b)(e, f )− 4(d , e)(a, b, c) + 4(e, f )(a, b, c) + (a, b, e)− 4(c, f )(a, b, e)−
2(a, b, f ) + 4(d , e)(a, b, f ) + 2(a, c, f ) + 4(b, e)(a, c, f )− 4(d , e)(a, c, f )−
4(c, e)(a, d , b) + 4(e, f )(a, d , b) + 4(b, e)(a, d , c)− 4(e, f )(a, d , c)− 4(b, f )(a, d , e) +
4(c, f )(a, d , e)−(a, e, b)−4(a, e, f )+8(c, d)(a, e, f )+2(a, f , c)−2(a, f , e)+(b, c, e)+
2(b, c, f )− 4(d , e)(b, c, f ) + 4(a, f )(b, d , c)− (b, d , e) + 4(a, f )(b, d , e)− (b, e, c) +
4(a, f )(b, e, c) + (b, e, d)− 2(b, e, f ) + 2(a, d)(b, e, f ) + 2(b, f , d)− 4(c, e)(b, f , d)−
2(a, d)(b, f , e) + (c, d , e)− 4(a, f )(c, d , e) + 2(c, d , f )− (c, e, d) + 2(a, b)(c, e, f )−
2(a, d)(c, e, f )+4(b, e)(c, f , d)−2(a, b)(c, f , e)+2(a, d)(c, f , e)−2(d , e, f )−2(d , f , e)
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