NOTE DI ALGEBRA LINEARE 2010-11

M.M. 9 NOVEMBRE 2010

1. Combinazioni lineari e generatori

Sia \mathbb{K} un campo e V uno spazio vettoriale su \mathbb{K} . Siano v_1, \ldots, v_n vettori in V.

Definizione 1.1. Un vettore $v \in V$ si dice **combinazione lineare** di v_1, \ldots, v_n se vale

$$v = a_1 v_1 + \dots + a_n v_n$$

per opportuni scalari $a_1, \ldots, a_n \in \mathbb{K}$.

Ad esempio, il vettore $\begin{pmatrix} 1\\2\\3 \end{pmatrix} \in \mathbb{K}^3$ è combinazione lineare di $\begin{pmatrix} 4\\5\\6 \end{pmatrix}$ e $\begin{pmatrix} 7\\8\\9 \end{pmatrix}$ in quanto vale

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 2 \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} - \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}.$$

Indichiamo con $L(v_1, \ldots, v_1)$ l'insieme di tutte le possibili combinazioni lineari dei vettori v_1, \ldots, v_n , ossia

$$L(v_1, \dots, v_n) = \{ v \in V \mid v = a_1 v_1 + \dots + a_n v_n, \ a_i \in \mathbb{K}, \ i = 1, \dots, n \}.$$

È facile dimostrare che $L(v_1, \ldots, v_n)$ è un sosttospazio vettoriale. Infatti contiene lo 0 (basta porre $a_i = 0$ per ogni i); se

$$v = a_1 v_1 + \dots + a_n v_n, \qquad w = b_1 v_1 + \dots + b_n v_n$$

sono due combinazioni lineari, allora la somma

$$v + w = (a_1 + b_1)v_1 + \dots + (a_n + b_n)v_n$$

è ancora una combinazione lineare e per ogni scalare $t \in \mathbb{K}$ si ha

$$t(a_1v_1 + \dots + a_nv_n) = ta_1v_1 + \dots + ta_nv_n.$$

Chiameremo $L(v_1, \ldots, v_n)$ sottospazio vettoriale generato da v_1, \ldots, v_n su \mathbb{K} . Quando il campo \mathbb{K} è chiaro dal contesto diremo più semplicemente sottospazio generato da v_1, \ldots, v_n oppure chiusura lineare di v_1, \ldots, v_n oppure ancora span di v_1, \ldots, v_n .

Osserviamo che il sottospazio $L(v_1, \ldots, v_n)$ non dipende dall'ordine dei vettori v_i , ragion per cui, ad esempio vale L(v, w) = L(w, v). Questo ci permette di definire, per ogni sottoinsieme finito¹ e non vuoto $A \subset V$ la sua chiusura lineare L(A) come

$$L(A) = \{ \text{ combinazioni lineari di vettori in } A \},$$

e cioè

$$L(A) = L(v_1, \dots, v_n),$$
 dove $A = \{v_1, \dots, v_n\}.$

Possiemo estendere tale definizione anche all'insieme vuoto ponendo $L(\emptyset) = \{0\}.$

Esempio 1.2. Sia $V = \mathbb{K}[x]$ lo spazio vettoriale dei polinomi in x a coefficienti in \mathbb{K} e sia $A = \{x, x^2\} \subset V$. Allora L(A) è l'insieme dei polinomi di grado ≤ 2 senza termine noto.

¹Se A è infinito si definisce L(A) come l'unione dei sottospazi L(B) al variare di B tra tutti i sottoinsiemi finiti di A: equivalentemente, L(A) è l'insieme di tutte le combinazioni lineari finite di elementi di A.

Esempio 1.3. Consideriamo i vettori

$$v_1 = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad w = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \in \mathbb{K}^3,$$

e chiediamoci se la relazione $w \in L(v_1, v_2, v_3)$ è vera o falsa, e cioè se l'equazione lineare vettoriale $av_1 + bv_2 + cv_3 = w$ possiede una soluzione a, b, c. Per rispondere occorre studiare il sistema lineare

$$\begin{cases} a+2b=4\\ 3a+4b+c=5\\ 2b+c=6 \end{cases}$$

che ammettendo soluzioni, implica che $w \in L(v_1, v_2, v_3)$, ossia che w appartiene al sottospazio vettoriale generato da v_1, v_2, v_3 .

Definizione 1.4. Lo spazio vettoriale V si dice di dimensione finita su \mathbb{K} , o anche finitamente generato, se esistono vettori v_1, \ldots, v_n in V tali che $V = L(v_1, \ldots, v_n)$ In questo caso diremo che $\{v_1, \ldots, v_n\}$ è un insieme di generatori di V.

Uno spazio vettoriale che non è di dimensione finita si dice di dimensione infinita.

Esempio 1.5. Lo spazio vettoriale numerico \mathbb{K}^n ha dimensione finita. Definiamo infatti la **base** canonica come la successione e_1, \ldots, e_n , dove e_i è il vettore che la *i*-esima coordinata uguale ad 1 e tutte le altre uguali a 0, ossia

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \dots \quad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

I vettori che formano la base canonica sono un insieme di generatori, infatti per ogni $a_1, \ldots, a_n \in \mathbb{K}$, vale la formula

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = a_1 e_1 + \dots + a_n e_n.$$

Esempio 1.6. Lo spazio vettoriale $\mathbb{K}[x]$ ha dimensione infinita su \mathbb{K} . Infatti, per ogni sottoinsieme finito $A \subset \mathbb{K}[X]$ è possibile trovare un intero d con la proprietà che ogni polinomio in A ha grado minore di d. Dunque L(A) contiene solamente polinomi di grado minore di d e quindi $L(A) \neq \mathbb{K}[x]$.

La seguente proposizione riepiloga le principali proprietà della chiusura lineare.

Proposizione 1.7. Sia A un sottoinsieme finito di uno spazio vettoriale V. Si ha:

- (1) $A \subseteq L(A)$.
- (2) L(A) è un sottospazio vettoriale di V.
- (3) Sia $W \subset V$ un sottospazio vettoriale, allora $A \subset W$ se e solo se $L(A) \subset W$.
- (4) Dato un sottoinsieme finito $B \subset V$, vale $L(A) \subset L(B)$ se e solo se $A \subset L(B)$.

Dimostrazione. La prima proprietà è ovvia e la seconda è già stata dimostrata. La quarta segue dalla terza e dalla seconda ponendo W=L(B); rimane solo da dimostrare la (3). Sia W un sottospazio vettoriale, se $L(A)\subset W$, dato che $A\subset L(A)$ ne segue $A\subset W$. Se $A\subset W$, e siccome W è chiuso per le operazioni di somma e prodotto per scalare, ed ogni combinazione lineare può essere pensata come una composizione di somme e prodotti per scalare, ne segue che ogni combinazione lineare di elementi di A appartiene a W e quindi $L(A)\subset W$.

Esempio 1.8. Siano v_1, \ldots, v_n generatori di uno spazio vettoriale V e sia W un sottospazio vettoriale proprio. Allora esiste un indice i tale che $v_i \notin W$. Infatti se $v_i \in W$ per ogni i si avrebbe $V = L(v_1, \ldots, v_n) \subset W$ in contraddizione con il fatto che W è un sottospazio proprio.

Esempio 1.9. Chiediamoci se i vettori v_1, v_2 e v_3 dell'Esempio 1.3 generano \mathbb{K}^3 . Affinché ciò sia vero è necessario che i tre vettori della base canonica appartengano a $L(v_1, v_2, v_3)$. Tale condizione è anche sufficiente perché se $\{e_1, e_2, e_3\} \subset L(v_1, v_2, v_3)$ allora vale

$$\mathbb{K}^3 = L(e_1, e_2, e_3) \subset L(v_1, v_2, v_3).$$

Il problema si riconduce quindi allo studio dei tre sistemi lineari

$$\begin{cases} a+2b=1\\ 3a+4b+c=0\\ 2b+c=0 \end{cases}, \begin{cases} a+2b=0\\ 3a+4b+c=1\\ 2b+c=0 \end{cases}, \begin{cases} a+2b=0\\ 3a+4b+c=0\\ 2b+c=1 \end{cases}$$

Per determinare se un determinato insieme finito genera uno spazio vettoriale V possono essere utili le seguenti osservazioni:

- a) Se $A \subset B$ sono sottoinsiemi finiti di V, e se A genera V, allora anche B genera V.
- b) Siano A,B due sottoinsiemi finiti di V, se A genera V ed ogni elemento di A può essere scritto come combinazione lineare di elementi di B, allora anche B genera V. Infatti se V = L(A) e $A \subset L(B)$; ne segue che $L(A) \subset L(B)$ e quindi V = L(B). In particolare, se A è ottenuto da B aggiungendo un numero finito di combinazioni lineari di elementi di B, e se A è un insieme di generatori, allora anche B è un insieme di generatori.

Esempio 1.10. Usiamo le precedenti osservazioni per mostrare che i vettori

$$u = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad w = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

generano \mathbb{K}^3 . Abbiamo visto che non è restrittivo aggiungere ai tre vettori u, v, w alcune loro combinazioni lineari. Ad esempio

$$a = v - u = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \quad b = w - u = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}.$$

(L'idea è chiara: far comparire quanti più zeri è possibile.) Ripetiamo la procedura aggiungendo conbinazioni lineari di vettori del nuovo insieme $\{u, v, w, a, b\}$:

$$c = b - 2a = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}, \quad d = a + 2c = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \qquad e = u - d + c = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

Abbiamo già osservato che i vettori $e_1 = e$, $e_2 = d$ e $e_3 = -c$ generano \mathbb{K}^3 e quindi anche u, v, w sono generatori.

Esercizio 1.11. Sia K un campo di numeri e denotiamo con

$$\mathbb{K}^{\times n} = \underbrace{\mathbb{K} \times \cdots \times \mathbb{K}}_{n \text{ fattori}} = \{(a_1, \dots, a_n) \mid a_i \in \mathbb{K}\}$$

lo spazio vettoriale dei vettori riga ad n coordinate. Dimostrare che che i vettori u=(1,2,1), v=(2,1,3) e w=(3,3,3) generano $\mathbb{K}^{\times 3}$.

2. Indipendenza lineare e teorema di scambio

Definizione 2.1. Diremo che m vettori w_1, \ldots, w_m in uno spazio vettoriale sul campo \mathbb{K} , sono **linearmente dipendenti** se se esiste una loro combinazione lineare, con coefficienti non tutti nulli, che dà come risultato il vettore nullo:

(2.1)
$$a_1w_1 + \cdots + a_mw_m = 0$$
, con $a_i \in \mathbb{K}$ non tutti = 0

I vettori w_1, \ldots, w_m si dicono **lineramente indipendenti** se non sono linearmente dipendenti.

Una combinazione lineare viene detta banale se tutti i coefficienti sono nulli e quindi, dei vettori risultano essere linearmente dipendenti se e solo se esiste una loro combinazione lineare nulla (ossia che ha come risultato il vettore nullo) ma non banale. Equivalentemente dei vettori sono linearmente indipendenti se e solo l'unica combinazione lineare nulla tra loro è quella banale.

In pratica per stabilire se i vettori w_1, \ldots, w_m sono o meno linearmente dipendenti occorre studiare l'equazione vettoriale

$$x_1w_1 + \dots + x_mw_m = 0$$

e determinare se esiste o meno una soluzione (x_1, \ldots, x_k) , con $x_i \in \mathbb{K}$ non tutti nulli.

Esempio 2.2. I vettori v_1, v_2, v_3 dell'Esempio 1.3 sono linearmente indipendenti. Infatti l'equazione $av_1 + bv_2 + cv_3$, corrispondente al sistema lineare omogeneo

$$\begin{cases} a + 2b = 0 \\ 3a + 4b + c = 0 \\ 2b + c = 0 \end{cases}$$

ammette a = b = c = 0 come unica soluzione.

Osserviamo che se w_1, \ldots, w_m sono vettori linearmente indipendenti, allora i vettori w_i sono tutti diversi da 0 e distinti tra loro. Infatti se $w_i = 0$ si avrebbe la combinazione lineare non banale $1 \cdot w_i = 0$, mentre se $w_j = w_k$, con $i \neq k$ si avrebbe la combinazione lineare non banale $w_i - w_k = 0$. Un vettore è linearmente indipendente se e solo se è diverso da 0.

Lemma 2.3. Siano v_1, \ldots, v_n vettori di uno spazio vettoriale. Le seguenti condizioni sono equivalenti:

- (1) v_1, \ldots, v_n sono linearmente indipendenti.
- (2) v_1, \ldots, v_{n-1} sono linearmente indipendenti e $v_n \notin L(v_1, \ldots, v_{n-1})$.

Dimostrazione. Dimostriamo che (1) implica (2), ossia supponiamo per ipotesi che v_1, \ldots, v_n siano linearmente indipendenti. È chiaro che v_1, \ldots, v_{n-1} sono linearmente indipendenti, mentre se per assurdo $v_n \in L(v_1, \ldots, v_{n-1})$ esisterebbero n-1 scalari $a_1, \ldots, a_{n-1} \in \mathbb{K}$ tali che

$$v_n = a_1 v_1 + \dots + a_{n-1} v_{n-1}.$$

In tal caso si avrebbe

$$a_1v_1 + \dots + a_{n-1}v_{n-1} + (-1)v_n = 0$$

in contraddizione con la lineare indipendenza di v_1, \ldots, v_n .

Dimostriamo adesso il viceversa, ossia che (2) implica (1): sia

$$a_1v_1 + \dots + a_{n-1}v_{n-1} + a_nv_n = 0$$

una relazione lineare tra i vettori v_i . Se $a_n=0$ allora l'espressione precedente si riduce ad una relazione tra i vettori indipendenti v_1,\ldots,v_{n-1} e quindi anche $a_1=a_2=\cdots=a_{n-1}=0$. Se invece $a_n\neq 0$, allora si ha

$$v_n = -\frac{a_1}{a_n}v_1 - \dots - \frac{a_{n-1}}{a_n}v_{n-1}$$

e quindi $v_n \in L(v_1, \ldots, v_{n-1})$, contrariamente a quanto ipotizzato.

Teorema 2.4 (di scambio). Sia A un sottoinsieme finito di uno spazio vettoriale. Se L(A) contiene m vettori linearmente indipendenti, allora anche A contiene m vettori linearmente indipendenti.

Dimostrazione. Sia $B \subset L(A)$ un insieme di m vettori linearmente indipendenti e indichiamo con \mathcal{F} la famiglia (finita) di tutti i sottoinsiemi di $A \cup B$ formati da m vettori linearmente indipendenti. La famiglia \mathcal{F} non è vuota perché contiene B. Tra tutti i sottoinsiemi appartenenti alla famiglia \mathcal{F} scegliamone uno, che chiameremo C, che ha il maggior numero di elementi in comune con A. Per dimostrare il teorema è sufficiente provare che $C \subset A$.

Supponiamo per assurdo che C non sia contenuto in A, possiamo allora scrivere

$$C = \{w_1, \dots, w_m\}, \quad \text{con } w_m \notin A.$$

Siccome i w_i sono indipendenti, ne segue che $w_m \notin L(w_1, \ldots, w_{m-1})$, quindi $L(w_1, \ldots, w_{m-1}) \neq L(A)$ e di conseguenza esiste $v \in A$ tale che $v \notin L(w_1, \ldots, w_{m-1})$. L'insieme $D = \{w_1, \ldots, w_{m-1}, v\}$ è ancora formato da m vettori indipendenti, ma ha in comune con A un vettore in più rispetto a C, in contraddizione con la scelta di C.

Corollario 2.5. In uno spazio vettoriale generato da n vettori esistono al più n vettori linearmente indipendenti.

Corollario 2.6. Uno spazio vettoriale V è di dimensione infinita se e solo se per ogni intero m > 0 esistono m vettori linearmente indipendenti in V.

Dimostrazione. Se V è di dimensione infinita, allora per ogni successione finita v_1, \ldots, v_n di vettori in V si ha $L(v_1, \ldots, v_n) \neq V$. Possiamo quindi costruire per ricorrenza una successione infinita $\{v_i\}$, $i = 1, 2, \ldots$, con le proprietà

$$v_1 \neq 0, \quad v_2 \not\in L(v_1), \quad \dots, \quad v_{i+1} \not\in L(v_1, \dots, v_i), \quad \dots$$

Qualunque sia m > 0 i primi m termini della successione sono linearmente indipendenti.

Viceversa, se V ha dimensione finita è possibile trovare un intero $n \geq 0$ ed n vettori che generano V. Per il teorema di scambio non esistono m vettori linearmente indipendenti per ogni m > n.

Esempio 2.7. Sia α un numero reale, allora gli n+1 numeri $1, \alpha, \alpha^2, \ldots, \alpha^n$ sono linearmente dipendenti su \mathbb{Q} se e solo se α è la radice di un polinomio non nullo di grado $\leq n$. È ben noto, anche se molto difficile da dimostrare, che il numero $\pi \in \mathbb{R}$ è trascendente, ossia non è radice di alcun polinomio a coefficienti razionali. Ne segue che per ogni n>0 i numeri $1,\pi,\pi^2,\ldots,\pi^n$ sono linearmente indipendenti su \mathbb{Q} e quindi che \mathbb{R} è uno spazio vettoriale di dimensione infinita su \mathbb{Q} .

Corollario 2.8. Ogni sottospazio vettoriale di uno spazio di dimensione finita ha ancora dimensione finita.

Dimostrazione. Osserviamo che se W è un sottospazio di V e se $w_1, \ldots, w_m \in W$ sono vettori linearmente indipendenti in W, allora sono linearmente indipendenti anche in V. Basta adesso applicare il corollario precedente.

3. Basi e dimensione

Un insieme finito di generatori A di uno spazio vettoriale V si dice **minimale** se comunque si toglie un vettore da A, i rimanenti non generano V. Ogni spazio vettoriale di dimensione finita ammette un insieme minimale di generatori: è sufficiente partire da un insieme finito di generatori e poi togliere uno alla volta i vettori superflui fino ad arrivare ad un insieme minimale.

Lemma 3.1. Sia $A = \{v_1, \ldots, v_n\}$ un insieme finito di generatori di uno spazio vettoriale V. Allora i vettori di v_1, \ldots, v_n sono linearmente indipendenti se e solo se A è un insieme minimale di generatori.

Dimostrazione. Supponiamo A minimale e consideriamo una combinazione lineare nulla

$$a_1v_1 + \dots + a_nv_n = 0$$

e dimostriamo che $a_i=0$ per ogni i. Per semplicità espositiva proviamo che $a_n=0$; le argomentazioni esposte si applicano in egual misura anche agli altri coefficienti. Se per assurdo $a_n\neq 0$ si avrebbe

$$v_n = -\frac{a_1}{a_n}v_1 - \dots - \frac{a_{n-1}}{a_n}v_{n-1} \in L(v_1, \dots, v_{n-1}),$$

quindi

$$\{v_1,\ldots,v_n\}\subset L(v_1,\ldots,v_{n-1})$$

e di conseguenza

$$V = L(v_1, \dots, v_n) \subset L(v_1, \dots, v_{n-1}).$$

Abbiamo quindi provato che l'insieme $\{v_1,\ldots,v_{n-1}\}$ è ancora un insieme di generatori, in contraddizione con l'ipotesi di minimalità. Viceversa se A non è minimale esiste un sottoinsieme proprio $B \subset A$ tale che L(B) = V; a meno di rinominare gli indici possiamo supporre $v_n \notin B$. Quindi $v_n \in L(B) \subset L(v_1,\ldots,v_{n-1})$ e questo implica che v_1,\ldots,v_n non sono linearmente indipendenti.

Definizione 3.2. Diremo che n vettori v_1, \ldots, v_n formano una base di uno spazio vettoriale V se sono contemporaneamente generatori e linearmente indipendenti. Una base è una successione di generatori linearmente indipendenti.

Osservazione 3.3. Per un insieme finito di vettori, la proprietà di formare una base è indipendente dall'ordine in cui questi vettori sono considerati. Viceversa una base dipende dall'ordine in cui i vettori sono considerati. Dunque n generatori indipendenti formano esattamente n! basi distinte.

Proposizione 3.4. Una successione finita di vettori v_1, \ldots, v_n è una base di uno spazio vettoriale V se e solo se per ogni vettore $v \in V$ esistono, e sono unici, dei coefficienti $a_1, \ldots, a_n \in \mathbb{K}$ tali che

$$v = a_1 v_1 + \dots + a_n v_n.$$

Dimostrazione. L'esistenza dei coefficienti a_i è del tutto equivalente al fatto che i vettori v_i generano V. Se v_1, \ldots, v_n sono linearmente indipendenti e se

$$v = a_1 v_1 + \dots + a_n v_n, \qquad v = b_1 v_1 + \dots + b_n v_n,$$

allora

$$0 = v - v = (a_1 - b_1)v_1 + \dots + (a_n - b_n)v_n$$

da cui segue $a_i = b_i$ per ogni i, ossia l'unicità dei coefficienti. Viceversa se i coeficienti a_i sono unici, l'unico caso in cui si ha $v = a_1v_1 + \cdots + a_nv_n$ deve necessariamente essere $a_1 = \cdots = a_n = 0$ e quindi i vettori v_i sono linearmente indipendenti.

Osservazione 3.5. Ogni successione finita v_1, \dots, v_n di vettori in uno spazio vettoriale V definisce un polivettore riga

$$\mathbf{v} = (v_1, \dots, v_n) \in \underbrace{V \times \dots \times V}_{n \text{ volte}}$$

ed una applicazione (che indicheremo con lo stesso simbolo) $\mathbf{v} \colon \mathbb{K}^n \to V$ definita secondo la regola del prodotto riga per colonna:

$$\mathbf{v} \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = (v_1, \dots, v_n) \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = a_1 v_1 + a_2 v_2 + \dots + a_n v_n.$$

La Proposizione 3.4 dice che una successione di vettori $\mathbf{v} = (v_1, \dots, v_n)$ è una base se e solo se l'applicazione $\mathbf{v} \colon \mathbb{K}^n \to V$ è bigettiva.

Esempio 3.6. Se $\mathbf{e} = (e_1, \dots, e_n)$ è la base canonica di \mathbb{K}^n , allora l'applicazione $\mathbf{e} \colon \mathbb{K}^n \to \mathbb{K}^n$ è l'identità; dunque *la base canonica è una base!*

Abbiamo visto che ogni insieme minimale di generatori forma una base, e quindi abbiamo dimostrato che:

- (1) da ogni insieme finito di generatori si può estrarre una base,
- (2) ogni spazio vettoriale di dimensione finita possiede una base.

Teorema 3.7. Due basi di uno spazio vettoriale di dimensione finita contengono lo stesso numero di vettori.

Dimostrazione. Siano v_1, \ldots, v_n e w_1, \ldots, w_m due basi. Siccome i v_i generano ed i w_j sono linearmente indipendenti, segue dal teorema di scambio che $n \geq m$. Per evidenti ragioni di simmetria si ha anche $m \geq n$ e quindi n = m.

Definizione 3.8. Una successione w_1, \ldots, w_m di vettori linearmente indipendenti si dice **massimale** se comunque si aggiunge un vettore w_{m+1} otteniamo una successione $w_1, \ldots, w_m, w_{m+1}$ di vettori linearmente dipendenti.

Nelle notazioni della definizione precedente, abbiamo visto che se w_1, \ldots, w_m sono linearmente indipendenti, allora $w_1, \ldots, w_m, w_{m+1}$ sono linearmente dipendenti se e solo se $w_{m+1} \in L(w_1, \ldots, w_m)$. Ne consegue che una successione di vettori linearmente indipendenti è una base se e solo se è massimale.

Possiamo inoltre affermare che in uno spazio vettoriale di dimensione finita ogni successioone di vettori linearmente indipendenti si completa ad una base. Infatti, siano v_1, \ldots, v_k linearmente indipendenti, se sono anche generatori abbiamo finito, altrimenti scegliamo un vettore $v_{k+1} \notin L(v_1, \ldots, v_k)$. Adesso ripetiamo la procedura per la successione v_1, \ldots, v_{k+1} ; siccome il numero di vettori linearmente indipendenti è limitato dopo un numero finito di passaggi la procedura si interrompe.

Definizione 3.9. Sia V uno spazio vettoriale di dimensione finita. La **dimensione** $\dim_{\mathbb{K}} V$ di V su \mathbb{K} è il numero di elementi di una (qualunque) base di V. Scriveremo semplicemente dim V al posto di $\dim_{\mathbb{K}} V$ quando il campo \mathbb{K} è chiaro dal contesto.

Esempio 3.10. Lo spazio vettoriale nullo (formato dal solo vettore nullo) è l'unico spazio vettoriale di dimensione 0.

Esempio 3.11. Si ha dim $\mathbb{K}^n = n$, infatti la base canonica è formata da n vettori.

Esempio 3.12. Sia $V \subset \mathbb{K}[x]$ il sottospazio vettoriale dei polinomi di grado minore di n. Allora V ha dimensione n in quanto una base è data dai polinomi $1, x, x^2, \ldots, x^{n-1}$.

Esempio 3.13. Si ha $\dim_{\mathbb{R}} \mathbb{C} = 2$ in quanto $1, i \in \mathbb{C}$ sono una base di \mathbb{C} come spazio vettoriale su \mathbb{R} .

Per il teorema di scambio, se V è uno spazio vettoriale di dimensione n, allora ogni insieme di generatori deve contenere almeno n vettori ed ogni insieme di vettori linearmente indipendenti contieme al più n elementi. Viceversa vale il seguente risultato.

Lemma 3.14. Per una successione v_1, \ldots, v_n di vettori in uno spazio vettoriale di dimensione n le seguenti condizioni sono equivalenti:

- (1) v_1, \ldots, v_n è una base,
- (2) v_1, \ldots, v_n sono linearmente indipendenti,
- (3) v_1, \ldots, v_n sono generatori.

Dimostrazione. In uno spazio di dimensione n ogni insieme di n vettori indipendenti è necessariamente massimale ed ogni insieme di n generatori è necessariamente minimale.

Esempio 3.15. Ogni insieme di n vettori linearmente indipendenti di \mathbb{K}^n è una base.

Lemma 3.16. Sia W un sottospazio vettoriale di uno spazio vettoriale V di dimensione finita. Allora $\dim W \leq \dim V$ e vale $\dim W = \dim V$ se e solo se W = V.

Dimostrazione. Abbiamo già dimostrato che W ha dimensione finita ed ogni base di W è un sistema linearmente indipendente in V. Se dim $W = \dim V$, per il lemma precedente, ogni base di W è anche base di V.

Definizione 3.17. Si chiamano **coordinate** di un vettore v rispetto ad una base v_1, \ldots, v_n i coefficienti a_1, \ldots, a_n tali che

$$v = a_1 v_1 + \dots + a_n v_n.$$