THE BAKER-CAMPBELL-HAUSDORFF FORMULA

DEFORMATION THEORY 2011-12; M. M.

1. REVIEW OF TERMINOLOGY ABOUT ALGEBRAS

Let R be a commutative ring, by a nonassociative (= not necessarily associative) R-
algebra we mean a R-module M endowed with a R-bilinear map M x M — M.

A nonassociative algebra M is called unitary if there exist a “unity” 1 € M such
that 1m = ml = m for every m € M. A left ideal (resp.: right ideal) of M is a
submodule I C M such that MI C I (resp.: IM C I). A submodule is called an ideal
if it is both a left and right ideal. A homomorphism of R-modules d: M — M is called
a derivation if satisfies the Leibnitz rule d(ab) = d(a)b+ ad(b). A derivation d is called
a differential if > = dod = 0. A R-algebra M is associative if (ab)c = a(bc) for
every a,b,c € M. Unless otherwise specified, we reserve the simple term algebra only
to associative algebra.

For every associative K-algebra R we denote by Ry the associated Lie algebra with
bracket [a,b] = ab — ba; we have seen that the adjoint operator

ad : : R, — End(R), adz(y) = [z,y] = zy — yx,

is a morphism of Lie algebras. Notice that if I C R is an ideal then [ is also a Lie ideal
of RL.

2. EXPONENTIAL AND LOGARITHM

Let K be a field of characteristic 0, R a unitary associative K-algebra and I C R a
nilpotent ideal. We may define the exponential

an

e:I —-1+ICR, ea:Z
n>0

n!’

and the invertible operator

d (ada)"
et = Z o € End(R).
n>0
For later use we also note that the operator
eada -1

(ada)™
= n;) T End(R)

ada

is still invertible: its inverse is
ada B, n
a1 = 2y (ada)”,
n>0

where By =1,By = —1/2,By = 1/6, B3 = 0,... are the Bernoulli numbers.
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We can also define the logarithm

© n
log:1+1—1, log(l+a)= 1yt
g g(1+a) 7;( )
Lemma 2.1. Ezponential and logarithm are one the inverse of the other, i.e. for every
a,b € I we have
log(e?) = a, elos14+) — 1 1 p,

Proof. We may reduce to the classical theory by using the algebra morphism

Q)] — R, p(t) — pla).

Proposition 2.2. In the notation above:
(1) for every a,b € R andn >0

n . In . n n . .
da)™b = 1) n—ipoi n=ip(_ )¢
=3 ¥ (7)an e ;() (~a)
(2) If a is nilpotent in R then also ad a is nilpotent in End(R).
(3) For everya el andbe R

adayp .__ (ad a)n _ ap,.—a
e = Z o b=e%e™ .
n>0

(4) For every a € I and b € R we have ab = ba if and only if €®b = be®.
(5) For every a,b € I we have e®b = be® if and only if e®e® = ePe?.
(6) Given a,b € I such that ab = ba, then

e+ = etcb = et log((1+a)(1+ b)) = log(1 + a) + log(1 +b).
Proof. [1] We have

(ada)"b = a(ad @)1 (b) — (ada)" 1 (b)a
By induction

(ada)"b = nzl(—l)i (” ; 1)a”ibai — nzl(_l)j <” ; 1) a" 1Tt

i=0 §=0
Setting j = ¢ — 1 on the second summand we get

<ada>"b— ( )wHZ ( )b:

_ g(q << ) + <Z - 1)) a"ba’ = g(—w‘ <T;>an_ibai.

2] If @™ = 0 then (ada)?® = 0.
[3] Using item 1 we get

oy 3 24", -2y i( Jar b=y

n>0

Setting j = n — ¢ we get

1

d _

e = E Wajb( a)’ = ebe .
i,j>0
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[4] We have e®b = be® if and only if e*be™ — b = 0 and by the above formula
ada __ 1

——([a,0]).

Ahe™@ _ = adab_b:
e oe e ada

5] Setting = = e” we have by item 4 applied twice
el = ele? = get =% = axr = za = ae’ = ePa < ab = ba.

[6] Since ab = ba we have for every n > 0

(a+b)" = i (?) b,

i=0
n n
atb _ (a+b)" 1\ i 1 ipn—i
D Dh e B D=1 B L _Zzi!(n—i)!ab '
n>0 n>0 i=0 n>0 i=0
Setting j = n — i we get
6a-l—b _ Z Lazbj _ eaeb
N ilj! N ‘

i,j>0
Setting = log(1 + a), y = log(1 + b) ive have e”e¥ = e¥e”: therefore xy = yx and
log((1 4 a)(1+ b)) = log(e”e¥) = log(e*¥) = z +y = log(1 + a) + y = log(1 + b).
U
Let ¢ be an indeterminate and denote by d: R[t] — R]t], d(a) = d/, the derivation
operator. Multiplication on the left give an injective morphism of algebras
¢: R[t] — End(R][t], R[t]), ¢(a)b = ab
and Leibniz formula can be written as
¢(a') =[d,¢(a)],  a€ Rt].
Given a € I[t] we have ¢(e®) = e?(®) and
B((e®)) = de? @ — @) g
By the above proposition
ad ¢(a ad ¢(a
(o) = e —a = I ), d) = - o),

and then, since ¢ is injective

Now, let a,b € I and define
Z = log(e™e?) € I[t].
We have Z = Zg+tZ1+---+t"Z, + ---, with Zy = b and Z,, € I"™. By derivation

formula we have

ZN\I —Z !
=——(Z
(Fye? = (7).
(eZ)lefZ — (etaeb)/efbefta _ (eta)lefta — a.
Therefore Z is the solution of the Cauchy problem

7= %(ad Z)(a),  Z(0)= Zy=b.

n>0
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The coefficients Z,, can be computed recursively

1 B
Zrir = > — Z (ad Z;,)(ad Zi,) - (ad Z;,,)a
m>0 11+, =r

Theorem 2.3. Given a,b € I we have

e%e’ =™ where aeb= Z Zns
n>0
and
1 B,
Zo=b,  Zpp=—— > — Y (adZi)(ad Zi,) - (ad Zi,, )a.

r+1 !
- m>0 114t =r

The first terms of the above series are

1 1 1
aob—a—l—b+§[a,b]—i-ﬁ[a,[a,b]H-ﬁ[b,[a,b]]+'--

Since (eeb)e® = e?(ebe) the product I x I——I is associative. If L is a Lie subalgebra
of I and a,b € L, then aeb € L and a e b — a — b belongs to the Lie ideal generated by
[a, b].

The formula of the theorem allow to define for every nilpotent Lie algebra L a map

LxL—L, (a,b) —aeb

commuting with morphisms of Lie algebras. Notice that —(aeb) = (—b)e(—a), ae(—a) =
0 and, if [a,b] = 0 then a @b =a + b.
If L is a Lie subalgebra of a nilpotent ideal of a unitary associative algebra R then

eaob — eaeb‘

We define exp(L) = {e* | a € L} as the set of formal exponents of elements of L and

the “product”

b b

— e(l.

exp(L) x exp(L) — exp(L), ee

We will prove later, using free Lie algebras, that every nilpotent Lie algebra is

a quotient of a Lie algebra contained in a nilpotent ideal of an associative

algebra. This implies that e is always associative and gives a group structure on exp(L).
We have the functorial properties:

(1) If f: L — M is a morphism of nilpotent Lie algebras, then the map
fiexp(L) = exp(M),  f(e*) = e/,

is a homomorphism of groups.
(2) Let V be a vector space and f: L — End(V) a Lie algebra morphism. If the
image of L is contained in a nilpotent ideal, then the maps

exp(L) x V =V, (e%,v) — ef @y,

exp(L) x End(V) — End(V), (e, g) — el (@) ge=1@) = e/ (g),
are right actions.



