CHAPTER 7

Differential graded Lie algebras

7.1. Differential graded vector spaces

Every vector space is considered over a fixed field \mathbb{K}; unless otherwise specified, by the symbol \otimes we mean the tensor product $\otimes_{\mathbb{K}}$ over the field \mathbb{K}.

The category DG. By a graded vector space we mean a \mathbb{K}-vector spaces V endowed with a \mathbb{Z}-graded direct sum decomposition $V=\oplus_{i \in \mathbb{Z}} V^{i}$. The elements of V_{i} are called homogeneous of degree i.

If $V=\oplus_{n \in \mathbb{Z}} V^{n} \in \mathbf{G}$ we write $\operatorname{deg}(a ; V)=i \in \mathbb{Z}$ if $a \in V_{i}$; if there is no possibility of confusion about V we simply denote $\bar{a}=\operatorname{deg}(a ; V)$.

Definition 7.1.1. A DG-vector space is the data of a graded vector space $V=\oplus_{n \in \mathbb{Z}} V^{n}$ together a linear map $d: V \rightarrow V$, called differential, such that $d\left(V^{n}\right) \subset V^{n+1}$ for every n and $d^{2}=$ $d \circ d=0$.

A morphism $f:\left(V, d_{V}\right) \rightarrow\left(W, d_{W}\right)$ of DG-vector spaces is a linear map $f: V \rightarrow W$ such that $f\left(V^{n}\right) \subset W^{n}$ for every n and $d_{W} f=f d_{V}$.

The category of DG-vector spaces will be denoted DG.
Thus, giving a morphism $f:\left(V, d_{V}\right) \rightarrow\left(W, d_{W}\right)$ of DG-vector spaces is the same of giving a sequence of linear maps $f_{n}: V^{n} \rightarrow W^{n}$ such that $d_{W} f_{n}=f_{n+1} d_{V}$ for every n.

Given a DG-vector space (V, d) we denote as usual by $Z(V)=$ ker d the space of cycles, by $B(V)=d(V)$ the space of boundaries and by $H(V)=Z(V) / B(V)$ the cohomology of V.

A morphism in DG is called a quasiisomorphism, or a weak equivalence, if it induces an isomorphism in cohomology. A DG-vector space (V, d) is called acyclic if $H(V)=0$, i.e. if it is weak equivalent to 0 .

Remark 7.1.2. In a completely similar way we may define dg-vector spaces, in which differentials have degree -1 , i.e. $d\left(V_{i}\right) \subset V_{i-1}$. A differential graded vector space is either a DG-vector space or a dg-vector space.

Example 7.1.3. Every complex of vector spaces

$$
\cdots \rightarrow V^{n} \xrightarrow{d} V^{n+1} \xrightarrow{d} V^{n+2} \rightarrow \cdots
$$

can be trivially considered as a DG-vector space.
Given a double complex $C^{i, j}, i, j \in \mathbb{Z}$, of vector spaces, with differentials

$$
d_{1}: C^{i, j} \rightarrow C^{i+1, j}, \quad d_{2}: C^{i, j} \rightarrow C^{i, j+1}, \quad d_{1}^{2}=d_{2}^{2}=d_{1} d_{2}+d_{2} d_{1}=0
$$

we define the associated total complex as the DG-vector space

$$
\operatorname{Tot}\left(C^{*, *}\right)=\bigoplus_{n \in \mathbb{Z}} \operatorname{Tot}\left(C^{*, *}\right)^{n}, \quad \operatorname{Tot}\left(C^{*, *}\right)^{n}=\bigoplus_{i+j=n} C^{i, j}, \quad d=d_{1}+d_{2}
$$

The category DG contains products: more precisely if $\left\{\left(V_{i}, d_{i}\right)\right\}$ is a family of DG-vector spaces, we have

$$
\prod_{i} V_{i}=\bigoplus_{n \in \mathbb{Z}}\left(\prod_{i} V_{i}\right)^{n}, \quad\left(\prod_{i} V_{i}\right)^{n}=\prod_{i} V_{i}^{n}, \quad d\left(\left\{v_{i}\right\}\right)=\left\{d_{i}\left(v_{i}\right)\right\}, \quad v_{i} \in V_{i}
$$

Künneth formulas. Given two DG -vector spaces V, W we may define their tensor produc $V \otimes W \in \mathbf{D G}$ and their internal Hom $\operatorname{Hom}_{\mathbb{K}}^{*}(V, W) \in \mathbf{D G}$ in the following way:

$$
\begin{gathered}
V \otimes W=\bigoplus_{n \in \mathbb{Z}}(V \otimes W)^{n}, \text { where }(V \otimes W)^{n}=\bigoplus_{i+j=n} V^{i} \otimes W^{j} \\
d(v \otimes w)=d v \otimes w+(-1)^{\bar{v}} v \otimes d w .
\end{gathered}
$$

$$
\operatorname{Hom}_{\mathbb{K}}^{*}(V, W)=\bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{\mathbb{K}}^{n}(V, W), \quad \operatorname{Hom}_{\mathbb{K}}^{n}(V, W)=\left\{f: V \rightarrow W \text { linear } \mid f\left(V^{i}\right) \subset W^{i+n} \forall i\right\}
$$

$$
d: \operatorname{Hom}_{\mathbb{K}}^{n}(V, W) \rightarrow \operatorname{Hom}_{\mathbb{K}}^{n+1}(V, W), \quad d f(v)=d_{W}(f(v))-(-1)^{n} f\left(d_{V}(v)\right)
$$

We point out that for every $V, W, Z \in \mathbf{D G}$ we have a natural isomorphism abelian groups

$$
\begin{gathered}
\operatorname{Hom}_{\mathbf{D G}}(V, W)=Z^{0}\left(\operatorname{Hom}_{\mathbb{K}}^{*}(V, W)\right), \\
\operatorname{Hom}_{\mathbf{D G}}(V \times W, Z)=\operatorname{Hom}_{\mathbf{D G}}\left(V, \operatorname{Hom}_{\mathbb{K}}^{*}(W, Z)\right) .
\end{gathered}
$$

Theorem 7.1.4 (Künneth formulas). Given a $D G$-vector space V, consider its cohomology $H^{*}(V)=\bigoplus_{n} H^{n}(V)$ as a $D G$-vector space with trivial differential. For every pair of $D G$-vector spaces there exists natural isomorphisms

$$
H^{*}(V \otimes W)=H^{*}(V) \otimes H^{*}(W), \quad H^{*}\left(\operatorname{Hom}_{\mathbb{K}}^{*}(V, W)\right)=\operatorname{Hom}_{\mathbb{K}}^{*}\left(H^{*}(V), H^{*}(W)\right)
$$

Proof. See e.g. the book [120].

Koszul rule of signs.

Definition 7.1.5. Given $V, W \in \mathbf{D G}$, we define the twisting involution

$$
\mathrm{tw} \in \operatorname{Hom}_{\mathbf{D G}}(V \otimes W, W \otimes V), \quad \operatorname{tw}(v \otimes w)=(-1)^{\bar{v} \bar{w}} w \otimes v
$$

Using the Koszul signs convention means that we choose as natural isomorphism between $V \otimes W$ and $W \otimes V$ the twisting map tw and we make every commutation rule compatible with tw. More informally, to "get the signs right", whenever an "object of degree d passes on the other side of an object of degree h, a sign $(-1)^{d h}$ must be inserted".

Example 7.1.6. Assume that $f \in \operatorname{Hom}_{\mathbb{K}}^{*}(V, W)$ and $g \in \operatorname{Hom}_{\mathbb{K}}^{*}(H, K)$. Then the Koszul rule of signs implies that the correct definition of $f \otimes g \in \operatorname{Hom}_{\mathbb{K}}^{*}(V \otimes H, W \otimes K)$ is

$$
(f \otimes g)(v \otimes h)=(-1)^{\bar{g} \bar{v}} f(v) \otimes g(h) .
$$

Notice that $\mathrm{tw} \circ(f \otimes g) \circ \mathrm{tw}=(-1)^{\bar{f} \bar{g}} g \otimes f$.
Shifting indices. Given a DG-vector space $\left(V, d_{V}\right)$ and an integer p we can define the DG-vector space ($\left.V[p], d_{V[p]}\right)$ by setting

$$
V[p]^{n}=V^{n+p}, \quad d_{V[p]}=(-1)^{p} d_{V}
$$

Sometimes it is useful to use a different notation. Let s be a formal symbol of degree +1 , so that s^{p} becomes a formal symbol of degree p, for every integer p. Then define

$$
s^{p} V=\left\{s^{p} v \mid v \in V\right\}, \quad \operatorname{deg} s^{p} v=p+\operatorname{deg}(v)
$$

Setting $d s^{p}=0$, according to Leibniz and Koszul rules we have

$$
d\left(s^{p} v\right)=d\left(s^{p}\right) v+(-1)^{p} s^{p} d(v)=(-1)^{p} s^{p} d(v)
$$

Clearly $\left(s^{p} V\right)^{n}=V^{n-p}$ and then $s^{p} V \simeq V[-p]$. Notice that the natural map

$$
s^{p}: V \rightarrow s^{p} V, \quad v \mapsto s^{p} v
$$

belongs to $\operatorname{Hom}_{\mathbb{K}}^{p}\left(V, s^{p} V\right)$. Some authors call the $s V$ the suspension of $V, s^{-1} V$ the desuspension of V and more generally $s^{p} V$ the p-fold suspension of V.

The Koszul rule of signs gives immediately a canonical isomorphism

$$
s^{p} V \otimes s^{q} W \rightarrow s^{p+q}(V \otimes W), \quad s^{p} v \otimes s^{q} w \mapsto(-1)^{q \bar{v}} s^{p+q}(v \otimes w),
$$

Similarly we have $\operatorname{Hom}_{\mathbb{K}}^{*}\left(s^{p} V, s^{q} W\right) \simeq s^{q-p} \operatorname{Hom}_{\mathbb{K}}^{*}(V, W)$.

Definition 7.1.7. For a morphism of DG-vector spaces $f: V \rightarrow W$ we will denote by C_{f} the suspension of the mapping cone of f. More explicitely $C_{f}=V \oplus s W$ and the differential is

$$
\delta: C_{f}^{n}=V^{n} \oplus W^{n-1} \rightarrow C_{f}^{n+1}=V^{n+1} \oplus W^{n}, \quad \delta(v, w)=(d v, f(v)-d w) .
$$

The projection $p: C_{f} \rightarrow V$ and the inclusion $i: s W \rightarrow C_{f}$ are morphisms of DG-vector spaces and we have a long exact cohomology sequence

$$
\cdots \rightarrow H^{i}(V) \xrightarrow{f} H^{i}(W) \xrightarrow{i} H^{i+1}\left(C_{f}\right) \xrightarrow{p} H^{i+1}(V) \xrightarrow{f} H^{i+1}(W) \rightarrow \cdots
$$

In particular, given a commutative square

if both α and β are quasiisomorphisms, then also the induced map $C_{f} \rightarrow C_{g}$ is a quasiisomorphism.

7.2. DG-algebras

Definition 7.2.1. A DG-algebra (short for Differential graded commutative algebra) is the data of a DG-vector space A and a morphism of DG-vector spaces

$$
A \otimes A \rightarrow A, \quad a \otimes b \mapsto a b
$$

called product, which is associative and invariant under the twisting involution.
More concretely, this means that for $a, b, c \in A$ we have:
(1) (associativity) $(a b) c=a(b c)$,
(2) (graded commutativity) $a b=(-1)^{\bar{a}} \bar{b} b a$,
(3) (graded Leibniz) $d(a b)=d(a) b+(-1)^{\bar{a}} a d(b)$.

A morphism of DG-algebras is simply a morphism of DG-vector spaces commuting with products. The category fo DG-algebras will be denoted by DGA. A DG-algebra A is called unitary if there exists a unit $1 \in A^{0}$.
Example 7.2.2. Every commutative \mathbb{K}-algebra can be considered as a DG-algebra concentrated in degree 0 .

Example 7.2.3. The de Rham complex of a smooth manifold, endowed with wedge product is a DG-algebra.
Example 7.2.4 (Koszul algebras). Let V be a vector space and consider the graded algebra

$$
A=\bigoplus_{n \leq 0} A^{n}, \quad A^{-n}=\bigwedge^{n} V
$$

with the wedge product as a multiplication map. Given a linear map $f: V \rightarrow \mathbb{K}$, we may define a differential $d: A^{-i} \rightarrow A^{-i+1}, i \geq 0$:

$$
d=f\lrcorner: \bigwedge^{i} V \rightarrow \bigwedge^{i-1} V
$$

where the contraction operator \lrcorner is defined by the formula

$$
f\lrcorner\left(v_{1} \wedge \cdots \wedge v_{h}\right)=\sum_{j=1}^{h}(-1)^{j-1} f\left(v_{j}\right) v_{1} \wedge \cdots \wedge \widehat{v_{j}} \wedge \cdots \wedge v_{h} .
$$

Example 7.2.5. The de Rham complex of algebraic differential forms on the affine line will be denoted by $\mathbb{K}[t, d t]$. We may write

$$
\mathbb{K}[t, d t]=\mathbb{K}[t] \oplus \mathbb{K}[t] d t
$$

where $t, d t$ are indeterminates of degrees $\bar{t}=0, \overline{d t}=1$ and the differential d is determined by the "obvious" equality $d(t)=d t$ and therefore $d(p(t)+q(t) d t)=p(t)^{\prime} d t$. The inclusion $\mathbb{K} \rightarrow \mathbb{K}[t, d t]$ and the evaluation maps

$$
e_{s}: \mathbb{K}[t, d t] \rightarrow \mathbb{K}, \quad p(t)+q(t) d t \mapsto p(s), \quad s \in \mathbb{K},
$$

are morphisms of DG-algebras.
Lemma 7.2.6. In characteristic 0 , every evaluation morphism $e_{s}: \mathbb{K}[t, d t] \rightarrow \mathbb{K}$ is a quasiisomorphism.

Proof. If $i: \mathbb{K} \rightarrow \mathbb{K}[t, d t]$ is the natural inclusion, we have $e_{s} \circ i=I d$ and then it is sufficient to prove that i is a quasiisomorphism. This is obvious since every cocycle of $\mathbb{K}[t, d t]$ is of type $a+q(t) d t$ with $a \in \mathbb{K}$ and $q(t) d t$ is exact, being the differential of $\int_{0}^{t} q(s) d s$.

The tensor product of two DG-algebras is still a DG-algebra; clearly we need to take attention to Koszul sign convention. If A, B are DG-algebras, then the product on $A \otimes B$ is defined as the linear extension of

$$
\left(a_{1} \otimes b_{1}\right)\left(a_{2} \otimes b_{2}\right)=(-1)^{\overline{b_{1}} \overline{a_{2}}} a_{1} a_{2} \otimes b_{1} b_{2}
$$

7.3. Differential graded Lie algebras

In this section \mathbb{K} will be a field of characteristic 0 .
Definition 7.3.1. A differential graded Lie algebra (DGLA for short) is the data of a DG-vector space (L, d) with a bilinear bracket [,]: $L \times L \rightarrow L$ satisfying the following condition:
(1) [,] is homogeneous skewsymmetric: this means $\left[L^{i}, L^{j}\right] \subset L^{i+j}$ and $[a, b]+(-1)^{\bar{a} \bar{b}}[b, a]=$ 0 for every a, b homogeneous.
(2) Every triple of homogeneous elements a, b, c satisfies the (graded) Jacobi identity

$$
[a,[b, c]]=[[a, b], c]+(-1)^{\bar{a} \bar{b}}[b,[a, c]] .
$$

(3) (graded Leibniz) $d[a, b]=[d a, b]+(-1)^{\bar{a}}[a, d b]$.

We should take attention that skewsymmety implies that $[a, a]=0$ only if a is of even degree, while for odd degrees we have the following result.
Lemma 7.3.2. Let L be a DGLA and $a \in L$ homogeneous of odd degree. Then $[a,[a, a]]=0$.
Proof. By graded Jacobi and graded skesymmetry we have

$$
[a,[a, a]]=[[a, a], a]-[a,[a, a]]=-2[a,[a, a]] .
$$

Example 7.3.3. If $L=\oplus L^{i}$ is a DGLA then L^{0} is a Lie algebra in the usual sense. Conversely, every Lie algebra can be considered as a DGLA concentrated in degree 0.

Example 7.3.4. Let A be a DG-algebra and L a DGLA. Then the DG-vector space $L \otimes A$ has a natural structure of DGLA with bracket

$$
[x \otimes a, y \otimes b]=(-1)^{\bar{a} \bar{y}}[x, y] \otimes a b
$$

Example 7.3.5. Let V be a DG-vector space. Then the total Hom complex $\operatorname{Hom}_{\mathbb{K}}^{*}(V, V)$ has a natural structure of DGLA with bracket

$$
[f, g]=f g-(-1)^{\operatorname{deg}(f) \operatorname{deg}(g)} g f .
$$

Notice that the differential on $\operatorname{Hom}_{\mathbb{K}}^{*}(V, V)$ is equal to the adjoint operator $[d,-]$, where d is the differential of V.

Example 7.3.6. Let E be a holomorphic vector bundle on a complex manifold M. We may define a DGLA $L=\oplus L^{p}, L^{p}=\Gamma\left(M, \mathcal{A}^{0, p}(\mathcal{E} n d(E))\right)$ with the Dolbeault differential and the natural bracket. More precisely if e, g are local holomorphic sections of $\mathcal{E n d}(E)$ and ϕ, ψ differential forms we define $d(\phi e)=(\bar{\partial} \phi) e,[\phi e, \psi g]=\phi \wedge \psi[e, g]$.

Example 7.3.7. Let T_{M} be the holomorphic tangent bundle of a complex manifold M. The Kodaira-Spencer DGLA is defined as $K S(M)=\oplus \Gamma\left(M, \mathcal{A}^{0, p}\left(T_{M}\right)\right)[-p]$ with the Dolbeault differential; if z_{1}, \ldots, z_{n} are local holomorphic coordinates we have $\left[\phi d \bar{z}_{I}, \psi d \bar{z}_{J}\right]=[\phi, \psi] d \bar{z}_{I} \wedge d \bar{z}_{J}$ for $\phi, \psi \in \mathcal{A}^{0,0}\left(T_{M}\right), I, J \in \bigwedge^{*}\{1, \ldots, n\}$.

There is an obvious notion of morphism of differential graded Lie algebras: it is a morphism of DG-vector spaces commutaing with brackets. The category of differential graded Lie algebras will be denoted DGLA.

Example 7.3.8. The fiber product $L \times_{H} M$ of two morphisms $f: L \rightarrow H, g: M \rightarrow H$ of DGLA is a DGLA with bracket

$$
[(a, x),(b, y)]=([a, b],[x, y])
$$

Definition 7.3.9. A quasiisomorphism of DGLAs is a morphism of DGLA which is a quasiisomorphism of DG-vector spaces. Two DGLA's are said to be quasiisomorphic if they are equivalent under the equivalence relation generated by quasiisomorphisms.

Example 7.3.10. Denote by $\mathbb{K}[t, d t]$ the differential graded algebra of polynomial differential forms over the affine line and, for every differential graded Lie algebra L denote $L[t, d t]=$ $L \otimes \mathbb{K}[t, d t]$. As a graded vector space $L[t, d t]$ is generated by elements of the form $a q(t)+b p(t) d t$, for $p, q \in \mathbb{K}[t]$ and $a, b \in L$. The differential and the bracket on $L[t, d t]$ are

$$
\begin{aligned}
& d(a q(t)+b p(t) d t)=(d a) q(t)+(-1)^{\operatorname{deg}(a)} a q(t)^{\prime} d t+(d b) p(t) d t \\
& {[a q(t), c h(t)]=[a, c] q(t) h(t), \quad[a q(t), c h(t) d t]=[a, c] q(t) h(t) d t}
\end{aligned}
$$

For every $s \in \mathbb{K}$, the evaluation morphism

$$
e_{s}: L[t, d t] \rightarrow L, \quad e_{s}(a q(t)+b p(t) d t)=q(s) a
$$

is a morphism of differential graded Lie algebras. According to Lemma 7.2.6 and Künneth formulas, it is also a quasiisomorphism of DGLA.

Example 7.3.11. Let $f: L \rightarrow H, g: M \rightarrow H$ be two morphisms of differential graded Lie algebras. Their homotopy fiber product is defined as

$$
L \times_{H}^{h} M:=\{(l, m, h(t)) \in L \times M \times H[t, d t] \mid h(0)=f(l), h(1)=g(m)\},
$$

where for every $s \in \mathbb{K}$ we denote for simplicity $h(s)=e_{s}(h(t))$. It is immediate to verify that it is a differential graded Lie algebras and that the natural projections

$$
L \times_{H}^{h} M \rightarrow L, \quad L \times{ }_{H}^{h} M \rightarrow M,
$$

are surjective morphisms of DGLAs.
Remark 7.3.12. In the notation of Example 7.3.11, it is an easy exercise to prove that, if $f: L \rightarrow H$ is a quasiisomorphism, then the projection $L \times{ }_{H}^{h} M \rightarrow M$ is a quasiisomorphism. This is a consequence of a more general results that we will prove in ??.

Using this fact it is immediate to observe that two differential graded Lie algebas L, M are quasiisomorphic if and only if there exists a DGLA K and two quasiisomorphisms $K \rightarrow L$, $K \rightarrow M$.

The cohomology of a DGLA is itself a differential graded Lie algebra with the induced bracket and zero differential:

Definition 7.3.13. A DGLA L is called formal if it is quasiisomorphic to its cohomology DGLA $H^{*}(L)$.

We will see later on, that there exists differential graded Lie algebras that are not formal.
Lemma 7.3.14. For every $D G$-vector space V, the differential graded Lie algebra $\operatorname{Hom}^{*}(V, V)$ is formal.

Proof. For every index i we choose a vector subspace $H^{i} \subset Z^{i}(V)$ such that the projection $H^{i} \rightarrow H^{i}(V)$ is bijective. The graded vector space $H=\oplus H^{i}$ is a quasiisomorphic subcomplex of V. The subspace $K=\left\{f \in \operatorname{Hom}^{*}(V, V) \mid f(H) \subset H\right\}$ is a differential graded Lie subalgebra and there exists a commutative diagram of complexes with exact rows

The maps α and β are morphisms of differential graded Lie algebras. The complex $\operatorname{Hom}^{*}(H, V / H)$ is acyclic and γ is a quasiisomorphism, therefore also α and β are quasiisomorphisms.

7.4. Further examples of differential graded Lie algebras

Given a graded vector space V and a bilinear map $\bullet: V \times V \rightarrow V$ such that $V^{i} \bullet V^{j} \subset V^{i+j}$, the vector

$$
A(x, y, z)=(x \bullet y) \bullet z-x \bullet(y \bullet z)
$$

is called the associator of the triple x, y, z : the product \bullet is associative if and only if $A(x, y, z)=$ 0 for every x, y, z.

Lemma 7.4.1. Assume that the associator is graded symmetric in the last two variables, i.e. $A(x, y, z)=(-1)^{\bar{y} \bar{z}} A(x, z, y)$. Then the graded commutator

$$
[x, y]=x \bullet y-(-1)^{\bar{x} \bar{y}} y \bullet x
$$

satisfies the graded Jacobi identity.
Proof. Straightforward.
Example 7.4.2 (The Gerstenhaber bracket). Let A be a vector space and, for every integer $n \geq 0$ let $V^{n}=\operatorname{Hom}_{\mathbb{K}}\left(\bigotimes^{n+1} A, A\right)$ be the space of multilinear maps

$$
f: \underbrace{A \times \cdots \times A}_{n+1} \rightarrow A .
$$

The Gerstenhaber product is defined as

$$
\begin{gathered}
\bullet: V^{n} \times V^{m} \rightarrow V^{n+m} \\
(f \bullet g)\left(a_{0}, \ldots, a_{n+m}\right)=\sum_{i=0}^{n}(-1)^{i m} f\left(a_{0}, \ldots, a_{i-1}, g\left(a_{i}, \ldots, a_{i+m}\right), a_{i+m+1}, \ldots, a_{n+m}\right)
\end{gathered}
$$

It is easy to verify that the associator is graded symmetric in the last two variables and then the graded commutator

$$
[x, y]=x \bullet y-(-1)^{\bar{x} \bar{y}} y \bullet x,
$$

called Gerstenhaber bracket satisfies graded Jacobi identity. Notice that for an element $m \in V^{1}$ we have $[m, m]=2 m \bullet m$ and

$$
m \bullet m(a, b, c)=m(m(a, b), c)-m(a, m(b, c))
$$

Therefore $[m, m]=0$ if and only if $m: A \times A \rightarrow A$ is an associative product.
Example 7.4.3 (The Hochschild DGLA). Let A be an associative \mathbb{K}-algebra and denote by $m: A \times A \rightarrow A, m(a, b)=a b$, the multiplication map. We have seen that the graded vector space

$$
\operatorname{Hoch}^{*}(A)=\bigoplus_{n \geq 0} \operatorname{Hoch}^{n}(A), \quad \operatorname{Hoch}^{n}(A)=\operatorname{Hom}_{\mathbb{K}}\left(\bigotimes^{n+1} A, A\right)
$$

endowed with Gerstenhaber bracket is a graded Lie algebra. The Hochschild differential is defined as the linear map

$$
d: \operatorname{Hoch}^{n}(A) \rightarrow \operatorname{Hoch}^{n+1}(A), \quad d(f)=-[f, m] .
$$

In a more explicit form, for $f \in \operatorname{Hoch}^{n}(A)$ we have

$$
\begin{aligned}
& d f\left(a_{0}, \ldots, a_{n+1}\right)=a_{0} f\left(a_{1}, \ldots, a_{n+1}\right)+(-1)^{n} f\left(a_{0}, \ldots, a_{n}\right) a_{n+1} \\
& \quad-\sum_{i=0}^{n}(-1)^{i} f\left(a_{0}, \ldots, a_{i-1}, a_{i} a_{i+1}, a_{i+2}, \ldots, a_{n+1}\right) .
\end{aligned}
$$

Setting

$$
\delta: \operatorname{Hoch}^{n}(A) \rightarrow \operatorname{Hoch}^{n+1}(A), \quad \delta(f)=[m, f]=(-1)^{n} d(f)
$$

Jacobi identity gives:
(1) $\delta^{2}(f)=[m,[m, f]]=\frac{1}{2}[[m, m], f]=0$ since m is associative and then $[m, m]=0$,
(2) $\delta[f, g]=[\delta f, g]+(-1)^{\bar{f}}[f, \delta g]$.

Therefore the triple $\left(\operatorname{Hoch}^{*}(A), \delta,[],\right)$ is a differential graded Lie algebra.
Example 7.4.4 (Derivations). Let A be a DG-algebra over the field \mathbb{K}.

Definition 7.4.5. The DGLA of derivations of a DG-algebra A is $\operatorname{Der}_{\mathbb{K}}^{*}(A, A)=\bigoplus_{n} \operatorname{Der}_{\mathbb{K}}^{n}(A, A)$, where $\operatorname{Der}_{\mathbb{K}}^{n}(A, A)$ is the space of derivations of degree n defined as

$$
\operatorname{Der}_{\mathbb{K}}^{n}(A, A)=\left\{\phi \in \operatorname{Hom}_{\mathbb{K}}^{n}(A, A) \mid \phi(a b)=\phi(a) b+(-1)^{n \bar{a}} a \phi(b)\right\} .
$$

In particular the differential of A is a derivation of degree +1 . It is easy to prove that derivations are closed under graded commutator and then $\operatorname{Der}_{\mathbb{K}}^{*}(A, A)$ is a DG-Lie subalgebra of $\operatorname{Hom}_{\mathbb{K}}^{*}(A, A)$.

Similarly, if L is a DGLA, then $\operatorname{Der}_{\mathbb{K}}^{*}(L, L)=\bigoplus_{n} \operatorname{Der}_{\mathbb{K}}^{n}(L, L)$, where

$$
\operatorname{Der}_{\mathbb{K}}^{n}(L, L)=\left\{\phi \in \operatorname{Hom}_{\mathbb{K}}^{n}(L, L) \mid \phi[a, b]=[\phi(a), b]+(-1)^{n \bar{a}}[a, \phi(b)]\right\}
$$

is a DG-Lie subalgebra of $\operatorname{Hom}_{\mathbb{K}}^{*}(L, L)$.
Example 7.4.6 (Differential operators). Let A be a DG-algebra over the field \mathbb{K} with unit $1 \in A^{0}$. We may consider A as an abelian DG-Lie subalgebra of $\operatorname{Hom}_{\mathbb{K}}^{*}(A, A)$, where every $a \in A$ is identified with the operator

$$
a: A \rightarrow A, \quad a(b)=a b
$$

For every integer k we will denote by

$$
\operatorname{Diff}_{k}(A)=\bigoplus_{n \in \mathbb{Z}} \operatorname{Diff}_{k}^{n}(A) \subset \operatorname{Hom}_{\mathbb{K}}^{*}(A, A)
$$

the graded subspace of differential operators of order $\leq k$: it is defined recursively by setting $\operatorname{Diff}_{k}(A)=0$ for $k<0$ and

$$
\operatorname{Diff}_{k}(A)=\left\{f \in \operatorname{Hom}_{\mathbb{K}}(A, A) \mid[f, a] \in \operatorname{Diff}_{k-1}(A) \forall a \in A\right\}
$$

for $k \geq 0$. Notice that $f \in \operatorname{Diff}_{0}(A)$ if and only if $f(a)=f(1) a$ and every derivation belongs to $\operatorname{Diff}_{1}(A)$.

A very simple induction on $h+k$ gives that

$$
\operatorname{Diff}_{k}(A) \operatorname{Diff}_{h}(A) \subset \operatorname{Diff}_{h+k}(A), \quad\left[\operatorname{Diff}_{k}(A), \operatorname{Diff}_{h}(A)\right] \subset \operatorname{Diff}_{h+k-1}(A)
$$

In particular, the spaces $\operatorname{Diff}_{1}(A)$ and $\operatorname{Diff}(A)=\bigcup_{k} \operatorname{Diff}_{k}(A)$ are DG-Lie subalgebras of $\operatorname{Hom}_{\mathbb{K}}^{*}(A, A)$.

7.5. Maurer-Cartan equation and gauge action

Definition 7.5.1. The Maurer-Cartan equation (also called the deformation equation) of a DGLA L is

$$
d a+\frac{1}{2}[a, a]=0, \quad a \in L^{1} .
$$

The solutions of the Maurer-Cartan equation are called the Maurer-Cartan elements of the DGLA L. The set of such solutions will be denoted $M C(L) \subset L^{1}$.

It is plain that Maurer-Cartan equation commutes with morphisms of differential graded Lie algebras.

The notion of nilpotent Lie algebra extends naturally to the differential graded case; in particular for every DGLA L and every proper ideal I of a local artinian \mathbb{K}-algebra the DGLA $L \otimes I$ is nilpotent.

Assume now that L is a nilpotent DGLA, in particular L^{0} is a nilpotent Lie algebras and we can consider its exponential group $\exp \left(L^{0}\right)$. By Jacobi identity, for every $a \in L^{0}$ the corresponding adjoint operator

$$
\operatorname{ad} a: L \rightarrow L, \quad(\operatorname{ad} a) b=[a, b],
$$

is a nilpotent derivation of degree 0 and then its exponential

$$
e^{\operatorname{ad} a}: L \rightarrow L, \quad e^{\operatorname{ad} a}(b)=\sum_{n \geq 0} \frac{(\operatorname{ad} a)^{n}}{n!}(b)
$$

is an isomorphism of graded Lie algebras, i.e. for every $b, c \in L$ we have

$$
e^{\operatorname{ad} a}([b, c])=\left[e^{\operatorname{ad} a}(b), e^{\operatorname{ad} a}(c)\right]
$$

In particular the quadratic cone $\left\{b \in L^{1} \mid[b, b]=0\right\}$ is stable under the adjoint action of $\exp \left(L^{0}\right)$.

The gauge action is a derived from the adjoint action via the next construction. Given a DGLA $(L,[], d$,$) we can construct a new DGLA \left(L^{\prime},[,]^{\prime}, d^{\prime}\right)$ by setting $\left(L^{\prime}\right)^{i}=L^{i}$ for every $i \neq 1$, $\left(L^{\prime}\right)^{1}=L^{1} \oplus \mathbb{K} d$ (here d is considered as a formal symbol of degree 1) with the bracket and the differential

$$
[a+v d, b+w d]^{\prime}=[a, b]+v d(b)+(-1)^{\bar{a}} w d(a), \quad d^{\prime}(a+v d)=[d, a+v d]^{\prime}=d(a)
$$

Since $\left(L^{\prime}\right)^{[n]} \subset L^{[n-1]}+d L^{[n-2]}$ for every $n \geq 3$, if L is nilpotent, then also L^{\prime} is nilpotent.
The natural inclusion $L \subset L^{\prime}$ is a morphism of DGLA; denote by ϕ the affine embedding $\phi: L^{1} \rightarrow\left(L^{\prime}\right)^{1}, \phi(x)=x+d$. The image of ϕ is stable under the adjoint action and then it makes sense the following definition.
Definition 7.5.2. Let L be a nilpotent DGLA. The gauge action of $\exp \left(L^{0}\right)$ on L^{1} is defined as

$$
e^{a} * x=\phi^{-1}\left(e^{\operatorname{ad} a}(\phi(x))\right)=e^{\operatorname{ad} a}(x+d)-d
$$

Explicitely

$$
\begin{aligned}
e^{a} * x & =\sum_{n \geq 0} \frac{1}{n!}(\operatorname{ad} a)^{n}(x)+\sum_{n \geq 1} \frac{1}{n!}(\operatorname{ad} a)^{n}(d) \\
& =\sum_{n \geq 0} \frac{1}{n!}(\operatorname{ad} a)^{n}(x)-\sum_{n \geq 1} \frac{1}{n!}(\operatorname{ad} a)^{n-1}(d a) \\
& =w+\sum_{n \geq 0} \frac{(\operatorname{ad} a)^{n}}{(n+1)!}([a, x]-d a) .
\end{aligned}
$$

Lemma 7.5.3. Let L be a nilpotent $D G L A$, then:
(1) the set of Maurer-Cartan solutions is stable under the gauge action;
(2) $e^{a} * x=x$ if and only if $[x, a]+d a=0$;
(3) for every $x \in \operatorname{MC}(L)$ and every $u \in L^{-1}$ we have $e^{[x, u]+d u} * x=x$.

Proof. [1] For an element $a \in L^{1}$ we have

$$
d(a)+\frac{1}{2}[a, a]=0 \quad \Longleftrightarrow \quad[\phi(a), \phi(a)]^{\prime}=0
$$

and the quadratic cone $\left\{b+d \in\left(L^{1}\right)^{\prime} \mid[b+d, b+d]^{\prime}=0\right\}$ is stable under the adjoint action of $\exp \left(L^{0}\right)$.
[2] Since ad a is nilpotent, the operator $\sum_{n \geq 0} \frac{(\operatorname{ad} a)^{n}}{(n+1)!}=\frac{e^{\operatorname{ad} a}-1}{\operatorname{ad} a}$ is invertible.
[3] Setting $a=[x, u]+d u$ we have

$$
[x, a]+d a=[x,[x, u]]+[x, d u]+d[x, u]=\frac{1}{2}[[x, x], u]+[d x, u]=0
$$

Remark 7.5.4. For every $a \in L^{0}, x \in L^{1}$, the polynomial $\gamma(t)=e^{t a} * x \in L^{1} \otimes \mathbb{K}[t]$ is the solution of the "Cauchy problem"

$$
\left\{\begin{array}{l}
\frac{d \gamma(t)}{d t}=[a, \gamma(t)]-d a \\
\gamma(0)=x
\end{array}\right.
$$

7.6. Deformation functors associated to a DGLA

In order to introduce the basic ideas of the use of DGLA in deformation theory we begin with an example where technical difficulties are reduced at minimum. Consider a finite complex of vector spaces

$$
(V, \bar{\partial}): \quad 0 \longrightarrow V^{0} \xrightarrow{\bar{\partial}} V^{1} \xrightarrow{\bar{\partial}} \cdots \xrightarrow{\bar{\partial}} V^{n} \longrightarrow 0 .
$$

Given a local artinian \mathbb{K}-algebra A with maximal ideal \mathfrak{m}_{A} and residue field \mathbb{K}, we define a deformation of $(V, \bar{\partial})$ over A as a complex of A-modules of the form

$$
0 \longrightarrow V^{0} \otimes A \xrightarrow{\bar{\partial}_{A}} V^{1} \otimes A \xrightarrow{\bar{\partial}_{A}} \cdots \xrightarrow{\bar{\partial}_{A}} V^{n} \otimes A \longrightarrow 0
$$

such that its residue modulo \mathfrak{m}_{A} gives the complex $(V, \bar{\partial})$. Since, as a \mathbb{K} vector space, $A=$ $\mathbb{K} \oplus \mathfrak{m}_{A}$, this last condition is equivalent to say that

$$
\bar{\partial}_{A}=\bar{\partial}+\xi, \quad \text { where } \quad \xi \in \operatorname{Hom}^{1}(V, V) \otimes \mathfrak{m}_{A}
$$

The "integrability" condition $\bar{\partial}_{A}^{2}=0$ becomes

$$
0=(\bar{\partial}+\xi)^{2}=\bar{\partial} \xi+\xi \bar{\partial}+\xi^{2}=d \xi+\frac{1}{2}[\xi, \xi]
$$

where d and [,] are the differential and the bracket on the differential graded Lie algebra $\operatorname{Hom}^{*}(V, V) \otimes \mathfrak{m}_{A}$.

Two deformations $\bar{\partial}_{A}, \bar{\partial}_{A}^{\prime}$ are isomorphic if there exists a commutative diagram

$$
\begin{aligned}
& 0 \quad V^{0} \otimes A \xrightarrow{\bar{\partial}_{A}^{\prime}} V^{1} \otimes A \quad \xrightarrow{\bar{\partial}_{A}^{\prime}} \cdots \quad \xrightarrow{\bar{\partial}_{A}^{\prime}} V^{n} \otimes A \longrightarrow 0
\end{aligned}
$$

such that every ϕ_{i} is an isomorphism of A-modules whose specialization to the residue field is the identity. Therefore we can write $\phi:=\sum_{i} \phi_{i}=I d+\eta$, where $\eta \in \operatorname{Hom}^{0}(V, V) \otimes \mathfrak{m}_{A}$ and, since \mathbb{K} is assumed of characteristic 0 we can take the logarithm and write $\phi=e^{a}$ for some $a \in \operatorname{Hom}^{0}(V, V) \otimes \mathfrak{m}_{A}$. The commutativity of the diagram is therefore given by the equation $\bar{\partial}_{A}^{\prime}=e^{a} \circ \bar{\partial}_{A} \circ e^{-a}$. Writing $\bar{\partial}_{A}=\bar{\partial}+\xi, \bar{\partial}_{A}^{\prime}=\bar{\partial}+\xi^{\prime}$ and using the relation $e^{a} \circ b \circ e^{-a}=e^{\operatorname{ad} a}(b)$ we get

$$
\xi^{\prime}=e^{\operatorname{ad} a}(\bar{\partial}+\xi)-\bar{\partial}=\xi+\frac{e^{\operatorname{ad} a}-1}{\operatorname{ad} a}([a, \xi]+[a, \bar{\partial}])=\xi+\sum_{n=0}^{\infty} \frac{\operatorname{ad} a^{n}}{(n+1)!}([a, \xi]-d a) .
$$

In particular both the integrability condition and isomorphism are entirely written in terms of the DGLA structure of $\operatorname{Hom}^{*}(V, V) \otimes \mathfrak{m}_{A}$. This leads to the following general construction.

Denote by Art the category of local artinian \mathbb{K}-algebras with residue field \mathbb{K} and by Set the category of sets (we ignore all the set-theoretic problems, for example by restricting to some universe). Unless otherwise specified, for every objects $A \in$ Art we denote by \mathfrak{m}_{A} its maximal ideal.

Let $L=\oplus L^{i}$ be a DGLA over \mathbb{K}, we can define the following three functors:
(1) The exponential functor $\exp _{L}: \mathbf{A r t}_{\mathbb{K}} \rightarrow \mathbf{G r p}$,

$$
\exp _{L}(A)=\exp \left(L^{0} \otimes \mathfrak{m}_{A}\right)
$$

It is immediate to see that $\exp _{L}$ is smooth.
(2) The Maurer-Cartan functor $M C_{L}: \mathbf{A r t}_{\mathbb{K}} \rightarrow$ Set defined by

$$
M C_{L}(A)=M C\left(L \otimes \mathfrak{m}_{A}\right)=\left\{x \in L^{1} \otimes \mathfrak{m}_{A} \left\lvert\, d x+\frac{1}{2}[x, x]=0\right.\right\} .
$$

(3) The gauge action of the group $\exp \left(L^{0} \otimes \mathfrak{m}_{A}\right)$ on the set $M C\left(L \otimes \mathfrak{m}_{A}\right)$ is functorial in A and gives an action of the group functor $\exp _{L}$ on the Maurer-Cartan functor $M C_{L}$. The quotient functor $\operatorname{Def}_{L}=M C_{L} / G_{L}$ is called the deformation functor associated to the DGLA L. For every $A \in \mathbf{A r t}_{\mathbb{K}}$
we have

$$
\operatorname{Def}_{L}(A)=\frac{M C\left(L \otimes \mathfrak{m}_{A}\right)}{\exp \left(L^{0} \otimes \mathfrak{m}_{A}\right)}=\frac{\left\{x \in L^{1} \otimes \mathfrak{m}_{A} \left\lvert\, d x+\frac{1}{2}[x, x]=0\right.\right\}}{\text { gauge action }}
$$

Both MC_{L} and Def_{L} are deformation functors in the sense of Definition 4.1.5; in fact MC_{L} commutes with fiber products, while, according to Proposition 4.2.7 Def L_{L} is a deformation functor and the projection $\mathrm{MC}_{L} \rightarrow \operatorname{Def}_{L}$ is smooth.

The reader should make attention to the difference between the deformation functor Def_{L} associated to a DGLA L and the functor of deformations of a DGLA L.

Lemma 7.6.1. If $L \otimes \mathfrak{m}_{A}$ is abelian then $\operatorname{Def}_{L}(A)=H^{1}(L) \otimes \mathfrak{m}_{A}$. In particular

$$
T^{1} \operatorname{Def}_{L}=\operatorname{Def}_{L}(\mathbb{K}[\epsilon])=H^{1}(L) \otimes \mathbb{K} \epsilon, \quad \epsilon^{2}=0
$$

Proof. The Maurer-Cartan equation reduces to $d x=0$ and then $\mathrm{MC}_{L}(A)=Z^{1}(L) \otimes \mathfrak{m}_{A}$. If $a \in L^{0} \otimes \mathfrak{m}_{A}$ and $x \in L^{1} \otimes \mathfrak{m}_{A}$ we have

$$
e^{a} * x=x+\sum_{n \geq 0} \frac{a d(a)^{n}}{(n+1)!}([a, x]-d a)=x-d a
$$

and then $\operatorname{Def}_{L}(A)=\frac{Z^{1}(L) \otimes \mathfrak{m}_{A}}{d\left(L^{0} \otimes \mathfrak{m}_{A}\right)}=H^{1}(L) \otimes \mathfrak{m}_{A}$.
It is clear that every morphism $\alpha: L \rightarrow N$ of DGLA induces morphisms of functors $G_{L} \rightarrow$ $G_{N}, M C_{L} \rightarrow M C_{N}$. These morphisms are compatible with the gauge actions and therefore induce a morphism between the deformation functors $\operatorname{Def}_{\alpha}: \operatorname{Def}_{L} \rightarrow \operatorname{Def}_{N}$.

Obstructions for MC_{L} and Def_{L}. . Let L be a differential graded Lie algebra. We want to show that MC_{L} has a "natural" obstruction theory $\left(H^{2}(L), v_{e}\right)$.

Let's consider a small extension in Art

$$
e: \quad 0 \longrightarrow M \longrightarrow A \longrightarrow B \longrightarrow 0
$$

and let $x \in \mathrm{MC}_{L}(B)=\left\{x \in L^{1} \otimes \mathfrak{m}_{B} \left\lvert\, d x+\frac{1}{2}[x, x]=0\right.\right\} ;$ we define an obstruction $v_{e}(x) \in$ $H^{2}(L \otimes M)=H^{2}(L) \otimes M$ in the following way: first take a lifting $\tilde{x} \in L^{1} \otimes \mathfrak{m}_{A}$ of x and consider $h=d \tilde{x}+\frac{1}{2}[\tilde{x}, \tilde{x}] \in L^{2} \otimes M$; we have

$$
d h=d^{2} \tilde{x}+[d \tilde{x}, \tilde{x}]=[h, \tilde{x}]-\frac{1}{2}[[\tilde{x}, \tilde{x}], \tilde{x}] .
$$

Since $\left[L^{2} \otimes M, L^{1} \otimes \mathfrak{m}_{A}\right]=0$ we have $[h, \tilde{x}]=0$, by Jacobi identity $[[\tilde{x}, \tilde{x}], \tilde{x}]=0$ and then $d h=0$. Define $v_{e}(x)$ as the class of h in $H^{2}(L \otimes M)=H^{2}(L) \otimes M$; the first thing to prove is that $v_{e}(x)$ is independent from the choice of the lifting \tilde{x}; every other lifting is of the form $y=\tilde{x}+z, z \in L^{1} \otimes M$ and then

$$
d \tilde{y}+\frac{1}{2}[y, y]=h+d z
$$

It is evident from the above computation that $\left(H^{2}(L), v_{e}\right)$ is a complete obstruction theory for the functor MC_{L}.

Lemma 7.6.2. The complete obstruction theory described above for the functor MC_{L} is invariant under the gauge action and then it is also a complete obstruction theory for Def_{L}.

Proof. Since the projection $\mathrm{MC}_{L} \rightarrow \operatorname{Def}_{L}$ is smooth, it is sufficient to apply the general properties of universal obstruction theories. It is instructive to give also a direct and elementary proof of this lemma. Let x, y be two gauge equivalent solutions of the Maurer-Cartan equation in $L \otimes \mathfrak{m}_{B}$ and let $\tilde{x} \in L^{1} \otimes \mathfrak{m}_{A}$ be a lifting of x. It is sufficient to prove that there exists a lifting \tilde{y} of y such that

$$
h:=d \tilde{x}+\frac{1}{2}[\tilde{x}, \tilde{x}]=d \tilde{y}+\frac{1}{2}[\tilde{y}, \tilde{y}] .
$$

Let $a \in L^{0} \otimes \mathfrak{m}_{B}$ be such that $e^{a} * x=y$, choose a lifting $\tilde{a} \in L^{0} \otimes \mathfrak{m}_{A}$ and define $e^{\tilde{a}} * \tilde{x}=\tilde{y}$. We have

$$
d \tilde{y}+\frac{1}{2}[\tilde{y}, \tilde{y}]=[\tilde{y}+d, \tilde{y}+d]^{\prime}=\left[e^{\operatorname{ad} \tilde{a}}(\tilde{x}+d), e^{\operatorname{ad} \tilde{a}}(\tilde{x}+d)\right]^{\prime}=e^{\operatorname{ad} \tilde{a}}[\tilde{x}+d, \tilde{x}+d]^{\prime}=e^{\operatorname{ad} \tilde{a}}(h)=h .
$$

Finally, it is clear that every morphism of differential graded Lie algebras $f: L \rightarrow M$ induces natural transformations of functors

$$
f: \mathrm{MC}_{L} \rightarrow \mathrm{MC}_{M}, \quad f: \operatorname{Def}_{L} \rightarrow \operatorname{Def}_{M}
$$

7.7. Semicosimplicial groupoids

For reader convenience we recall some basic notion of category theory. For simplicity of notation, if \mathbf{C} is a category we shall write $x \in \mathbf{C}$ if x is an object and $f \in \operatorname{Mor}_{\mathbf{C}}$ if f is a morphism.

Definition 7.7.1. A small category is a category whose class of objects is a set.
Example 7.7.2. The category of finite ordinals $\boldsymbol{\Delta}$ is a small category.
Definition 7.7.3. A groupoid is a small category such that every morphism is an isomorphism. We will denote by Grpd the category of groupoids.

Notice that, for a groupoid G and every object $g \in G$ the set $\operatorname{Mor}_{G}(g, g)$ is a group.
Example 7.7.4. The fundamental groupoid $\pi_{\leq 1}(X)$ of a topological space X is defined in the following way: the set of objects is X, while the morphisms are the continuos path up to homotopy of paths.

Definition 7.7.5. For a groupoid G we well denote by $\pi_{0}(G)$ the set of isomorphism classes of objects of G and, for every $g \in G$ we will denote $\pi_{1}(G, g)=\operatorname{Mor}_{G}(g, g)$.

It is clear that every equivalence of groupoids $f: G \rightarrow E$ induce a bijection $f: \pi_{0}(G) \rightarrow$ $\pi_{0}(E)$.

Definition 7.7.6. Let

$$
G^{\Delta}: \quad G_{0} \Longrightarrow G_{1} \Longrightarrow G_{2} \equiv \frac{3}{\rightrightarrows} \cdots
$$

be a semicosimplicial groupoid with face maps $\partial_{i}: G_{n} \rightarrow G_{n+1}: \partial_{l} \partial_{k}=\partial_{k+1} \partial_{l}$, for any $l \leq k$.
The total groupoid $\operatorname{Tot}\left(G^{\Delta}\right)$ is defined in the following way (cf. [25, 46, 55]):
(1) The objects of $\operatorname{Tot}\left(G^{\Delta}\right)$ are the pairs (l, m) with $l \in G_{0}$ and m is a morphism in G_{1} between $\partial_{0} l$ and $\partial_{1} l$ such that the diagram

is commutative in G_{2}.
(2) The morphisms between $\left(l_{0}, m_{0}\right)$ and $\left(l_{1}, m_{1}\right)$ are morphisms a in G_{0} between l_{0} and l_{1} making the diagram

commutative in G_{1}.
Example 7.7.7. caso delle SCLA. Da scrivere

7.8. Deligne groupoids

Definition 7.8.1. Let L be a nilpotent differential graded Lie algebra. The Deligne groupoid of L is the groupoid $\operatorname{Del}(L)$ defined as follows:
(1) the set of objects is $\mathrm{MC}(L)$,
(2) the morphisms are

$$
\operatorname{Mor}_{\operatorname{Del}(L)}(x, y)=\left\{e^{a} \in \exp \left(L^{0}\right) \mid e^{a} * x=y\right\}, \quad x, y \in \operatorname{MC}(L)
$$

Definition 7.8.2. Let L be a nilpotent differential graded Lie algebra. The irrelevant stabilizer of a Maurer-Cartan element $x \in \operatorname{MC}(L)$ is defined as the subgroup (see Lemma 7.5.3):

$$
I(x)=\left\{e^{d u+[x, u]} \mid u \in L^{-1}\right\} \subset \operatorname{Mor}_{\operatorname{Del}(L)}(x, x)
$$

Lemma 7.8.3. Let L be a nilpotent differential graded Lie algebra, $a \in L^{0}$ and $x \in \operatorname{MC}(L)$. Then

$$
e^{a} I(x) e^{-a}=I(y), \quad \text { where } \quad y=e^{a} * x
$$

In particular $I(x)$ is a normal subgroup of $\operatorname{Mor}_{\operatorname{Del}(L)}(x, x)$ and there exists a natural isomorphism

$$
\frac{\operatorname{Mor}_{\operatorname{Del}(L)}(x, y)}{I(x)}=\frac{\operatorname{Mor}_{\operatorname{Del}(L)}(x, y)}{I(y)}
$$

with $I(x)$ and $I(y)$ acting in the obvious way.
Proof. Recall that for every $a, b \in L^{0}$ we have

$$
e^{a} e^{b} e^{-a}=e^{\operatorname{ad} a}\left(e^{b}\right)=e^{c}, \quad \text { where } \quad c=e^{\operatorname{ad} a}(b)
$$

and then $e^{a} e^{[x, u]+d u} e^{-a}=e^{c}$, where, setting $v=e^{\operatorname{ad} a}(u)$, we have

$$
c=e^{\operatorname{ad} a}([x, u]+d u)=e^{\operatorname{ad} a}\left([x+d, u]^{\prime}\right)=\left[e^{\operatorname{ad} a}(x+d), v\right]^{\prime}=[y, v]+d v
$$

Definition 7.8.4 ([55, 68, 125]). The reduced Deligne groupoid of a nilpotent differential graded Lie algebra L is the groupoid $\overline{\operatorname{Del}}(L)$ having as objects the Maurer-Cartan elements of L and as morphisms

$$
\operatorname{Mor}_{\overline{\operatorname{Del}}(L)}(x, y):=\frac{\operatorname{Mor}_{\operatorname{Del}(L)}(x, y)}{I(x)}=\frac{\operatorname{Mor}_{\operatorname{Del}(L)}(x, y)}{I(y)}, \quad x, y \in \operatorname{MC}(L)
$$

In order to verify that $\overline{\operatorname{Del}}(L)$ is a groupoid we only need to verify that the (associative) multiplication map

$$
\operatorname{Mor}_{\operatorname{Del}(L)}(y, z) \times \operatorname{Mor}_{\operatorname{Del}(L)}(x, y) \rightarrow \operatorname{Mor}_{\operatorname{Del}(L)}(x, z), \quad\left(e^{a}, e^{b}\right) \mapsto e^{a} e^{b}
$$

factors to a morphism

$$
\frac{\operatorname{Mor}_{\mathrm{Del}(L)}(y, z)}{I(y)} \times \frac{\operatorname{Mor}_{\operatorname{Del}(L)}(x, y)}{I(x)} \rightarrow \frac{\operatorname{Mor}_{\operatorname{Del}(L)}(x, z)}{I(x)}
$$

and this follows immediately from Lemma 7.8.3
Notice that $\pi_{0}(\operatorname{Del}(L))=\pi_{0}(\overline{\operatorname{Del}}(L))=\operatorname{Def}(L)$.
Every cosimplicial nilpotent DGLA gives a semicosimplicial reduced Deligne groupoid and then a total groupoid. Here we are interested to a particular case of this construction.
Definition 7.8.5. Given a pair of morphisms $h, g: L \rightarrow M$ of nilpotent differential graded Lie algebras define

$$
\overline{\operatorname{Del}}(h, g)=\operatorname{Tot}(\overline{\operatorname{Del}}(L) \underset{g}{\Longrightarrow} \overline{\operatorname{Del}}(M) \Longrightarrow 0 \cdots), \quad \operatorname{Def}(h, g)=\pi_{0}(\overline{\operatorname{Del}}(h, g)) .
$$

Lemma 7.8.6. For any pair of morphisms $h, g: L \rightarrow M$ of nilpotent differential graded Lie algebras we have

$$
\operatorname{Def}(h, g)=\frac{\left\{\left(x, e^{a}\right) \in \operatorname{MC}(L) \times \exp \left(M^{0}\right) \mid e^{a} * h(x)=g(x)\right\}}{\sim}
$$

where $\left(x, e^{a}\right) \sim\left(y, e^{b}\right)$ if there exists $\alpha \in L^{0}$ such that $e^{\alpha} * x=y$ and the diagram

is commutative in the reduced Deligne groupoid of M.
Proof. Immediate from definition.
Notice that for $M=0$ we reobtain the usual set $\operatorname{Def}(L)$.
Given a pair of morphisms $h, g: L \rightarrow M$ of differential graded Lie algebras, for every $A \in$ Art we get a pair of morphisms of nilpotent DGLA $h, g: L \otimes \mathfrak{m}_{A} \rightarrow M \otimes \mathfrak{m}_{A}$ and therefore we are in the position to define in the obvius way the functor

$$
\operatorname{Def}_{(h, g)}: \text { Art } \rightarrow \text { Set. }
$$

Proposition 7.8.7. In the notation above, $\operatorname{Def}_{(h, g)}$ is a deformation functor with tangent and obstruction spaces equal to $H^{1}\left(C_{h-g}\right)$ and $H^{2}\left(C_{h-g}\right)$ respectively, being C_{h-g} the suspended mapping cone of the morphism of $D G$-vector spaces $h-g: L \rightarrow M$.

Proof. The fact that $\operatorname{Def}_{(h, g)}$ is a deformation functor follows from Proposition 4.2.7, while it is straighforward to prove the equality $T^{1} \operatorname{Def}_{(h, g)}=H^{1}\left(C_{h-g}\right)$. We now compute obstructions using the description given in Lemma 7.8.6. Let

$$
0 \rightarrow I \rightarrow A \rightarrow B \rightarrow 0
$$

be a small extension and $\left(\hat{x}, e^{\hat{a}}\right) \in \mathrm{MC}\left(L \otimes \mathfrak{m}_{B}\right) \times \exp \left(M^{0} \otimes \mathfrak{m}_{B}\right)$ be such that $e^{\hat{a}} * h(\hat{x})=g(\hat{x})$. Choose a lifting $\left(x, e^{a}\right) \in L^{1} \otimes \mathfrak{m}_{A} \times \exp \left(M^{0} \otimes \mathfrak{m}_{A}\right)$ and consider the elements

$$
r=d x+\frac{1}{2}[x, x] \in L^{2} \otimes I, \quad s=e^{a} * h(x)-g(x) \in M^{1} \otimes I, \quad t=(r, s) \in C_{h-g}^{2} \otimes I .
$$

We first prove that $d t=0$; we already know that $d r=0$; since

$$
\begin{aligned}
& g(r)=d g(x)+\frac{1}{2}[g(x), g(x)]=d\left(e^{a} * h(x)\right)-d s+\frac{1}{2}\left[e^{a} * h(x), e^{a} * h(x)\right] \\
& =\frac{1}{2}\left[e^{a} * h(x)+d, e^{a} * h(x)+d\right]^{\prime}-d s=\frac{1}{2}\left[e^{\operatorname{ad} a}(h(x)+d), e^{\operatorname{ad} a}(h(x)+d)\right]^{\prime}-d s \\
& \\
& =\frac{1}{2} e^{\operatorname{ad} a}[h(x)+d, h(x)+d]^{\prime}-d s=e^{\operatorname{ad} a} h(r)+d s=h(r)-d s .
\end{aligned}
$$

we have $(h-g) r-d s=0$ and then t is a cocycle in C_{h-g}.
If x is replaced with $x+u, u \in L^{1} \otimes I$ and a is replaced with $a+v, v \in M^{0} \otimes I$, the element (r, s) will be replaced with $(r+d u, s+(h-g) u-d v)$. This implies that the cohomology class of t in $H^{2}\left(C_{h-g}\right) \otimes I$ is well defined and is a complete obstruction.

7.9. Homotopy invariance of deformation functors

We shall say that a functor F: DGLA $\rightarrow \mathbf{C}$ is homotopy invariant if for every quasiisomorphism f of DGLA the morphism $\mathrm{F}(f)$ is an isomorphism in the category \mathbf{C}. The main theme of this chapter is to prove that the functor

$$
\text { Def : DGLA } \rightarrow \text { \{Deformation functors }\}
$$

is homotopy invariant.
We have already pointed out that every morphism $f: L \rightarrow N$ of DGLA induces a morphism of associated deformation functors $f: \operatorname{Def}_{L} \rightarrow \operatorname{Def}_{N}$.

Theorem 7.9.1. Let $f: L \rightarrow N$ be a morphism of differential graded Lie algebras. Assume that the morphism $f: H^{i}(L) \rightarrow H^{i}(N)$ is:
(1) surjective for $i=0$,
(2) bijective for $i=1$,
(3) injective for $i=2$.

Then $f: \operatorname{Def}_{L} \rightarrow \operatorname{Def}_{N}$ is an isomorphism of functors.
Corollary 7.9.2. Let $L \rightarrow N$ be a quasiisomorphism of DGLA. Then the induced morphism $\operatorname{Def}_{L} \rightarrow \operatorname{Def}_{N}$ is an isomorphism.

In this chapter we give a proof of the above results that uses obstruction theory and the standard smoothness criterion for deformation functors (Theorem 4.5.12). Before doing this we need some preliminary results of independent interest.

2
One of the most frequent wrong interpretations of Corollary 7.9.2 asserts that if $L \rightarrow N$ is a quasiisomorphism of nilpotent DGLA then $\mathrm{MC}(L) / \exp \left(L^{0}\right) \rightarrow \mathrm{MC}(N) / \exp \left(N^{0}\right)$ is a bijection. This is false in general: consider for instance $L=0$ and $N=\oplus N^{i}$ with $N^{i}=\mathbb{C}$ for $i=1,2, N^{i}=0$ for $i \neq 1,2, d: N^{1} \rightarrow N^{2}$ the identity and $[a, b]=a b$ for $a, b \in N^{1}=\mathbb{C}$.

Lemma 7.9.3. Let $f: L \rightarrow N$ be a morphism of differential graded Lie algebras. If $f: H^{1}(L) \rightarrow$ $H^{1}(N)$ is surjective and $f: H^{2}(L) \rightarrow H^{2}(N)$ is injective, then the morphism $f: \operatorname{Def}_{L} \rightarrow \operatorname{Def}_{N}$ is smooth.

Proof. Since $H^{1}(L)$ is the tangent space of Def_{L} and $H^{2}(L)$ is a complete obstruction space, it is sufficient to apply the standard smoothness criterion.
Example 7.9.4. Let $L=\oplus L^{n}$ be a DGLA such that $\left[L^{1}, L^{1}\right] \cap Z^{2}(L) \subset B^{2}(L)$. Then Def_{L} is smooth. In fact, consider the differential graded Lie subalgebra $N=\oplus N^{i} \subset L$ where:
(1) $N^{i}=0$ for every $i \leq 0$,
(2) $N^{1}=L^{1}$,
(3) $N^{2}=\left[L^{1}, L^{1}\right]+B^{2}(L)$,
(4) $N^{i}=L^{i}$ for every $i>2$.

By assumption $H^{2}(N)=0$ and then Def_{N} is smooth. Since $H^{1}(N) \rightarrow H^{1}(L)$ is surjective, the morphism $\operatorname{Def}_{N} \rightarrow \operatorname{Def}_{L}$ is smooth.
Example 7.9.5. Let $L=\oplus L^{i}$ be a DGLA and choose a vector space decomposition $N^{1} \oplus$ $B^{1}(L)=L^{1}$.

Consider the DGLA $N=\oplus N^{i}$ where $N^{i}=0$ if $i<1$ and $N^{i}=L^{i}$ if $i>1$ with the differential and bracket induced by L. The natural inclusion $N \rightarrow L$ gives isomorphisms $H^{i}(N) \rightarrow H^{i}(L)$ for every $i \geq 1$. In particular the morphism $\operatorname{Def}_{N} \rightarrow \operatorname{Def}_{L}$ is smooth and induce an isomorphism on tangent spaces $T^{1} \operatorname{Def}_{N}=T^{1} \operatorname{Def}_{L}$.

Let now $f: L \rightarrow M$ be a fixed morphism of differential graded Lie algebras and denote by $p_{0}, p_{1}: L \times L \rightarrow L$ the projections.

The commutative diagram of differential graded Lie algebras

induce a natural transformation of functors

$$
\eta: \operatorname{Def}\left(p_{0}, p_{1}\right) \rightarrow \operatorname{Def}\left(f p_{0}, f p_{1}\right)
$$

Lemma 7.9.6. In the above set-up, if $f: H^{0}(L) \rightarrow H^{0}(M)$ is surjective and $f: H^{1}(L) \rightarrow$ $H^{1}(M)$ is injective, then the morphism η is smooth.

Proof. According to Proposition 7.8 .7 and standard smoothness criterion it is sufficient to prove that $f: H^{1}\left(C_{p_{0}-p_{1}}\right) \rightarrow H^{1}\left(C_{f p_{0}-f p_{1}}\right)$ is surjective and $f: H^{2}\left(C_{p_{0}-p_{1}}\right) \rightarrow H^{2}\left(C_{f p_{0}-f p_{1}}\right)$ is injective. This follows by a straighforward diagram chasing on the morphism of exact sequences

Proof of Theorem 7.9.1. Using the notation introduced above, we have already proved that the morphisms

$$
f: \operatorname{Def}_{L} \rightarrow \operatorname{Def}_{M}, \quad \eta: \operatorname{Def}\left(p_{0}, p_{1}\right) \rightarrow \operatorname{Def}\left(f p_{0}, f p_{1}\right)
$$

are smooth. Given $A \in$ Art we need to prove that if $x, y \in \mathrm{MC}_{L}(A)$ and there exists $b \in M^{0} \otimes \mathfrak{m}_{A}$ such that $e^{b} * f(x)=f(y)$, then x is gauge equivalent to y. Using the notation of Lemma 7.8.6, since $\left(x, y, e^{b}\right) \in \operatorname{Def}\left(f p_{0}, f p_{1}\right)(A)$ and η is smooth, there exists $\left(u, v, e^{a}\right) \in \operatorname{Def}\left(p_{0}, p_{1}\right)(A)$ such that $\eta\left(u, v, e^{a}\right)=\left(x, y, e^{b}\right)$, i.e.

$$
\left(u, v, e^{f(a)}\right) \sim\left(x, y, e^{b}\right)
$$

and this implies in particular that there exists $\alpha \in\left(L^{0} \times L^{0}\right) \otimes \mathfrak{m}_{A}$ such that

$$
e^{a} * u=v, \quad e^{\alpha} *(u, v)=(x, y)
$$

and then x, y are gauge equivalent.

Definition 7.9.7. Let L be a DGLA and $x, y \in \operatorname{MC}(L)$. We shall say that x and y are homotopy equivalent if there is some $\xi \in \operatorname{MC}(L[t, d t])$ such that $e_{0}(\xi)=x$ and $e_{1}(\xi)=y$. Here $L[t, d t]=L \otimes \mathbb{K}[t, d t]$ and $e_{0}, e_{1}: L[t, d t] \rightarrow L$ are the evaluation maps at $t=0$ and $t=1$ respectively.

We will denote by $\pi_{0}(\mathrm{MC} \cdot(L))$ the quotient of $\mathrm{MC}(L)$ under the equivalence relation generated by homotopy. ${ }^{1}$

The construction of $\pi_{0}\left(\mathrm{MC}_{\bullet}\right)$ is functorial and then we may define a functor

$$
\pi_{0}\left(\mathrm{MC}_{\bullet}\right)_{L}: \mathbf{A r t}_{\mathbb{K}} \rightarrow \text { Set, } \quad \pi_{0}\left(\mathrm{MC}_{\bullet}\right)_{L}(A)=\pi_{0}\left(\mathrm{MC}\left(L \otimes \mathfrak{m}_{A}\right)\right)
$$

Corollary 7.9.8. For every differential graded Lie algebra L, the projection $\mathrm{MC}_{L} \rightarrow \pi_{0}(\mathrm{MC} \bullet)_{L}$ factors to an isomorphism of functors $\operatorname{Def}_{L} \rightarrow \pi_{0}\left(\mathrm{MC}_{\bullet}\right)_{L}$.

Proof. Let L be be DGLA, since the inclusion $L \rightarrow L[t, d t]$ is a quasiisomorphism the natural transformation $\operatorname{Def}_{L} \rightarrow \operatorname{Def}_{L[t, d t]}$ is an isomorphism. Given $A \in \operatorname{Art}$ and $x, y \in \operatorname{MC}(L \otimes$ \mathfrak{m}_{A}), it is sufficient to prove that x, y are gauge equivalent if and only if they are homotopy equivalent. Recall that x is gauge equivalent to y if there is some $a \in L^{0} \otimes \mathfrak{m}_{A}$ such that $e^{a} * x=y$, whereas x is homotopy equivalent to y if there is some $z(t) \in \operatorname{MC}\left(L[t, d t] \otimes \mathfrak{m}_{A}\right)$ such that $z(0)=x$ and $z(1)=y$.

So first, assume $e^{a} * x=y$; then we can consider $x \in \operatorname{MC}\left(L \otimes \mathfrak{m}_{A}\right) \subset \operatorname{MC}\left(L[t, d t] \otimes \mathfrak{m}_{A}\right)$. Since $\exp \left(L^{0}[t] \otimes \mathfrak{m}_{A}\right)$ acts by gauge on $\mathrm{MC}\left(L[t, d t] \otimes \mathfrak{m}_{A}\right)$, for every t we can set $z(t)=e^{t a} * x$. Then $z(0)=x$ and $z(1)=y$.

On the other hand, notice that $\mathrm{MC}_{L}=\mathrm{MC}_{L \geq 1}$ (in fact Maurer-Cartan only depends on L^{1} and L^{2}), so $\operatorname{Def}_{L}=\operatorname{Def}_{L \geq 0}$ and $\mathrm{MC}_{L[t, d t]}=\mathrm{MC}_{L \geq 0}[t, d t]$. So it is not restrictive to assume that $L=\oplus_{n \geq 0} L^{n}$. In this case, $L[t, d t]^{0}=L^{0}[t]$. Now let $z(t) \in \operatorname{MC}\left(L[t, d t] \otimes \mathfrak{m}_{A}\right)$. Then, as we have a smooth morphism $i: \operatorname{Def}_{L}(A) \rightarrow \operatorname{Def}_{L[t, d t]}(A)$, we must have some $x \in \operatorname{MC}_{L}(A)$ which is gauge equivalent to $z(t)$ in $L[t, d t] \otimes \mathfrak{m}_{A}$. So we have $a(t) \in L[t, d t]^{0} \otimes \mathfrak{m}_{A}=L^{0}[t] \otimes \mathfrak{m}_{A}$ such that $e^{a(t)} * x=z(t)$. Now $z(0)=e^{a(0)} * x$ and $z(1)=e^{a(1)} * x$, and this imply that $z(0)$ is gauge equivalent to $z(1)$.
Remark 7.9.9. The first consequences of Corollary 7.9 .8 is that the bifunctor

$$
\pi_{0}(\mathrm{MC} \bullet)=\text { Def }: \mathbf{D G L A} \times \mathbf{A r t} \rightarrow \mathbf{S e t}
$$

is completely determined by the Maurer-Cartan bifunctor

$$
\text { MC }: \mathbf{D G L A} \times \mathbf{A r t} \rightarrow \text { Set. }
$$

7.10. Exercises

Exercise 7.10.1. Let

$$
G^{\Delta}: \quad G_{0} \Longrightarrow G_{1} \Longrightarrow G_{2} \Longrightarrow \ggg
$$

be a semicosimplicial groupoid. Assume that for every i the natural map $G_{i} \rightarrow \pi_{0}\left(G_{i}\right)$ is an equivalence, i.e., every G_{i} is equivalent to a set. Then also $\operatorname{tot}\left(G^{\Delta}\right)$ is equivalent to a set and, more precisely, to the equalizer of the diagram of sets

$$
\pi_{0}\left(G_{0}\right) \Longrightarrow \pi_{0}\left(G_{1}\right) .
$$

[^0]
[^0]: ${ }^{1}$ Using this notation we have implicitely assumed that there exists a groupoid $\mathrm{MC}_{\bullet}(L)$ having $\mathrm{MC}(L)$ as objects and $\mathrm{MC}(L[t, d t])$ as morphisms. This is almost true, in the sense that there exists a natural structure of ∞-groupoid on MC•: we will give the precise definition later on.

