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AN INTRODUCTION TO THE DERIVED CATEGORIES
AND THE THEOREM OF BEILINSON

VINCENZO ANCONA - GIORGIO OTTAVIANI

In this paper we give a short survey of the theory of derived
categories with the purpose to state the Beilinson theorem [B] in its
natural setting. This exposition can be intended as an introduction
to [AO].

Derived categories arise for example in the following problem:
given the category of complexes of coherent sheaves on some
projective variety X, try to identify the complexes with the same
cohomology. The natural setting for this construction is a new
category (whose objects are still the complexes of coherent sheaves
on X), where:

(i) morphisms of objects do not correspond to natural morphisms
between complexes of sheaves.

(ii) the kernel of morphisms is not well defined so that the new

category is no more abelian.

This new category is called the derived category of coherent
sheaves on X: it inherits luckily the structure of a triangulated
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category, where cones of morphisms partially supply the loss
of kernels and cokemnels. Despite the technical difficulties which
arise in its construction the derived category carries on many
informations about the structure of the sheaves on X.

Beilinson showed in 1978 [B] that when X = P" any coherent
sheaf ¥ can be constructed by a resolution, defined explicitly
from the cohomology of ¥ itself, where only the generators of
the derived category D®(X) appear. For this reason the generators
(in this case the bundles QP(p) of twisted p-forms or dually the
sheaves O (—1) for 1 =0,...,n) are called the building blocks for
the sheaves on P,

Kapranov [K] has extended this result to the quadrics @, and
to other varieties. |

In [AO] we show that when X is a projective space or a
quadric, we can detect if a generator of D*(X) is a direct summand
of a given sheaf ¥ by certain vanishing of cohomology groups.
This allows to give simple and unitary proofs of the cohomological
characterizations of the building blocks on P" and Q,,.

1. Derived categories.

We refer to [Ha] for a complete treatement of this subject.

Let A be an abelian category. A complex of objects of A
is a collection of objects (X™) wcZ ©f A, together with maps
d": X" — X™! such that d"'d® = 0 for all n ¢ Z. We are
mnterested only in bounded complexes, i.e. in complexes X such
that X" =0 for almost all n. In the sequel by the word complex
we always mean a bounded one.

A morphism f of complexes from X to Y is a collection of
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maps f" : X" — Y™ which commute with the maps of complexes:

[ dy = dy g

for all n. Two maps are said to be homotopic if there is a
collection of maps k = (k"), k® : X® — Y™ ! such that

ot =k

for all n. .

We define the homotopy category K°(A) to be the category
whose objects are complexes of objects of A, and whose morphisms
are homotopy equivalence classes of morphisms of complexes.

Let us denote by 7" the operation of shifting one place to the
left and changing the sign of the differential, i.e. 7(X )P = XP*!
and dp(x) = —dx.

Letu : X* — Y be a morphism. The mapping cone, or simply
the cone of u, denoted C(u) or C(X  — YY), is defined to be the
complex Z- =T(X')@® Y  where the differential operator is given
by the matrix

[T(dx) T(u)}

0 dy

There are natural morphisms v : Y — Z - and w: Z- — T(X").
Moreover, there is a long exact cohomology sequence:

(1.1 o> H(X) > H(Y) » H(Z) —» H*MX) — ...

By a quasi-isomorphism we mean a morphism f: X — Y-
in K®(A) which induces an isomorphism in cohomology (note that
two homotopic morphisms induce the same maps in cohomology).

We can now define the derived category DY(A) of A. The
objects in D?(A) are the same as in K®(A4), i.e. ObD*(A) = ObK*(A).
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A morphism in DYA) f : X — Y is given by definition by a
couple of morphisms in K(4),g:Z — X-andh: 2" — Y, where
7 is a third complex and g is a quasi isomorphism. A morphism
in DbA) is not, in general, a real morphism of complexes. Note
that by the previous definition it is clear that a quasi-isomorphism
is invertible in D?(A). It follows that a morphism in Db A) can
be obtained as a composition of the inverse (in D% A)) of a
quasi-isomorphism followed by a real morphism of complexes.

We will say that two complexes X and Y are equivalent
if they are isomorphic in the category DY A) and we will write
X ~ Y. If two complexes are equivalent, their cohomology groups
are isomorphic, but in general there is no quasi-isomorphism
between them.

Let f: X — Y be a morphism in DbA), that is a
quasi-isomorphism g : Z* — X and a morphism h:Z — Y the
cone C(h) is a complex whose equivalence class in D?(A) depends
only on the morphism f; it is called the cone of f, and denoted
C(f), or C(X - — Y"). There is a natural morphism in D?(4) from
Y- to C(h) and from C(h) to T'(X").

A triangle in DY(A) is a sextuple (XY, Z",u,v, w), where
XY, Z are objects of D¥A), u: X —Y,v:Y — 7 and
w: Z- — T(X-) are morphisms, such that Z- is isomorphic to the
cone C(u) and v and w identify (up to isomorphisms) with the
natural maps Y- — C(u) and C(u) — T(X). It is not hard to see
that there is for the given triangle a long exact sequence (1.1).

The objects of the category A can be considered as objects of
K®(A), or D¥A), in an obvious way: if X € Ob(A), it identifies
with the complex X such that X° = X and X" =0 for n#0. Given
an exact sequence 0 X —»Y —Z —0 in A, it is clear that Z
is equivalent in D%(A) to the cone C(X — Y).

Of course, if we start with not necessarily bounded complexes,
the same procedure gives categories K (A) and D(A), containing
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K*®(A) and respectively D?(A) as full subcategories.

2. Derived Functors.

let A and B two abelian categories. A (covariant) functor
F: K%A) — K(B) is called a d-functor if it commutes with the
shift operator 7' and it takes triangles to triangles. Any additive
functor F : A — B can be extended naturally to a g-functor from
Kb(A) to K(B), which will be denoted with the same letter. A
5-functor cannot be extended, in general, in a trivial way to Db(A),
because it may not take quasi-isomorphisms to quasi-isomorphisms.
The right derived functor of F, when it exists, is a o-functor
RF : D¥A) — D(B) close to F. We refer to [Ha] pg. 50 for
the definition of RF. Here we limit ourselves to state the next
theorem, which gives the existence and the construction of RF in
most cases. -

By a triangulated subcategory of K®(A) we mean a subcategory
S, closed with respect to the shift operator 7', such that if
f:X — Y is a morphism in S, the cone C(f) and the natural
morphisms Y- — C(f) and C(f) — T'(X") belong to S.

THEOREM 2.1. Let A and B be abelian categories and
F : K%A) — K(B) a O-functor. Suppose there is a triangulated
subcategory S of K*(A) such that:

1) Every object of K°(A) admits a quasi-isomorphism into an
object of S;

2) If I € ObS is exact (i.e. H'(I')=0 for all 1) then F(I) is
also exact.

Then F has a right derived functor RF. Moreover if X 1is
any object of D*(A), quasi-isomorphic to an object I of S, RF(X")
is equivalent to F(I') in D(B). '
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When RF exists, we put R"F(X')= H"(RF(X")).

An object X of A is said to be F-acyclic if R*F(X) =0 for
all n20. We say that F' has finite cohomological dimension if there
is a positive integer n such that R*F(X) =0 for all X € Ob(A)
and all : > n.

THEOREM 2.2. Under the assumptions of the theorem 2.1,
suppose moreover that F has finite cohomological dimension. If
X is a complex of F-acyclic objects of A (i.e. X' is F-acyclic for
all i), one has RF(X)=F(X"). = ‘n UYp)

The proof is in [Ha], pg. 58.

EXAMPLE 2.3. The derived functor of Hom.

If X- and Y- are complexes of objects of A, we define a
complex Hom (X ,Y") by

Hom"(X,Y") = [ [ Homa(X?, Y7*")
p
and

d" = [ [ + D™ &™)

Under this definition the n-cycles of the complex Hom (X, Y )
are exactly the morphisms of complexes of X  to 7"(Y"), and the
n-boundaries are those homotopic to zero, so that:

H"(Hom'(X', Y) — Homxb(A)(X’, Tn(Y))

Hom(X,Y) is contravariant in X and covariant in Y- so that we
obtain a functor

Hom : K% A)° x K% A) — K(Ab)

where K%(A)° is the category opposite to K°(A) and Ab is the
category of abelian groups.
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Suppose now that A has enough injectives (projectives), 1e.
every bounded complex of objects of A admits a quasi-isomorphism
to a bounded complex of injective (projectives) objects. (These
definition are more restrictive than the usual ones but more useful
for our purposes).

Take S to be the subcategory of K®(A) of bounded complexes
of injective objects. For a fixed X € ObK®b(A), S satisfies the
assumptions of theorem 2.1 for the functor

Hom' (X", ") : K*(A) — K(Ab)

by (Ha), Lemma 6.2 pg. 64, hence this functor has a right derived
functor, which is, in its turn, functorial in X, so that we obtain a

o-functor
RyHom' : K*(A)° x D(4) — K(Ab)

Again by the lemma quoted above, this functor is exact in the
first variable, giving a trivial right derived functor

R RyHom : D*(A)° x D*(4) — D(Ab)

On the other hand, as A has enough projectives, we see that
there is also a functor

RyRHom' : D*(A)° x D*(4) — D(Ab)

Here the main point is that when A has enough injectives and
projectives, the above functors agree, defining a single functor,
which is denoted by RHom'.

The theorem 6.4 in [Ha] can be formulated, for our purposes,
in the following way:

THEOREM 2.4. Let A be an abelian category having enough
injectives. Then for any X', Y in Db(A)

H(RHom' (X", Y") = Hompe (X, T* (Y "))
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PROPOSITION 2.5. (lemma 1.6 in [K]) Let A be an abelian
category having enough injectives and projectives. Let K L= be
bounded complexes of objects of A. Suppose that Exth(K*,L7) =0
for p>0and all i,j. Then

Home(A)(K', L) = Home(A)(K', L)

In order to prove the proposition, consider the following

LEMMA 2.6. Let f: X — Y be a morphzvm of bounded
complexes of objects of A. Assume

1) X is exact
i) Exty(X*,Y7)=0 for p> 0 and all i,

Then f is homotopic to zero.
(The proof is well known) a2 Lo )

Proof of proposition 2.5.

-

Now consider the functor F = Hom(—, L") : (K*(A))° — K (A4b)
and denote by S C K(A) the triangulated subcategory of K*®(A)
consisting of complexes X satisfying Ext”(X* L7) = 0 for p > 0
and all 7,7. If X- € S is exact, by the lemma 2.6 we have for
all + H'F(X) = H'(Hom (X", L) = Homgs( (X, T*(L')) = O that
is F(X') is exact too. Moreover S contains all the complexes
in D®(A) formed by projective objects. By he theorem 2.2
RHom'(K, L) = Hom (K, L),

By the theorem 2.4 Homps 4y (K", L ) = H*(RHom (K, L)) =
H(Hom (K, L)) = Homys 4 (K", L').
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3. The theorem of Beilinson.

Let X be a compact algebraic manifold. We denote by K%(X)
and DP(X) the bounded homotopy category and the bounded
derived category of the category of coherent sheaves on X. K b(X)
and DP(X) have the same objects; 2 morphism in K°(X) is an
actual morphism of complexes F~ — G-, while a morphism in
Db(X) it is not, in general, and it will be denoted with a dotted
arrow F'---G". An equivalence of objects or morphisms in K 5(X)
will be denoted by =, in D¥(X) by ~; thus F' =G means that
F and G- are isomorphic in K%X), F- ~ G that F- and G- are
isomorphic in D(X).

LEMMA 3.1. [B] Let X =P"(C). Then Exth (QG@), YN =0
for p>0andall,].

Let X = P*(C), and denote by p,q : X X X — X the two
projections. For F .G € Coh(X) let us put FRG =p F ® ¢"G.
The structure sheaf O, of the diagonal A C X x X admits the
following left resolution on X x X

(%) 0—QM(m)BO(—n)— ...~ Q(DBO(=1)— 0 xxx —0,—0

Let E € Coh(X). Tensoring (*) by ¢*E gives a resolution of
q"Ela

(%) 0 — Q")RE(—n) —> ... — QU HBRE(-1)

| |
Mn M,



108 VINCENZO ANCONA - GIORGIO OTTAVIAN]

thus we can express q*R|a as an iterated cone of morphisms in
Db(X):

q'EIA = C(C(CMn == Mg )“_’M -2 )‘_"Mn—3 ——-’...)

Since Rp, preserves cones of morphisms (in D! X)), and
Rp.(q"E|s) = E, we have
Gox¥)
B~C.(CC(RP. My~ Bp. My 1)-+Rp. My 2) -+ Bp. My 3..)

LEMMA 32. Let X be a compact algebraic manifold,
and F,G € Coh(X) with F locally free. Then Rp,(FRG) ~
? & ® H(X,G) where the differentials are the zero maps.

Proof. Let U be an affine covering of X, and C' = C(U ,G)
the Cech complex of G with respect to U, which is a right finite
resolution of G. Since ¢* and the tensorization by F are exact functors
FBG ~ FRC- in D*(X x X), hence Rp.(FBG) ~ Rp.(FRC'). But
each individual C? is p,-acyclic by [H, prop. 34.2 pag. 149], by
Kiinneth formula we see that FRC? is px-acyclic too, thus by the
theorem 2.2 Rp.(FBC") = p.(FEC') = F @ H%(X, C-) with obvious
differentials. It is now easy to see that F@ H(X,C") ~ FRH(X,G)
in D¥(X) because each complex of vector spaces is isomorphic in
the derived category to the complex given by its cohomology with
all zero maps q.e.d.

The lemma above gives Rp.M; = Rp.(Y(J)RE(-j)) =
Y(G)R H(E(- 7)) (with zero differentials) and by the proposition
2.5 and the lemma 3.1 the morphisms (in D%X)) in the right
side of (x * *) can be lifted to actual morphisms of complexes in
K%(X) allowing us to compute explicitely E as an iterated cone in
K*%(X). More precisely, let us cut () into short exact sequences
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where H; =Keru; = Im uj+1, SO that H,;_; = C(H; — M,) and

uj = fj—l o] g].

Then Rp.H,_1 ~ C(Rp.H; =% Rp.M)).

For s =nn—1,...,0 we define inductively a complex R,
such that

a) RF= (P X; where X; = Rp.M; 6

j—i=s—k
b) R, ~ Rp.H,—1 in D*(X)
in the following way

R, = Rp.Mn = Rp.Hn 1.
Suppose R;,, defined; from H,_, =C(Hy — M) we obtain
Rp. fs
Rp*Hs—l ~ C(RP-HS — anst)

Since Rp*H, ~ R,,;, the map Rp.f; gives a map
R.,,-—>Rp.M, in D’X), which is induced by an actual
map v, : R;,; — Rp.M, (by prop. 2.5 and lemma 3.1); we put
R, = C(R,., — Rp.M,) (the standard mapping cone in K%X)),
which verifies a) and b) by construction.

Moreover there is a canonical map Rp.M; LN R, and it
is clear that v, o ¢pge1 ~ Rp.tis : Bp.Msn — Rp.M,. But the
complexes Rp.Ms+1 and Rp.M; coincide with their cohomology
complexes, so that actually vs o @s+1 = RpaUs in K%X).

We have E ~ R; so at the end we obtain

BEILINSON THEOREM Let X =P", denote by p,q: X x X — X
the two projections and by A the diagonal in X x X. For
F,G € Coh(X) let us put FBG = pPPFRqG. Let F € Coh(X),
t € 7. Then there exists a complex of vector bundles L (t) on X
such that:
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kot _ F@) if k=0
2) L¥t) = @B X}t), Xi(t) = Qi (j)erF =
J+k=1
3) a) the maps v;(t, s): X]‘f(t) — X;:Z*l(t) (s € Z) induced by
the differentials L* — L*¥*' are zero for s < 0

b) the maps v;-(t, 1) agree with the natural maps
Rip.@ ()BF (¢~ 7)) — Bp. (@G — 1@F (¢ - j+1)
coming from the exact sequence (tensored by O (t))
0 - Q"MBF(—n) — ... —

S [QUDBF (D] 5 ¢ F 2% " F s — 0
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