
CHAPTER 7

Differential graded Lie algebras

7.1. Differential graded vector spaces

Every vector space is considered over a fixed field K ; unless otherwise specified, by the
symbol ⊗ we mean the tensor product ⊗K over the field K .

The category DG. By a graded vector space we mean a K -vector spaces V endowed with
a Z-graded direct sum decomposition V = ⊕i∈ZV

i. The elements of Vi are called homogeneous
of degree i.

If V = ⊕n∈ZV
n ∈ G we write deg(a;V ) = i ∈ Z if a ∈ Vi; if there is no possibility of

confusion about V we simply denote a = deg(a;V ).

Definition 7.1.1. A DG-vector space is the data of a graded vector space V = ⊕n∈ZV
n together

a linear map d : V → V , called differential, such that d(V n) ⊂ V n+1 for every n and d2 =
d ◦ d = 0.

A morphism f : (V, dV ) → (W,dW ) of DG-vector spaces is a linear map f : V → W such
that f(V n) ⊂Wn for every n and dW f = fdV .

The category of DG-vector spaces will be denoted DG.

Thus, giving a morphism f : (V, dV )→ (W,dW ) of DG-vector spaces is the same of giving a
sequence of linear maps fn : V n →Wn such that dW fn = fn+1dV for every n.

Given a DG-vector space (V, d) we denote as usual by Z(V ) = ker d the space of cycles, by
B(V ) = d(V ) the space of boundaries and by H(V ) = Z(V )/B(V ) the cohomology of V .

A morphism in DG is called a quasiisomorphism, or a weak equivalence, if it induces
an isomorphism in cohomology. A DG-vector space (V, d) is called acyclic if H(V ) = 0, i.e. if
it is weak equivalent to 0.

Remark 7.1.2. In a completely similar way we may define dg-vector spaces, in which differen-
tials have degree −1, i.e. d(Vi) ⊂ Vi−1. A differential graded vector space is either a DG-vector
space or a dg-vector space.

Example 7.1.3. Every complex of vector spaces

· · · → V n
d−→V n+1 d−→V n+2 → · · ·

can be trivially considered as a DG-vector space.
Given a double complex Ci,j , i, j ∈ Z, of vector spaces, with differentials

d1 : Ci,j → Ci+1,j , d2 : Ci,j → Ci,j+1, d2
1 = d2

2 = d1d2 + d2d1 = 0

we define the associated total complex as the DG-vector space

Tot(C∗,∗) =
⊕
n∈Z

Tot(C∗,∗)n, Tot(C∗,∗)n =
⊕
i+j=n

Ci,j , d = d1 + d2.

The category DG contains products: more precisely if {(Vi, di)} is a family of DG-vector
spaces, we have∏

i

Vi =
⊕
n∈Z

(
∏
i

Vi)n, (
∏
i

Vi)n =
∏
i

V ni , d({vi}) = {di(vi)}, vi ∈ Vi.
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Künneth formulas. Given two DG-vector spaces V,W we may define their tensor produc
V ⊗W ∈ DG and their internal Hom Hom∗K (V,W ) ∈ DG in the following way:

V ⊗W =
⊕
n∈Z

(V ⊗W )n, where (V ⊗W )n =
⊕
i+j=n

V i ⊗W j ,

d(v ⊗ w) = dv ⊗ w + (−1)vv ⊗ dw.

Hom∗K (V,W ) =
⊕
n∈Z

Homn
K (V,W ), Homn

K (V,W ) = {f : V →W linear | f(V i) ⊂W i+n ∀i}.

d : Homn
K (V,W )→ Homn+1

K (V,W ), df(v) = dW (f(v))− (−1)nf(dV (v)).
We point out that for every V,W,Z ∈ DG we have a natural isomorphism abelian groups

HomDG(V,W ) = Z0(Hom∗K (V,W )),

HomDG(V ×W,Z) = HomDG(V,Hom∗K (W,Z)).

Theorem 7.1.4 (Künneth formulas). Given a DG-vector space V , consider its cohomology
H∗(V ) =

⊕
nH

n(V ) as a DG-vector space with trivial differential. For every pair of DG-vector
spaces there exists natural isomorphisms

H∗(V ⊗W ) = H∗(V )⊗H∗(W ), H∗(Hom∗K (V,W )) = Hom∗K (H∗(V ), H∗(W )).

Proof. See e.g. the book [120]. �

Koszul rule of signs.

Definition 7.1.5. Given V,W ∈ DG, we define the twisting involution

tw ∈ HomDG(V ⊗W,W ⊗ V ), tw(v ⊗ w) = (−1)v ww ⊗ v.

Using the Koszul signs convention means that we choose as natural isomorphism between
V ⊗W and W ⊗ V the twisting map tw and we make every commutation rule compatible with
tw. More informally, to “get the signs right”, whenever an “object of degree d passes on the
other side of an object of degree h, a sign (−1)dh must be inserted”.

Example 7.1.6. Assume that f ∈ Hom∗K (V,W ) and g ∈ Hom∗K (H,K). Then the Koszul rule
of signs implies that the correct definition of f ⊗ g ∈ Hom∗K (V ⊗H,W ⊗K) is

(f ⊗ g)(v ⊗ h) = (−1)g vf(v)⊗ g(h).

Notice that tw ◦ (f ⊗ g) ◦ tw = (−1)f gg ⊗ f .

Shifting indices. Given a DG-vector space (V, dV ) and an integer p we can define the
DG-vector space (V [p], dV [p]) by setting

V [p]n = V n+p, dV [p] = (−1)pdV .

Sometimes it is useful to use a different notation. Let s be a formal symbol of degree +1,
so that sp becomes a formal symbol of degree p, for every integer p. Then define

spV = {spv | v ∈ V }, deg spv = p+ deg(v).

Setting dsp = 0, according to Leibniz and Koszul rules we have

d(spv) = d(sp)v + (−1)pspd(v) = (−1)pspd(v).

Clearly (spV )n = V n−p and then spV ' V [−p]. Notice that the natural map

sp : V → spV, v 7→ spv

belongs to Homp
K (V, spV ). Some authors call the sV the suspension of V , s−1V the desus-

pension of V and more generally spV the p-fold suspension of V .
The Koszul rule of signs gives immediately a canonical isomorphism

spV ⊗ sqW → sp+q(V ⊗W ), spv ⊗ sqw 7→ (−1)qvsp+q(v ⊗ w),

Similarly we have Hom∗K (spV, sqW ) ' sq−pHom∗K (V,W ).
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Definition 7.1.7. For a morphism of DG-vector spaces f : V → W we will denote by Cf the
suspension of the mapping cone of f . More explicitely Cf = V ⊕ sW and the differential is

δ : Cnf = V n ⊕Wn−1 → Cn+1
f = V n+1 ⊕Wn, δ(v, w) = (dv, f(v)− dw).

The projection p : Cf → V and the inclusion i : sW → Cf are morphisms of DG-vector
spaces and we have a long exact cohomology sequence

· · · → Hi(V )
f−→Hi(W ) i−→Hi+1(Cf )

p−→Hi+1(V )
f−→Hi+1(W )→ · · ·

In particular, given a commutative square

V

f

��

α // E

g

��
W

β // F

if both α and β are quasiisomorphisms, then also the induced map Cf → Cg is a quasiisomor-
phism.

7.2. DG-algebras

Definition 7.2.1. A DG-algebra (short for Differential graded commutative algebra) is the data
of a DG-vector space A and a morphism of DG-vector spaces

A⊗A→ A, a⊗ b 7→ ab,

called product, which is associative and invariant under the twisting involution.

More concretely, this means that for a, b, c ∈ A we have:
(1) (associativity) (ab)c = a(bc),
(2) (graded commutativity) ab = (−1)a bba,
(3) (graded Leibniz) d(ab) = d(a)b+ (−1)aad(b).

A morphism of DG-algebras is simply a morphism of DG-vector spaces commuting with
products. The category fo DG-algebras will be denoted by DGA. A DG-algebra A is called
unitary if there exists a unit 1 ∈ A0.

Example 7.2.2. Every commutative K -algebra can be considered as a DG-algebra concentrated
in degree 0.

Example 7.2.3. The de Rham complex of a smooth manifold, endowed with wedge product is
a DG-algebra.

Example 7.2.4 (Koszul algebras). Let V be a vector space and consider the graded algebra

A =
⊕
n≤0

An, A−n =
∧n

V ,

with the wedge product as a multiplication map. Given a linear map f : V → K , we may define
a differential d : A−i → A−i+1, i ≥ 0:

d = f y :
i∧
V →

i−1∧
V ,

where the contraction operator y is defined by the formula

f y(v1 ∧ · · · ∧ vh) =
h∑
j=1

(−1)j−1f(vj)v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vh.

Example 7.2.5. The de Rham complex of algebraic differential forms on the affine line will be
denoted by K [t, dt]. We may write

K [t, dt] = K [t]⊕K [t]dt

where t, dt are indeterminates of degrees t = 0, dt = 1 and the differential d is determined by the
“obvious” equality d(t) = dt and therefore d(p(t)+q(t)dt) = p(t)′dt. The inclusion K → K [t, dt]
and the evaluation maps

es : K [t, dt]→ K , p(t) + q(t)dt 7→ p(s), s ∈ K ,
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are morphisms of DG-algebras.

Lemma 7.2.6. In characteristic 0, every evaluation morphism es : K [t, dt] → K is a quasiiso-
morphism.

Proof. If i : K → K [t, dt] is the natural inclusion, we have es ◦ i = Id and then it is
sufficient to prove that i is a quasiisomorphism. This is obvious since every cocycle of K [t, dt] is
of type a+ q(t)dt with a ∈ K and q(t)dt is exact, being the differential of

∫ t
0
q(s)ds. �

The tensor product of two DG-algebras is still a DG-algebra; clearly we need to take attention
to Koszul sign convention. If A,B are DG-algebras, then the product on A⊗B is defined as the
linear extension of

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)b1 a2a1a2 ⊗ b1b2.

7.3. Differential graded Lie algebras

In this section K will be a field of characteristic 0.

Definition 7.3.1. A differential graded Lie algebra (DGLA for short) is the data of a
DG-vector space (L, d) with a bilinear bracket [, ] : L×L→ L satisfying the following condition:

(1) [ , ] is homogeneous skewsymmetric: this means [Li, Lj ] ⊂ Li+j and [a, b]+(−1)ab[b, a] =
0 for every a, b homogeneous.

(2) Every triple of homogeneous elements a, b, c satisfies the (graded) Jacobi identity

[a, [b, c]] = [[a, b], c] + (−1)a b[b, [a, c]].

(3) (graded Leibniz) d[a, b] = [da, b] + (−1)a[a, db].

We should take attention that skewsymmety implies that [a, a] = 0 only if a is of even degree,
while for odd degrees we have the following result.

Lemma 7.3.2. Let L be a DGLA and a ∈ L homogeneous of odd degree. Then [a, [a, a]] = 0.

Proof. By graded Jacobi and graded skesymmetry we have

[a, [a, a]] = [[a, a], a]− [a, [a, a]] = −2[a, [a, a]].

�

Example 7.3.3. If L = ⊕Li is a DGLA then L0 is a Lie algebra in the usual sense. Conversely,
every Lie algebra can be considered as a DGLA concentrated in degree 0.

Example 7.3.4. Let A be a DG-algebra and L a DGLA. Then the DG-vector space L⊗A has
a natural structure of DGLA with bracket

[x⊗ a, y ⊗ b] = (−1)a y[x, y]⊗ ab.

Example 7.3.5. Let V be a DG-vector space. Then the total Hom complex Hom∗K (V, V ) has
a natural structure of DGLA with bracket

[f, g] = fg − (−1)deg(f) deg(g)gf.

Notice that the differential on Hom∗K (V, V ) is equal to the adjoint operator [d,−], where d is the
differential of V .

Example 7.3.6. Let E be a holomorphic vector bundle on a complex manifold M . We may
define a DGLA L = ⊕Lp, Lp = Γ(M,A0,p(End(E))) with the Dolbeault differential and the nat-
ural bracket. More precisely if e, g are local holomorphic sections of End(E) and φ, ψ differential
forms we define d(φe) = (∂φ)e, [φe, ψg] = φ ∧ ψ[e, g].

Example 7.3.7. Let TM be the holomorphic tangent bundle of a complex manifold M . The
Kodaira-Spencer DGLA is defined as KS(M) = ⊕Γ(M,A0,p(TM ))[−p] with the Dolbeault
differential; if z1, . . . , zn are local holomorphic coordinates we have [φdzI , ψdzJ ] = [φ, ψ]dzI∧dzJ
for φ, ψ ∈ A0,0(TM ), I, J ∈

∧∗{1, . . . , n}.
There is an obvious notion of morphism of differential graded Lie algebras: it is a morphism

of DG-vector spaces commutaing with brackets. The category of differential graded Lie algebras
will be denoted DGLA.
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Example 7.3.8. The fiber product L×HM of two morphisms f : L→ H, g : M → H of DGLA
is a DGLA with bracket

[(a, x), (b, y)] = ([a, b], [x, y]).

Definition 7.3.9. A quasiisomorphism of DGLAs is a morphism of DGLA which is a quasi-
isomorphism of DG-vector spaces. Two DGLA’s are said to be quasiisomorphic if they are
equivalent under the equivalence relation generated by quasiisomorphisms.

Example 7.3.10. Denote by K [t, dt] the differential graded algebra of polynomial differential
forms over the affine line and, for every differential graded Lie algebra L denote L[t, dt] =
L⊗K [t, dt]. As a graded vector space L[t, dt] is generated by elements of the form aq(t)+bp(t)dt,
for p, q ∈ K [t] and a, b ∈ L. The differential and the bracket on L[t, dt] are

d(aq(t) + bp(t)dt) = (da)q(t) + (−1)deg(a)aq(t)′dt+ (db)p(t)dt,

[aq(t), ch(t)] = [a, c]q(t)h(t), [aq(t), ch(t)dt] = [a, c]q(t)h(t)dt.

For every s ∈ K , the evaluation morphism

es : L[t, dt]→ L, es(aq(t) + bp(t)dt) = q(s)a

is a morphism of differential graded Lie algebras. According to Lemma 7.2.6 and Künneth
formulas, it is also a quasiisomorphism of DGLA.

Example 7.3.11. Let f : L → H, g : M → H be two morphisms of differential graded Lie
algebras. Their homotopy fiber product is defined as

L×hH M := {(l,m, h(t)) ∈ L×M ×H[t, dt] | h(0) = f(l), h(1) = g(m)},

where for every s ∈ K we denote for simplicity h(s) = es(h(t)). It is immediate to verify that it
is a differential graded Lie algebras and that the natural projections

L×hH M → L, L×hH M →M,

are surjective morphisms of DGLAs.

Remark 7.3.12. In the notation of Example 7.3.11, it is an easy exercise to prove that, if
f : L → H is a quasiisomorphism, then the projection L ×hH M → M is a quasiisomorphism.
This is a consequence of a more general results that we will prove in ??.

Using this fact it is immediate to observe that two differential graded Lie algebas L,M are
quasiisomorphic if and only if there exists a DGLA K and two quasiisomorphisms K → L,
K →M .

The cohomology of a DGLA is itself a differential graded Lie algebra with the induced
bracket and zero differential:

Definition 7.3.13. A DGLA L is called formal if it is quasiisomorphic to its cohomology DGLA
H∗(L).

We will see later on, that there exists differential graded Lie algebras that are not formal.

Lemma 7.3.14. For every DG-vector space V , the differential graded Lie algebra Hom∗(V, V )
is formal.

Proof. For every index i we choose a vector subspace Hi ⊂ Zi(V ) such that the projection
Hi → Hi(V ) is bijective. The graded vector space H = ⊕Hi is a quasiisomorphic subcomplex
of V . The subspace K = {f ∈ Hom∗(V, V ) | f(H) ⊂ H} is a differential graded Lie subalgebra
and there exists a commutative diagram of complexes with exact rows

0 −→ K
α−→ Hom∗(V, V ) −→ Hom∗(H,V/H) −→ 0yβ yγ yId

0 −→ Hom∗(H,H) −→ Hom∗(H,V ) −→ Hom∗(H,V/H) −→ 0

The maps α and β are morphisms of differential graded Lie algebras. The complex Hom∗(H,V/H)
is acyclic and γ is a quasiisomorphism, therefore also α and β are quasiisomorphisms. �
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7.4. Further examples of differential graded Lie algebras

Given a graded vector space V and a bilinear map • : V ×V → V such that V i •V j ⊂ V i+j ,
the vector

A(x, y, z) = (x • y) • z − x • (y • z)
is called the associator of the triple x, y, z: the product • is associative if and only if A(x, y, z) =
0 for every x, y, z.

Lemma 7.4.1. Assume that the associator is graded symmetric in the last two variables, i.e.
A(x, y, z) = (−1)y zA(x, z, y). Then the graded commutator

[x, y] = x • y − (−1)x yy • x
satisfies the graded Jacobi identity.

Proof. Straightforward. �

Example 7.4.2 (The Gerstenhaber bracket). Let A be a vector space and, for every integer
n ≥ 0 let V n = HomK (

⊗n+1
A,A) be the space of multilinear maps

f : A× · · · ×A︸ ︷︷ ︸
n+1

→ A.

The Gerstenhaber product is defined as

• : V n × V m → V n+m,

(f • g)(a0, . . . , an+m) =
n∑
i=0

(−1)imf(a0, . . . , ai−1, g(ai, . . . , ai+m), ai+m+1, . . . , an+m).

It is easy to verify that the associator is graded symmetric in the last two variables and then
the graded commutator

[x, y] = x • y − (−1)x yy • x,
called Gerstenhaber bracket satisfies graded Jacobi identity. Notice that for an element
m ∈ V 1 we have [m,m] = 2m •m and

m •m(a, b, c) = m(m(a, b), c)−m(a,m(b, c)).

Therefore [m,m] = 0 if and only if m : A×A→ A is an associative product.

Example 7.4.3 (The Hochschild DGLA). Let A be an associative K -algebra and denote by
m : A × A → A, m(a, b) = ab, the multiplication map. We have seen that the graded vector
space

Hoch∗(A) =
⊕
n≥0

Hochn(A), Hochn(A) = HomK (
n+1⊗

A,A),

endowed with Gerstenhaber bracket is a graded Lie algebra. The Hochschild differential is
defined as the linear map

d : Hochn(A)→ Hochn+1(A), d(f) = −[f,m].

In a more explicit form, for f ∈ Hochn(A) we have

df(a0, . . . , an+1) = a0f(a1, . . . , an+1) + (−1)nf(a0, . . . , an)an+1

−
n∑
i=0

(−1)if(a0, . . . , ai−1, aiai+1, ai+2, . . . , an+1).

Setting
δ : Hochn(A)→ Hochn+1(A), δ(f) = [m, f ] = (−1)nd(f),

Jacobi identity gives:
(1) δ2(f) = [m, [m, f ]] = 1

2 [[m,m], f ] = 0 since m is associative and then [m,m] = 0,
(2) δ[f, g] = [δf, g] + (−1)f [f, δg].

Therefore the triple (Hoch∗(A), δ, [, ]) is a differential graded Lie algebra.

Example 7.4.4 (Derivations). Let A be a DG-algebra over the field K .
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Definition 7.4.5. The DGLA of derivations of a DG-algebraA is Der∗K (A,A) =
⊕

n DernK (A,A),
where DernK (A,A) is the space of derivations of degree n defined as

DernK (A,A) = {φ ∈ Homn
K (A,A) | φ(ab)=φ(a)b+ (−1)naaφ(b)}.

In particular the differential of A is a derivation of degree +1. It is easy to prove that
derivations are closed under graded commutator and then Der∗K (A,A) is a DG-Lie subalgebra
of Hom∗K (A,A).

Similarly, if L is a DGLA, then Der∗K (L,L) =
⊕

n DernK (L,L), where

DernK (L,L) = {φ ∈ Homn
K (L,L) | φ[a, b] = [φ(a), b] + (−1)na[a, φ(b)]}

is a DG-Lie subalgebra of Hom∗K (L,L).

Example 7.4.6 (Differential operators). Let A be a DG-algebra over the field K with unit
1 ∈ A0. We may consider A as an abelian DG-Lie subalgebra of Hom∗K (A,A), where every
a ∈ A is identified with the operator

a : A→ A, a(b) = ab.

For every integer k we will denote by

Diffk(A) =
⊕
n∈Z

Diffnk (A) ⊂ Hom∗K (A,A)

the graded subspace of differential operators of order ≤ k: it is defined recursively by setting
Diffk(A) = 0 for k < 0 and

Diffk(A) = {f ∈ HomK (A,A) | [f, a] ∈ Diffk−1(A) ∀a ∈ A}
for k ≥ 0. Notice that f ∈ Diff0(A) if and only if f(a) = f(1)a and every derivation belongs to
Diff1(A).

A very simple induction on h+ k gives that

Diffk(A) Diffh(A) ⊂ Diffh+k(A), [Diffk(A),Diffh(A)] ⊂ Diffh+k−1(A).

In particular, the spaces Diff1(A) and Diff(A) =
⋃
k Diffk(A) are DG-Lie subalgebras of

Hom∗K (A,A).

7.5. Maurer-Cartan equation and gauge action

Definition 7.5.1. The Maurer-Cartan equation (also called the deformation equation) of a
DGLA L is

da+
1
2

[a, a] = 0, a ∈ L1.

The solutions of the Maurer-Cartan equation are called the Maurer-Cartan elements of the
DGLA L. The set of such solutions will be denoted MC(L) ⊂ L1.

It is plain that Maurer-Cartan equation commutes with morphisms of differential graded Lie
algebras.

The notion of nilpotent Lie algebra extends naturally to the differential graded case; in
particular for every DGLA L and every proper ideal I of a local artinian K -algebra the DGLA
L⊗ I is nilpotent.

Assume now that L is a nilpotent DGLA, in particular L0 is a nilpotent Lie algebras and
we can consider its exponential group exp(L0). By Jacobi identity, for every a ∈ L0 the corre-
sponding adjoint operator

ad a : L→ L, (ad a)b = [a, b],
is a nilpotent derivation of degree 0 and then its exponential

ead a : L→ L, ead a(b) =
∑
n≥0

(ad a)n

n!
(b),

is an isomorphism of graded Lie algebras, i.e. for every b, c ∈ L we have

ead a([b, c]) = [ead a(b), ead a(c)].

In particular the quadratic cone {b ∈ L1 | [b, b] = 0} is stable under the adjoint action of exp(L0).
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The gauge action is a derived from the adjoint action via the next construction. Given a
DGLA (L, [, ], d) we can construct a new DGLA (L′, [, ]′, d′) by setting (L′)i = Li for every i 6= 1,
(L′)1 = L1 ⊕K d (here d is considered as a formal symbol of degree 1) with the bracket and the
differential

[a+ vd, b+ wd]′ = [a, b] + vd(b) + (−1)awd(a), d′(a+ vd) = [d, a+ vd]′ = d(a).

Since (L′)[n] ⊂ L[n−1] + dL[n−2] for every n ≥ 3, if L is nilpotent, then also L′ is nilpotent.
The natural inclusion L ⊂ L′ is a morphism of DGLA; denote by φ the affine embedding

φ : L1 → (L′)1, φ(x) = x + d. The image of φ is stable under the adjoint action and then it
makes sense the following definition.

Definition 7.5.2. Let L be a nilpotent DGLA. The gauge action of exp(L0) on L1 is defined
as

ea ∗ x = φ−1(ead a(φ(x))) = ead a(x+ d)− d.
Explicitely

ea ∗ x =
∑
n≥0

1
n!

(ad a)n(x) +
∑
n≥1

1
n!

(ad a)n(d)

=
∑
n≥0

1
n!

(ad a)n(x)−
∑
n≥1

1
n!

(ad a)n−1(da)

= w +
∑
n≥0

(ad a)n

(n+ 1)!
([a, x]− da).

Lemma 7.5.3. Let L be a nilpotent DGLA, then:
(1) the set of Maurer-Cartan solutions is stable under the gauge action;
(2) ea ∗ x = x if and only if [x, a] + da = 0;
(3) for every x ∈ MC(L) and every u ∈ L−1 we have e[x,u]+du ∗ x = x.

Proof. [1] For an element a ∈ L1 we have

d(a) +
1
2

[a, a] = 0 ⇐⇒ [φ(a), φ(a)]′ = 0

and the quadratic cone {b + d ∈ (L1)′ | [b + d, b + d]′ = 0} is stable under the adjoint action of
exp(L0).

[2] Since ad a is nilpotent, the operator
∑
n≥0

(ad a)n

(n+ 1)!
=
ead a − 1

ad a
is invertible.

[3] Setting a = [x, u] + du we have

[x, a] + da = [x, [x, u]] + [x, du] + d[x, u] =
1
2

[[x, x], u] + [dx, u] = 0.

�

Remark 7.5.4. For every a ∈ L0, x ∈ L1, the polynomial γ(t) = eta ∗ x ∈ L1 ⊗ K [t] is the
solution of the “Cauchy problem” 

dγ(t)
dt

= [a, γ(t)]− da

γ(0) = x

7.6. Deformation functors associated to a DGLA

In order to introduce the basic ideas of the use of DGLA in deformation theory we begin
with an example where technical difficulties are reduced at minimum. Consider a finite complex
of vector spaces

(V, ∂) : 0−→V 0 ∂−→V 1 ∂−→· · · ∂−→V n−→0.
Given a local artinian K -algebra A with maximal ideal mA and residue field K , we define a

deformation of (V, ∂) over A as a complex of A-modules of the form

0−→V 0 ⊗A ∂A−→V 1 ⊗A ∂A−→· · · ∂A−→V n ⊗A−→0
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such that its residue modulo mA gives the complex (V, ∂). Since, as a K vector space, A =
K ⊕mA, this last condition is equivalent to say that

∂A = ∂ + ξ, where ξ ∈ Hom1(V, V )⊗mA.

The “integrability” condition ∂
2

A = 0 becomes

0 = (∂ + ξ)2 = ∂ξ + ξ∂ + ξ2 = dξ +
1
2

[ξ, ξ],

where d and [ , ] are the differential and the bracket on the differential graded Lie algebra
Hom∗(V, V )⊗mA.

Two deformations ∂A, ∂
′
A are isomorphic if there exists a commutative diagram

0 −→ V 0 ⊗A ∂A−→ V 1 ⊗A ∂A−→ · · · ∂A−→ V n ⊗A −→ 0yφ0

yφ1

yφn
0 −→ V 0 ⊗A ∂

′
A−→ V 1 ⊗A ∂

′
A−→ · · · ∂

′
A−→ V n ⊗A −→ 0

such that every φi is an isomorphism of A-modules whose specialization to the residue field is
the identity. Therefore we can write φ :=

∑
i φi = Id + η, where η ∈ Hom0(V, V ) ⊗ mA and,

since K is assumed of characteristic 0 we can take the logarithm and write φ = ea for some
a ∈ Hom0(V, V ) ⊗ mA. The commutativity of the diagram is therefore given by the equation
∂
′
A = ea ◦∂A ◦ e−a. Writing ∂A = ∂+ ξ, ∂

′
A = ∂+ ξ′ and using the relation ea ◦ b◦ e−a = ead a(b)

we get

ξ′ = ead a(∂ + ξ)− ∂ = ξ +
ead a − 1

ad a
([a, ξ] + [a, ∂]) = ξ +

∞∑
n=0

ad an

(n+ 1)!
([a, ξ]− da).

In particular both the integrability condition and isomorphism are entirely written in terms of
the DGLA structure of Hom∗(V, V )⊗mA. This leads to the following general construction.

Denote by Art the category of local artinian K -algebras with residue field K and by Set
the category of sets (we ignore all the set-theoretic problems, for example by restricting to some
universe). Unless otherwise specified, for every objects A ∈ Art we denote by mA its maximal
ideal.

Let L = ⊕Li be a DGLA over K , we can define the following three functors:
(1) The exponential functor expL : ArtK → Grp,

expL(A) = exp(L0 ⊗mA).

It is immediate to see that expL is smooth.
(2) The Maurer-Cartan functor MCL : ArtK → Set defined by

MCL(A) = MC(L⊗mA) =
{
x ∈ L1 ⊗mA

∣∣∣∣ dx+
1
2

[x, x] = 0
}
.

(3) The gauge action of the group exp(L0 ⊗ mA) on the set MC(L ⊗ mA) is functorial in
A and gives an action of the group functor expL on the Maurer-Cartan functor MCL.
The quotient functor DefL = MCL/GL is called the deformation functor associated
to the DGLA L. For every A ∈ ArtK

we have

DefL(A) =
MC(L⊗mA)
exp(L0 ⊗mA)

=

{
x ∈ L1 ⊗mA

∣∣ dx+ 1
2 [x, x] = 0

}
gauge action

.

Both MCL and DefL are deformation functors in the sense of Definition 4.1.5; in fact MCL
commutes with fiber products, while, according to Proposition 4.2.7 DefL is a deformation
functor and the projection MCL → DefL is smooth.

� The reader should make attention to the difference between the deformation functor
DefL associated to a DGLA L and the functor of deformations of a DGLA L.

Lemma 7.6.1. If L⊗mA is abelian then DefL(A) = H1(L)⊗mA. In particular

T 1DefL = DefL(K [ε]) = H1(L)⊗K ε, ε2 = 0.
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Proof. The Maurer-Cartan equation reduces to dx = 0 and then MCL(A) = Z1(L)⊗mA.
If a ∈ L0 ⊗mA and x ∈ L1 ⊗mA we have

ea ∗ x = x+
∑
n≥0

ad(a)n

(n+ 1)!
([a, x]− da) = x− da

and then DefL(A) =
Z1(L)⊗mA

d(L0 ⊗mA)
= H1(L)⊗mA. �

It is clear that every morphism α : L → N of DGLA induces morphisms of functors GL →
GN , MCL → MCN . These morphisms are compatible with the gauge actions and therefore
induce a morphism between the deformation functors Defα : DefL → DefN .

Obstructions for MCL and DefL. . Let L be a differential graded Lie algebra. We want
to show that MCL has a “natural” obstruction theory (H2(L), ve).

Let’s consider a small extension in Art

e : 0−→M−→A−→B−→0

and let x ∈ MCL(B) = {x ∈ L1 ⊗ mB | dx +
1
2

[x, x] = 0}; we define an obstruction ve(x) ∈
H2(L⊗M) = H2(L)⊗M in the following way: first take a lifting x̃ ∈ L1⊗mA of x and consider

h = dx̃+
1
2

[x̃, x̃] ∈ L2 ⊗M ; we have

dh = d2x̃+ [dx̃, x̃] = [h, x̃]− 1
2

[[x̃, x̃], x̃].

Since [L2 ⊗ M,L1 ⊗ mA] = 0 we have [h, x̃] = 0, by Jacobi identity [[x̃, x̃], x̃] = 0 and then
dh = 0. Define ve(x) as the class of h in H2(L ⊗M) = H2(L) ⊗M ; the first thing to prove
is that ve(x) is independent from the choice of the lifting x̃; every other lifting is of the form
y = x̃+ z, z ∈ L1 ⊗M and then

dỹ +
1
2

[y, y] = h+ dz.

It is evident from the above computation that (H2(L), ve) is a complete obstruction theory for
the functor MCL.

Lemma 7.6.2. The complete obstruction theory described above for the functor MCL is invariant
under the gauge action and then it is also a complete obstruction theory for DefL.

Proof. Since the projection MCL → DefL is smooth, it is sufficient to apply the general
properties of universal obstruction theories. It is instructive to give also a direct and elementary
proof of this lemma. Let x, y be two gauge equivalent solutions of the Maurer-Cartan equation
in L⊗mB and let x̃ ∈ L1⊗mA be a lifting of x. It is sufficient to prove that there exists a lifting
ỹ of y such that

h := dx̃+
1
2

[x̃, x̃] = dỹ +
1
2

[ỹ, ỹ].

Let a ∈ L0⊗mB be such that ea ∗x = y, choose a lifting ã ∈ L0⊗mA and define eã ∗ x̃ = ỹ. We
have

dỹ +
1
2

[ỹ, ỹ] = [ỹ + d, ỹ + d]′ = [ead ã(x̃+ d), ead ã(x̃+ d)]′ = ead ã[x̃+ d, x̃+ d]′ = ead ã(h) = h.

�

Finally, it is clear that every morphism of differential graded Lie algebras f : L→M induces
natural transformations of functors

f : MCL → MCM , f : DefL → DefM .
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7.7. Semicosimplicial groupoids

For reader convenience we recall some basic notion of category theory. For simplicity of
notation, if C is a category we shall write x ∈ C if x is an object and f ∈ MorC if f is a
morphism.

Definition 7.7.1. A small category is a category whose class of objects is a set.

Example 7.7.2. The category of finite ordinals ∆ is a small category.

Definition 7.7.3. A groupoid is a small category such that every morphism is an isomorphism.
We will denote by Grpd the category of groupoids.

Notice that, for a groupoid G and every object g ∈ G the set MorG(g, g) is a group.

Example 7.7.4. The fundamental groupoid π≤1(X) of a topological space X is defined in
the following way: the set of objects is X, while the morphisms are the continuos path up to
homotopy of paths.

Definition 7.7.5. For a groupoid G we well denote by π0(G) the set of isomorphism classes of
objects of G and, for every g ∈ G we will denote π1(G, g) = MorG(g, g).

It is clear that every equivalence of groupoids f : G → E induce a bijection f : π0(G) →
π0(E).

Definition 7.7.6. Let

G∆ : G0
// // G1

////// G2

//////// · · ·

be a semicosimplicial groupoid with face maps ∂i : Gn → Gn+1: ∂l∂k = ∂k+1∂l, for any l ≤ k.
The total groupoid Tot(G∆) is defined in the following way (cf. [25, 46, 55]):
(1) The objects of Tot(G∆) are the pairs (l,m) with l ∈ G0 and m is a morphism in G1

between ∂0l and ∂1l such that the diagram

∂0∂0l
∂0m // ∂0∂1l ∂2∂0l

∂2m

��
∂1∂0l

∂1m // ∂1∂1l ∂2∂1l

is commutative in G2.
(2) The morphisms between (l0,m0) and (l1,m1) are morphisms a in G0 between l0 and

l1 making the diagram

∂0l0
m0 //

∂0a

��

∂1l0

∂1a

��
∂0l1

m1 // ∂1l1

commutative in G1.

Example 7.7.7. caso delle SCLA. Da scrivere

7.8. Deligne groupoids

Definition 7.8.1. Let L be a nilpotent differential graded Lie algebra. The Deligne groupoid
of L is the groupoid Del(L) defined as follows:

(1) the set of objects is MC(L),
(2) the morphisms are

MorDel(L)(x, y) = {ea ∈ exp(L0) | ea ∗ x = y}, x, y ∈ MC(L).

Definition 7.8.2. Let L be a nilpotent differential graded Lie algebra. The irrelevant stabi-
lizer of a Maurer-Cartan element x ∈ MC(L) is defined as the subgroup (see Lemma 7.5.3):

I(x) = {edu+[x,u] | u ∈ L−1} ⊂ MorDel(L)(x, x).
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Lemma 7.8.3. Let L be a nilpotent differential graded Lie algebra, a ∈ L0 and x ∈ MC(L).
Then

eaI(x)e−a = I(y), where y = ea ∗ x.
In particular I(x) is a normal subgroup of MorDel(L)(x, x) and there exists a natural isomorphism

MorDel(L)(x, y)
I(x)

=
MorDel(L)(x, y)

I(y)
,

with I(x) and I(y) acting in the obvious way.

Proof. Recall that for every a, b ∈ L0 we have

eaebe−a = ead a(eb) = ec, where c = ead a(b).

and then eae[x,u]+due−a = ec, where, setting v = ead a(u), we have

c = ead a([x, u] + du) = ead a([x+ d, u]′) = [ead a(x+ d), v]′ = [y, v] + dv.

�

Definition 7.8.4 ([55, 68, 125]). The reduced Deligne groupoid of a nilpotent differential
graded Lie algebra L is the groupoid Del(L) having as objects the Maurer-Cartan elements of L
and as morphisms

MorDel(L)(x, y) :=
MorDel(L)(x, y)

I(x)
=

MorDel(L)(x, y)
I(y)

, x, y ∈ MC(L).

In order to verify that Del(L) is a groupoid we only need to verify that the (associative)
multiplication map

MorDel(L)(y, z)×MorDel(L)(x, y)→ MorDel(L)(x, z), (ea, eb) 7→ eaeb,

factors to a morphism
MorDel(L)(y, z)

I(y)
×

MorDel(L)(x, y)
I(x)

→
MorDel(L)(x, z)

I(x)
,

and this follows immediately from Lemma 7.8.3
Notice that π0(Del(L)) = π0(Del(L)) = Def(L).
Every cosimplicial nilpotent DGLA gives a semicosimplicial reduced Deligne groupoid and

then a total groupoid. Here we are interested to a particular case of this construction.

Definition 7.8.5. Given a pair of morphisms h, g : L→ M of nilpotent differential graded Lie
algebras define

Del(h, g) = Tot
(

Del(L)
h //
g

// Del(M)
// //// 0 · · ·

)
, Def(h, g) = π0(Del(h, g)).

Lemma 7.8.6. For any pair of morphisms h, g : L → M of nilpotent differential graded Lie
algebras we have

Def(h, g) =

{
(x, ea) ∈ MC(L)× exp(M0)

∣∣ ea ∗ h(x) = g(x)
}

∼
,

where (x, ea) ∼ (y, eb) if there exists α ∈ L0 such that eα ∗ x = y and the diagram

h(x) ea //

eh(α)

��

g(x)

eg(α)

��
h(y) eb // g(y)

is commutative in the reduced Deligne groupoid of M .

Proof. Immediate from definition. �

Notice that for M = 0 we reobtain the usual set Def(L).
Given a pair of morphisms h, g : L→M of differential graded Lie algebras, for every A ∈ Art

we get a pair of morphisms of nilpotent DGLA h, g : L⊗mA →M ⊗mA and therefore we are in
the position to define in the obvius way the functor

Def(h,g) : Art→ Set.
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Proposition 7.8.7. In the notation above, Def(h,g) is a deformation functor with tangent and
obstruction spaces equal to H1(Ch−g) and H2(Ch−g) respectively, being Ch−g the suspended
mapping cone of the morphism of DG-vector spaces h− g : L→M .

Proof. The fact that Def(h,g) is a deformation functor follows from Proposition 4.2.7, while
it is straighforward to prove the equality T 1Def(h,g) = H1(Ch−g). We now compute obstructions
using the description given in Lemma 7.8.6. Let

0→ I → A→ B → 0

be a small extension and (x̂, eâ) ∈ MC(L⊗mB)× exp(M0 ⊗mB) be such that eâ ∗ h(x̂) = g(x̂).
Choose a lifting (x, ea) ∈ L1 ⊗mA × exp(M0 ⊗mA) and consider the elements

r = dx+
1
2

[x, x] ∈ L2 ⊗ I, s = ea ∗ h(x)− g(x) ∈M1 ⊗ I, t = (r, s) ∈ C2
h−g ⊗ I.

We first prove that dt = 0; we already know that dr = 0; since

g(r) = dg(x) +
1
2

[g(x), g(x)] = d(ea ∗ h(x))− ds+
1
2

[ea ∗ h(x), ea ∗ h(x)]

=
1
2

[ea ∗ h(x) + d, ea ∗ h(x) + d]′ − ds =
1
2

[ead a(h(x) + d), ead a(h(x) + d)]′ − ds

=
1
2
ead a[h(x) + d, h(x) + d]′ − ds = ead ah(r) + ds = h(r)− ds.

we have (h− g)r − ds = 0 and then t is a cocycle in Ch−g.
If x is replaced with x+u, u ∈ L1⊗ I and a is replaced with a+ v, v ∈M0⊗ I, the element

(r, s) will be replaced with (r + du, s + (h − g)u − dv). This implies that the cohomology class
of t in H2(Ch−g)⊗ I is well defined and is a complete obstruction. �

7.9. Homotopy invariance of deformation functors

We shall say that a functor F: DGLA→ C is homotopy invariant if for every quasiisomor-
phism f of DGLA the morphism F(f) is an isomorphism in the category C. The main theme of
this chapter is to prove that the functor

Def : DGLA→ {Deformation functors}

is homotopy invariant.
We have already pointed out that every morphism f : L→ N of DGLA induces a morphism

of associated deformation functors f : DefL → DefN .

Theorem 7.9.1. Let f : L→ N be a morphism of differential graded Lie algebras. Assume that
the morphism f : Hi(L)→ Hi(N) is:

(1) surjective for i = 0,
(2) bijective for i = 1,
(3) injective for i = 2.

Then f : DefL → DefN is an isomorphism of functors.

Corollary 7.9.2. Let L → N be a quasiisomorphism of DGLA. Then the induced morphism
DefL → DefN is an isomorphism.

In this chapter we give a proof of the above results that uses obstruction theory and the
standard smoothness criterion for deformation functors (Theorem 4.5.12). Before doing this we
need some preliminary results of independent interest.

� One of the most frequent wrong interpretations of Corollary 7.9.2 asserts that if L→ N
is a quasiisomorphism of nilpotent DGLA then MC(L)/ exp(L0) → MC(N)/ exp(N0)
is a bijection. This is false in general: consider for instance L = 0 and N = ⊕N i with
N i = C for i = 1, 2, N i = 0 for i 6= 1, 2, d : N1 → N2 the identity and [a, b] = ab for
a, b ∈ N1 = C.
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Lemma 7.9.3. Let f : L→ N be a morphism of differential graded Lie algebras. If f : H1(L)→
H1(N) is surjective and f : H2(L) → H2(N) is injective, then the morphism f : DefL → DefN
is smooth.

Proof. Since H1(L) is the tangent space of DefL and H2(L) is a complete obstruction
space, it is sufficient to apply the standard smoothness criterion. �

Example 7.9.4. Let L = ⊕Ln be a DGLA such that [L1, L1] ∩ Z2(L) ⊂ B2(L). Then DefL is
smooth. In fact, consider the differential graded Lie subalgebra N = ⊕N i ⊂ L where:

(1) N i = 0 for every i ≤ 0,
(2) N1 = L1,
(3) N2 = [L1, L1] +B2(L),
(4) N i = Li for every i > 2.

By assumption H2(N) = 0 and then DefN is smooth. Since H1(N)→ H1(L) is surjective,
the morphism DefN → DefL is smooth.

Example 7.9.5. Let L = ⊕Li be a DGLA and choose a vector space decomposition N1 ⊕
B1(L) = L1.

Consider the DGLA N = ⊕N i where N i = 0 if i < 1 and N i = Li if i > 1 with the differen-
tial and bracket induced by L. The natural inclusionN → L gives isomorphismsHi(N)→ Hi(L)
for every i ≥ 1. In particular the morphism DefN → DefL is smooth and induce an isomorphism
on tangent spaces T 1DefN = T 1DefL.

Let now f : L → M be a fixed morphism of differential graded Lie algebras and denote by
p0, p1 : L× L→ L the projections.

The commutative diagram of differential graded Lie algebras

L

f

��

L× L
p0oo

Id

��

p1 // L

f

��
M L× L

fp0

oo
fp1

// M

induce a natural transformation of functors

η : Def(p0, p1)→ Def(fp0, fp1).

Lemma 7.9.6. In the above set-up, if f : H0(L) → H0(M) is surjective and f : H1(L) →
H1(M) is injective, then the morphism η is smooth.

Proof. According to Proposition 7.8.7 and standard smoothness criterion it is sufficient to
prove that f : H1(Cp0−p1)→ H1(Cfp0−fp1) is surjective and f : H2(Cp0−p1)→ H2(Cfp0−fp1) is
injective. This follows by a straighforward diagram chasing on the morphism of exact sequences

H0(L)

f
����

// H1(Cp0−p1)

��

// H1(L×L) // H1(L)� _

f

��

// H2(Cp0−p1)

��

// H2(L×L)

H0(M) // H1(Cfp0−fp1) // H1(L×L) // H1(M) // H2(Cfp0−fp1) // H2(L×L)

�

Proof of Theorem 7.9.1. Using the notation introduced above, we have already proved
that the morphisms

f : DefL → DefM , η : Def(p0, p1)→ Def(fp0, fp1)

are smooth. Given A ∈ Art we need to prove that if x, y ∈ MCL(A) and there exists b ∈M0⊗mA

such that eb ∗ f(x) = f(y), then x is gauge equivalent to y. Using the notation of Lemma 7.8.6,
since (x, y, eb) ∈ Def(fp0, fp1)(A) and η is smooth, there exists (u, v, ea) ∈ Def(p0, p1)(A) such
that η(u, v, ea) = (x, y, eb), i.e.

(u, v, ef(a)) ∼ (x, y, eb)
and this implies in particular that there exists α ∈ (L0 × L0)⊗mA such that

ea ∗ u = v, eα ∗ (u, v) = (x, y) ,

and then x, y are gauge equivalent. �
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Definition 7.9.7. Let L be a DGLA and x, y ∈ MC(L). We shall say that x and y are
homotopy equivalent if there is some ξ ∈ MC(L[t, dt]) such that e0(ξ) = x and e1(ξ) = y.
Here L[t, dt] = L ⊗ K [t, dt] and e0, e1 : L[t, dt] → L are the evaluation maps at t = 0 and t = 1
respectively.

We will denote by π0(MC•(L)) the quotient of MC(L) under the equivalence relation gen-
erated by homotopy.1

The construction of π0(MC•) is functorial and then we may define a functor

π0(MC•)L : ArtK → Set, π0(MC•)L(A) = π0(MC(L⊗mA)).

Corollary 7.9.8. For every differential graded Lie algebra L, the projection MCL → π0(MC•)L
factors to an isomorphism of functors DefL → π0(MC•)L.

Proof. Let L be be DGLA, since the inclusion L → L[t, dt] is a quasiisomorphism the
natural transformation DefL → DefL[t,dt] is an isomorphism. Given A ∈ Art and x, y ∈ MC(L⊗
mA), it is sufficient to prove that x, y are gauge equivalent if and only if they are homotopy
equivalent. Recall that x is gauge equivalent to y if there is some a ∈ L0 ⊗ mA such that
ea ∗x = y, whereas x is homotopy equivalent to y if there is some z(t) ∈ MC(L[t, dt]⊗mA) such
that z(0) = x and z(1) = y.

So first, assume ea ∗ x = y; then we can consider x ∈ MC(L ⊗ mA) ⊂ MC(L[t, dt] ⊗ mA).
Since exp(L0[t]⊗mA) acts by gauge on MC(L[t, dt]⊗mA), for every t we can set z(t) = eta ∗ x.
Then z(0) = x and z(1) = y.

On the other hand, notice that MCL = MCL≥1 (in fact Maurer-Cartan only depends on L1

and L2), so DefL = DefL≥0 and MCL[t,dt] = MCL≥0[t,dt]. So it is not restrictive to assume that
L = ⊕n≥0L

n. In this case, L[t, dt]0 = L0[t]. Now let z(t) ∈ MC(L[t, dt] ⊗ mA). Then, as we
have a smooth morphism i : DefL(A) → DefL[t,dt](A), we must have some x ∈ MCL(A) which
is gauge equivalent to z(t) in L[t, dt]⊗mA. So we have a(t) ∈ L[t, dt]0 ⊗mA = L0[t]⊗mA such
that ea(t) ∗ x = z(t). Now z(0) = ea(0) ∗ x and z(1) = ea(1) ∗ x, and this imply that z(0) is gauge
equivalent to z(1). �

Remark 7.9.9. The first consequences of Corollary 7.9.8 is that the bifunctor

π0(MC•) = Def : DGLA×Art→ Set

is completely determined by the Maurer-Cartan bifunctor

MC: DGLA×Art→ Set.

7.10. Exercises

Exercise 7.10.1. Let

G∆ : G0
//// G1

////// G2

//////// · · ·

be a semicosimplicial groupoid. Assume that for every i the natural map Gi → π0(Gi) is an
equivalence, i.e., every Gi is equivalent to a set. Then also tot(G∆) is equivalent to a set and,
more precisely, to the equalizer of the diagram of sets

π0(G0) // // π0(G1).

1Using this notation we have implicitely assumed that there exists a groupoid MC•(L) having MC(L) as
objects and MC(L[t, dt]) as morphisms. This is almost true, in the sense that there exists a natural structure of

∞-groupoid on MC•: we will give the precise definition later on.
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