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In this chapter we collect some definitions and main properties of deformation func-
tors.

In the first section, we introduce the notions of functor of Artin rings, of deformation
functor and of the associated tangent and obstruction spaces. Moreover, we describe the
deformations functor associated with a semicosimplicial Lie algebra.

The main references for this chapter are [2], [4], [7] and [8].

1. Basic definition

K is a field of characteristic 0. Denote by Set the category of sets in a fixed universe
and by {∗} a fixed set of cardinality 1. Let Art = ArtK be the category of local Artinian
K-algebras with residue field K (A/mA = K); the morphisms in Art are local morphism.

We shall say that a morphism α : B → A in Art is a small surjection if α is surjective
and its kernel is annihilated by the maximal ideal mB. The artinian property implies
that every surjective morphism in Art can be decomposed in a finite sequence of small
surjections and then a functor F is smooth if and only if F (B)→ F (A) is surjective for
every small surjection B → A.

A small extension is a small surjection together a framing of its kernel. More precisely
a small extension e in Art is an exact sequence of abelian groups

e : 0−→M−→B α−→A−→0,

such that α is a morphism in the category Art and M is an ideal of B annihilated by the
maximal ideal mB. In particular M is a finite dimensional vector space over B/mB = K.
A small extension as above is called principal if M = K.

Definition 1.1. A functor of Artin rings is a covariant functor F : Art → Set such
that F (K) = {∗}.

The functors of Artin rings are the objects of a category whose morphisms are the
natural transformations of functors. For simplicity of notation, if φ : F → G is a natural
transformation, we denote by φ : F (A)→ G(A) the corresponding morphism of sets, for
every A ∈ Art.

Example 1.2. The trivial functor ∗ is the functor defined by ∗(A) = {∗}, for every
A ∈ Art.

Example 1.3. Let V be a K-vector space. Then, F,G : Art→ Set, defined by

F (A) = V ⊗mA, G(A) = HomK(V, V ⊗mA)

are functors of Artin rings. Notice that G(A) is the kernel of the morphism

HomA(V ⊗A, V ⊗A) = HomK(V, V ⊗A)→ HomK(V, V ⊗K) = HomK(V, V )
1
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and then G(A) is the set of A-linear endomorphism of V ⊗ A that are trivial modulus
mA.

Example 1.4. Let R be a local complete K-algebra with residue field K. The functor

hR : Art→ Set, hR(A) = HomK−alg(R,A),

is a functor of Artin rings.

1.1. The exponential functor. Let L be a Lie algebra over K, V a K-vector space
and ξ : L → End(V ) a representation of L. For every A ∈ Art, the morphism ξ can be
extended naturally to a morphism of Lie algebras ξ : L⊗A→ EndA(V ⊗A). Taking the
exponential we get a functorial map

exp(ξ) : L⊗mA → GLA(V ⊗A), exp(ξ)(x) = eξ(x) =

∞∑
i=0

ξ(x)n

n!
,

where GLA denotes the group of A-linear invertible morphisms.
Note that exp(ξ)(−x) = (exp(ξ)(x))−1. If ξ is injective then also exp(ξ) is injective (easy
exercise).

Theorem 1.5. In the notation above, the image of exp(ξ) is a subgroup. More precisely

for every a, b ∈ L⊗mA there exists c ∈ L⊗mA such that eξ(a)eξ(b) = eξ(c) and a+ b− c
belong to the Lie ideal of L⊗mA generated by [a, b].

Proof. This is an immediate consequence of the Campbell-Baker-Hausdorff formula. �

In the above notation denote P = End(V ) and let ad(ξ) : L→ End(P ) be the adjoint
representation of ξ,

ad(ξ)(x)f = [ξ(x), f ] = ξ(x)f − fξ(x).

Then, for every a ∈ L⊗mA, f ∈ EndA(V ⊗A) = P ⊗A we have

ead(ξ)(a)f = eξ(a)fe−ξ(a).

1.2. Automorphisms functor. In this section every tensor product is intended over

K, i.e ⊗ = ⊗K. Let S
α−→R be a morphism of commutative unitary K-algebras, for every

A ∈ Art, we have natural morphisms S ⊗A α−→R⊗A and R⊗A p−→R, p(x⊗ a) = xa,
where a ∈ K is the class of a in the residue field of A.

Lemma 1.6. Given A ∈ Art and a commutative diagram of morphisms of K-algebras

S ⊗A α //

α

��

R⊗A
p

��
R⊗A

f
99ttttttttt p // R

we have that f is an isomorphism and f(R⊗ J) ⊂ R⊗ J for every ideal J ⊂ A.

Proof. f is a morphism of A-algebras, in particular for every ideal J ⊂ A, f(R ⊗ J) ⊂
Jf(R⊗A) ⊂ R⊗J . In particular, if B = A/J , then f induces a morphism of B-algebras
f : R⊗B → R⊗B. We claim that, if mAJ = 0, then f is the identity on R⊗ J ; in fact
for every x ∈ R, f(x⊗ 1)− x⊗ 1 ∈ ker p = R⊗mA and then if j ∈ J , x ∈ R.

f(x⊗ j) = jf(x⊗ 1) = x⊗ j + j(f(x⊗ 1)− x⊗ 1) = x⊗ j.
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Now we prove the lemma by induction on n = dimKA, being f the identity for n = 1.
Let

0−→J−→A−→B−→0

be a small extension with J 6= 0. Then we have a commutative diagram with exact rows

0 −→ R⊗ J −→ R⊗A −→ R⊗B −→ 0yId yf yf
0 −→ R⊗ J −→ R⊗A −→ R⊗B −→ 0

By induction f is an isomorphism and by snake lemma also f is an isomorphism. �

Definition 1.7. For every A ∈ Art let AutR/S(A) be the set of commutative diagrams
of graded K-algebra morphisms

S ⊗A //

��

R⊗A

��
R⊗A

f
99ttttttttt
// R

According to Lemma 1.6, AutR/S is a functor from the category Art to the category
of groups Grp. Here we consider AutR/S as a functor of Artin rings (just forgetting the
group structure).

Let DerS(R,R) be the space of S-derivations R → R of. If A ∈ Art and J ⊂ mA is
an ideal then, since dimK J <∞ there exist natural isomorphisms

DerS(R,R)⊗ J = DerS(R,R⊗ J) = DerS⊗A(R⊗A,R⊗ J),

where a given derivation d =
∑

i di ⊗ ji ∈ DerS(R,R) ⊗ J corresponds to the S ⊗ A-
derivation

d : R⊗A→ R⊗ J ⊂ R⊗A, d(x⊗ a) =
∑
i

di(x)⊗ jia.

For every d ∈ DerS⊗A(R ⊗ A,R ⊗ A), denote dn = d ◦ . . . ◦ d the iterated composition
of d with itself n times. The generalized Leibnitz rule gives

dn(uv) =
n∑
i=0

(
n

i

)
di(u)dn−1(v), u, v ∈ R⊗A.

In particular, note that, if d ∈ DerS(R,R)⊗mA, then d is a nilpotent endomorphism of
R⊗A and

ed =
∑
n≥0

dn

n!

is a morphism of K-algebras belonging to AutR/S(A).

Proposition 1.8. For every A ∈ ArtK the exponential

exp: DerS(R,R)⊗mA → AutR/S(A)

is a bijection.
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Proof. This is obvious if A = K; by induction on the dimension of A we may assume
that there exists a nontrivial small extension

0−→J−→A−→B−→0

such that exp: DerS(R,R) ⊗ mB → AutR/S(B) is bijective. We first note that if

d ∈ DerS(R,R) ⊗ mA, h ∈ DerS(R,R) ⊗ J then dihj = hjdi = 0 whenever j > 0,
j + i ≥ 2 and then ed+h = ed + h; this easily implies that exp is injective.
Conversely take a f ∈ AutR/S(A); by the inductive assumption there exists d ∈ DerS(R,R)⊗
mA such that f = ed ∈ AutR/S(B); denote h = f − ed : R ⊗ A → R ⊗ J . Since

h(ab) = f(a)f(b) − ed(a)ed(b) = h(a)f(b) + ed(a)h(b) = h(a)b + ah(b) we have that
h ∈ DerS(R,R)⊗ J and then f = ed+h. �

The same argument works also if S → R is a morphism of sheaves of K-algebras
over a topological space and DerS(R,R), AutR/S(A) are respectively the vector space of
S-derivations of of R and the S⊗A-algebra automorphisms of R⊗A lifting the identity
on R.

1.3. Deformation functors.

Definition 1.9. (cf. [7]) A functor F : Art→ Set is prorepresentable if it is isomorphic
to hR, for some local complete K-algebra R with residue field K. F is representable if it
is isomorphic to hR, for some R ∈ Art.

The category Art is closed under fiber products, i.e., every pair of morphisms C → A,
B → A may be extended to a commutative diagram

(1)

B ×A C −→ Cy y
B −→ A,

such that the natural map

hR(B ×A C)→ hR(B)×hR(A) hR(C)

is bijective, for every R.

Definition 1.10. Let F : Art→ Set be a functor of Artin rings; for every fiber product

B ×A C −→ Cy y
B

β−→ A

in Art, consider the induced map

η : F (B ×A C)→ F (B)×F (A) F (C).

The functor F is homogeneous if η is bijective whenever β is surjective [6, Definition
2.5].
The functor F is a deformation functor if:

(1) η is surjective, whenever β is surjective;
(2) η is bijective, whenever A = K.
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The name deformation functor comes from the fact that almost all functors arising
in deformation theory satisfy the conditions of Definition 1.10. Every prorepresentable
functor is a homogeneous deformation functor.

Remark 1.11. Our definition of deformation functors involves conditions that are slightly
more restrictive than the classical Schlessinger conditions H1, H2 of [7] and the semi-
homogeneity condition of [6]. The main motivations of this change are:

(1) Functors of Artin rings satisfying Schlessinger condition H1, H2 and H3 do not
necessarily have a “good”obstruction theory (see [2, Example 6.8]).

(2) The definition of deformation functor extends naturally in the framework of
derived deformation theory and extended moduli spaces [5].

The formal smoothness of Spec(R) is equivalent to the property that A→ B surjective
implies hR(A)→ hR(B) surjective. This motivate the following definition.

Definition 1.12. A natural transformation φ : F → G of functors of Artin rings is
called smooth if, for every surjective morphism A → B in Art, the map F (A) →
G(A) ×G(B) F (B) is also surjective. A functor of Artin rings F is called smooth if
F (A) → F (B) is surjective, for every surjective morphism A → B in Art, i.e., the
natural transformation F → ∗ is smooth.

Remark 1.13. If φ : F → G is a smooth natural transformation, then φ : F (A)→ G(A)
is surjective for every A (take B = K).

Exercise 1.14. (1) If F → G andG→ H are smooth, then the composition F → H
is smooth.

(2) If u : F → G and v : G→ H are natural transformations of functors such that u
is surjective and vu is smooth. Then, v is smooth.

(3) If F → G and H → G are natural transformations of functor such that F → G
is smooth, then F ×G H → H is smooth.

Lemma 1.15. Let R be a local complete noetherian K-algebra with residue field K.The
following conditions are equivalent:

(1) R is isomorphic to a power series ring K[[x1, . . . , xn]].
(2) The functor hR is smooth.
(3) For every s ≥ 2 the morphism

hR

(
K[t]

(ts+1)

)
→ hR

(
K[t]

(t2)

)
is surjective.

Proof. The only nontrivial implication is [3⇒ 1]. Let n be the embedding dimension of
R, then we can write R = K[[x1, . . . , xn]]/I for some ideal I ⊂ (x1, . . . , xn)2; we want to
prove that I = 0. Assume therefore I 6= 0 and denote by s ≥ 2 the greatest integer such
that I ⊂ (x1, . . . , xn)s: we claim that

hR

(
K[t]

(ts+1)

)
→ hR

(
K[t]

(t2)

)
is not surjective. Choosing f ∈ I− (x1, . . . , xn)s+1, after a possible generic linear change
of coordinates of the form xi 7→ xi + aix1, with a2, . . . , ak ∈ K, we may assume that
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f contains the monomial xs1 with a nonzero coefficient, say f = cxs1 + . . .; let α : R →
K[t]/(t2) be the morphism defined by α(x1) = t, α(xi) = 0 for i > 1. Assume that there
exists α̃ : R → K[t]/(ts+1) that lifts α and denote by β : K[[x1, . . . , xn]] → K[t]/(ts+1)
the composition of α̃ with the projection K[[x1, . . . , xn]]→ R. Then β(x1)−t, β(x2), . . . ,
β(xn) ∈ (t2) and therefore β(f) ≡ cts 6≡ 0 (mod ts+1). �

Definition 1.16. Given a functor of Artin rings F : Art→ Set and a group functor of
Artin rings G : Art→ Grp, by a G-action on F we shall mean a natural transformation
G× F → F such that

G(A)× F (A)→ F (A)

is a G(A)-action on F (A) in the usual sense for every A ∈ Art. Then one can clearly
define in the obvious way the quotient functor F/G.

Proposition 1.17. In the situation of Definition 1.16, if F and G are deformation
functors and G is smooth, then F/G is a deformation functor and the natural projection
F → F/G is smooth.

Proof. Easy exercise. �

Later we will give lots of examples where F and G are homogeneous and F/G is not
homogeneous. Moreover it is possible to prove that over a field of characteristic 0 every
group deformation functor is smooth.

1.4. Examples of deformation functors.

1.4.1. Infinitesimal deformations of projective varieties. Let X be a projective variety
over K. An infinitesimal deformation of X over Spec(A) is a commutative diagram

X
i //

��

XA

π
��

Spec(K)
a // Spec(A),

where π is a proper and flat morphism, a ∈ Spec(A) is the closed point, i is a closed
embedding and X ∼= XA×Spec(A)Spec(K). If A = K[ε] we call it a first order deformation
of X.

Remark 1.18. Let XA be an infinitesimal deformation of X. By definition, it can be
interpreted as a morphism of sheaves of algebras OA → OX , such that OA is flat over
A and OA ⊗A K→ OX is an isomorphism.

Given another deformation X ′A of X over Spec(A), we say that XA and X ′A are
isomorphic if there exists an isomorphism φ : XA → X ′A over Spec(A), that induces the
identity on X, that is, the following diagram is commutative

X
i′

$$I
IIIIIIIII

i

zzuuuuuuuuuu

XA
φ //

π
$$I

IIIIIIII
X ′A

π′zzvvvvvvvvv

Spec(A).
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An infinitesimal deformation of X over Spec(A) is called trivial if it is isomorphic to
the infinitesimal product deformation, i.e., to the deformation

X
i //

��

X × Spec(A)

��
Spec(K)

a // Spec(A).

X is called rigid if every infinitesimal deformation of X over Spec(A) (for each A ∈
Art) is trivial.

For every deformation XA of X over Spec(A) and every morphism A → B in Art
(Spec(B)→ Spec(A)), there exists an associated deformation of X over Spec(B), called
pull-back deformation, induced by a base change:

X //

��

XA ×Spec(A) Spec(B)

��
Spec(K) // Spec(B).

Definition 1.19. The infinitesimal deformation functor DefX of X is defined as follows:

DefX : Art→ Set,

A 7−→ DefX(A) =


isomorphism classes of

infinitesimal deformations

of X over Spec(A)

 .

Proposition 1.20. DefX is a deformation functor, i.e., it satisfies the conditions of
Definition 1.10

Proof. See [7, Section 3]. �

1.4.2. Infinitesimal deformations of locally free sheaves. Let X be a projective scheme
and E a locally free sheaf of OX -modules on X. An infinitesimal deformation of E over
Spec(A) is a locally free sheaves of OX ⊗A-modules EA on X × Spec(A), together with
a morphism πA : EA → E , such that πA : EA ⊗A K→ E is an isomorphism.

Given another deformation E ′A of E over Spec(A), we say that EA and E ′A are isomor-
phic if there exists an isomorphism of shaeves of OX ⊗ A-modules φ : EA → E ′A over
Spec(A), that commutes with the morphisms πA : EA⊗AK→ E and π′A : E ′A⊗AK→ E ,
i.e., πA ◦ φ = πA.

For every deformation EA of E over Spec(A) and every morphism A → B in Art
(Spec(B)→ Spec(A)), there exists an associated deformation of E over Spec(B), called
pull-back deformation, induced by a base change:

p∗EA //

��

EA

��
X × Spec(B)

p // X × Spec(A).
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Definition 1.21. The infinitesimal deformation functor DefE of EA is defined as follows:

DefE : Art→ Set,

A 7−→ DefE(A) =


isomorphism classes of

infinitesimal deformations

of E over Spec(A)

 .

Proposition 1.22. DefE is a deformation functor, i.e., it satisfies the conditions of
Definition 1.10.

Proof. See [7, Section 3]. �

Remark 1.23. Given a projective scheme X, we have defined a deformation fo a locally
free sheaf E over Spec(A), as a sheaf EA on X × Spec(A), i.e., we are considering the
trivial deformations of X. More generally, we can define infinitesimal deformations of
the pair (X, E) whenever we allow deformations of X too.

1.4.3. Infinitesimal deformations of maps.

Definition 1.24. Let f : X → Y be a holomorphic map and A ∈ Art. An infinitesimal
deformation of f over Spec(A) is a commutative diagram of complex spaces

XA
F //

π
  B

BB
BB

BB
B YA

µ
~~}}

}}
}}

}}

S,

where S = Spec(A), (XA, π, S) and (YA, µ, S) are infinitesimal deformations of X and
Y , respectively (Definition 1.19), F is a holomorphic map that restricted to the fibers
over the closed point of S coincides with f .

If A = K[ε] we have a first order deformation of f .

Definition 1.25. Let

XA
F //

π
  A

AA
AA

AA
A YA

µ
��~~

~~
~~

~~
and X ′A

F ′ //

π′   A
AA

AA
AA

A
Y ′A

µ′��~~
~~

~~
~

S S

be two infinitesimal deformations of f . They are equivalent if there exist bi-holomorphic
maps φ : XA → X ′A and ψ : YA → Y ′A (that are equivalence of infinitesimal deformations
of X and Y , respectively) such that the following diagram is commutative:

XA
F //

φ
��

YA

ψ
��

X ′A
F ′ // Y ′A.

Definition 1.26. The functor of infinitesimal deformations of a holomorphic map f :
X → Y is

Def(f) : Art→ Set,



FUNCTORS OF ARTIN RINGS, OBSTRUCTIONS AND FACTORIZATION 9

A 7−→ Def(f)(A) =


isomorphism classes of

infinitesimal deformations of

f over Spec(A)

 .

Proposition 1.27. Def(f) is a deformation functor, since it satisfies the conditions of
Definition 1.10.

Proof. It follows from the fact that the functors DefX and DefY of infinitesimal defor-
mations of X and Y are deformation functors. �

2. Tangent space

Definition 2.1. Let F : Art→ Set be a deformation functor. The set

T 1F = F

(
K[t]

(t2)

)
is called the tangent space of F .

Proposition 2.2. The tangent space of a deformation functor has a natural structure of
vector space over K. For every natural transformation of deformation functors F → G,
the induced map T 1F → T 1G is linear.

Proof. (See [7, Lemma 2.10]) Since F (K) is just one point, by Condition 2. of Definition

1.10, there exists a bijection F
(
K[t]
(t2)
×K

K[t]
(t2)

)
∼= F

(
K[t]
(t2)

)
× F

(
K[t]
(t2)

)
.

Consider the map

+ :
K[t]

(t2)
×K

K[t]

(t2)
→ K[t]

(t2)
,

(a+ bt, a+ b′t) 7−→ a+ (b+ b′)t.

Then using the previous bijection, the map + induces the addition on F
(
K[t]
(t2)

)
:

F

(
K[t]

(t2)

)
× F

(
K[t]

(t2)

)
∼=→ F

(
K[t]

(t2)
×K

K[t]

(t2)

)
F (+)→ F

(
K[t]

(t2)

)
.

Analogously, for the multiplication by a scalar k ∈ K we consider the map:

k :
K[t]

(t2)
→ K[t]

(t2)
,

a+ bt 7−→ a+ (kb)t.

It is an easy exercise to prove that the axioms of vector space are satisfied. The linearity
of the map T 1F → T 1G induced by a natural transformation of deformation functors
F → G follows by the definition of the K-vector space structure on T 1F and T 1G. �

It is notationally convenient to reserve the letter ε to denote elements of A ∈ Art
annihilated by the maximal ideal mA, and in particular of square zero.

Example 2.3. The tangent space of the functor hR, defined in Example 1.4, is

T 1 hR = HomK−alg(R,K[ε]) = HomK

(
mR

m2
R

,K
)
.

Therefore T 1 hR is isomorphic to the Zariski tangent space of Spec(R) at its closed point.
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Definition 2.4. Given a functor F and R a local complete K-algebra, R is said to be
an hull for F if we are given a morphism hR → F which is smooth and bijective on
tangent spaces.

Remark 2.5. (Exercise) An hull, if it exists, is unique up to non-canonical isomorphism.

The notion of hull is a weaker version of prorepresentability and it is related to the
notion of semiuniversal deformation. The majority of deformation functors arising in
concrete cases are not proprepresentable but they admit an hull as it shown in the
following theorem.

Theorem 2.6 (Schlessinger, [7]). Let F be a deformation functor with finite dimensional
vector space. Then, there exists a local complete noetherian K-algebra R with residue field
K and a smooth natural transformation hR → F inducing an isomorphism on tangent
spaces T 1 hR = T 1F . Moreover R is unique up to non-canonical isomorphism.

Proof. We will prove later as a consequence of a more general statement (the factoriza-
tion theorem). �

Lemma 2.7. Let η : F → G be a natural tranformation of deformation functors.

(1) If G is homogeneous and η : T 1F → T 1G is injective, then η : F (A) → G(A) is
injective for every A and F is homogeneous.

(2) If F is smooth and η : T 1F → T 1G is surjective, then G is a smooth functor and
η is a smooth morphism.

Proof. Every small principal extension

0→ K α−→B β−→A→ 0,

there exists an isomorphism

B ×K K[ε]→ B ×A B, (b, b+ kε) 7→ (b, b+ kα(ε))

and then, for every deformation functor G a surjective map

θ : G(B)× T 1G = G(B ×K K[ε])→ G(B)×G(A) G(B)

commuting with the projection on the first factor and such that θ(x, 0) = (x, x). If G is
homogeneous, then θ is bijective.

Assume now G homogeneous and η : T 1F → T 1G injective. We will prove by induction
on the length of B ∈ Art that η : F (B)→ G(B) is injective. Let x, y ∈ F (B) such that
η(x) = η(y) ∈ G(B) and let

0→ K α−→B β−→A→ 0

be a principal small extension. By induction β(x) = β(y) ∈ F (A) and then there exists
v ∈ T 1F such that θ(x, v) = (x, y). Thus θ(η(x), η(v)) = (η(x), η(y)) and, since G is
homogeneous this implies η(v) = 0 and then v = 0, x = y. This proves that η is always
injective the homogeneity of F is trivial.

Assume now F smooth and η : T 1F → T 1G surjective. We need to prove that for
every principal small extension as above, the map

(β, η) : F (B)→ F (A)×G(A) G(B)

is surjective. Let (x, y) ∈ F (A) ×G(A) G(B), since F is smooth there exists z ∈ F (B)
such that β(z) = x; denoting w = η(z) we have (w, y) ∈ G(B) ×G(A) G(B) and then
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there exists v ∈ T 1G such that θ(w, v) = (w, y). Now η : T 1F → T 1G is surjective and
then v = η(u) and θ(z, u) = (z, r) with β(r) = β(z) = x and η(r) = y. �

3. Obstructions

In the set-up of functors of Artin rings, with the term obstructions we intend obstruc-
tions for a deformation functor to be smooth.

Definition 3.1. Let F be a functor of Artin rings. An obstruction theory (V, ve) for F
is the data of a K-vector space V and for every small extension in Art

e : 0−→M−→B−→A−→0

of an obstruction map ve : F (A)→ V ⊗M satisfying the following properties:

(1) If A = K then ve(F (K)) = 0.
(2) (base change) For every commutative diagram

e1 : 0 −→ M1 −→ B1 −→ A1 −→ 0yαM

yαB

yαA

e2 : 0 −→ M2 −→ B2 −→ A2 −→ 0.

with e1, e2 small extensions and αA, αB morphisms in Art, we have

ve2(αA(a)) = (IdV ⊗ αM )(ve1(a)) for every a ∈ F (A1).

Remark 3.2. It has to be observed that, to give a morphism of sets ve : F (A)→ V ⊗M
is the same that to give a map ve : F (A) ×M∨ → V such that ve(a,−) : M∨ → V is
linear for every a ∈ F (A).

The name obstruction theory is motivated by the following result.

Lemma 3.3. Let (V, ve) be an obstruction theory for a functor of Artin rings F , let

e : 0−→M α−→B β−→A−→0

be a small extension and x ∈ F (A). If x lifts to F (B), i.e. if x ∈ β(F (B)), then
ve(x) = 0.

Proof. Assume x = β(y) for some y ∈ F (B) and consider the morphism of small exten-
sion

e′ : 0 −→ M
(0,α)−→ B ×A B

p1−→ B −→ 0yId yp2 yβ
e : 0 −→ M

α−→ B
β−→ A −→ 0.

where p1 and p2 are the projections. By base change property ve(x) = ve′(y). Now
consider the morphism of small extensions

e′ : 0 −→ M
(0,α)−→ B ×A B

p1−→ B −→ 0yId yγ yπ
e′′ : 0 −→ M

(0,α)−→ K⊕ α(M)
β−→ K −→ 0.
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where π : B → K is the projection and γ(a, b) = (π(a), a − b). Again by base change
property ve′(y) = ve′′(π(y)) = 0. �

Definition 3.4. An obstruction theory (V, ve) for F is called complete if the converse
of Lemma 3.3 holds; i.e., the lifting exists if and only if the obstruction vanishes.

Clearly, if F admits a complete obstruction theory then it admits infinitely ones; it
is in fact sufficient to embed V in a bigger vector space. One of the main interest (and
problem) is to look for the “smallest”complete obstruction theory.

Remark 3.5. Let e : 0−→M−→B−→A−→0 be a small extension and a ∈ F (A); the
obstruction ve(a) ∈ V ⊗M is uniquely determined by the values (IdV ⊗ f)ve(a) ∈ V ,
where f varies along a basis of HomK(M,K). On the other hand, by base change we
have (IdV ⊗ f)ve(a) = vε(a), where ε is the small extension

ε : 0−→K −→ B ⊕K
{(m,−f(m)) | m ∈M}

−→ A−→0.

This implies that every obstruction theory is uniquely determined by its behavior on
principal small extensions.

Definition 3.6. A morphism of obstruction theories (V, ve)→ (W,we) is a linear map
θ : V →W such that we = (θ ⊗ Id)ve, for every small extension e.
An obstruction theory (OF , obe) for F is called universal if, for every obstruction theory
(V, ve), there exists a unique morphism (OF , obe)→ (V, ve).

Theorem 3.7 ([2]). Let F be a deformation functor, then:

(1) There exists the universal obstruction theory (OF , obe) for F , and such obstruc-
tion theory is complete.

(2) Every element of the universal obstruction target OF is of the form obe(a), for
some principal extension

e : 0−→K−→B−→A−→0

and some a ∈ F (A).

Proof. The proof is quite long and it is postponed to Section 4 �

It is clear that the universal obstruction theory (OF , obe) is unique up to isomorphism
and depends only by F and not by any additional data.

Definition 3.8. The obstruction space of a deformation functor F is the universal
obstruction target OF .

Corollary 3.9. Let (V, ve) be a complete obstruction theory for a deformation functor
F . Then, the obstruction space OF is isomorphic to the vector subspace of V generated
by all the obstructions arising from principal extensions.

Proof. Denote by θ : OF → V the morphism of obstruction theories. Every principal
obstruction is contained in the image of θ and, since V is complete, the morphism θ is
injective. �

Remark 3.10. The majority of authors use Corollary 3.9 as a definition of obstruction
space.
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Example 3.11. Let R be a local complete K-algebra with residue field K and n =
dimT 1 hR = dimmR/m

2
R its embedding dimension. Then, we can write R = P/I, where

P = K[[x1, . . . , xn]] and I ⊂ m2
P . We claim that

T 2 hR := HomP (I,K) = HomK(I/mP I,K)

is the obstruction space of hR. In fact, for every small extension

e : 0−→M−→B−→A−→0

and every α ∈ hR(A), we can lift α to a commutative diagram

0 −→ I −→ P −→ R −→ 0yoba(α) yβ yα
0 −→ M −→ B −→ A −→ 0

with β a morphism of K-algebras. It is easy to verify that

obe(α) = β|I ∈ HomK(I/mP I,M) = T 2 hR⊗M

is well defined, it is a complete obstruction and that (T 2 hR, obe) is the universal ob-
struction theory for the functor hR (see [2, Prop. 5.3]).

Let φ : F → G be a natural transformation of deformation functors. Then, (OG, obe◦φ)
is an obstruction theory for F ; therefore, there exists an unique linear map obφ : OF →
OG which is compatible with φ in the obvious sense.

Theorem 3.12 (Standard smoothness criterion). Let φ : F → G be a morphism of
deformation functors. The following conditions are equivalent:

(1) φ is smooth.
(2) T 1φ : T 1F → T 1G is surjective and obφ : OF → OG is bijective.
(3) T 1φ : T 1F → T 1G is surjective and obφ : OF → OG is injective.

Proof. In order to avoid confusion we denote by obFe and obGe the obstruction maps for
F and G respectively.

[1 ⇒ 2] Every smooth morphism is in particular surjective; therefore, if φ is smooth
then the induced morphisms T 1F → T 1G, OF → OG are both surjective.
Assume that obφ(ξ) = 0 and write ξ = obFe (x), for some x ∈ F (A) and some small

extension e : 0−→K−→B−→A−→0. Since obGe (φ(x)) = 0, the element x lifts to a pair
(x, y′) ∈ F (A)×G(A) G(B) and then the smoothness of φ implies that x lifts to F (B).
[3 ⇒ 1] We need to prove that for every small extension e : 0−→K−→B−→A−→0 the
map

F (B)→ F (A)×G(A) G(B)

is surjective. Fix (x, y′) ∈ F (A) ×G(A) G(B) and let y ∈ G(A) be the common image

of x and y′. Then obGe (y) = 0 because y lifts to G(B), hence obFe (x) = 0 by injectivity
of obφ. Therefore x lifts to some x′′ ∈ F (B). In general y′′ = φ(x′′) is not equal to y′.
However, (y′′, y′) ∈ G(B) ×G(A) G(B) and therefore there exists v ∈ T 1G such that
θ(y′′, v) = (y′′, y′) where

θ : G(B)× T 1G = G(B ×K K[ε])→ G(B)×G(A) G(B)

is induced by the isomorphism

B ×K K[ε]→ B ×A B, (b, b+ αε) 7→ (b, b+ αε).
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By assumption T 1F → T 1G is surjective, v lifts to a w ∈ T 1F and setting θ(x′′, w) =
(x′′, x′) we have that x′ is a lifting of x which maps to y′, as required. �

Remark 3.13. In most concrete cases, given a natural transformation F → G it is very
difficult to calculate the map OF → OG, while it is generally easy to describe complete
obstruction theories for F and G and a compatible morphism between them. In this
situation, only the implication [3⇒ 1] of the standard smoothness criterion holds.

Corollary 3.14. Let F be a deformation functor and hR → F a smooth natural trans-
formation. Then, the dimension of OF is equal to the minimum number of generators
of an ideal I defining R as a quotient of a power series ring, i.e., R = K[[x1, . . . , xn]]/I.

Proof. Apply Nakayama’s lemma to the K[[x1, . . . , xn]]-module I and use Example 3.11.
�

4. Proof of Theorem 3.7

We need some care to avoid set theoretic difficulties. First of all, we work on a fixed
universe. For every n ≥ 0, choose a K-algebra On isomorphic to the power series ring
K[[x1, . . . , xn]] and consider the category Art whose objects are Artinian quotients of
the On’s and morphisms are local morphisms of K-algebras. Let Fvsp the category
whose objects are {0,K,K2, . . .} and morphisms are linear maps.

For a V ∈ Fvsp, we denote by V ∨ its K-dual. If A ∈ Art, we will denote by mA its
maximal ideal.

By ε and εi we will always mean indeterminates annihilated by the maximal ideal,
and in particular of square zero (e.g., the algebra K[ε] has dimension 2 and K[ε1, ε2] has
dimension 3 as a K-vector space).

Definition 4.1. A small extension e in Art is a short exact sequence

e : 0−→M−→B−→A−→0

where B → A is a morphism in Art, M ∈ Fvsp and the image of M → B is annihilated
by the maximal ideal of B. In the sequel of the paper, for every small extension e as
above, we shall let K(e) = M , S(e) = B, T (e) = A (the letters should be a reminder of
kernel, source, target).

Definition 4.2. We denote by Smex the category whose objects are small extensions
in Art. A morphism of small extensions α : e1 → e2 is a commutative diagram

0 −→ M1 −→ B1 −→ A1 −→ 0yαM

yαB

yαA

0 −→ M2 −→ B2 −→ A2 −→ 0.

The category Smex is small, in the sense that the class of its objects is a set.
For A ∈ Art and M ∈ Fvsp let Ex(A,M) be the set isomorphism classes of small

extensions of A with kernel M . Denote by 0 ∈ Ex(A,M) the trivial extension

0 : 0−→M−→A⊕M−→A−→0

where the product in A ⊕M is (a,m)(a′,m′) = (aa′, a0m
′ + a′0m), and a → a0 is the

quotient map A→ K. A small extension is trivial if and only if it splits.
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If f : M → N is a morphism in Fvsp and π : C → A is a morphism in Art, we shall
denote by

f∗ : Ex(A,M)→ Ex(A,N), π∗ : Ex(A,M)→ Ex(C,M)

the induced maps, defined as follows:
Given an extension e : 0→M → B → A→ 0 in Ex(A,M), define f∗e as the extension

0→ N → B ⊕N
{(m, f(m)) | m ∈M}

→ A→ 0.

Define π∗e as the extension

0→M → B ×A C → C → 0.

Exercise 4.3. In the above set-up prove that f∗π
∗ = π∗f∗ : Ex(A,M)→ Ex(C,N).

Exercise 4.4. In the notation of Definition 4.2, prove that αM∗(e1) = α∗A(e2) ∈
Ex(M2, A1).

Given two small extension

e1 : 0−→M−→B−→A−→0,

e2 : 0−→N−→C−→A−→0,

with the same target, we define e1 ⊕ e2 ∈ Ex(A,M ×N) as

e1 ⊕ e2 : 0→M ×N → B ×A C → A→ 0.

We have a natural structure of vector space on Ex(M,A) where the sum is defined as

e1 + e2 = +∗(e1 ⊕ e2), where +: M ×M →M

and the scalar multiplication is induced by the corrsponding operation on M .
Let F be a deformation functor; for A ∈ Art, M ∈ Fvsp and a ∈ F (A) define

F (A,M, a) = {e ∈ Ex(A,M) | a lifts to F (S(e))}.

Lemma 4.5. Let F be a deformation functor, then:

(1) For A ∈ Art and a ∈ F (A) we have

F (A,M, a)⊕ F (A,N, a) ⊂ F (A,M ⊕N, a)

for every M,N ∈ Fvsp.
(2) For A ∈ Art, a ∈ F (A) and f : M → N

f∗F (A,M, a) ⊂ F (A,N, a).

(3) For A ∈ Art, a ∈ F (A) and π : A→ B

π∗F (B,M, π(a)) = F (A,M, a).

In particular, F (A,M, a) is a vector subspace of Ex(A,M).

Proof. Immediate from the definition of deformation functors. �

Lemma 4.6. Let F be a deformation functor, A ∈ Art, M ∈ Fvsp, e ∈ Ex(A,M) and
a ∈ F (A). Then

e ∈ F (A,M, a) if and only if f∗e ∈ F (A,K, a) for every f ∈M∨.
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Proof. Let e be the small extension

0−→M−→B π−→A−→0

and assume f∗e ∈ F (A,K, a) for every f ∈ M∨. We prove that a lifts to F (B) by
induction on dimKM ; If dimM = 1 there is nothing to prove.
Assume dimM > 1 and let f ∈M∨ with proper kernel N ⊂M . Consider the following
small extensions and morphisms:

0 −→ N −→ B
π′−→ A′ −→ 0yi ‖

yδ
0 −→ M −→ B

π−→ A −→ 0yf yπ′ ‖

0 −→ K −→ A′
δ−→ A −→ 0

where the bottom row is f∗(e); call e′ the top row. We have i∗e
′ = δ∗e and then, for

every h ∈M∨ we have δ∗h∗e = h∗δ
∗e = h∗i∗e

′.
By assumption a lifts to some a′ ∈ F (A′) and, since M∨ → N∨ is surjective, we may
apply the inductive assumption to the small extension e′ and then a′ lifts to F (B). �

Lemma 4.7. Let F be a deformation functor, and let f, g : B → A be morphisms in
Art. Assume that b ∈ F (B) and f(b) = g(b) = a ∈ F (A). Then

f∗ = g∗ :
Ex(A,M)

F (A,M, a)
↪→ Ex(B,M)

F (B,M, b)
.

Proof. The injectivity is clear since f∗F (A,M, a) = g∗F (A,M, a) = F (B,M, b). Let

e : 0
i−→M → C

p−→A→ 0

be a small extension. We want to prove that f∗e− g∗e ∈ F (B,M, b).
Consider the small extension

∇ : 0−→M (i,0)=(0,−i)−−−−−−−→ D =
C ×K C

{(m,m) | m ∈M}
(p,p)−−−→ A×K A−→0

and the morphism φ : B → A ×K A, φ(x) = (f(x), g(x)). Then f∗e − g∗e = φ∗∇ and
then it is sufficient to prove that ∇ ∈ F (A×KA,M, φ(b)), i.e. that φ(b) lifts to D. Since
F (A×KA)→ F (A)×F (A) is bijective, we must have φ(b) = δ(a), where δ : A→ A×KA
is the diagonal. It is now sufficient to observe that δ lifts to a morphism A→ D. �

Definition 4.8. Let F be a deformation functor. For every A ∈ Art and a ∈ F (A)
denote by

H(A, a) =
Ex(A,K)

F (A,K, a)
.

Denote also by OF the subcategory of VectK with objects the H(A, a)’s, for A ∈ Art
and a ∈ F (A), and morphisms the injective linear maps f∗ : H(A, a)→ H(B, b), where
f : B → A is a morphism in Art such that f(b) = a.

The category OF is filtrant. This means that [3, Def. 1.11.2]:

(1) Given morphisms H(A, a) → H(B, b) and H(A, a) → H(C, c), there exist mor-
phisms H(B, b) → H(S, s) and H(C, c) → H(S, s) such that the resulting dia-
gram is commutative.
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(2) Given two morphisms f∗, g∗ : H(A, a)→ H(B, b) there exist a morphismH(B, b)→
H(C, c) such that the composed morphisms H(A, a)→ H(C, c) coincide.

Moreover, it is required that I is nonempty and connected.
The Lemma 4.7 says that 2) holds in the stronger sense that, given two objects, there
is at most one morphism between them. In view of this, 1) is equivalent to saying that,
given any two objects, there is a third to which they both map (the commutativity of
the diagram is ensured by 4.7). Given B,C in Art and elements b ∈ F (B), c ∈ F (C),
take S = B ×K C; since F is a deformation functor there exists s ∈ F (S) mapping to
b ∈ F (B) and to c ∈ F (C).

Since OF is filtrant, the colimit construction interchanges with the forgetful functor
VectK → Set, i.e., the set

OF := colim OF =
⋃
OF

H(A, a)/ ∼,

where ∼ is the equivalence relation generated by v ∼ f∗v, is a vector space over K and
the natural maps H(A, a)→ OF are injective morphisms of vector spaces.
The space OF is the obstruction space of an obstruction theory (OF , obe), where for
every small extension

e : 0−→M−→B−→A−→0

we define obe : F (A)×M∨ → OF by obe(a, f) = θ(e), where θ is the composition map

θ : Ex(A,M)
f∗−→Ex(A,K)→ H(A, a) ↪→ OF .

It is straightforward to verify that (OF , obe) is an obstruction theory, while Lemma 4.6
tell us that it is a complete obstruction.
Finally, the universal property of colimits gives the universality of (OF , obe).
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