THE BAKER-CAMPBELL-HAUSDORFF FORMULA

DEFORMATION THEORY 2011-12; M. M.

1. Review of terminology about algebras

Let R be a commutative ring, by a nonassociative (= not necessarily associative) R algebra we mean a R-module M endowed with a R-bilinear map $M \times M \rightarrow M$.
A nonassociative algebra M is called unitary if there exist a "unity" $1 \in M$ such that $1 m=m 1=m$ for every $m \in M$. A left ideal (resp.: right ideal) of M is a submodule $I \subset M$ such that $M I \subset I$ (resp.: $I M \subset I$). A submodule is called an ideal if it is both a left and right ideal. A homomorphism of R-modules $d: M \rightarrow M$ is called a derivation if satisfies the Leibnitz rule $d(a b)=d(a) b+a d(b)$. A derivation d is called a differential if $d^{2}=d \circ d=0$. A R-algebra M is associative if $(a b) c=a(b c)$ for every $a, b, c \in M$. Unless otherwise specified, we reserve the simple term algebra only to associative algebra.
For every associative \mathbb{K}-algebra R we denote by R_{L} the associated Lie algebra with bracket $[a, b]=a b-b a$; we have seen that the adjoint operator

$$
\operatorname{ad}:: R_{L} \rightarrow \operatorname{End}(R), \quad \operatorname{ad} x(y)=[x, y]=x y-y x,
$$

is a morphism of Lie algebras. Notice that if $I \subset R$ is an ideal then I is also a Lie ideal of R_{L}.

2. Exponential and logarithm

Let \mathbb{K} be a field of characteristic $0, R$ a unitary associative \mathbb{K}-algebra and $I \subset R$ a nilpotent ideal. We may define the exponential

$$
e: I \rightarrow 1+I \subset R, \quad e^{a}=\sum_{n \geq 0} \frac{a^{n}}{n!},
$$

and the invertible operator

$$
e^{\operatorname{ad} a}=\sum_{n \geq 0} \frac{(\operatorname{ad} a)^{n}}{n!} \in \operatorname{End}(R) .
$$

For later use we also note that the operator

$$
\frac{e^{\operatorname{ad} a}-1}{\operatorname{ad} a}=\sum_{n \geq 0} \frac{(\operatorname{ad} a)^{n}}{(n+1)!} \in \operatorname{End}(R)
$$

is still invertible: its inverse is

$$
\frac{\operatorname{ad} a}{e^{\operatorname{ad} a}-1}=\sum_{n \geq 0} \frac{B_{n}}{n!}(\operatorname{ad} a)^{n}
$$

where $B_{0}=1, B_{1}=-1 / 2, B_{2}=1 / 6, B_{3}=0, \ldots$ are the Bernoulli numbers.

We can also define the logarithm

$$
\log : 1+I \rightarrow I, \quad \log (1+a)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{a^{n}}{n}
$$

Lemma 2.1. Exponential and logarithm are one the inverse of the other, i.e. for every $a, b \in I$ we have

$$
\log \left(e^{a}\right)=a, \quad e^{\log (1+b)}=1+b
$$

Proof. We may reduce to the classical theory by using the algebra morphism

$$
\mathbb{Q}[[t]] \rightarrow R, \quad p(t) \mapsto p(a) .
$$

Proposition 2.2. In the notation above:
(1) for every $a, b \in R$ and $n \geq 0$

$$
(\operatorname{ad} a)^{n} b=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} a^{n-i} b a^{i}=\sum_{i=0}^{n}\binom{n}{i} a^{n-i} b(-a)^{i} .
$$

(2) If a is nilpotent in R then also $\operatorname{ad} a$ is nilpotent in $\operatorname{End}(R)$.
(3) For every $a \in I$ and $b \in R$

$$
e^{\operatorname{ad} a} b:=\sum_{n \geq 0} \frac{(\operatorname{ad} a)^{n}}{n!} b=e^{a} b e^{-a} .
$$

(4) For every $a \in I$ and $b \in R$ we have $a b=b a$ if and only if $e^{a} b=b e^{a}$.
(5) For every $a, b \in I$ we have $e^{a} b=b e^{a}$ if and only if $e^{a} e^{b}=e^{b} e^{a}$.
(6) Given $a, b \in I$ such that $a b=b a$, then

$$
e^{a+b}=e^{a} e^{b}=e^{b} e^{a}, \quad \log ((1+a)(1+b))=\log (1+a)+\log (1+b) .
$$

Proof. [1] We have

$$
(\operatorname{ad} a)^{n} b=a(\operatorname{ad} a)^{n-1}(b)-(\operatorname{ad} a)^{n-1}(b) a
$$

By induction

$$
(\operatorname{ad} a)^{n} b=\sum_{i=0}^{n-1}(-1)^{i}\binom{n-1}{i} a^{n-i} b a^{i}-\sum_{j=0}^{n-1}(-1)^{j}\binom{n-1}{i} a^{n-1-j} b a^{j+1} .
$$

Setting $j=i-1$ on the second summand we get

$$
\begin{aligned}
& (\operatorname{ad} a)^{n} b=\sum_{i=0}^{n-1}(-1)^{i}\binom{n-1}{i} a^{n-i} b a^{i}+\sum_{i=1}^{n}(-1)^{i}\binom{n-1}{i-1} a^{n-i} b a^{i}= \\
& =\sum_{i=0}^{n}(-1)^{i}\left(\binom{n-1}{i}+\binom{n-1}{i-1}\right) a^{n-i} b a^{i}=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} a^{n-i} b a^{i} .
\end{aligned}
$$

[2] If $a^{n}=0$ then $(\operatorname{ad} a)^{2 n}=0$.
[3] Using item 1 we get

$$
e^{\operatorname{ad} a} b:=\sum_{n \geq 0} \frac{(\operatorname{ad} a)^{n}}{n!} b=\sum_{n \geq 0} \sum_{i=0}^{n} \frac{1}{n!}\binom{n}{i} a^{n-i} b(-a)^{i}
$$

Setting $j=n-i$ we get

$$
e^{\operatorname{ad} a} b:=\sum_{i, j \geq 0} \frac{1}{i!j!} a^{j} b(-a)^{i}=e^{a} b e^{-a}
$$

[4] We have $e^{a} b=b e^{a}$ if and only if $e^{a} b e^{-a}-b=0$ and by the above formula

$$
e^{a} b e^{-a}-b=e^{\operatorname{ad} a} b-b=\frac{e^{\operatorname{ad} a}-1}{\operatorname{ad} a}([a, b]) .
$$

[5] Setting $x=e^{b}$ we have by item 4 applied twice

$$
e^{a} e^{b}=e^{b} e^{a} \Longleftrightarrow x e^{a}=e^{a} x \Longleftrightarrow a x=x a \Longleftrightarrow a e^{b}=e^{b} a \Longleftrightarrow a b=b a
$$

[6] Since $a b=b a$ we have for every $n \geq 0$

$$
\begin{gathered}
(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}, \\
e^{a+b}=\sum_{n \geq 0} \frac{(a+b)^{n}}{n!}=\sum_{n \geq 0} \sum_{i=0}^{n} \frac{1}{n!}\binom{n}{i} a^{i} b^{n-i}=\sum_{n \geq 0} \sum_{i=0}^{n} \frac{1}{i!(n-i)!} a^{i} b^{n-i} .
\end{gathered}
$$

Setting $j=n-i$ we get

$$
e^{a+b}=\sum_{i, j \geq 0} \frac{1}{i!j!} a^{i} b^{j}=e^{a} e^{b} .
$$

Setting $x=\log (1+a), y=\log (1+b)$ we have $e^{x} e^{y}=e^{y} e^{x}$: therefore $x y=y x$ and

$$
\log ((1+a)(1+b))=\log \left(e^{x} e^{y}\right)=\log \left(e^{x+y}\right)=x+y=\log (1+a)+y=\log (1+b)
$$

Let t be an indeterminate and denote by $d: R[t] \rightarrow R[t], d(a)=a^{\prime}$, the derivation operator. Multiplication on the left give an injective morphism of algebras

$$
\phi: R[t] \rightarrow \operatorname{End}(R[t], R[t]), \quad \phi(a) b=a b
$$

and Leibniz formula can be written as

$$
\phi\left(a^{\prime}\right)=[d, \phi(a)], \quad a \in R[t] .
$$

Given $a \in I[t]$ we have $\phi\left(e^{a}\right)=e^{\phi(a)}$ and

$$
\phi\left(\left(e^{a}\right)^{\prime}\right)=d e^{\phi(a)}-e^{\phi(a)} d
$$

By the above proposition

$$
-\phi\left(\left(e^{a}\right)^{\prime} e^{-a}\right)=e^{\phi(a)} d e^{-\phi(a)}-d=\frac{e^{\operatorname{ad} \phi(a)}-1}{\operatorname{ad} \phi(a)}([\phi(a), d])=-\frac{e^{\operatorname{ad} \phi(a)}-1}{\operatorname{ad} \phi(a)}\left(\phi\left(a^{\prime}\right)\right),
$$

and then, since ϕ is injective

$$
\left(e^{a}\right)^{\prime} e^{-a}=\frac{e^{\operatorname{ad} a}-1}{\operatorname{ad} a}\left(a^{\prime}\right) .
$$

Now, let $a, b \in I$ and define

$$
Z=\log \left(e^{t a} e^{b}\right) \in I[t] .
$$

We have $Z=Z_{0}+t Z_{1}+\cdots+t^{n} Z_{n}+\cdots$, with $Z_{0}=b$ and $Z_{n} \in I^{n}$. By derivation formula we have

$$
\begin{gathered}
\left(e^{Z}\right)^{\prime} e^{-Z}=\frac{e^{\operatorname{ad} Z}-1}{\operatorname{ad} Z}\left(Z^{\prime}\right) \\
\left(e^{Z}\right)^{\prime} e^{-Z}=\left(e^{t a} e^{b}\right)^{\prime} e^{-b} e^{-t a}=\left(e^{t a}\right)^{\prime} e^{-t a}=a .
\end{gathered}
$$

Therefore Z is the solution of the Cauchy problem

$$
Z^{\prime}=\sum_{n \geq 0} \frac{B_{n}}{n!}(\operatorname{ad} Z)^{n}(a), \quad Z(0)=Z_{0}=b .
$$

The coefficients Z_{n} can be computed recursively

$$
Z_{r+1}=\frac{1}{r+1} \sum_{m \geq 0} \frac{B_{m}}{m!} \sum_{i_{1}+\cdots+i_{m}=r}\left(\operatorname{ad} Z_{i_{1}}\right)\left(\operatorname{ad} Z_{i_{2}}\right) \cdots\left(\operatorname{ad} Z_{i_{m}}\right) a
$$

Theorem 2.3. Given $a, b \in I$ we have

$$
e^{a} e^{b}=e^{a \bullet b}, \quad \text { where } \quad a \bullet b=\sum_{n \geq 0} Z_{n},
$$

and

$$
Z_{0}=b, \quad Z_{r+1}=\frac{1}{r+1} \sum_{m \geq 0} \frac{B_{m}}{m!} \sum_{i_{1}+\cdots+i_{m}=r}\left(\operatorname{ad} Z_{i_{1}}\right)\left(\operatorname{ad} Z_{i_{2}}\right) \cdots\left(\operatorname{ad} Z_{i_{m}}\right) a
$$

The first terms of the above series are

$$
a \bullet b=a+b+\frac{1}{2}[a, b]+\frac{1}{12}[a,[a, b]]+\frac{1}{12}[b,[a, b]]+\cdots
$$

Since $\left(e^{a} e^{b}\right) e^{c}=e^{a}\left(e^{b} e^{c}\right)$ the product $I \times I \xrightarrow{\bullet} I$ is associative. If L is a Lie subalgebra of I and $a, b \in L$, then $a \bullet b \in L$ and $a \bullet b-a-b$ belongs to the Lie ideal generated by $[a, b]$.
The formula of the theorem allow to define for every nilpotent Lie algebra L a map

$$
L \times L \rightarrow L, \quad(a, b) \mapsto a \bullet b
$$

commuting with morphisms of Lie algebras. Notice that $-(a \bullet b)=(-b) \bullet(-a), a \bullet(-a)=$ 0 and, if $[a, b]=0$ then $a \bullet b=a+b$.
If L is a Lie subalgebra of a nilpotent ideal of a unitary associative algebra R then

$$
e^{a \bullet b}=e^{a} e^{b} .
$$

We define $\exp (L)=\left\{e^{a} \mid a \in L\right\}$ as the set of formal exponents of elements of L and the "product"

$$
\exp (L) \times \exp (L) \rightarrow \exp (L), \quad e^{a} e^{b}=e^{a \bullet b}
$$

We will prove later, using free Lie algebras, that every nilpotent Lie algebra is a quotient of a Lie algebra contained in a nilpotent ideal of an associative algebra. This implies that \bullet is always associative and gives a group structure on $\exp (L)$.
We have the functorial properties:
(1) If $f: L \rightarrow M$ is a morphism of nilpotent Lie algebras, then the map

$$
f: \exp (L) \rightarrow \exp (M), \quad f\left(e^{a}\right)=e^{f(a)}
$$

is a homomorphism of groups.
(2) Let V be a vector space and $f: L \rightarrow \operatorname{End}(V)$ a Lie algebra morphism. If the image of L is contained in a nilpotent ideal, then the maps

$$
\begin{aligned}
\exp (L) \times V \rightarrow V, \quad\left(e^{a}, v\right) \mapsto e^{f(a)} v, \\
\exp (L) \times \operatorname{End}(V) \rightarrow \operatorname{End}(V), \quad\left(e^{a}, g\right) \mapsto e^{f(a)} g e^{-f(a)}=e^{\operatorname{ad} f}(g),
\end{aligned}
$$

are right actions.

