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1. Review of terminology about algebras

Let R be a commutative ring, by a nonassociative (= not necessarily associative) R-
algebra we mean a R-module M endowed with a R-bilinear map M ×M →M .
A nonassociative algebra M is called unitary if there exist a “unity” 1 ∈ M such

that 1m = m1 = m for every m ∈ M . A left ideal (resp.: right ideal) of M is a
submodule I ⊂M such that MI ⊂ I (resp.: IM ⊂ I). A submodule is called an ideal
if it is both a left and right ideal. A homomorphism of R-modules d : M →M is called
a derivation if satisfies the Leibnitz rule d(ab) = d(a)b+ad(b). A derivation d is called
a differential if d2 = d ◦ d = 0. A R-algebra M is associative if (ab)c = a(bc) for
every a, b, c ∈ M . Unless otherwise specified, we reserve the simple term algebra only
to associative algebra.
For every associative K -algebra R we denote by RL the associated Lie algebra with

bracket [a, b] = ab− ba; we have seen that the adjoint operator

ad : : RL → End(R), adx(y) = [x, y] = xy − yx,

is a morphism of Lie algebras. Notice that if I ⊂ R is an ideal then I is also a Lie ideal
of RL.

2. Exponential and logarithm

Let K be a field of characteristic 0, R a unitary associative K -algebra and I ⊂ R a
nilpotent ideal. We may define the exponential

e : I → 1 + I ⊂ R, ea =
∑
n≥0

an

n!
,

and the invertible operator

ead a =
∑
n≥0

(ad a)n

n!
∈ End(R).

For later use we also note that the operator

ead a − 1
ad a

=
∑
n≥0

(ad a)n

(n+ 1)!
∈ End(R)

is still invertible: its inverse is
ad a

ead a − 1
=
∑
n≥0

Bn
n!

(ad a)n,

where B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, . . . are the Bernoulli numbers.
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We can also define the logarithm

log : 1 + I → I, log(1 + a) =
∞∑
n=1

(−1)n−1a
n

n
.

Lemma 2.1. Exponential and logarithm are one the inverse of the other, i.e. for every
a, b ∈ I we have

log(ea) = a, elog(1+b) = 1 + b.

Proof. We may reduce to the classical theory by using the algebra morphism

Q[[t]]→ R, p(t) 7→ p(a).

�

Proposition 2.2. In the notation above:
(1) for every a, b ∈ R and n ≥ 0

(ad a)nb =
n∑
i=0

(−1)i
(
n

i

)
an−ibai =

n∑
i=0

(
n

i

)
an−ib(−a)i.

(2) If a is nilpotent in R then also ad a is nilpotent in End(R).
(3) For every a ∈ I and b ∈ R

ead ab :=
∑
n≥0

(ad a)n

n!
b = eabe−a.

(4) For every a ∈ I and b ∈ R we have ab = ba if and only if eab = bea.
(5) For every a, b ∈ I we have eab = bea if and only if eaeb = ebea.
(6) Given a, b ∈ I such that ab = ba, then

ea+b = eaeb = ebea, log((1 + a)(1 + b)) = log(1 + a) + log(1 + b).

Proof. [1] We have
(ad a)nb = a(ad a)n−1(b)− (ad a)n−1(b)a

By induction

(ad a)nb =
n−1∑
i=0

(−1)i
(
n− 1
i

)
an−ibai −

n−1∑
j=0

(−1)j
(
n− 1
i

)
an−1−jbaj+1.

Setting j = i− 1 on the second summand we get

(ad a)nb =
n−1∑
i=0

(−1)i
(
n− 1
i

)
an−ibai +

n∑
i=1

(−1)i
(
n− 1
i− 1

)
an−ibai =

=
n∑
i=0

(−1)i
((

n− 1
i

)
+
(
n− 1
i− 1

))
an−ibai =

n∑
i=0

(−1)i
(
n

i

)
an−ibai.

[2] If an = 0 then (ad a)2n = 0.
[3] Using item 1 we get

ead ab :=
∑
n≥0

(ad a)n

n!
b =

∑
n≥0

n∑
i=0

1
n!

(
n

i

)
an−ib(−a)i

Setting j = n− i we get

ead ab :=
∑
i,j≥0

1
i!j!

ajb(−a)i = eabe−a.
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[4] We have eab = bea if and only if eabe−a − b = 0 and by the above formula

eabe−a − b = ead ab− b =
ead a − 1

ad a
([a, b]).

[5] Setting x = eb we have by item 4 applied twice

eaeb = ebea ⇐⇒ xea = eax ⇐⇒ ax = xa ⇐⇒ aeb = eba ⇐⇒ ab = ba.

[6] Since ab = ba we have for every n ≥ 0

(a+ b)n =
n∑
i=0

(
n

i

)
aibn−i,

ea+b =
∑
n≥0

(a+ b)n

n!
=
∑
n≥0

n∑
i=0

1
n!

(
n

i

)
aibn−i =

∑
n≥0

n∑
i=0

1
i!(n− i)!

aibn−i.

Setting j = n− i we get

ea+b =
∑
i,j≥0

1
i!j!

aibj = eaeb.

Setting x = log(1 + a), y = log(1 + b) we have exey = eyex: therefore xy = yx and

log((1 + a)(1 + b)) = log(exey) = log(ex+y) = x+ y = log(1 + a) + y = log(1 + b).

�

Let t be an indeterminate and denote by d : R[t] → R[t], d(a) = a′, the derivation
operator. Multiplication on the left give an injective morphism of algebras

φ : R[t]→ End(R[t], R[t]), φ(a)b = ab

and Leibniz formula can be written as

φ(a′) = [d, φ(a)], a ∈ R[t].

Given a ∈ I[t] we have φ(ea) = eφ(a) and

φ((ea)′) = deφ(a) − eφ(a)d

By the above proposition

−φ((ea)′e−a) = eφ(a)de−φ(a) − d =
eadφ(a) − 1

adφ(a)
([φ(a), d]) = −e

adφ(a) − 1
adφ(a)

(φ(a′)),

and then, since φ is injective

(ea)′e−a =
ead a − 1

ad a
(a′).

Now, let a, b ∈ I and define

Z = log(etaeb) ∈ I[t].

We have Z = Z0 + tZ1 + · · · + tnZn + · · · , with Z0 = b and Zn ∈ In. By derivation
formula we have

(eZ)′e−Z =
eadZ − 1

adZ
(Z ′),

(eZ)′e−Z = (etaeb)′e−be−ta = (eta)′e−ta = a.

Therefore Z is the solution of the Cauchy problem

Z ′ =
∑
n≥0

Bn
n!

(adZ)n(a), Z(0) = Z0 = b.
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The coefficients Zn can be computed recursively

Zr+1 =
1

r + 1

∑
m≥0

Bm
m!

∑
i1+···+im=r

(adZi1)(adZi2) · · · (adZim)a

Theorem 2.3. Given a, b ∈ I we have

eaeb = ea•b, where a • b =
∑
n≥0

Zn,

and

Z0 = b, Zr+1 =
1

r + 1

∑
m≥0

Bm
m!

∑
i1+···+im=r

(adZi1)(adZi2) · · · (adZim)a.

The first terms of the above series are

a • b = a+ b+
1
2

[a, b] +
1
12

[a, [a, b]] +
1
12

[b, [a, b]] + · · ·

Since (eaeb)ec = ea(ebec) the product I × I •−→I is associative. If L is a Lie subalgebra
of I and a, b ∈ L, then a • b ∈ L and a • b− a− b belongs to the Lie ideal generated by
[a, b].
The formula of the theorem allow to define for every nilpotent Lie algebra L a map

L× L→ L, (a, b) 7→ a • b
commuting with morphisms of Lie algebras. Notice that −(a•b) = (−b)•(−a), a•(−a) =
0 and, if [a, b] = 0 then a • b = a+ b.
If L is a Lie subalgebra of a nilpotent ideal of a unitary associative algebra R then

ea•b = eaeb.

We define exp(L) = {ea | a ∈ L} as the set of formal exponents of elements of L and
the “product”

exp(L)× exp(L)→ exp(L), eaeb = ea•b.

We will prove later, using free Lie algebras, that every nilpotent Lie algebra is
a quotient of a Lie algebra contained in a nilpotent ideal of an associative
algebra. This implies that • is always associative and gives a group structure on exp(L).
We have the functorial properties:

(1) If f : L→M is a morphism of nilpotent Lie algebras, then the map

f : exp(L)→ exp(M), f(ea) = ef(a),

is a homomorphism of groups.
(2) Let V be a vector space and f : L → End(V ) a Lie algebra morphism. If the

image of L is contained in a nilpotent ideal, then the maps

exp(L)× V → V, (ea, v) 7→ ef(a)v,

exp(L)× End(V )→ End(V ), (ea, g) 7→ ef(a)ge−f(a) = ead f (g),
are right actions.


