
M. KONTSEVICHTopics in algebra{deformation theoryLecture 1"Hard to construct" �nite dimensional compact manifold.Sets arise usually as sets of equivalence classese.g. N = equivalence classes of �nite sets, with equivalence existence of a bijection.e.g. �nite simple groups/isomorphism.e.g. Mg moduli space of curves of genus g, "essentially smooth".Need tools to provide compactness and smoothness of these spaces. Tools come fromalgebraic geometry (geomtric invariant theory) and analysis (compatness theorems, Fred-holm properties) for compactness. For smoothness, one has resolution of singularities(which changes the space), Lie group and homgeoneous space mthods, general positionarguments, Sard lemma, and deformation theory.GOAL OF COURSE: to develop techniques which produce an enormous class of ex-amples of "quasismooth" moduli spaces, which are nice enough to have characteristicclasses.For compactness, geometric invariant theory is not good enough (only one succesfulexample|space of curves in algebraic varieties or almost complex manifolds). There is nogood notion of "stable surface" to give a good moduli space.PHILOSPHY OF DEFORMATION THEORYIn�nitesimal study of moduli spaces. Intuitive picture (Arnol'd):Begin with in�nite dimenisonal vector space V , containing a closed subspace S ofstructures given by some equations.e.g. X = closed smooth manifold. V = almost complex structures. (Locally a vectorspace). S = integrable complex structures.Next, one has an in�nite dimensional Lie group acting on V and preserving S.The moduli space is S=G (e.g. equivalence classes of complex structures, in the pre-vious examples).Fix m in the moduli space M . Pick a representative ~m in S. Consdier the orbit G ~m,which is a smooth manifold, and pick a transversal manifold ("slice") T , and intersect withS to get a space whose germ at ~m is called a miniversal, or transveral deformation.PRE-LEMMA. Any family of structures containing ~m is induced from the miniversaldeformation. Any two miniversal deformations are isomorphic.Good situation: stabilizer of ~m is discrete. In this case, the miniversal deformationis the universal deformation { it is completely unique (the equivalence between any tworealizations is canonical).EXAMPLE. 1st order deformations of associative algebras. Let A be a vector spaceover k (e.g. C). If you choose a basis ei for A as a vectorspace, we get structure constantsckij in C. Here, our space V is of dimension n3 if A has dimension n; S is the space ofassociative products, given by a system of quadratic equations. the group G is Aut(A).For 1st order deformation, suppose that Ckij(h) = ckij + ~ckijh+O(h2): Impose associa-tivity and divide by transfomrations ei 7! gijej , where gij = �ij + ~gijh+ :::.It's convenient to consider algebras over the dual numbers C[h]=(h2): In particular,one consider algebra structures on Ah = A[h]=h2. Consider products on Ah which reduce1



to the old product on A.We get a � b = ab+ hf(a; b)::: Get a condition on f :f(ab; c) + f(a; b)c = f(a; bc) + af(b; c):Now if we consider automorphisms which are the identity when h = 0, we considerlinear maps g : A! A giviing T (a) = a+ hg(a). the inverse is given by �g:The new product a �0 b pulled back from � by T is given by replacing f(a; b) byf(a; b) + g(a)b+ ag(b)� g(ab):RESULT. Hom(A;A) d1�!Hom(A
 A;A) d2�!Hom(A
A
 A;A)with d1 and d2 given by formulas based on above.fequiv classes of 1st order deformationsg = kerd2=imd1:One can also map d0 : A! Hom(A;A) by d0(a)(x) = ax� xa.So kerd1=imd0 is derivations/inner derivations.All this is called (lower) Hochschild cohomology of A with coe�cients in A. it isdenoted H�(A;A).We can name several of the Hochschild cohomology spaces:H0(A;A) = center of A;H1(A;A) = exterior derivations of A;H2(A;A) = 1st order deformations of A;H3(A;A) = obstructions to deformations of A(when it vanishes, every �rst order deformation can be prolonged to a formal deformation).What is the meaning of the higher cohomology? Analogy from Gelfand. We know thegeometric meaning of the �rst derivative (slope) and of the second derivative (curvature),and of the vanishing of the second derivative (inection). The higher derivatives don'thave individual meaning, but they are coe�cients of the Taylor series. In the same way,one should try to think of all the cohomology as the "Taylor coe�cients" of a single object.EXERCISE. "Formal deformation theory is not very realistic."Let A� by C[x1; x2; x3; x4] with the relationsx2x1 = 1;x3(x1 � 1) = 1;x4(x1 � �) = 1:1. Construct a basis ei(�) of A� (� 2 C0;1) such that the structure constants arerational functions in �. 2



2. Prove that the formal 1st order derivation is trivial for each value of �.3. Prove that A� and A� are isomorphic i� � is in f�; 1=�; 1 � �; 1=(1 � �); �=(1 ��); (�� 1)=�g.In fact, H2(A�; A�) = 0.The moral of this exercise is that formal deformation theory is not realistic for in�nitedimensional algebras.A SCIENTIFIC APPROACH TO FIRST ORDER DEFORMATIONS (Grothendieck-SGA I, Schlessinger)1st order: moduli space is not just a set but a groupoid (category in which all mor-phisms are invertible). Such a category gives rise to a set of equivalence classes (orbits) anda "Galois group" (isotropy group) in each class, which is a group de�ned modulo (inner)isomorphism.Groupoids arise in equivalence problems because there are usually many equivalencesbetween two objects.SECOND BASIC IDEA: Introduce a category of parameter spaces. For such spaceP , there is associated a groupoid of objects parametrized by P .1st order defomration theory. Consider the parameter space whose function algebrais the dual numbers.Kontsevich, Lecture 28/25/94Associative algebras were Example 1 of a deformation theory. The groupoid whichreplaces the tangent space to moduli space is the action groupoid for the action of the1-cochains on the 2-cocycles by addition of the coboundary. (The tangent space to modulispace is the orbit space of this groupoid.) This groupoid will be discussed further in asubsequent lecture.EXAMPLE 2. Deformations of Lie algebras.Start with a Lie algebra g over k, a �eld of characteristic zero.First order deformations = H2(g; g) (Eilenberg-MacLane)RULE OF SIGNS: Draw a permutation by arrows. The number of intersection pointsamong these arrows is (mod 2) the sign of the permutation. Now apply this to the per-mutation of variables occurring in the terms of the coboundary formula.The cohomologies have the same interpretation as in the associative case.Example 3 (for completeness). Commutative associative algebras, not necessarily withunit. Here we have the Harrison complex which controls the deformation theory. Here,the cocycles are in degree> 0, and H2 is again the 1st order deformations.FACT (generalization of exercise from the �rst lecture). LetR = C[x1; ::::; xn]=(f1; :::; fm):Suppose that the algebraic variety given by setting the fi to zero is smooth (maximal rankof the derivative matrix). "Closed points" of this (smooth a�ne algebraic) variety arehomomorphisms from R to C.For such varieties, the Harrison cohomology of the function algebra is zero in degrees>1. But the varieties are in general deformable. This means that the Harrison cohomologysees only the singularities. 3



For all three of the standard algebraic structures, we have: 1st order deformations= H2(standard complex).Now we will go on to some geometric examples.Example 4. Local systems.X = topological space (CW complex), G = Lie group, G� = G with discrete topology.We will refer to G� bundles as "local systems".There are three di�erent descriptions of local systems.A. Sheaf theoretic: local system is given by a covering Ui of X by open sets, transitionfunctions ij : Ui [ Uj ! G which are locally constant and satisfy the cocycle conditionfor compatibility. Equivalence is given by a common re�nement of two coverings and asystem of maps to G which conjugate one system of transition functions to the other.B. Group theoretic: Suppose that X is connected. Then equivalence classes of localsystems are naturally isomorphic to equivalence classes of homomorphisms from �1(X) toG. (IfX is not connected, one can use the fundamental groupoid instead of the fundamentalgroup.)C. Di�erential geometric: If X is a smooth manifold, we can look at the space of atconnections on G bundles modulo gauge transformations.WHAT IS THE DEFORMATION THEORY IN THIS SITUATION.Since G is a Lie group, we have a good notion of local system depending smoothly onparameters, and so we have a good notion of �rst-order deformation.In terms of description A, the �rst order deformations of a local system E are equiv-alence classes of pairs ( ~E; i), where ~E is a TG-local system and i is an isomorphism fromE to the G-local system induced from ~E.Algebraic view: points of G are continuous homomorphisms from C1(G) to R. Pointsof TG are continuous homomorphisms to the dual numbers.EXERCISE. Let A be any commutative associative R-algebra of �nite dimensioncontaining a nilpotent ideal of codimension 1. (Artin algebra). Then continuous functionsfrom C1(G) to A naturally form a Lie group. "Higher order tangent bundle".The description A gives the �rst order deformations as Cech cohomology H1(X; adE),where adE is the sheaf of Lie algebras associated to E.Description B gives a picture of the �rst order deformations of a homomorphism � asthe �rst cohomology of � = �1(X; x) with coe�cients in ad�.Description C gives the �rst order deformations as the �rst de Rham cohomology ofX with coe�cients in the at bundle adE.The three cohomologies are thus the same, but the "RIGHT" one is the cohomology ofthe local system. (Its higher cohomology is "correct".) The second description is "wrong".The third one gives an explicit complex.EXAMPLE 5. Holomorphic vector bundles. Here X is a complex manifold. We havetwo descriptions.Description A: have cover, with holomorphic transition functions to GL(N;C)....Description B: at connections in �@ directions. Suppose that we have a C1 vectorbundle E over X. The complexi�ed tangent bundle of X splits canonically into T 10 andT 01 (holomorphic and antiholomorphic), where T 01 is a formally integrable distribution.4



Now we also have a decomposition of 1 forms into 
10 and 
01. A connection in the �@direction is a C-linear map from sections of E to sections of E

01 satisfying the Leibnizrule �r(f�) = f �r� + � 
 �@f:Now we can prolong �r to a di�erential on all E 
 
0k, and atness is the conditionthat the square of this di�erential is zero.THEOREM (corollary of Newlander-Nirenberg theorem). Holomorphic structures() at �@ connections.So we �nd that deformations in picture B are given by Dolbeault cohomology of Xin EndE. (Maybe this should be called picture C.)So we have one basic formula with Cech cohomology and one formula with an explicitcomplex.EXAMPLE 6. Deformation of complex structures.Description A. Charts and transition functions. fi : Ui ! Cn embeddings, withtransitions given by holomorphisms.Description B. Smooth manifold X with integrable almost complex structure.Deformation theory in description B. Think of almost complex structure as a sub-bundle of the complexi�ed tangent bundle. Deformation is given by a map to the tangentspace of the appropriate grassmannian. So �rst order deformations are sections gamma ofHom(T 01; T 10), or "Beltrami di�erentials": i.e. type 0,1 forms with values in holomorphictangent bundle. The in�nitesimalized integrability condition becomes �@ = 0, while onedivides by the image of �@ to get the equivalence classes. Thus one gets the deformationspace to be the �rst Dolbeault cohomology of X with values in TX, while Description Agives the Cech cohomology with values in the corresponding sheaf.So here we �nd that the deformation space is H1(X; sheaf of Lie algebras), with anexplicit complex computing this cohomology.In the algebraic setting, we have a complex but no spaces.In all situations (algebraic and geometric), the explicit complex which computes thecohomology is a Z-graded di�erential Lie superalgebra. It is an "art" to discover theseobjects for a general deformation theory.A Z-graded di�erential Lie algebra is a:graded vector spacebrackets from gk � gl to gk+ldi�erential from gk to gk+1 satisfying d2 = 0graded antisymmetry and graded Jacobi identitygraded derivation ruleStructures (near a given one) are the same as elements  2 g1 satisfying the equationd + [; ] = 0: (Maurer-Cartan equation);equivalences arise from the action of g0.Kontsevich, Lecture 3August 30, 1994(Notes by Alan Weinstein) 5



A GENERAL SCHEME FOR FORMAL DEFORMATION THEORY IN CHARAC-TERISTIC ZEROStart with a D(Z)GLA � over a �eld k of characteristic zero.Let V be the vector space �1. S is the subset consisting of those  satisfying thequadratic equation d + 12 [; ] = 0:Instead of a group G acting on S, we have the Lie algebra g = �0 acting on �1 bya�ne vector �elds: � 2 �0 maps to the a�ne vector �eld on �1, _ = [�; ]� d�.Exercise: this is a Lie algebra homomorphism preserving the equation for S.We will check the latter: let K() = d + 12 [; ] = 0: Then we show that _K() = 0for every �.We use the chain rule: _K() = d + [ _; ] = d([�; ] � d�) + [[�; ] � d�; ] ==[d�; ]+[�; d]�dd�+ ::: = [�; d]+[[�; ]; ] = �12 [�; [; ]]+ 12 [[�; ]; ]+ 12 [[�; ]; ] = 0:(we used curvature zero for , plus Jacobi).Now the notion of orbit space for Lie algebra actions in in�nite dimensions is not veryuseful. So we go on to...ARTIN RINGSDe�nition (useless): A commutative associative ring A with unit is an Artin ring if ithas no in�nite descending chain of ideals. ("dual" to notion of Noetherian ring).Structure theorem: an Artin ring A is a �nite direct sum of local Artin rings A�.Each of these A� has a maximal ideal m� which is nilpotent. In addition, each quotientof A� by a power of m� is �nite dimensional.Fix a �eld k. Consider those A over k for which A=m � k. As a vector spaceA = k �m, where m is a nilpotent �nite dimensional algebra over k.EXAMPLES: k[h]=(hn), versions with several variables.NOW to a DZGLA , we associate a function from local Artin k-algebras to groupoids.The objects of the groupoid attached to A (with maximal ideal m) will be elements of �
m satisfying the Maurer-Cartan equation d + 12 [; ] = 0.To describe the morphisms, our �rst step is to introduce the nilpotent Lie algebra�0 
m.Second step: to every nilpotent Lie algebra g over k we can associate the group offormal symbols exp(x); x 2 g, with multiplication given by the Campbell-Baker-Hausdor�formula.CLAIM: Group(�0 
m) acts on the set of objects in our category. The action is: for� in the group, we get the map  7! ���1 � d���1(action of gauge transformations on connections).Here, the notation exp(�)exp(��) =Xn (ad�)n()=n!Also, d���1 = dexp� exp(��)6



is de�ned by dexp� = �Z 10 exp(t�)d�� exp((1� t)�)dt;d���1 =Xn (1=(n+ 1)!)(ad�)n(d�):(Some discussion here about using divided powers to handle the case of �nite charac-teristic.)NOW WE DEFINE THE GROUPOID to be the action groupoid of this action. Inother words, Mor(�1;�2) = those � which map �1 to �2; with composition the groupproduct.THE IDEA IS THAT although we cannot integrate the elements of the original Liealgebra, we can integrate them when we make the Lie algebra nilpotent by tensoring withan nilpotent algebra. Also, we "code" the orbit space of the Lie algebra action by usingits action groupoid instead.DZGLA STRUCTURES ON STANDARD COMPLEXESExample 4. G-local systems on manifold X, G a Lie group.if we �x a choice of copnnection r0 giving rise to the at bundle �, then �k =k�forms on X with values in ad�.Locally, we can choose trivializations, so that we have di�erential forms with valuesin g. The forms themselves form a Z-graded commutative di�erential associative superalgebra under wedge product. The tensor product of this object with the Lie algebra gautomatically gets the structure of DZGLA.Here. the Maurer-Cartan equation for  says that r0 +  is at. The action of 0 isthe action of the in�nitesimal gauge transformations.The story is essentially the same in...Example 5. Holomorphic vector bundles.On the other hand, something nontrivial and "funny" happens in...Example 6. Deformation of complex structures.X a C1 manifold, J a complex structure on X. Let k be the tensor product ofholomorphic vector �elds with forms of type 0; k. Typical element is fI ; jd�zI@=@zj: (I is amulti-index)Brackets and di�erential are given by local formulas. We look instead at the formalcompletion of the "f" part. it is formal power series in Rez and Imz, or equivalently in zand �z.Thus the formal completion of  is(C[[�z]]
 ^�(d�z))
̂(C[[z]]
 h@=@zi):This is the tensor product of a di�erential graded commutative algebra with a liealgebra, as before.PREVIOUS PICTURE NEW PICTURE7



almost complex structures �1 = Beltrami di�erentialscontains containsintegrable AC structures solutions of �@ Maurer-Cartanacted on by acted on bydi�X smooth sections ofholomorphic tangent bundleIt is strange for both of these Lie algebras (vector �elds and smooth sections of holo-morphic tangent bundle) to have the same orbits.An open domain in the AC structures can be identi�ed with an open domain in theBeltrami di�erentials.The graph of a Beltrami di�erential is a subbundle of the holomorphic plus antiholo-morphic tangent bundle. When the di�erential  is small enough, the graph is transverseto its conjugate.CLAIM. Integrability of the almost structure graph() is equivalent to the zero-curvature equation for .PROOF. Fix . We get a new almost complex structure with its T 0;1new generated by�i = @=@�zi +P ij@=@zj. Now compute the commutators of these complex vector �elds.their vanishing is equivalent to the equation of zero curvature.We have two Lie algebras acting on the space of almost complex structures. Theyhave di�erent orbits, BUT when restricted to the integrable structures they have the sameorbits.WHAT IS THE EXPLANATION? Both algebras (smooth vector �elds, smooth sec-tions of the holomorphic tangent bundle) lie in the larger Lie algebra of smooth sectionsof the complexi�ed tangent bundle.On integrable complex structures. this action has a big kernelso the image of this map ?.?.?.??? (I'm lost here) is the same for any complement ofthe kernel. This is the case for our two Lie algebras.One can even look at the Artin algebra picture and see that, not only are the orbitsfor the two algebras the same, but the groupoids obtained by the Artin algebra approachare equivalent.REMARKS1. The set of almost complex structures is complex (open set of a complex grassman-nian).2. The identi�cation of open domain in complex structures with an open domain in�1 is holomorphic. The Maurer-Cartan equation is a complex quadratic equation. thenwe get a functor from local Artin C-algebras to groupoids.Kontsevich, Lecture 4September 1, 1994Notes by Alan WeinsteinSUPERMATHEMATICSThis is a way to resolve all questions of � signs with just one rule.A super vector space is a Z2-graded vector space.(A large part of mathematics can be formulated in terms of vector spaces, ratherthan sets. Fix a �eld, preferably of characteristic zero. An associative algebra is a vector8



space V 2 OB(Vectk), plus a morphism m : V 
 V ! V satisfying an associativitycondition which can be expressed in terms of an equation m(m
1) = m(1
m). Similarly,commutativity can be expressed in a similar way.This leads to the notion of Tensor Category (Saavedra LNM 265, Deligne-Milne inLNM 900). This is "representation theory without a group".DATA: C an abelian k-linear category. (All morphism spaces are k-vector spaces, havedirect sums, kernels and images of morphisms.) An example is the category of modulesover an associative algebra.Next, have a functor 
 : C � C ! C which is biadditive, bilinear over k. Also haveidentity object ONE. Hom(ONE,ONE)= k.Also have two isomorphisms of functors:commutativity: 
P12 ! 
 (P12 is the ip),associativity: 
(
� IdC)! 
(IdC �
);identity: U 
 1! U .(The formulas look like the formulas in the de�nition of an associative algebra!)These objects satisfy a lot of axioms: for instance:The square of the commutativity transformation is the identity.Pentagon diagram: 4 objects, lots of associativity transformations. Allows one toremove parentheses in tensor products.Hexagon diagram: (permute U 
 V with W either all at once or in two steps).Identity axioms. etc.REASON FOR OMITTING BRACKETS IS A TOPOLOGICAL THEOREMIntroduce a CW complex in which the 0-cells are con�gurations of brackets in a prod-uct (of a given length). 1-cells are associativity isomorphisms. 2-cells are pentagons comingfrom the pentagon axiom. 4-gons coming from functoriality of the tensor product.THEOREM (Stashe�). This CW complex is 1-connected. This implies that theisomorphisms corresponding to all closed loops are the identity. (Not so trivial to prove!)Meaning of the hexagon axiom. The symmetric group acts on the n-fold tensor prod-uct. This breaks up into a direct sum of representations parametrized by Young diagrams.EXAMPLES of TENSOR CATEGORIES(0) vector spaces over k.(1) representations of a group �.(2) modules over a cocommutative Hopf k-algebra A.(3) (exotic example) supervector spaces Superk . Objects are Z2 graded vector spacesV . Homomorphisms are gradation preserving homomorphisms. So, as a category, this isisomorphic to Vectk � Vectk = modules over k[p]=(p2 � p) = representations of Z2.The tensor product is (U0; U1) 
 (V0; V1) = (U0 
 V0 � U1 
 V1; U1 
 V0 � U0 
 V 1)the commutativity functor is {ip on the factor U1 
 V1, usual ip elsewhere.FACT: all axioms of a tensor category hold. This explains why the "rule of signsalways works".This tensor category is almost the representations of Z2.SEMISIMPLE TENSOR CATEGORIES: each object is a �nite sum of simple objects.EXERCISE (topic for reection). De�ne tensor product of two semisimple tensorcategories in such a way that the tensor product of the representation categories of two9



�nite groups becomes the representation category of their product.Then we can show thatSuperk 
 Reprk(Z2) = Reprk(Z2) 
 Reprk(Z2). In some sense, Superk is the repre-sentations of a "twisted form of Z2."ANALOG OF FINITE-DIMENSIONAL VECTOR SPACESA rigid tensor category is a tensor category C together with a duality functor � :Cop ! C together with functorial isomorphism V �� ! V plus a "really boring list ofaxioms". These give rise to a map rank:ObC ! k = Hom(ONE,ONE) by the compositionONE! V 
 V � ! ONE.In the rigid tensor category of supervector spaces, the rank of (V0; V1) is dimV0�dimV1.THEOREM (Deligne, Grothendieck festschrift). Let k be an algebraically closed �eldof characteristic zero, C a rigid tensor category. if all ranks like in 0,1,2,3,..., then there isa �bre functor:C ! Vectk faithful and commuting with all structuresand a commutative Hopf algebra A such that C is the category of comodules over A.STRUCTURE THEOREM FOR COMMUTATIVE HOPF ALGEBRASA = projective limit A�; where A� is �nitely generated, i.e. functions on an a�nescheme of �nite type which is in fact an algebraic group.Thus C is the category of representations of an a�ne proalgebraic group.Milne-Deligne gave examples of rigid tensor categories in which the rank functiontakes noninteger values. (Base �eld is rational functions in a variable t.)CONJECTURE: Rigid tensor categories with ranks in Z should be of two types:comodules over commutative Hopf algebras or comodules over supercommutative Hopfalgebras.APPLICATION OF SUPERMATHEMATICSCan identify symplectic and orthogonal geometry.V = (super) vector space, B bilinear form on V with values in ONE. Can construct�V = V 
 k0j1 (odd version of V ) and a new form ~B on �V by ~B = B
 �, where�: k0j1 
 k0j1 ! ONE is the bilinear form with coe�cient one.COROLLARY: Sp(2n) = O(�2n).Interpretation: (forget supermath for a moment)Let g be a Lie subalgebra of gl(V ); V �nite dimensional. Suppose that the bilinearform tr(XY ) is nondegenerate on g. This leads to many numerical invariants of g, asfollows. Choose an orthonormal base Xi of g. Look at the structure constants cijk in thisbase, which are totally skew symmetric.Now �x a word divided into three letter subwords, in some alphabet. Suppose thateach letter appears twice in the word. For instance: ijk jik. Then we can construct thesum Xi;j;k cijkcjik:This number is independent of the choice of orthonormal basis.Now all such words are labeled by trivalent graphs. (vertex = subword, edge = letter).Now look at the algebras 10



{4 {3 {2 {1 0 1 2 3 4 5 6Sp(4) Sp(2) 0 0 O(2) O(3) ...Exercise: any of the invariants above is given by the values of a polynomial in n.e.g. dimension of O(n) = n(n� 1)=2, of Sp(m) is m(m+ 1)=2.NICEST PROOF OF THIS EXERCISE uses the � object in supermathematics.COULD ALSO LOOK AT osp(nj2m){de�ned by a nondegenerate even bilinear form.WHERE DOES THE DE RHAM COMPLEX COME FROM?A0j1 is the superscheme whose function ring is the symmetric algebra S�(k0j1) =k1j1 = k[�] where � is an odd variable.AutA0j1 is the function algebra of a super group scheme. Its comodules are Z-gradedcomplexes.On a manifold X, we have the scheme of maps from A0j1 to X. On it acts theautomorphisms of A0j1.....Kontsevich, Lecture 5September 6, 1994Plan for today: explain more about supermathematics (di�erential and algebraic ge-ometry). Next time: de�nitions of DGLA structures on standard complexes, in theseterms.Quillen notation: write � for(�1)sign of permutation of odd symbols;and � for ��.For example, in a super Lie algebra, [x; y] = �[x; y], [x; [y; z]] = [[x; y]; z]� [y; [x; z]]:DIFFERENTIAL GEOMETRYA supermanifold is a topological space with a sheaf O of topological supercommutativeassociative algebras with unit which is locally like the standard model Rnjm { its underlyingspace is Rn, and the "functions" on an open subset are C1(U)
 S(R0jM �). (We write itthis way rather than as a wedge product.)Simple theorem (exercise). Every njm dimensional supermanifold Y is isomorphic toone coming from anm-dimensional vector bundle V on an ordinary n-dimensional manifoldX. (Functions are sections of the wedge powers of V �.)Exercise (on composition of maps): Consider R1j2k, mapped to R by the formulay = x+ xi1�1 + :::+ xik�k:Now let z = sin(y). What is z(x; �; �)?SUPER VECTOR BUNDLE OVER supermanifold Y is a sheaf of OY modules whichis locally free and �nitely generated (i.e.locally OY 
 Rkjl).If V is a super vector bundle, totV is its total space considered as a supermanifold.OPERATIONS ON VECTOR BUNDLESdirect sum, tensor product, dual, CHANGE OF PARITY operator � (tensor withR0j1).Associated with a supermanifold Y are 4 bundles11



TY;�TY; T �Y;�T �Y:BIG EXERCISE1. De�ne a structure of Lie superalgebra on the sections of TY .2. De�ne an odd vector �eld D on the total space of �TY such that [D;D] = 0. Notethat the functions on tot�TY are called di�erential forms on Y .There are 3 versions of di�erential forms. Let xi; �j be coordinates on Y .(a) all C1 functions in D�j ;(b) all polynomials in D�j ;(c) all distributions in D�j .We will use only the choice (b) (If Y is an ordinary manifold, this problem does notarise.)3. De�ne a closed (even) 2-form ! on totT �Y , non-degenerate. Its inverse is a bivector�eld on totT �Y , which gives a Poisson bracket on functions on totT �Y , making them aLie superalgebra.4. De�ne an ODD closed 2 form on tot�T �Y to get an ODD Poisson structure, andget again a Lie superalgebra structure which in the case where Y is even is the Schoutenbracket on the multivector �elds.PROBLEM: In the presence of odd coordinates, one can't integrate di�erential forms.One can see this by looking at changes of coordinates. SOLUTION: Berezin integral.Requires introduction of "integral forms" which can be integrated{but not multiplied.A QUASI INTRODUCTION TO ALGEBRAIC GEOMETRY(most of what we say should work in arbitrary tensor category)A�ne schemes over k = commutative associative algebras with unit, but with arrowsreversed. O(S) is the algebra of functions on S, Spec(A) is the scheme of A.k-points of Spec(A) are algebra homomorphisms A! k,Can superize the above in the obvious way.EXAMPLES. A. V super vector space. Consider S � (V ),the direct sum of symmetricpowers of V , de�ned as the coinvariants of the (super) action of the symmetric groups onthe tensor powers of V .Notation: when dimV = njm, �nite, SpecS(V ) = Anjm.A general (not free) �nitely generated a�ne scheme corresponds to the quotient ofsuch an algebra by a Z2-graded ideal.B. Scheme of homomorphisms. A;B comm assoc with 1 algebras, B �nite dimensional.Then there is an a�ne scheme Map(SpecB, SpecA) whose k-points are homomorphismsfrom A to B.De�ne C = O(Map) by the �nite functorial property.For any scheme specR, there should be a functorial isomorphismOrdinaryMap(SpecR,Map(SpecB, specA)) = OrdinaryMap(SpecR� SpecB, SpecA),which equals OrdinaryMap(SpecR 
 B;A);which implies that Hom(C;R) = Hom(A;R
 B):12



let bi be a homogeneous base of B with b0 = 1. Then a homomorphism form A to R
Bis of the form a 7!P fi(a)
 b.Since 1 7! 1, we have f0(1) = 1; fi(1) = 0 for i 6= 0.The multiplicativity of the homomorphisms gives:X fi(a1; a2)
 bi =Xjk �fj(a1)fk(a2)
 bjbkIf the structure constants of B are given by bibj =P cijkbi we �nd the relationsfi(a1; a2) =Xjk �fj(a1)fk(a2)cijk:These are relations on abstract symbols fj(a) which, together with the relations f(�a1 +�a2) = �f(a1) + �f(a2), de�ne the structure of the algebra whose Spectrum is C.DIFFEOMORPHISMS of 0j1 dimensional spaceConsider S = Map(A0j1; A0j1):A = B = O(A0j1) = k1j1: Let � be the odd coordinateon A0j1. for such a map we have f(�) = a+ b�. The generators are a (odd) and b (even).The function ring is k[b; a].Composition of functions gives a coproduct on this algebra given by�(b) = b
 b;�(a) = a
 1 + b
 a:Let S� be the automorphisms of A0j1.This is a closed subscheme of S � S (pairs of automorphisms with their inverses). S�is a group object in superschemes, so O(S�) is a Hopf algebra.We write S� = Gm �Ga, where Gm is Spec[b; b�1] and Ga is A0j1.REPRESENTATIONS OF THE GROUP SCHEME S�A representation of S� is a super vector space V with a comodule structure � : V !O(S�)
 V = V 
 k[b; b�1; a].v 7!PPn(v)
 bn �Qn(v)
 abn, where almost all Pn(v) and Qn(v) are zero for anygiven v.Now we need commutativity of some diagrams to specify that we have a coalgebraaction (compatibility with coproduct and counit). These translate into identities for thePn and Qn. (I haven't copied all the calculations from the blackboard.)We get:Pk � Pl = 0; k 6= l,Pn � Pn = Pn,PPn = IdV .in other words, we have commuting projections which give a direct sum decompositionof V making it into a Z-graded vector space.We also conclude that Qk maps V k to V k+1, with its square zero.So we get exactly COMPLEXES!THE "CORRECT OBJECT" which arises in practice is not the full tensor categoryof complexes of super vector spaces, but rather those for which V even is even and V odd isodd.ON THE ORIGIN OF THE DE RHAM COMPLEX13



Let X be an a�ne superscheme. Then tot�TX = Map(A0j1; X). Then O(tot�TX)is the algebra generated by a and da, for a 2 O(X), with relations given by those in theordinary algebra of functions, together with d(ab) = adb� adb.By general nonsense, the scheme S� = Aut(A0j1) acts on Map, making it into adi�erential graded algebra.Kontsevich, Lecture 6September 8, 1994Notes by K.LIE BRACKETS ON STANDARD COMPLEXES IN ALGEBRARecall: moduli problem in geometry (at/holomorphic bundles, complex structures)=) D(Z)GLA =) functor on Artin algebras.We will construct today Lie brackets on complexes from algebraic Examples 1,2,3(Lect. 1,2).For simplicity we will describe some general constructions in terms of ordinary vectorspaces. Everything generalizes to the case of tensor categories, e.g. superspaces.FREE ALGEBRASNotation: for V - vector space/kAssoc(V ) := free associative algebra (without 1) generated by V .As a vector space, Assoc(V ) = V � V 
 V � V 
 V 
 V + :::. Variant with unit:Assoc1(V ) = 1� V � V 
 V + ::: .Analogously, CoAssoc(V ) := co-free co-associative co-algebra co-generated by V .(Also, CoAssoc1(V ) = ::: ).Again, as a space, CoAssoc(V ) = V � V 
 V + :::.Co-product on A :=CoAssoc(V )� : A! A
A�(v1 
 :::
 vn) ==Pk:0<k<n(v1 
 :::
 vk)
 (vk+1 
 ::vn):If we use CoAssoc1 then the summation is over f0 � k � ng.DERIVATIONSFor any algebraic structure A =) Lie algebra Der(A). As a vector space Der(A) =fAutomorphisms T of (A 
 k[h]=h2) as an algebra over k[h]=h2; T = IdAmodhg =fAutomorphisms 1 + hD, where D : A! A is a linear map obeying Leibniz ruleg.In tensor categories: Ordinary Der(A) { ordinary Lie algebra, also there is Der(A) {Lie algebra in the category.DERIVATIONS OF FREE ALGEBRASAs a vector space Der(Assoc(V ))=Hom(V , Assoc(V )).Reason: homomorphism 1 + hD : A 
 k[h]=h2 ! A 
 k[h]=h2 is determined by itsrestriction to the space of generators V .Analogously, Der(CoAssoc(V )) = Hom(CoAssoc(V); V ) = Productn�1 Hom(V 
n; V )contains as a Lie subalgebra Pn>=1Hom(V 
n; V ) (we will use the last one).14



Brackets: f : V 
n ! V; g : V 
m ! V , [f; g] : V 
m+n�1 ! V[f; g](v1 
 :::
 vn+m�1) =Xk=1;n f(v1:::
 vk�1 
 g(vk 
 vk+1:::
 vk+m�1)
 :::
 vn+m�1)� Xl=1;m g(v1 
 :::
 f(vl 
 :::):::
 vn+m�1)Non-commutative analog of Lie algebra of polynomial vector �elds.TENSOR CATEGORY OF COMPLEXES (AND Z-GRADED SPACES)Complexes of vector spaces + morphisms of complexes of degree 0.Tensor product: [(V; d)
 (U; d)]n :=Pk(V k 
 Un�k).Di�erentialn :=P(dk 
 1) + (�1)k(1
 dn�k):Commutativity map: (�1)kl : V k 
 U l ! U l 
 V k:Z-graded spaces:=complexes with zero di�erential.Notation: for complex C;C[1] := (k in degree �1)
 C:C[1]k = Ck+1; dk of C[1] = �dk+1 of C:DGLA ASSOCIATED WITH VECTOR SPACEA { vector space =) � := Der(CoAssoc A[1]) Lie algebra in the tensor category ofcomplexes. Picture of �:�2 �1 0 1 2 : : :0 0 (or A Hom(A;A) Hom(A
A;A) Hom(A
3; A) : : :if use CoAssoc1)Lemma: Associative product m : A
 A! A is equivalent to m 2 �1; [m;m] = 0:Proof: compute [m;m](v1 
 v2 
 v3), use formula for [ , ].Fix such m =) di�erential on �; dx = [m;x]:Exercise: Check that d = Hochschild di�erential shifted by 1.Brackets on C(A;A)[1] called Gerstenhaber brackets.Trivial Theorem: 2 functors: Artin algebras ! Groupoids coincide:1) Artin algebra R with the ideal M 7!Objects: R-linear products on R
 A = initial product mod M ,Morphisms: R-linear isomorphisms equal to 1 mod M ,2) Functor constructed in Lecture 3 from (�; d):Proof: Maurer-Cartan equation (d+ 12 [; ] = 0) is equivalent to [m+ ;m+ ] = 0:Gauge Action of Lie algebra �0 became adjoint action after the shift of � by m.Remark: if one wants to consider isomorphisms of associative algebras MODULOinterior automorphisms : change a little bit construction of morphisms in groupoids (inthe functor associated with DGLA) using �1.OTHER ALGEBRAIC STRUCTURES (commutative and Lie algebras)Naive idea: imitate construction for associative algebras - works, but with changingof roles of commutative and Lie algebras !Functors Lie, Comm: vector spaces ! free algebras, Also functors CoLie, CoComm,Comm1, CoComm1. 15



As vector spaces: Comm(V ) = V + S2(V ) + S3(V ) + ::: =CoComm(V ). Lie(V ) =V + ^2(V )+ more complicated terms = CoLie(V ).Usual de�nition of Lie(V ): on A := Assoc1(V ) de�ne a coproduct � : A ! A 
 A:(Homomorphism of algebras). On generators �(v) = v 
 1 + 1
 v:DEF: LI(V ) := fa 2 Aj�(a) = a
 1 + 1
 ag:Exercise:1) a; b 2 Lie(A) then (ab� ba) 2 Lie(A);2) give a de�nition of CoLie analogous to the def of Lie.Let ? be Comm or Lie. As for associative algebras we haveDer(Co?(V )) = Hom(Co?(V ); V ) =Q Hom(homogeneous components of Co?(V ); V )contains P :::. Last Lie algebra for V = A[1] is denoted by �?(A):LEMMA: 1) structure of Lie algebra on A()  2 �Comm(A)1; [; ] = 0;2) structure of commutative associative algebra on A()  2 �Lie(A)1; [; ] = 0.Explanation of 1) (leave 2) as an exercise):Picture of CoComm(A[1]):�3 �2 �1 0 1 2 ...^3(A) ^2(A) A 0 (or 1) 0 0 ...because (^k(A))[k] = Sk(A[1]): Picture of Comm(A):�2 �1 0 1 20 0 (or A) Hom(A;A) Hom(^2(A); A) Hom(^3(A); A) 2 �Comm(A)1: skew-symmetric bilinear operation on A; [; ] = 0 () Jacobi identity.We can repeat all the story as for associative algebras, [ , ] on Eilenberg-MacLanecomplex C(A;A)[1] was introduced by Nijenhuis-Richardson (1967) (here A is a Lie alge-bra).For commutative algebra A (�Lie(A); d) is called Harrison complex, it is a subcomplexof the Hochschild complex (in fact, sub DGLA).Thus, we accomplished our task and constructed DGLA structures on all standardcomplexes from examples 1{6.SITUATION IS NOT COMPLETELY SATISFACTORYin Geometry: we used analytic methods (de Rham, �d complexes). There are closelyrelated Questions which are more algebraic: moduli of at bundles over �nite simplicialcomplexes, moduli of algebraic vector bundles, moduli of algebraic varieties. DGLA shouldbe constructed over arbitrary �eld. Also, analytic complex are not useful for direct com-putations.in Algebra: What to do with other algebraic structures? How to explain (or avoid)strange duality in the de�nition of standard complexes?We need to develop a better understanding of DGLA.GENERALITIES ON DGLAIn practice there are two examples of DGLA:1) From deformation theory: usually sits in degrees 0,1,2,... Sometimes we have ��1.2) From rational homotopy theory (Quillen, Sullivan)::::! ��3 ! ��2 ! ��1 ! 0! 0! :::I'll explain 2) later. Good to have in mind topological analogies.16



The �rst basic construction in DGLA is(CO)-HOMOLOGYStart to explain in the case of ordinary Lie algebras:g/�eld k =) two complexes C�(g; 1); C�(g; 1) (chains, co-chains) { DG commutativealgebra, DG co-commutative co-algebra...I consider chains as more fundamental object because one can get cochains by passingto the dual complex.Simplest de�nition of cochains: imagine that k = R; dim g <1; g = Lie algebra of aLie group G:C�(g;R) := (
�(G))G (use left action of G on itself) = (^�(g))�.We already have the de�nition of the chain co-algebra: CoComm1(g[1]) with thedi�erential associated with [ , ].Theorem: 1) g=R = Lie algebra of compact connected Lie group G =) H�(g;R) =H�(G;R) (as of a topological space).2)g=Q is nilpotent, G := abstract group associated with g (see Lecture 3) =) H�(g;Q)= H�(K(G; 1); Q).Kontsevich, Lecture 7Notes by Alan Weinstein9/13/94Homological meaning of H�(g; 1): it is Ext of g-modules (1,1),where 1 is the trivial 1dimensional representation.Meaning of Ext: g-modules are the same as U(g)-modules.Choose a free resolution of 1:... U(g)
 ^2g �! U(g)
 g �! U(g) �! 0 �! 0 ...??y ??y ??y ??y ??y... 0 �! 0 �! 1 �! 0 �! 0 ...vertical arrows give a quasiisomorphism of these complexes.Assuming g �nite dimensional, the dual spaces to the spaces in this complex are thedi�erential forms with formal coe�cients around the identity in the Lie group. Since theformal neighborhood is contractible, there is a Poincare lemma, whose proof uses the Eulervector �eld transported from the Lie algebra via the exponential map.Now consider Homg(U(g)
 ^kg; 1), dual to ^�g.Analogously, one can de�ne Ext� of g-modules (1; V ) as the cohomology of the complexwhose cochains are multilinear alternating maps from g to V .EXERCISE: write explicitly the di�erential in this complex.One can also de�ne Homology and chains.We also have C�(g; g) with coe�cients in the adjoint representation. (Chevalley-Eilenberg complex), essential to deformation theory. It's a bit surprising that these con-structions arising from abelian category theory have application to deformation theory.STANDARD (QUILLEN) CHAIN COMPLEX FOR DGLA�! C(�; 1), a Z-graded space which is the sum of the symmetric powers of �[1].Di�erential d = d1 + d2. 17



Consider � just as a Z-graded algebra, and let d1 be the di�erential in its chaincomplex (from Sk to Sk+1).For d2, forget the bracket and let d2 be the di�erential, from Sk to Sk. These twodi�erentials anticommute, so their sum is a di�erential.ANOTHER WAY� is a Lie algebra in the tensor category of complexes.C(�; 1) will be a complex in this category, i.e. a bicomplex, with spaces Cij anddi�erentials d1 and d2 raising the �rst and second degrees respectively. Here, Cij is zerofor positive i and for negative i is the j-th tensor power (in the tensor category of complexes)of the (�i)-th exterior power of �. (Big bi-diagram here which I can't reproduce. AW)Now we take the total complex of this bicomplex.A bicomplex is a module over Aut(A0j1) times Aut(A0j1), which becomes a moduleover Aut(A0j1) (i.e. a complex) via the diagonal embedding of these Lie superalgebras.The construction above "is purely formal and has nothing to do with derived functors."C(�; 1) is a di�erential graded coalgebra (cocommutative, with counit).CENTRAL FACTTheorem (proof next time). Assume that � is a DGLA with nonnegative degrees,with H0(�) = 0 (i.e. d0 : �0 ! �1 is injective).Then (H0(�; 1))� is a complete pro-(local Artin) algebra.The functor from local Artin algebras R to the set Homcontinuous((H0(�; 1))�; R), con-sidered as a groupoid with only identity morphisms is equivalent to the deformation functorassociated with �.This theorem was proposed by Drinfeld (letter 1988), Deligne (letter 1989), Feigin, ...A FEW MORE WORDS ABOUT (cocommutative, coassociative, counital) COAL-GEBRASAny such coalgebra A is a union of �nite dimensional subcoalgebras.Proof: �a = �nite sum of x1
 y1. The linear span Aa of the xi (which equals that ofthe yi, by cocommutativity) is �nite dimensional. A computation (too fast to type! AW)shows that Aa is a sub- coalgebra.Also, The sum of two �nite-dimensional subcoalgebras is another one.QEDThe dual space A�a in the �nite dimensional case is an Artin algebra. In general, it isa limit of �nite dimensional Artin algebras.COCONNECTED COALGEBRASA = k � ~A; ~A coalgebra without unit.~A should be conilpotent in the sense that higher products disappear. (equivalently,all �nite dimensional subcoalgebras are duals of local Artin algebras).A gives rise to a functor on local Artin algebrasR! Homcont(A�; R)! Homcoal(R�; A):Continuous homomorphisms from A� to k are the same as elements of A�
k satisfyingcertain identities.We will always have co-connected coalgebras. Start from cofree algebras and pass tosome homology. 18



QUASI-ISOMORPHISMS OF DGLA'SA homomorphism f : �1 ! �2 is a quasiisomorphism if it induces an isomorphism ofcohomology spaces.THEOREM. A quasiisomorphism f induces a quasiisomorphism of chain complexesC(�; 1).PROOF. The chain complexes are �ltered: F0 � F1 � F2:::, where Fm is the sum ofsymmetric powers of order up through m. The action of Cf preserves this �ltration, sosomething is induced on the associated graded object, call it gr(f).Lemma 1. f : X ! Y quasiisomorphism implies that its symmetric powers arequasiisomorphisms.Lemma 2. If X and Y are �ltered complexes with �ltration bounded from below,f : X ! Y a �ltered morphism such that gr(f) is a quasiisomorphism, then f is aquasiisomorphism.Lemma 1 + Lemma 2 implies the theorem above.PROOF OF LEMMA 1De�ne a homotopy between morphisms of complexes as usual. ([d; h] = f � g). Onewrites f � g. Now one can prove that, for complexes over a �eld, quasiisomorphism =homotopy equivalence. But one can prove that tensor powers of a homotopy equivalenceare homotopy equivalences.PROOF OF SECOND LEMMAUsually this is done with spectral sequences, but there is another way.SUBlemma 1. f : X ! Y is a quasiisomorphism i� its cone is acyclic, where the coneis the total complex of the bicomplex0! X ! Y ! 0! :::, where X is in degree �1.SUBlemma 2. If X is �ltered bounded below, then if grX is acyclic, X is acyclic.Proof that the sublemmas imply the lemma is straightforward logic.PROOF OF SUBLEMMASFor the �rst , use the standard exact sequence:Hi(X)! Hi(Y )! Hi(conef)! Hi+1(X)! :::For the second, the �ltration of the complexes induces a �ltration on cohomology,....CONCLUSION. The cohomology of di�erential graded Lie algebras is invariant underquasiisomorphisms.DEFORMATION FUNCTOR (revised) for DGLA with negative degree components.�x �; R � m, Artin algebra with nilpotent ideal m.Result is a groupoid whose objects are elements of �1
m satisfying the Maurer-Cartanequation and whose morphisms comes from the action of the group associated with �0
m.The Lie algebra of the stabilizer of some object � is the set of solutions of [a; ]�da = 0,which contains as an ideal the set of a = [; b] + db, for b 2 ��1: There is a correspondingnormal subgroup, which gives rise to a quotient groupoid with the same objects but fewermorphisms. (EXERCISE: check that this is correct.)THEOREM. If f : �1 ! �2 is a quasiisomoprhism, it induces an equivalence of themodi�ed (as above) deformation functors. 19



NOTE (A.W.) Is the modi�ed deformation functor related to the "extended modulispaces" used in gauge theory.Kontsevich, Lecture 8September 15, 1994Notes by K.Today we will make some essential preparations to the proofs of theorems from thelast lecture.STRONG HOMOTOPY LIE ALGEBRASBy de�nition, SHLA is a co-(free commutative associative) Z-graded algebra C with-out co-unit + co-derivation d of C of degree +1; d2 = 0.Notice that in the de�nition we don't �x an isomorphism of C with CoComm(V ) forsome Z-graded space V . We will refer to the choice of such an isomorphism (of Z-gradedcoalgebras) as a coordinates on C.In coordinates derivation d is determined by its restriction to co-generators, i.e. bycomposition Xn>=1Sn(V ) = C d�!C[1] projection�! V [1]! V [1]:This is just a collection of maps dn : Sn(V )! V [1]satisfying an in�nite system of quadratic equation (encoded as d2 = 0).Let A := V [�1], maps dn lead to "higher brackets"[ ; ; : : : ; ]n : ^n(A)! A[2� n];for n = 1; 2; :::Condition dd = 0 in explicit form is:For n � 1 and homogeneous v1; :::; vnX�2Sn Xk;l�1;k+l=n+1�[[v�1 ; :::; v�k ]k; ::::; v�n]l = 0:n = 1 equation is just [[v]1]1 = 0. Hence, [ ]1 : A ! A[1] can be considered as adi�erential.n = 2 equation means that [ ; ]2 : ^2(A)! A is a homomorphism of complexes.n = 3 equation means that [ ; ]2 satis�es Jacobi identity up to homotopy given by[ ; ; ]3.....COROLLARY: on H�(A; []1) bracket [ ; ]2 de�nes a structure of Z-graded Lie algebra.We have seen already in Lecture 6 that DGLA = SHLA with coordinates in which[:::]k = 0 for k = 3; 4; :::MORPHISMS OF SHLA-sBy de�nition, morphism is morphism of di�erential graded coalgebras f : C1 ! C2.20



Remark: free algebras are de�ned by functorial property Homalgebras(Comm(V ); B) =Hom(V;B). Analogously, co-free algebras are de�ned by Homcoalgebras(B;CoFree(V )) =Hom(B; V ) falgebra.or CONNECTED B.Thus, morphism of co-free coalgebras in coordinates is an in�nite collection of mapsf1 : A1 ! A2; f2 : ^2(A1)! A2[�1]; etc:Compatibility with d turns into a sequence of equations, meaning that f1 is a morphismof complexes, compatible with [ ; ]2 up to homotopy...Notice that for DGLAs A1; A2 there are much more morphisms in the category ofSHLA than in DGLA.GEOMETRIC PICTURE OF SHLADual space to a cofree coalgebra C =Pn Sn(V ) is an algebra of formal power seriesC� =Qn(Sn(V ))� (without unit). Adding unit we get formal functions on a formal man-ifold (may be, in�nite-dimensional) with a base point 0. Algebraic "choice of coordinates"corresponds to the identi�cation of Spec(C�+k1) with the formal neighborhood of zero atthe tangent space T0(C) := Ker(� : C ! C 
 C).SHLA structure de�nes an odd vector �eld d, [d; d] = 0 vanishing at 0. (() actionof algebraic supergroup G0j1a ). Morphisms of SHLAs are equivariant mappings.Thus, SHLA are critical points of G0j1a -actions. What can one say about non-criticalpoints?:Theorem: non-vanishing odd formal vector �eld d, [d; d] = 0 is equivalent to the vector�eld with constant coe�cients. (In some coordinates (xi) d = d=dx1). Proof: exercise.The situation is parallel to the usual theory of ordinary di�erential equations: vector�eld is locally equivalent to the constant one near points where it is non-zero, and theclassi�cation of critical points is hard.The next analogy with analysis isTHEOREM ON INVERSE MAPPING: homomorphism f : C1 ! C2 between twoco-free Z-graded coalgebras is isomorphism if and only if the induced map on the level oftangent spaces Tf0 : T0(C1)! T0(C2) is an isomorphism.PROOF: C1;2 are �ltered: Fk(C) = Ker((�
1
 :::1):::(�
1)�) (k+1 times, k � 0).Map f is compatible with �ltrations. Using induction as in the last lecture we obtain thatF is an isomorphism. QEDIf C is a SHLA then on T0(C) arises di�erential (from the linear part of d at zero).We consider it as a complex.De�nition: TANGENT QUASIISOMORPHISM between SHLAs is a morphism f :C1 ! C2 inducing quasi-isomorphism on tangent spaces.Lemma: Tangent qis induces quasiisomorphism of chain complexes C�. Proof: thesame as of the analogous statement from Lecture 7 on DGLAs.One of reasons of introducing SHLA: if there exists t-qis: C1 ! C2 then there exists(not-canonical) t-qis: C2 ! C1. (Will prove soon). It follows that (existence of t-qis) isan equivalence relation. Call it HOMOTOPY EQUIVALENCE.Problem: classify SHLAs up to homotopy equivalence. Solution: introduce two basictypes of SHLAs: 21



1) contractible: there are coordinates in which [: : :]k = 0 for k > 1 and Ker[ ]1 =Im[ ]1.2) minimal: [ ]1 = 0 in some (() any) coordinates.THEOREM ON MINIMAL MODELS: Each SHLA is isomorphic (after adding 1) tothe tensor product of a contractible and a minimal SHLA.Corollary 1: inversion of t-qis:t-qisContr1 
Min1 |{ �! Contr2 
Min2x?? t-qis ??y t-qiscomposition t-qisMin1 |||-�! Min2Last horizontal arrow is t-qis between two minimal SHLA, hence it is an isomorphism(by inverse mapping theorem). Invert it.Corollary 2: homotopy classes of SHLA = equivalence classes of minimal SHLAs. (Usethe same diagram).RELATION WITH MASSEY PRODUCTS:If A is DGLA then we construct a structure (up to iso) of minimal SHLA on H(A).That is, [ ]2 (=usual bracket on H(A)) and higher []s. [ ]3; [ ]4 etc. depend on the choiceof coordinates. Only leading coe�cients are canonically de�ned.Example of the simplest Massey operation: x; y; z 2 H(A); [x; y] = [y; z] = [z; x] = 0.Element in H(A)=Lie ideal generated by x; y; z. Degree = degx + degy + degz � 1. Pickrepresentatives X;Y; Z of x; y; z in Kerd : [X;Y ] = d; [Y; Z] = d�; [Z;X] = d�. By Jacobiidentity: d([�;X]� [�; Y ]� [; Z]) = 0: Call cohomology class of the expression in bracketsby [x; y; z]. Exercise: [x; y; z] is well-de�ned modulo [H(A); hx; y; zi] and it is representedby [x; y; z]3 in any coordinate system.PROOF OF THE MINIMAL MODEL THEOREM: Pick coordinates and try to mod-ify it by higher order corrections getting as result three groups of coordinates (xi; yi; zj) inwhich d = Pi xid=dyi +Pj coe� � z�2d=dzj : First order: split complex (A; [ ]1) into thesum of (::0! 0! k ! k ! 0! 0! :::) and (::0! k ! 0! 0! :::). Step of induction:we have d = Pi xid=dyi +Pj coe� � z2�:::�Nd=dzj+ higher terms. Denote (Pi xid=dyi)by d0.Next term in the Taylor expansion isXi A(x; y; z)i ddxi +Xi B(x; y; z)i ddyi +Xj C(x; y; z) ddzj ;A;B;C are homogeneous polynomials of degree N + 1.Equation [d; d] = 0 gives (1) d0(Ai) = 0 (2) �Ai + d0(Bi) = 0 (3) d0(Cj) = somefunction Fj(z) (Fj(z) arises from commuting of the middle term in the formula for d withitself).If we apply a di�eomorphism close identity exp(vector �eld �),� =Xi A0i ddxi +Xi B0i ddyi +Xj C 0j ddzj ;22



where A0; B0; C' are polynomials of degree N + 1; the change of d will be:(1) Ai ! Ai + d0(A0i)(2) Bi ! Bi + A0i + d0(B0i)(3) Cj ! Cj + d0(C 0j)We pose A0i := �Bi; B0i := 0, killing A and B. Also, we can �nd C 0 such that the newC is function in z only. The reason is that on k[[x; y; z]] cohomology of d0 are equal k[[z]].QEDKontsevich, Lecture 9Notes by Alan WeinsteinSOME REFERENCESW. Goldman, J. Millson, The homotopy invariance of the Kuranishi space, Ill. J.Math. 34 (1990), 337-367.Goldman-Millson, the deformation theory of representations of �1 (Kahler manifold),Publ. I.H.E.S. 68 (1988), 43-96. (contains description of functor from Artin algebras togroupoids)Review article by Feigin-Fuks (1986) in Sovremeenaye Problemy Mathematik, Fund.Napravlenie, vol. 21 (relation of H0 and moduli space) (maybe not translated).Deformation of complex manifolds: best reference isKodaira, K., Complex manifolds and deformations of complex structures (book)there is also Kuranishi, Deformation theory (book, pretty old-fashioned)For algebraic deformation theory, there was a 1979 preprint of Stashe�-Schlesinger,"Deformation and rational homotopy theory", which was never published (but K has acopy).PLAN FOR TODAY. Finish the abstract nonsense, go on to examples.Recall that, associated to a deformation problem was a functor from Artin algebrasto groupoids. In examples, we went from the deformation problem to a DGLA and fromthere to a functor. On the other hand, we can also go from DGLA's to chain complexes{di�erential free coalgebras (SHLA's). Today, we will construct an arrow from SHLA's tofunctors on Artin algebras to prove the homotopy invariance of deformation theory.Recall that an SHLA is essentially a formal manifold with a single (base) point, andan odd vector �eld with [d; d] = 0 and vanishing at the base point.How do we picture such an odd vector �eld d on a supermanifold M? Let S be thesubspace de�ned by the vanishing of d. It is given by the vanishing of df for all functionsf . This can be pretty complicated and singular.We will construct a sort of foliation of S. The operator [d; ] is a di�erential on thevector �elds; consider its kernel. These vector �elds commute with d, so they are tangentto S and hence de�ne vector �elds on S.We have Im[d; ]! ker[d; ]! vect(S) inclusions of linear subspaces. In fact these areinclusions of Lie subalgebras (by Jacobi) which are also O(S) submodules (by Leibniz), sothey de�ne "singular foliations" of vect(S). We are particularly interested in the foliationde�ned by Im[d; ].We can try to decompose the (even points) of S as a union of leaves, which are subman-ifolds S� of various dimensions (something like symplectic leaves of a Poisson structure?AW) 23



For each point x of S, its formal neighborhood is a SHLA. The SHLA's sitting atdi�erent points of the same leaf (for the IMAGE foliation) are isomorphic SHLA's. (Usethe ows of the vector �elds tangent to the leaf.)Groupoid associated to this picture: (something like holonomy groupoid of a foliation?AW)objects=points of Smorphisms are given by paths f(t) in a leaf and vector �elds v(t) generating them,modulo some identi�cations:v(t) is equivalent to v(t) + u(t) where u(t) vanishes at f(t). (Here we are solvingf 0(t) = [d; v(t)](f(t)) to get a path in the leaf.)v(t) is equivalent to v(t) + [d; u(t)]we can move everything by di�eomorphisms depending on t such that D(t)D(t)�1 =[d; ?(t)].One can check that the groupoid axioms are satis�ed by looking at minimal modelsfor the transverse structure along a leaf. (There is a splitting theorem, where the "trivial"factor is a contractible SHLA.)(NOTE{The algebra of multivector �elds on a manifold makes the cotangent bundleinto a supermanifold (with odd �bres). A Poisson structure is an odd vector �eld on thismanifold.) (I don't quite have this right AW.)SHLA=) FUNCTOR ON ARTIN ALGEBRASC coalgebra without counit, d : C ! C[1]: Artin algebra R with maximal ideal m.coints of S (objects of groupoid) will be Homcoalg(m�; C0) such that the image iscontained in the kernel of d.In coordinates C = Sym(a)[1], an object is a  2 m 
 A1 satisfying the generalizedMaurer-Cartan equation: []1 + 12[; ]2+ 16[; ; ]3+ ::: = 0:WHICH OBJECTS ARE EQUIVALENT? (full de�nition of morphism would involve"nasty formulas"; see further remark below)Consider di�erential equations for (t) (polynomial in t)0(t) = [a(t)]1 + [a(t); (t)]2+ 12! [a(t); (t); (t)]3+ :::where a(t) is a polynomial in t with values in A0 
m.We say here that (0) is equivalent to (1).Morphisms are equivalence classes of such di�erential equations under an equivalencerelation like the one above.LEMMA. For DGLA'S, the deformation functor constructed a few lectures ago agreeswith the functor just constructed for SHLA's.(Straightforward to check.)LEMMA. The two maps (inclusion and projection) minimal �! minimal 
 con-tractible induce equivalence of deformation functors.COROLLARY. Quasiisomorphisms between SHLA's (DGLA's) induce equivalences oftheir deformation functors. (Theorem promised 1 week ago.)24



(Application: Goldman-Millson) the moduli space of unitary representations of thefundamental group of a compact Kahler manifold is locally quadratic when the H0 is zero.THEOREM. If A is a SHLA with all nonpositive cohomology zero, then1. all automorphisms in the values of the deformation functor are the identity.2. �0 (deformation functor) is represented by the coalgebra H0(C).PROOF (pretty garbled, I'm afraid AW)1. Since H0(A) = 0, any homomorphism m� ! kerd � C0 Lie algebra of automor-phisms of object = H0(same complex �ltered)quotients have zero cohomology at degree zero.2. The minimal model has no morphisms. Look at the Maurer-Cartan equations....STANDARD STATEMENTS OF DEFORMATION THEORY1. H1(�) = 0 =) no deformations 2. H0() = 0; H2() = 0 =) smooth modulispace whose tangent space is H1.3. dimH1 � dimH2 � dim moduli space � dimH1:ACTUAL MODULI SPACESTheorem (Kuranishi) X compact complex manifold. There exists a miniversal defor-mation over a germ of analytic space.Theorem (Goldman-Millson) The formal completion of this germ can be de�nedthrough the formal theory related with vector valued forms. (Assuming H0 = 0; oth-erwise the statement is more complicated.)Theorem (Artin) If two germs of analytic spaces are formally equivalent, then theyare analytically equivalent.EXAMPLES.CURVES. Let X be a complex curve with no holomorphic vector �elds (genus atleast 2). Then the germ of moduli space is smooth, with tangent space H1(X;TX). Itsdimension is 3g � 3. (This is not actually the moduli space, for which we have to divideas well by morphisms far from the identity, giving a orbifold structure.)SURFACES. Consider a surface X of degree d (at least 4) in CP 3. We have thecohomological bounds on the dimension of the moduli space of complex structures on X.Miracle: the dimension of the moduli space is always equal to the dimension of H1,even though H2 is nontrivial for d at least 5.PROOFS: For degree at least 5, the dimension of H1 is the dimension of the space ofhypersurfaces modulo linear transformations.For degree 4, dimH1(X;T ) = 20; dimH2(X;T ) = 0, but we have only a 19-dimensionalfamily of quartics. The remaining family are the K3 surfaces.Kontsevich, Lecture 10September 22, 1994Notes by K.HARMONIC DECOMPOSITIONLet (C�; d) be a complex of pre-Hilbert spaces (i.e. we �x a positive hermitian scalarproduct on each Ck). We assume that (1) conjugate operators d� to d are de�ned (wedon't assume that d are bounded) (2) Ck with Laplacian � := dd� + d � d is orthogonaldirect sum of a �nite-dimensional space Hk on which � = 0 and a space on which � isinvertible. 25



Then (C�; d) decomposes canonically into the orthogonal direct sum of complexes: : :! 0! 0!Hk ! 0! : : :and contractible complexes of length 2. Spaces H� are canonically isomorphic to cohomol-ogy Hk(C�):Denote by G Green operator on C� acting by zero on Hk and by ��1 on the rest.KURANISHI SPACEX - compact complex manifold.Lie algebra controlling deformations of complex structures on X: �� := �(X;
0;� 
T 1;0), di�erential = �d (vector valued forms).Choose hermitian metric h on TX (not Kahler!). Induce L2-norms on ��. Then theharmonic decomposition appear because Green operator exists by the theory of pseudo-di�erential operators.We will construct a germ of analytic space in H1.De�ne map M : �1 ! orthogonal complement to H1 in �1 :� 7! projection along H1 of �+ 12 �d �G([�; �]):On the level of tangent spaces at zero M is surjection. We expect that the germ at0 of M�1(0) is a germ of manifold of dim=dimH1. To prove: introduce norms on �1 inwhich M is analytic (at least continuous!)Naive counting: if � has n derivatives than [�; �] has n� 1 derivatives, G([�; �]) has(n� 1) + 2 derivatives, �d of ... has n� 1 + 2� 1 = n derivatives.(1) Cn-norms (maximum of derivatives up to n-th order) are not good because theGreen operator in dimension larger then 1 can make unbounded function from C2 function.(2)Sobolev norms are not good because they give spaces not closed under the productof functions which appear as a part of [�; �]:Nirenberg's idea: use Hoelder norms. Parameters n � 0 (integer), 0 < a < 1. Incoordinates: f { function in Rd with support in a �xed compact.jf jn+a := Xk=0;:::;n(supjDkf j+ supx;y(jDkf(x)�Dkf(y)j=jx� yja)):Spaces Cn+a are strictly between Cn and Cn+1.Properties of Hoelder norms:(1) jfgjn+a < Constjf jn+ajgjn+a;(2) jf 0jn+a�1 < Constjf jn+a;(3) jf jn+a�1 < jf jn+a;(4) jf jn+a < ConstjLaplacian of f jn+a�2 + Constjf j0.The only non-trivial property is (4). We will not prove it, just use.After that we get analytic germ M�1(0) consisting of smooth forms. We can identifythe germ of M�1(0) with H1 using orthogonal projection to H1.Kuranishi map: k : M�1(0) ! H2; � ! harmonic part of [�; �]. Germ of analyticmap, Kuranishi space:= K := k�1(0) - germ of analytic space.26



LEMMA: � 2 K () �d(�) + [�; �]=2 = 0 and � is orthogonal to Im( �d).PROOF: =): we want to prove that R := �d(�) + [�; �]=2 is equal to zero. Becauseharmonic part of [�; �] is harmonic we have [�; �] = �G([�; �]). Substitute it into theformula for R: R = �d(�+ �d�G([�; �])=2)+ �d� �dG([�; �]) = �d� �dG([�; �])=2 (the �rst summandis in �d(H1) = 0) = �d�G �d([�; �])=2 = �d�G([ �d�; �]) = �d�G([ �d�+ [�; �]; �]) = �d�G([R; �]).We use Jacobi identity [[�; �]; �] = 0: Hence R = �d�G([R; �]). For � small enoughoperator ??! �d�G([??; �]) has norm less than 1 with respect to Hoelder norms.=) R = 0:(=: leave as an exercise. QEDIt is not trivial to prove that we get an actual miniversal deformation (see formalversion in Lecture 3). We omit the proof of this fact.Formalization (Goldman-Millson):De�nition: ANALYTIC DGLA is a DGLA with norms j ji on �i (in our example j jiwill be Hoelder norm j jN+a�i; N is large).Axioms: (1) di are bounded operators,(2) complex �� of pre-Banach spaces is continuously isomorphic to the sum of pre-Banach complexes of length 1 and continuously contractible pre-Banach complexes oflength 2,(3) dimH1, dimH2 < +1,(4) for x; y 2 �1 j[x; y]j2 <= Constjxj1jyj1.One can repeat Kuranishi's arguments and get a germ of analytic space. To prove thatit is an actual miniversal deformation one needs extra properties of �0. It was not devel-oped accurately by Goldman-Millson. Nevertheless one can check that we get miniversaldeformations for the case of at/holomorphic bundles too.FORMAL VERSION OF KURANISHI SPACE� - DGLA/ any �eld of char=0. Choose subspace �01 in �1 complementary to d(�0).Construct a new DGLA �0:degree �1 0 1 2 3 : : :0 0 �01 �2 �3 : : :with brackets and di�erential induced from ��. Formal moduli space for �0 is well-de�nedbecause H�(�0) = 0 and co-functions on it are H0(�0; 1). Call it formal Kuranishi spaceof � (or formal miniversal deformation). It is not canonical.Exercise:(1) equivalence class of fKS does not depend on the choice of �01,(2) equivalence class of fKS is invariant under qis of DGLAs,(3) if H0(�) = 0 then fKS is formal moduli space,(4) for analytic DGLA formal completion of KS is fKS.KAEHLER METHODS@� �@{Lemma: Let C�� be a bicomplex of pre-Hilbert spaces, di�erentials (unbounded)� : Cij ! Ci+1;j ; �� : Cij ! Ci+1;j . Assume that Laplacian for � = Laplacian for �� andsatis�es properties as in the harmonic decomposition lemma. Then C�;� can be decomposedinto the direct sum of bicomplexes looking like0 0 00 C 00 0 027



all the di�erentials are zero, and C 1�! Cx??1 x??�1C 1�! Call other components are zero.Proof:this is the tensor product of Harmonic decomposition lemma with itself.QEDBasic examples: X - Kaehler manifold: Dolbeault bicomplex of di�erential forms,generalization: forms with coe�cients in unitary local system.Other examples: N = (2; 2) supersymmetric �eld theories.We will show three applications of @ � �@{Lemma in all of which X will be a compactcomplex manifold such that there exists a Kaehler metric on X. We will not �x it.1. Moduli of complex representations of �1(X).Fix a unitary representation � : �1(X) ! U(N) ! GL(N;C). Denote by � theassociated local system of vector spaces. Controlling DGLA � is 
�(X;End�). Because Xis complex we have two extra di�erentials � and ��. Consider diagram��inclusion � Ker�projection=Im��! H(X;End�):Both arrows are qis of DGLA. Di�erential on the last DGLA is zero.Conclusion: � is formal (i.e. qis to its cohomology with zero di�erential, () ona minimal model only [ ; ]2 is non-vanishing). Corollary (Goldman-Millson): Modulispace has singularity at [�] isomorphic to an intersection of homogeneous quadratic cones.Number of quadratic equations is dimH2.In fact, we have more than that: we have an identi�cation of germs. There is a germof holomorphic vector �eld on moduli space corresponding to the Euler vector �eld onvector space H1.Question: How to write down explicitly this germ of vector �eld? What kind oftranscendental functions we have to use?There is a bunch of theorems proven by C.Simpson few years ago about moduli spacesof representations of �1 of Kahler manifolds. He constructed a real-analytic action of C�on moduli. Presumably, our vector �eld is a holomorphic component of Simpson's. Still Idon't know what kind of functions appear (do they satisfy a non-linear algebraic di�erentialequations?, how to continue them analytically? etc.)2. Moduli of holomorphic vector bundles.Fix again a unitary representation � : �1(X) ! U(N) ! GL(N;C). We considerdeformation theory of holomorphic vector bundle ��O. Controlling DGLA � is �(X;
0;��End�); ��. Consider Lie subalgebra Ker�. It has zero di�erential already. Inclusion of Ker�is qis. Again, we have quadratic singularities and mysterious germ of the vector �eld.3. Moduli of complex structures on Calabi-Yau manifolds. Suppose that X admitsa holomorphic everywhere non-vanishing N -form where N = dimX. In other words,c1(X) = 0 in Pic(X) = moduli of line bundles on X. Such manifolds are called Calabi-Yaubecause they admit Calabi-Yau metrics, that is Kaehler metrics with c1(X) = 0 on thelevel of di�erential forms. 28



TIAN-TODOROV THEOREM: moduli of complex structures on CY manifolds areunobstructed. Moduli space is smooth of dimension=dimH1(X;T ).Original proof uses Calabi-Yau metrics it was looking as a miraculous cancellationof complicated terms. Again, Goldman and Millson realized that it is a consequence ofhomotopy invariance of Kuranishi space.Controlling DGLA � is �(X;
0;� � T 1;0). We include it in larger DGLA graded byZ � Z : �0 = �(X;
0;� � ^T 1;0) with di�erential= ��and brackets = wedge product for �@forms times Schouten-Nijenhuis bracket for polyvector �elds.Let us choose a holomorphic volume element vol on X. Using it we can identify ^kT 1;0with ^N�k(T 1;0)�. This iso changes by a scalar factor if we change vol. We denote by @0operator on �0 induced from � on 
��.LEMMA (Tian-Todorov): [f; g] = @0(f ^ g)� @0(f) ^ g � f ^ @0(g):Here wedge is natural product on �(X ^ (T 0;1)� � ^T 1;0):This lemma can be obtained by simple direct calculations on coordinates. Next timeI'll tell more about it. QEDConsider diagram �0inclusion � Ker@projection=Im@0�! H�(X;^�T ):Last DGLA has zero [ ; ] and di�erential.It follows from TT lemma that both arrows are qis. (More details in the next lecture).Thus, we have smooth moduli spaces because all quadratic equations are zero, and germsof vector �elds on moduli. There is satisfactory understanding of these vector �elds interms of variations of Hodge structures.Kontsevich Lecture 11Notes by AWCALABI-YAU MANIFOLDSRecall that a Calabi-Yau manifold is one which admits a nowhere vanishing holomor-phic volume element (determined up to a constant) and a Kahler metric.Consider the bigraded space �:: = holomorphic multivector �elds tensor antiholomor-phic di�erential forms. With a �xed volume element, we can identify the multivector �eldswith holomorphic di�erential forms and then identify �:: with all the smooth di�erentialforms. We get a quasi isomorphism, not depending on the choice of constant in the volumeelement, between cohomology with value in the multivector �elds,...... (SORRY, I LOSTTHE THREAD HERE.)Now consider �:: as a supercommutative algebra by �.LEMMA (Tian-Todorov). @0 is an odd second order di�erential operator, de�ningPoisson brackets by [f; g] = @0(f ^ g)� @0f ^ g � f ^ @0g:MODEL SITUATION. Real smooth manifold with volume element Y . Then we canidentify multivector �elds with di�erential forms by interior product. Then d transfersto an operator d0 on multivector �elds. if we think of the forms as functions on the oddtangent bundle, with d as a vector �eld, then when we go over to thinking of the multivector29



�elds as functions on the odd cotangent bundle, we can think of going from one to theother by a "Fourier transform in odd variables". If we haved =X dyi @@yi ;we get d0 =X @2@�i@yi :The symbol of d0 is an odd symmetric bivector �eld on �T �Y; which gives the Schoutenbracket. (Batalin-Vilkovisky geometry.)NEW CONSTRUCTION OF CLOSED DIFFERENTIAL FORMSLet � be an even function on the odd cotangent bundle satisfying two equations:d0� = 0[�; �] = 0This implies d0(�n) = 0. Using the isomorphism with forms, we get interesting closelof Phid di�erential forms. (REMEMBER THAT WE ARE CARRYING AROUND AVOLUME ELEMENT.)Note that f; g 2 Ker@0 =) [f; g] 2 Im@0; so Ker@0 is a Lie subalgebra containing Im@0as a Lie ideal with the quotient being abelian.COROLLARY. On the cohomology with values in multivector �elds, the bracket [ ,] induced from the Schouten bracket is zero. In particular, H0(X;T ) is an abelian Liealgebra, so the connected component of the identity in the automorphism group of X isabelian.Because dimension of the automorphism group = 12h1(X) is locally constant, we canconstruct a good moduli space even when H0(X;T ) is not zero.QUESTION: Why after deformation do we still have a CY manifold?We will obtain as a corollary of Kodaira stability theorem in the �rst part of the nextlecture.FLAT STRUCTURE ON MODULI SPACE OF CY MANIFOLDSPREPARATIONS: LetM be a Kahler manifold with real-analytic Kahler form omega.Choose a pointm. Then we can construct a holomorphic a�ne structure on a neighborhoodof this point.Look at M � �M containing the diagonal as a totally real submanifold. The formomega has an analytic continuation to a holomorphic symplectic form on a neighborhoodof the diagonal. the �bres of the projections onto the factors of the product are lagrangiansubmanifolds (because ! is a 1-1 form). But then these leaves carry at a�ne structures.(Learned from a physics paper - Vafa, Cecotti,...)One can use the same construction also for pseudo-Kahler forms (= nondegenerateclosed 1,2-forms without condition of positivity).QUESTION (AW) Is there a more geometric description of this "exponential map-ping"?WEIL-PETERSSON METRIC ON MODULI OF CY SPACEthere are two descriptions. 30



First, on the moduli space M we construct a line bundle whose �bre at each pointis the space of homomorphic volume elements. This descend to the moduli space becauseaction of H0(X;T ) on H0(X;�nTX) (and, hence, on H0(X;�nT �X)) is trivial by qis inTian-Todorov theorem.There is a hermitian metric on L given by RX vol ^ vol,The Weil-Petersson (pseudo)metric is the curvature of this metric on L. In fact, this isjust a non-degenerate 1,1-form which is positive if we restrict it to families of POLARIZEDCalabi-Yau (i.e., families of complex structures with �xed Kahler class).Approach 2. Identify the tangent space to M at [X] with H1(X;TX). Using thevolume, we identify these with H1(X;
n�1). Now the pairing is given by integrating� ^ ��.CLAIM: 1=2, at structure arising from the WP (pseudo)-metric is the same as theone arising from quasiisomorphisms.We will prove all this in the next lefcture.STANDARD FACTS ABOUT CY MANIFOLDSTheorem (Yau). In the real class represented by the Kahler form, there is anotherKahler form whose n-th power is a constant times vol ^ vol (equivalently, the metric isEinstein).Theorem (Bogomolov). Each CY manifold X has a �nite covering ~X which is aproduct of a complex torus with at metric and complex structure times a product ofindecomposable hyperkahler manifolds times a product of "indecomposable CY manifoldsin the proper sense". All the factors of the last two types are simply connected.Indecomposable hyperkahler is one for which dimH2(X;O) = 1, with the class repre-sented by a complex symplectic structure onX. The CY metric has holonomy Sp(dimX=2).Indecomposable CY in the proper sense means that n = dimX > 2, and dimHk(X;O)is 1 for k = 0 and n and 0 otherwise. These manifolds are all algebraic.Moduli spaces for the �rst two factors:for tori{well known GL(n;C)nGL(2n;R)=GL(2n; Z). Polarized tori with integral po-larization class are algebraic (called abelian varieties). Moduli space of abelian varieties isU(n)nSp(2n;R)=disrete subgroup.for hyperkahler manifolds{according to Todorov, moduli space (of polarized hyper-Kahler manifolds) is open and dense in SO(2) � O(n)nO(2; n)=O(2; n;Z), maybe up to�nite covering.When dimX = 1, a Calabi-Yau manifold is an elliptic curve, de�ned by a latticeparameter � . The Weil-Petersson metric is @ �@log Im� , which is the standard upper halfplane metric.When dimX = 2, we have the K3 surfaces and C2=Z4.There are a lot of 19 dimensional families of algebraic surfaces, intersecting one anotheralong a complicated locus. Kodaira proposed �rst to consider nonalgebraic K3 surfaces.A classi�cation of K3 surfaces was given by Piatetski-Shapiro and Shafarevich, withan error �xed by Looijenga.CLAIM. For compact complex surfaces X carrying nowhere zero vanishing holomor-phic volume element, with H1(X;O) = 0, there is always a Kahler metric. (Idea: �rstshow that dimH1(X;T ) = 20, by Riemann-Roch. Also, deformations are unobstructed31



since H2(X;T ) = 0. The moduli space carries a line bundle given by the second complexcohomology of the surfaces, containing H0(X;
2) as a subspace. Its orthogonal spaceintersects the integer cohomology, so we can �nd a line bundle L with Chern class c1(L)in this intersection. We can assume that (c1(L); c1(L)) � 0. By Riemann-Roch and Serreduality, h0(L)+h0(L�) > 0. Thus we get line bundles with a lot of sections and can provethat X can be deformed to an algebraic surafce. Then we have to study limits of KahlerK3 surfaces etc...).Kontsevich Lecture 12Notes by AWMORE DETAILS ABOUT LAST TIMERecall that a Calabi-Yau manifold is a compact complex manifold which ADMITS aholomorphic volume form (nowhere 0) and a Kahler metric.Stability Theorem (Kodaira). In an analytic familyXt of compact complex manifolds,the set of t for which Xt has a Kahler form is open. (Proof is nonelementary, usingfunctional analysis.)FACT (C�; d) a complex of �nite dimensional vector spaces, with d depending continu-ously on a parameter d. The dimensions of the homology groups are upper semicontinuousfunctions of t. (Proof is elementary.)THEOREM. (Kodaira? Grauert?) Given a family Xt of complex manifolds carryinga family Et of holomorphic vector bundles, then dimHk(Xt; Et) is USC.Proof. Cohomology is given by the kernel of a family of elliptic operators (laplacian).Note also that, if the dimension is constant, we get a holomorphic bundle over theparameter space.PROOF OF THE KODAIRA STABILITY THEOREMSuppose that X0 is Kahler. Look at sheaf cohomology with coe�cients in di�erentialforms. using the ideas above and a spectral sequence, one concludes that the dimensionsof these cohomologies are constant.LEMMA: The following sequence is exact:0! (kerd \ 
1;1 + d
1)=d
1 ! H2(X;C)! (ker@ : 
2;0 ! 
3;0)=Im@ : 
1;0 ! 
2;0) + another term with �@ :Proof. Let w be closed. Write it as w20 + w11 + w02::::FROM THE LEMMA, it follows that the dimension of ((kerd \ 
1;1) + d
1)=d
1is at least h2(X2) � h2;0(Xt) � h0;2(Xt), which equals h1;1(Xt) = h1;1(X; 0): Rewrite((kerd\
1;1)+d
1)=d
1 as (kerd\
1;1)=(kerd\
1;1 \d
1): The last space is a quotientspace of L := (kerd \ 
1;1)=(@@0of ��
0;0).We have for all small t: dimL � h1;1. Then apply the @ � �@ Lemma: at t = 0dimL = H1;1. Now, identify L with (kerd\
1;1 \ (orthogonal complement to (@ �@
0;0)) =intersection in 
1;1 of Ker@;Ker�@ and Ker(@ �@)�:This is the same as the kernel of "sum of squares":L iso to Ker((@�@)2 + (�@� �@)2 + @ �@(@ �@)�). R.H.S. is elliptic PDO of order 4 withpositive index. =) dimL is upper semicontinuous. =) dimL is locally constant. Hencewe have a smooth family of harmonic representatives of closed 1,1-forms. They are positiveeverywhere on Xt for small t. QED of Kodaira theorem.32



EXERCISE. Suppose that we have a �nite-dimensional bicomplex Ct of vector spaceswith di�erentials depending on a parameter. Suppose that for C0 we have a decompositionas in the @��@ lemma into sum of trivial and small squares. Also suppose that the dimensionof the cohomology of the total complex is constant. Then we have a @ � �@ decompositionof Ct for t near 0.Since the dimension of H0(Xt;
nXt) is constant equal to 1, we can conclude that theexistence of a volume form persists after small deformations. Nevertheless, we developexplicit ...DEFORMATION THEORY OF COMPLEX MANIFOLDS WITH VOLUME ELE-MENTS(X; vol) =) DGLA, de�ned to be�kvol = sections of 
0;k 
 T 1;0 � 
0;k�1the di�erential is �@ + @0 in a suitable way; @0 is the divergence.The brackets are given by the bracket of vector �elds and the action of vector �eldson functions. It is Dolbeaut resolution of the sheaf of DGLA on X, 0! TX ! OX ! 0,with the functions in degree 1.CLAIM. vol 2 �1vol withDvol+ 12 [vol; vol] = 0 corresponds to new complex structureon X with holomorphic volume element. Action of �0vol has same orbits as di�X.1. vol = (; f), where  is a Beltrami di�erential and f is a function. In coordinates, =P ijd�zi @@zj (vol = product of dzi).The new complex structure is such that its antiholomoprhic vector �elds are generatedby @@�zi +X ij @@zj . Let �j be the dual basis of 1 forms. Then the volume element isgiven by 1 + f in this dual basis.The Maurer-Cartan equation becomes �@ + 12 [; ] = 0 (which is integrability of thecomplex structure), and the equation@0 + �@f + [; f ] = 0;which is equivalent to the equation d((1 + f)(�1 ^ : : : ^ �n)) = 0:To see this we write �j = dzj �P ijd�zi, then compute d�j. Using the MC equatiionfor , one gets d�j =P @ij@zk d�zi ^ �k:Now one can compute the di�erential of the volume element and show that it is zero."EXERCISE". (Solution not known to K.) Guess what is the right DGLA associatedwith the problem of deformations of complex manifolds equipped with Kahler forms.GAUSS-MANIN CONNECTIONSXt locally trivial family of topological spaces. Then we get at vector bundles on thebase given by the cohomology (complex coe�cients) of the �bres.Suppose now that the Xt are complex manifolds which admit Kahler metrics. Thenwe have on Hn(X;C) a pure Hodge structure of weight n; i.e. a rational lattice within it,and a decomposition into the direct sum of Hp;q.33



Now suppose that Xt depends analytically on parameters in an analytic space. assumefor simplicity that this space is again a complex man�old.Now it is important that the Hodge decomposition is NOT invariant under paralleltranslation in the at connection. In fact, r(smooth section of Hp;q) has components in3 spaces, but wedged with 1 forms of di�erent types.
1 
Hp;q + 
0;1 
Hp+1;q�1 + 
1;0 
Hp�1;q+1:COROLLARY. F p0 =Pp�p0 Hp;q are holomrphic subbundles.Proof { Look at a family of p; q forms,...Also, motion of the Hodge component Hp;q in direction Hp�1;q+1 is given by thecontraction with the element in H1(X;T ) corresponding to the 1-st order deformation.BACK TO CALABI-YAU MANIFOLDSWe have proven that there is a miniversal deformation of X over a germM of analyticmanifold of dim = hn�1;1 such that the Xt are CY for small t.We can identify Hn(Xt; Q) with that for X0 by using the Gauss-Maniin connection.We have the map t 7! Hn;0(Xt) = V 
 C, the period map of M into the projective spaceof lines in V 
 C.The period map is locally an embedding. One can see the motion of the Hodgecomponent Hn;0 of Hn by using the natural isomorphism from H1(X;T ) 
 Hn;0(X) toHn�1;1(X).MORE ABOUT THE WEIL-PETERSSON METRICOn V (as above{middle cohomology) we have a bilinear form given by the Poincarepairing. This gives a metric on an open domain in the tautological line bundle overP (V 
 C); v 7! (v; �v).the curvature is a 1-1 form on a domain in P (V 
 C). The induced 1,1 form onmoduli space M via the period map is in general pseudo-kahler. To get a positive form,we must restrict to families of POLARIZED CY manifolds. These are such for whichthere exists [!t] covariantly constant under Gauss-Manin and which give kahler metrics onXt. Universal family of CY in the proper sense is locally polarized because Kahler conef[!]j! is Kahler formg is open in H2(X;R) when h2;0(X) = 0.In general, if one has a real-analytic pseudokahler form, one can construct at struc-tures around each basepoint.On the other hand, we can choose a holomorphic lift of the period map P :M ! V 
C.We get m 7! (P (m); d �P (m0))=(P (m); �P (m0)) 2 T 0;1 �m0 M:THEOREM. The at structure arising from the period map (or Weil-Petersson metric)is the same as the one which arises from diagrams of DGLA's.PROOF: We realize H1(X;T ) as Ker@0Im@0 . In the proof of Tian-Todorov theorem wehave diagram of qis:   Ker@0 ! Im@0 ! H1(X;T ):For element g 2 H1(X;T ) there exists  2 Ker@0, �d() + [; ]=2 = 0 and [] = g. Letus construct volume element for complex structure de�ned by Beltrami di�erential : In34



explicit formulas of deformation theory of complex varieties with volume elements (seeabove) we take pair (g; 0).Thus, in local coordinates �1 ^ : : : ^ �n is a holomorphic n-form. It homogeneouscomponents with respect to the initial complex structure are vol (in degree n; 0),  con-tracted with vol (in degree n� 1; 1), etc. It is clear that (n� 1; 1) component is @- closed.Pairing of this form with harmonic (for the initial structure) (1; n� 1)-forms is linear ong, because it depends only on @-cohomology class of  contracted with vol. QEDKontsevich Lecture 13Notes by AWMORE ON K3.Take a complex surface X with vanishing H1(X;O) and a holomorphic volume ele-ment.Theorem: Such a surface is Kahler.Hodge table: 1 0 10 20 01 0 1H2 is an even unimodular lattice with index 3,19 for the Poincare pairing.By the theory of quadratic forms over Z, this is �E8 + E8 + 3 copies of 0 11 0 .....More discussion here on the relation between the integer lattice and the subspaceH0(X;
2) � H2(X;C). The aim seems be to give a description of the moduli space of K3surfaces.THEOREM S a complex space. Consider the following groupoid. Objects are familiesof K3 surfaces over S, morphisms are isomorphisms of families.This groupoid is equivalent to the groupoid of local systems � over S with Z-valuedscalar product and extra structure:L = holomorphic subbundle of complexi�ed � C = open subset in the total space.....>? >? >? >? >ALGEBRAIC K3 SURFACESBy Kodaira, its necessary and su�cient for the Kahler cone to contain an integralclass. The degree of an algebraic K3 is de�ned to be the minimum of the (v; v)=2 for v inthe Kahler cone C \ �.As a set, we can introduce the setMd of equivalence classes of K3 with �xed (v; v)=2 =d. It is a 19-dimensional quasi-projective variety.M1 has an open part which consists of K3 surfaces which are double coverings of CP 2,rami�ed along curves of degree 6.M2 = quartics in CP 3.Such elementary descriptions exist up to M5.On each Md the WP metric is positive and locally looks like SO(2; 19)=SO(2) �SO(19).MILES REID{Analogous picture in dimension 3.Consider 3d CY in the proper sense. X simply connected, Hodge numbers35



1 0 0 10 b a 00 a b 01 0 0 1Dimension of moduli space M is b.The period mapping mapsM to P (X3(X;C)) (map symplectic structure to the spaceof volume elements). The target space is symplectic of dimension 2b+ 2.By Gri�ths transversality, the period mapping is an embedding. The cone over M isa lagrangian cone in H3(X;C), so M itself is legendrian in the projective space.CONJECTURE (Reid) All the lagrangian cones which arise from moduli spaces aredegenerations of one in�nite dimensional cone.Idea (Clemens). To connect moduli spaces for CY manifolds with di�erent a and b.Let X be a 3d CY. j : CP 1 ! X a rational nonsingular curve. These curves shouldbe isolated. In fact. �rst order deformations are given by global sections of the normalbundle. This is a 2d bundle with C1 = �2.THEOREM. (Grothendieck) Any holomorphic vector bundle on CP 1 is isomorphic toa direct sum of line bundles which are tensor powers of the tautological bundle. The sumof the (negatives of the) powers is the Chern class.Thus the typical normal bundle should be O(a)� O(�2� a).The �rst order deformations of this bundle E are H1(CP 1;EndE).Deformation arguments show that (�1;�1) curves are preserved under deformationof X.....Theorem. If C is a (�1;�1) curve, X=C is an analytic space with it's singularity atthe contracted point isomorphic to sum of squares = 0.Clemens idea is to deform X=C in the category of analytic spaces.FLAT DEFORMATION: Deform the singular part like sum of four squares = epsilon,where epsilon is a function on the parameter space.What happens to Hi(X) if we deform X=C to a smooth variety? More generally, wecould deform several (�1;�1) curves C�.H2(Xnew) = H2(X)=h[C�]i:rankH3(Xnew) = old rank + 2 + linear relations between[c�]:When the [c�] generate H2, we get a complex manifold with H2 = 0. In this case, bya theorem of Wall, we have a connected sum of S3 � S3's.There is also a theorem of Tian which says that the deformations are unobstructed.Now introduce the moduli space Mg of complex structures on the connected sum ofg copies of S3 � S3 ("quaternionic curves"). This space has dimension g � 1. Now take alimit as g goes to in�nity.MODULI SPACES OF OTHER (NOT CY) MANIFOLDSIn almost all examples, the moduli space is smooth and of dimension equal to that ofH1(X;T ), despite the fact that H2(X;T ) may be zero.36



For example, in CPn, look at complete intersections P1:::Pk = 0; where the degree ofPi is di > 1,Deform by varying the coe�cients of the Pi.THEOREM (Kodaira Spencer for hypersurfaces, Palamodov)this deformation is a versal deformation except in K3 surfaces and the following cases:n = 3; k = 1; d1 = 4n = 4; k = 2; d1 = 3; d3 = 2n = 5; k = 3; d1 = d2 = d3 = 2The deformations are unobstructed.QUESTION. For CY we have homotopy equivalence of the deformation DGLA with itscohomology (with zero di�erential and zero bracket). Is the same true for other manifolds?CONJECTURE. (A. Todorov) Suppose that X is a projective algebraic variety withcanonical bundle KX very ample. (sections separate points...) Then there are no obstruc-tions to deformation.BACK TO GENERAL ALGEBRA{HOMOTOPICAL ALGEBRA(There is a book by Quillen{1971 on this subject, containing some axioms and exam-ples, but the situation of this subject is currently very unsatisfactory)GENERAL PRINCIPLE. Suppose that we have a functor F or more general construc-tion from some algebraic structures to some other category of algebraic structures. Thenwe can construct a derived functor RF from the same initial structures to a category ofdi�erential graded algebraic structures modulo homotopy equivalence.Assume that F is de�ned in terms of operations in a tensor category over characteristiczero.First step: F is applicable to any tensor category, hence it is applicable to tensorcategory of complexes.Also, we need to prove that F (qis) = qis.Second step: replace algebras by free resolutions. Then apply the functor to the freeresolution to get RF .CLAIM. Deformation theory, as a construction from certain kinds of algebras toDGLA's is the derived functor of the "functor of derivations" from algebras to Lie al-gebras. (Actually it's a construction rather than a functor.)NEXT TIME: examples.Lecture 14.Notes by M.K.EXAMPLES OF DERIVED FUNCTORSWe start from standard additive functors.Example 1. Fix associative algebra A. Functor (A � mod)opposite � A � mod �!vector spaces P;Q �! HomA�mod(P;Q).Pick free resolutions P � : :::! P�2 ! P�1 ! P 0 (qis P [0]) and Q�. Apply functor in-terior Hom to complexes P �; Q� get complex Hom(P �; Q�); k-th component Hom(P �; Q�)kis equal to the direct product QiHomA�mod(P i; Qi+k):Lemma: Hom(P �; Q�) is qis to Hom(P �; Q[0]) (no need to choose resolution of Q).37



Proof: We want to prove that the cone of morphism Hom(P �; Q�)! Hom(P �; Q[0])is contactible. Notice that Hom(P �; Q�) is not a total complex of a bicomplex because weuse in�nite products instead of sums. Hom(P �; Q�) is �ltered by degree in Q-component.This �ltration is DECREASING and COMPLETE. The same is true for the cone. It iseasy to see that if the associated graded complex is contarctible then the total complex iscontarctible. Associated graded factors are complexes:::! HomA�mod(P k; Q�1)! HomA�mod(P k; Q0)! HomA�mod(P k; Q)! 0:We can replace HomA�mod(P k; ???) by Homvector spaces(Gk; ???) where Gk denotes aspace of generators of free A-module P k. Hence asoociated graded factors are contractible.QEDCohomology of comples Hom(Gk; Q) are called Ext-groups.INDEPENDENCE OF EXTs of the choice of resolution P �:Scheme of proof is quite general:Step 1. For any two free resolutions P �1 ; P �2 there exists qis f : P �1 ! P �2 which is amorphism of complexes of A-modules. Construct f by induction: f0 : P 01 ! P 02 will beany lift of the map P 01 ! P to P 02 (using freeness of P 01 ); f0d : P�11 ! P 02 has image ind(P�12 ). Pick a lift to P�12 . Et cetera.Step 2. For two maps f; g : P1 ! P2 of free complexes in degrees � 0 if f; g inducethe same map on cohomology then f is homotopic to g. Proof: again by induction.Step 3. From Steps 1,2: If P1 and P2 are two free resolutions, then there are twoqis: f : P1 ! P2 and g : P2 ! P1 and both compositions fg and gf are homotopic toId. Hence between Hom(P1; Q[0]) and Hom(P2; Q[0]) there is a homotopy equivalence andthey have the same cohomology groups. QEDExample 2. Aopposite �modules� A�modules! vector spaces P;Q 7! P 
A Q.Again, we pick two free resolutions P �; Q�; k-th component of P � 
 Q� is �nite sumP i
Qj over i+ j = k. It is enough to choose free resolution only for one module P or Q.The same scheme gives derived functor with cohomology TorA(P;Q) independing on thechoice of resolutions.Remark: free modules are 1) projective (for �rst example): HomA(Free; ???) is exact,2) at (for 2nd example): Free
??? is exact. Of course, the replacement of Q by a freeresolution in Ex 1 was a wrong procedure, one has to use injective resolutions...NON-ADDITIVE CATEGORIES AND FUNCTORSExample 3. F : Lie algebras longrightarrow vector spaces, g 7! g=[g; g] = H1(g; 1).Free resolutions are DGLAs in degrees � 0 which are free as GLAs and are qis to g[0].Simple induction shows that there exists at least one free resolution. Functor F appliedto free resolution g� gives the complex of generators of g�.THEOREM: cohomology groups of the derived functor are independent on the choiceof free resolution and are isomporphic to homology ~H�(g; 1)[�1]: ( ~H denotes reduced ho-mology, i.e. remove H0(g; 1) = 1).Proof:Lemma 1. If g is free then Hk(g; 1) = 0 for k > 1.38



Proof of lemma 1: It is enough to prove that Hk(g; 1) = 0 for k > 1 because forarbitray Lie algebra g its cohomology are dual to its homology. We have an interpretationofHk(g; 1) as Ext-groups: Hk(g; 1) = Extkg�modules(1; 1). It follows from the free resolutionof 1 as Ug-module: :::! Ug 
 ^2(g)! Ug 
 g ! Ug ! 0:Now we will use independence of Exts on the choice of resolutions: g is free, henceUg is free as an associative algebra. Ug = 1 + G + G 
 G + ::: where G is the space ofgenerators of g. Another free resolution of 1:0! Ug 
G! Ug ! 0:It has length 2. Extk(1; 1) = 0 for k > 1. QEDLemma 1 means that the chain complex of Lie(G) is qis to G for any vector space G.The chain complex as a space is a sum of tensors in G with some symmetry conditions.Hence it is de�ned in terms of tensor algebra, and its contractibility is purely formalproperty. It means that Lemma 1 is applicable to arbitrary tensor category in characteristic0. In particular, it is applicable to the category of Z-graded spaces.Let g� be a free resolution of g.Construct the reduced chain complex of g�:degree �3 �2 �1 0: : : g�2 ! g�1 ! g0 ! 0% %: : : g�1 
 g0 ! ^2g0 ! 0%: : : ^3g0 ! 0: : : 0Di�erential is the sum of arrows ! and %.Lemma 2. ~C�(g�; 1) is qis to ~C�(g; 1).Proof: Cone of morphism ~C�(g�; 1) ! ~C�(g; 1) is contractible because it is �ltered(horizontal lines) with contractible quotients. (Cones of ^k(g�)! ^k(g). Functor ^k fromcomplexes of vector spaces to complexes preserve qis by the argument with homotopies).Lemma 3. ~C�(g�; 1) is qis to F (g�).Proof: Cone of morphism ~C�(g�; 1) ! F (g�) is contractible because it is �ltered(sloppy lines) with contractible quotients (by lemma 1).>From Lemmas 2,3 follows the Theorem. QEDTheorem suggests that there exists a CANONICAL free resolution of g with generatorsequal to ~C�(g)[�1]. In fact, this is the case.Introduce on Lie( ~C�(g)[�1]) di�erential equal to the sum of the di�erential arisingfrom the di�erential on ~C�(g)[�1] and of the di�erential arising from co-commutative co-associative co-product on ~C�(g). (See Lecture 6).Theorem: cohomology of Lie( ~C�(g)[�1]) with the di�erential as above is equal to g[0].We will prove it in the next lecture. 39



Lecture 15,Notes by M.K.At the end of the last lecture we formulated theorem (D.Quillen):Let g be a Lie algebra, then Lie( ~C�(g)[�1]) with natural di�erential is a free resolutionof g.It will be THEOREM 1 of today's lecture. In the proof we will use important generalcriterium allowing homotopy inversion of some functors:THEOREM 2. Let �1 and �2 be SHLA, and f : CoComm(�1[1])! CoComm(�2[1]) amorphism of di�erential graded coalgebras (= morphism of SHLAs). Assume that f is qis.Then f is tangent qis (i.e. induce qis of �1 and �2) if (1) both �1 and �2 are concentratedin degrees < 0, or (2) both �1 and �2 are concentrated in degrees > 0.In lecture 8 we proved the inverse implication: tangent qis is a qis.PROOF OF THEOREM 2:First of all, by minimal model theorem we can replace �'s by minimal models. Wewant to prove that f is an isomorphism.Case (1): Chain complex for �1 or<2 isdegree �4 �3 �2 �1��3 ��2 ��1 0�S2(��1)Di�erential maps S2(��1) to ��2: Hence H1(�; 1) = ��1 =) ��11 = ��12 :Next step =) qis is is on ��2 et cetera.Case(2): exercise (it di�ers a bit from Case (1)). QEDWHY WE EXLUDED DEGREE 0?There are contrexamples: One can construct non-trivial Lie algebras g with trivialhomology groups: H�(G; 1) = 0 for � > 0. There is no such �nite-dimensional Lie algebra(Hint: compute Euler characteristic of the chain complex). One of in�nite-dimensional ex-amples: polynomial vector �elds in in�nite-dimensional space { f�nite linear combinationsof monomial in x� � d=dx�, where x1; x2; ::: are formal variablesg.PROOF OF THEOREM 1:LEMMA: for Lie algebra g with trivial bracket Theorem 1 is true.PROOF OF LEMMA: the statement of this lemma is purely formal about cancella-tions of spaces of tensors with some symmetries. If it is true in one su�ciently represen-tative object in a tensor category, then it holds for all tensor categoies. So, it is enough toprove it for example for g graded sitting in degree �1.Let L� be a DGLA about which we want to prove that it is a resolution of g. Chaincomplex of L� is looking like L�3 L�2 L�1�S2(L�1)with di�erentials in directions East and North-East. This chain complex maps to thechain complex of g. We want to prove that it is qis. Use �ltration in direction North-West. Associated graded complex computes homology of L in which we forgot that Lwas di�rential. Thus it computes homology of a free Lie algebra which is the space of40



generators(see Lecture 14). This is chain complex of g. Chain complex of L� is qis to thechain complex of g.Applying Theorem 2 we conclude that L� is qis to g. QEDNoe we are able to prove Theorem 1: DGLA Lie( ~C�(g)[�1]) is looking likedegree �2 �1 0 1^3(g) ^2(g) g 0Its chain complex is:degree �2 �1 0 1^3(g) ^2(g) g 0g 
 ^2(g) ^2(g) 0Complicated Thing 0Complicated Thing here is component of degree 3 in Lie(g). Di�erentials go in directionsEast and South-East. Use �ltration in direction South-West. Associated graded complexcomputes cohomology spaces of Lie algebra for trivial bracket on g. This is the stiuationof LEMMA. QEDEXERCISE: mimic all this story and construct functorial free resolution of commut-taive associative algebras (without unit).Construct derived functor of A 7! A=A2, (Comm assoc algebras without 1) �! vectorspaces.Next example of derived functor: functor A 7! A=A2 from associative algebras without1 to vector spaces. Cohomology of the derived functor are computed by the followingcomplex: :::! A
A
 A! A
A! A! 0:As the graded space it is Coassociative coalgebra cogenerated by A, di�erential comesform the product on A:d(a1 
 :::
 an) = n�1Xi=1(�1)i(a1 
 :::(aiai + 1):::
 an):Usually people don't consider this complex because:FACT: for A with unit this complex is contractible.PROOFS:we will give two separate proofs.1) explicit homotopy: H(a1 
 :::
 an) = (1
 a1::::
 an);Hd+ dH = Identity map.QED2) For algebra A without 1 de�ne A0 as A with added unit: A0 = A+ k1.Lemma: dual to the complex as above computes ExtA0�mod(1; 1) (with exeptionExt0(1; 1) = 1).Proof of Lemma: free resolution of 1 as A0-module::::! A0 
A
 A! A0 
 A! A0 ! 0:It is contractible because of cancellations::::! A3 � A2 ! A2 �A! A� 1! 0:41



End of proof of lemmaIf now A is already with 1, then A0 is as algebra equal to the direct sum of A and k(ground �eld). We use another free resolution of 1:::� ! A0 ! A0 ! A0 ! 0;cancellations of :::A� 1! A� 1! A� 1! 0: HomA0�mod(resolution, 1) is complex::::1 id�! 1 0�! 1 id�! 1 0�! 0:QEDIf we want to repeat all the story in the beginning of today's lecture for associativealgebras, we have to prove a fact analogous to the LEMMA in the proof of theorem 1:For free associative algebra without unitA = V � (V 
 V )� :::cohomology of the derived functor (A 7! A=A2) are equal to V [1].Proof: For such algebra A we have a resolution of 1 of length 2: 0! A0 
 V toA0 ! 0QEDEXAMPLE: Deformation theory: Fix a kind of algebraic structures (like Lie algebras,Modules, etc.) Construction (not a functor): algebraic structures ! Lie algebras A 7!Der(A).Derived construction: replace A by a free resolution A� in degrees < 0, Der(A�) isDGLA.META-THEOREM: (we will prove in the next lecture);1) Der(A�) has cohomology only in degrees � 0,2) H0(Der(A�)) = Der(A),3) Kuranishi space constructed from Der(A�) is the miniversal deformation of A.4) qis type of Der(A�) as DGLA is independent on the choice of resolution A�.This theorem gives the universal point of view on deformation theory of algebraicstructures. For classical algebraic structures (Commutative, associative, Lie algebras) wehave standard deformation complexes which are DGLA (see lecture 6).COROLLARY: Standard complexes give DGLA quasi-isomorphic to the universalones from the meta-theorem. In fact, one has to modify a little bit "universal deformationtheory" for Lie and associative algebras: instead of construction A 7! Der(A) with valuesin Lie algebras use A 7! 2-term complex (A! Der(A)) with values in DGLAs.PROOF of the corollary: we explain it in example of deformations of Lie algberas.Other cases are completely parallel.Standard deformation DGLA for Lie algebra g is Der( ~C�(g; 1)) where ~C�(g; 1) is trun-cated chain complex of G considered as di�erential graded co-commuttaive coalgebra.Universal DGLA contsructed by the canonical free resolution of g is Der(Lie( ~C�(g; 1)))and consists of derivations of the di�erential graded Lie algebra constructed functoriallyfrom ~C�(g; 1). 42



Hence, by functoriality, we get a morphism of DGLAs:Der( ~C�(g; 1))! Der(Lie( ~C�(g; 1))):Let us prove that it is a qis of complexes.By de�nition, Der(Lie( ~C�(g; 1))) as a space is equal toHom( ~C�(g; 1);Lie( ~C�(g; 1))):Spectral sequence type arguments show that it is qis to Hom( ~C�(g; 1); g) becauseLie( ~C�(g; 1)) is qis to g.Again, by de�nition of derivations, complex Hom( ~C�(g; 1); g) is equal to Der( ~C�(g; 1)).QEDREMARK: we have seen a remarkable duality between calssical algebraic structures:Lie algebras are dual to commutative associatiev (without 1), Associative algebras (without1) are dual to associative. If we want to construct functorial free resolution of somealgebras, we use co-algebras odf the dual type and then we get a pretty small representativeof qis type of deformation DGLA.There was a theory developed rescently by Ginzburg-Kapranov of certain "Koszulduality' between algebraic structures which generalizes 3 classical examples. It is clear nowthat there are many other algebraic structures which admit dual and have nice canonicaldeformation complexes.Examples: Poisson algebras (like functions on Poiison varieties), again without units,Vertex Operator algebras, Gravity algebras (essentially solutions of associativity equationsin toplogical string theory) ...Lecture 16,Notes by M.K.Today we will prove META-THEOREM from the last lecture about deformations ofalgebraic structures.Precise meaning of words "algebraic structure" (on vector spaces):1)set of basic operations Fi. Each operation has some number of arguments: inetgerni � 0.Algebras are vector spaces V endowed with maps Fi : V 
n1 ! V , satisfying a set ofidentities:2) Identities between opertaions. �nite polylinear expressions in variables v1; :::; vk,for some k looking like: Sum of coe�cient times F�(:::; F�(:::; F�(:::; F�(:::):::))) = 0. Insidewe put some permutations of v1; :::; vk.Modern name for it is OPERAD, algebras are algebras over Operads. I will describeit some time later.Examples:1) Fix associative algebra A with unit. A-modules are algebras with basic operations:Fa, for a 2 A; na = 1. Relations: Fa+b(v) = Fa(v) + Fb(v); F�a(v) = �Fa(v); F1(v) =v; Fab(v) = Fa(Fb(v)).2) Associative algebras with units: Basic operations are Product, n = 2, and Unit,n = 0. Relations are evident. 43



3) Modules over non-�xed algebras: a mix of two previous examples. More naturalto describe it as two vector spaces A; V plus 3 basic operations: Product: A 
 A ! A,Unit: A0 = 1 ! A, Action: A 
 V ! V . One can also to describe it as one vector spaceA� V with two commuting projectors (on A and on V ) sum of which is equal Id. So, willbe 5 basic operations.It is clear that one can express a lot in such a way.For each kind of algebraic structures one can consider the category Algebras of algberasof this type. There is an evident forgetful functor: Algebras �! vector spaces (ususallywe don't denote it at all) and adjoint functor: Free: vector spaces �! algebras. Anymorphism from a free algebra is the same as a linear map from the space of generators.Analogously, any derivation of a free algebra is de�ned by its restriction to generators.There is an evident extension of algberaic structures to any tensor category. Hence,there are always Di�erential Graded versions of algebraic structures.Also, if A is an algebra of some kind and C is a commutative associative algebra with1 then on tensor product (A
 C) arised structure of the same kind as of A.Everything what I'm going to tell is true for arbitary algebraic structure. It is rea-sonable to imagine that I'm talking about something familiar, like associative algebras.Proof of the main theorem will consist of several elementary steps.FREE RESOLUTIONS. De�nition: free resolution A� is a di�erential graded algebrain degrees � 0 which is(1) free graded algebra (forgetting diferential),(2) its cohomology as of a complex sits in degree 0.A := H0(A�) is an algebra. We say that A� is a resolution of A.FREE RESOLUTIONS EXIST. For algebra A we can construct an epimorphism froma free algebra A0 to A. For example, Free(A) maps onto A. In the next step, constructfree GLA generated by A0 and some space G�1 in degree �1, and introduce di�erentiald : G�1 ! A0 with the image equal to the Kernel of the epi: A0 ! A. Extend d byLebniz rule to whole GLA. Proceed by induction, adding new generators and de�ningdi�erential of new generators to be closed elements in the previous step. Why d2 = 0?By construction, d2 = 0 on generators. For any odd derivation d d2 = [d; d]=2 is again aderivation. So, by Leibniz rule D2 vanishes.QUASI-ISOMORPHISMS BETWEEN FREE RESOLUTIONS. Let A�1 and A�2 betwo free resolutions of A. Then there exists a qis of DGalgebras f : A�1 ! A�2 over A.Proof: Denote by G� graded space of generators of A�1. We have A01 ! A epi �A02. BecauseA01 is free we can lift it to A01 using arbitrary lift on generators G0. Again, by induction,we construct dg-map from A�1 to A�2. It will be automatically qis, because cohomology ofA� sitting in degree 0.So, the qis-type of the resolution as DG-algebra is independent of the choice of reso-lution. It will be convenient to introduce a notion of homotopy in algebraic situation andmimic usual constructions in homotopy theory of topological spaces.DEFORMATION COMPLEX OF A MORPHISM. Let f : A� ! B� be a dg-morphism of two dg-algberas (not necessarily resolutions). We de�ne complex Def(f :A� ! B�) as following: its N -th component consists of 1-st order deformations in de-gree N of F as a graded (not di�erential) morphism. In other words, it is the space of44



graded morphisms A� ! B� 
 k["N ]=("2N ), where "N is a variable in degre �N , mor-phism should be equal to F modulo "N . We can write this morphism as f + H � "N .H : A�[N ]! B� is called a deformation of f . It satis�es a kind of Leibniz rule. Di�eren-tial in Def(f : A� ! B�) is de�ned by supercommutator with d. It comes from the actionof supergroup A0j1 on the whole picture.Deformation complex of a morphism behaves well if A� is free as a graded algebra. Insuch a case, if G� denotes the space of generators of A� then graded morphisms of A� to B�can be identi�ed with k-points (even, in degree 0) of a graded vector space Hom(G�; B�).This (in�nite-dimensional) graded vector space we can consider as a graded manifold (justan a�ne space). Di�erentials in A�; B� give an odd vector �eld on this manifold withsquare equal to 0. The standard picture (lecture 8) is that we have a singular foliation onthe space of �xed points, and at each �xed point we have a di�erential on the tangent space.Fixed points in the superspace of morphisms are exactly di�erntial garded morphisms, andthe tangent complex is Deformation complex.Morphism sitiing on the same leaf of foliation are called homotopic, more precisely...HOMOTOPY OF MORPHISMS. Let f0; f1 be DGmorphisms from A� to B�. Homo-topy between f0 and f1 is, by de�nition(1) a family of dg morphisms ft : A� ! B�, and (2) a family of graded linear mapsHt : A� ! B�[�1] depending locally polynomially on t, i.e. ft(a); Ht(a) are polynomialsin t for each homogeneous a; ft and Nt should satisfy conditions:1) values of ft at t = 0; 1 are our original f0; f1, 2) Ht belongs to Def(ft : A� ! B�)�1for each t and 3) d(Ht) : dBHt +HtdA : A� ! B� is equal to ddtft.Notice that for any family ft of dg-morphisms its derivative ddtft belongs to Def(ft :A� ! B�)0 and it is closed.This de�nition of homotopy is the translation of the geometric picture into algebraiclanguage. It also can be reformulated as one DG-morphism F : A ! B 
 k[t; dt], wheredeg(t) = 0; such that composition of F with two maps to B� which arise from k[t; dt]! k,t 7! 0 or 1; dt 7! 0.Exercise: prove that de�ne F is equivalent to homotopy in the de�nition above. No-tice that it is not clear from the de�nition whether existence of a homotopy de�nes anequivalence relation on the set of dg-morphisms. Of course, we can formally close it to anequivalence relation.HOMOTOPY EQUIVALENCE OF MORPHISMS BETWEEN FREE RESOLUTI-ONS. Theorem: Let f0; f1 : A� ! B� are two DGmorphisms of free resolutions inducingthe same map on H0. Then f0 is homotopic to f1. Proof: Denote by G� the space ofgenerators of A�. De�ne ft on G0 by: ft(x) = f0(x) + t(f1(x) � f0(x)). CompositionA0 ft�!B0 ! H0(B�) = B0=dB�1 is independent of t, because it is so on generators. Itfollows that ddtft(x) is represented zero at H0(B�) and we can choose Ht(x) such thatdHt(x) = ddtft(x). Then we procede with induction: we want to de�ne ft(x) and Ht(x) onnew generators of A�. dft(x) should be equal to ft(dx) and we know it already by previoussteps. Moreover, ft(dx) is closed by assumptions. Thus, we can choose some ft(x) fordegx < �1 because cohomology of B� vanishes. Also, in degx = �1 element ft(dx) is zeroin H0(B�) because ft induces map A0 ! H0(B�) independing on t, and vanishes on dA�1.Also, we can choose ft(x) as a polynomial in t with �xed values at t = 0; 1. Analogously,45



we de�ne Ht(x) as solutions of equations dHt(x) + Ht(dx) = ddtft(dx). There will be noproblems at all because H<0(B�) = 0. QEDHOMOTOPY EQUIVALENCE OF FREE RESOLUTIONS. As in topology, we cancall two DGLAs A�; B� homotopy equivalent if there exist dg-morphisms f : A� ! B�and g : B� ! A� such that fg is homotopic to IdB and gf is homotopic to IdA.COROLLARY: any two free resolutions of the same algebra are homotopy equivalent.CONSTRUCTION OF DERIVED FUNCTORS "Reasonable" functors between al-gebraic structures usually can be formulated in terms of tensor categories, and have ex-tensions to DG-algebras. Also, ususally the notion of homotopy of DG- morphisms ispreserved by such an extension (as a family of morphisms parametrized by DG-a�nescheme Spec(k[t; dt])). Hence, the homotopy type of image of the functor applied to a freeresolution is independent on the choice of resolution.If we want some cohomology theories as a result, then we get derived functor withvalues in complexes. Lemma: our 'fancy" notion of homotopy between morphisms ofcomplexes gives the same equivalence relation as the usual one. Proof: if ft is a polynomialfamily of morphisms and Ht are homotopies then dHt +Htd = ddtft; f1 � f0 = dH +Hd;where H = R 10 Htdt.DERIVED CONSTRUCTION OF DEFORMATIONS OF MORPHISMS. The idea isthat also Derivations do not form a functor, it can be written as Der(A) = Def(Id : A! A).Morphisms in any category can be considered as objects of a new category with morphismsbetween f : A! B and f 0 : A0 ! B0 be sets of commutative diagramsA f�! Bx?? ??yA0 f 0�! B0Applying general scheme with homotopies one get for two free resolutions A� and B� of thesame algebra morphisms of complexes Def(Id: A� ! A�)! Def(f : A� ! B�)! Def(gf :B� ! B�) qis Def(Id: B� ! B�) and analogously Def(Id: B� ! B�)! Def(Id : A� ! A�).Compositions in both orders are qis, hence all arrows are qis and cohomology of Der(A�)and Der(B�) are the same. In fact, there is a sall problem here because Def(f : A� ! B�)is an in�nite product and we get non-polynomial families of maps. One can check that theintegrals (in passing to the homotopy of morphissm of complexes in the usual sense) arestill well-de�ned because by spectral sequence-type arguments Def(f : A� ! B�) is qis toa complex with the total space Hom(Generators of A�; B).The problem is that we used as intermediate steps complexes Def(f : A� ! B�) whichdon't carry natural DGLA structure.QIS BETWEEN DGLA-s. Now we construct qis between Der(A�1) and Der(A�2) forany two resolutions A�1 and A�2 of the same algebra A. First of all, we reduce the problemto the case when one resolution is generated by some subspace of generators of anotherresolution. Denote by C� DGLA freely generated by A�1 and A�2. It maps to A because itsdegree zero generators (generators of A01 cup generators of A02) maps to A. Moreover, it ismap onto, because it is so for subalgebra A�1. Then we can add more and more generators46



to C� killing cohomology classes. What we get is a new free resolution B� containing bothA�1 and A�2 as free subalgebras generated by subspace in generators.Let us denote one of A�i simply by A�. Its generators we denote by fxg, generatorsof B� denote by fx; yg. Consider the following commuttaive diagram of complexes:sums of ?(x) ddx onto � sums of ?(x) ddx+?(x; y) ddy??yinclusion ??yinclusionsums of ?(x; y) ddx inclusion�! sums of ?(x; y) ddx+?(x; y) ddyIn abstract terms, we haveDer(A�) =Def(Id : A� ! A�)  � Derivations of B�preserving subalgebraA�??y ??yDef(inclusion : A� ! B�) �! Def(Id : B� ! B�) = Der(B�)By homotopy invariance we conclude that both vertical arrows and lower horizontalarrow are qis. Hence the upper horizontal arrow is qis. All complexes in this diagramexcept Def(inclusion: A� ! B�) are DGLAs and morphisms are DGLA morphisms. Hence,Der(A�) is qis to Der(B�). QEDIn order to �nish the proof of the main theorem we have to establish relations betweenactual deformations and derivations of algebras with abstract versions arising from DGLADer(A�). We will do it next time.Lecture 18,Notes by M.K.Topic of today's and the next lecture:ANALOGY BETWEEN ASSOCIATIVE ALGEBRAS AND ISOLATED SINGULA-RITIES OF FUNCTIONSMORE ABOUT SINGULARITIES:Let f be a holomorphic function in a neighborhood of closed ball �B in Cn. Assumethat f has no critical points on the boundary d �B. Then f has �nitely many isolatedcritical points inside B (if f has a holomorphic curve of critical points then this curvemeets boundary somewhere).We construct a germ of a manifold Mf . Consider space Ogood of functions g in O( �B)close enough to f . Action of Lie algebra T ( �B) de�nes a subspace at the tangent spaceto Ogood. We claim that it is a subbundle of �nite codimension of TOgood. It de�nes anintegrable foliation on Ogood because it comes from Lie algebra action. De�ne Mf as agerm of the space of leaves of this foliation near f .Subspace in TgOgood at a point g is Pk vk(x)df=dxk � O( �B). It is just the idealgenerated by derivatives of f . Quotient space is CoKer of the mapT ( �B) ^df�!O( �B):47



It is zero cohomology of the complex (Koszul)::::! ^2T ( �B) ^df�!T ( �B) ^df�!O( �B):This complex we can consider as1) DGLA of polyvector �elds with di�erential [f; ],2) super-commutative algebra O( �B) 
 C[�i], where �i have degree �1 (and generatea exterior algebra) with di�erential d : d�i = df=dxi(X); dxi = 0:We will use both points of view. The second description is essentially free algebra(algebras O( �B) have properties analogous to polynomial algebras).Next fact has elementary functional analytic nature and I will omit its proof: FACT:cohomology groups of Koszul complex are �nite-dimensional and its Euler characteristicis locally constant on the space Ogood.LEMMA (de Rham): cohomology of this complex vanishes at degree < 0.Thus, it is a version of a free resolution.De Rham lemma is a corollary of the general criterium (Serre) for complete intersec-tions.THEOREM. Let �j ; j = 1; :::;m be holomorphic functions in a ball B, or polynomi-als. Then the associated Koszul complex Functions 
C[�j ], deg�j = �1 with di�erentialD(�j) = �j has cohomology in degree 0 if and only if dimfx : ��(x) = 0g is equal to n�m.Proof of the theorem: in one direction (opposite direction is analogous). Assume thatdimfx : f�(x) = 0g is equal to n�m. We will show by induction that for k � m Koszulcomplex K(k) associated with �j ; j = 1; :::; k has cohomology only at degree zero. If it istrue for k, then K(k + 1) can be considered as a total complex of the short bicomplexdeg �1 0K(k) ! K(k)(or,equivalently, as a cone of morphism K(k) ! K(k) given by multiplication by �k+1).Spectral sequence degenerates, K(k+1) has cohomology in degree �1 equal to Ker(multip-licaion by �k+1 in ffunctionsg/ideal generated by �1; ::; �k). Cohomology of K(k + 1) indegrees not equal to 0;�1 vanishes.If �k+1 6= 0 is zero in ffunctionsg/ideal generated by �1; ::; �k it means that �k+1vanishes on a generic point of variety given by euations �1; ::; �k. Thus, dimension ofsome component of variety given by euations �1; ::; �k; �k+1 is equal to the dimension ofsome component for k, i.e. it is greater than or equal to n � k. Adding new equationswe can drop the dimension only by one by each equation. Thus, there is a component offx : ��(x) = 0g of dimension > n�m. Contradiction with the assumption. QEDThus, we see that T ( �B) de�nes an integrable foliation on Ogood of �nite codimension� = dimH0(Koszul complex).We assume now that f has only ONE critical point in B, mu is called Milnor numberof the singularity.We get a germ of �-dimensional manifold Mf . It is independent on the choice of ballB. In fact, formal completion of Mf is purely algebraic construction: we can replace inKoszul complex by formal power series at the critical point of f .48



On formal completion of Mf acts in�nite-dimensional pro-algebraic group AUT (for-mal completion of f at the critical point). This group is projective limit of �nite-dimensio-nal a�ne algebraic groups AUT=lim (AUTk), where AUTk is the image of AUT in thegroup Di�k of k-jets of formal di�eomorphisms. AUTk+1 maps onto AUTk with the kernelwhich is a subgroup in Ker(Di�k+1 !Di�k). The last group is equivalent to the productof several copies of Ga (a�ne group). It is known in algebraic geometry that in character-istic zero any algebraic subgroup of (Ga)N is isomorphic to (Ga)M for some M . Hence,in our case it is contractible, AUT is homotopy equivalent to AUT1 which is an algebraicsubgroup of GL(dim of space,C). Any a�ne algebraic group over C has �nite fundamentalgroup. Connected component of identity of AUT acts trivially on Mf by construction.CONCLUSION: "Actual moduli space" of singularities near f is a quotient space ofa germ of manifold by an action of a �nite group (i.e., an orbifold). We will see later thatvery often this �nite group is non-trivial.DIFFERENTIAL-GEOMETRIC STRUCTURES ON Mf .1) On tangent bundle TMf there is a canonical structure of commutative associativealgebra with unit, linear over OMf . Explanation: if g is close to f; T[g](Mf) = func-tions/ideal generated by derivatives of g. It is clear that this gives a structure of algebra,independing on the choice of representative g.2)On Mf acts Lie algebra C[x] ddx of polynomial vector �elds on the standard line.Field Ln := xn+1 ddx ; n > �2, maps to variation of f = fn+1. In other words, considerfunctions as maps to the standard line. Di�eomorphism of the line acts on euivalenceclasses of functions. Commutators of L� : [Ln; Lm] = (m� n)Ln+m.Relation between structures 1) and 2): Ln = product of n + 1 copies of L0 in thecommutative algebra 1).In open dense part of Mf consisting of g only with Morse singularities we have thefollowing universal picture: there are local coordinates ti; i = 1; :::; � (critical values of f),product in TM is ddti � ddtj = �ij ddti(diagonal product). Action of Ln =Pi(ti)(n+ 1) ddti :FIXED POINTS OF L0 ON Mf :More precisely, L0 vanishes at the base point ofMf i� f belongs to the ideal generatedby its derivatives. In this case we have a germ of �xed points of L0 in Mf .Theorem (M.Saito): f 2 ideal generated by f 0 () f is quasi-homogeneous in somecoordinates.Quasi-homogeneity means that coordinates xi have weights wi; 0 < wi < 1; wi isrational, and f has weight 1 (=) it is a polynomial). AUT is not trivial: it contains acyclic subgroup generated by xj 7! exp(2piwj)xj :Spectrum of the linear part of the action of L0 on the tangent space to Mf at �xedpoints consists of several positive rational numbers and 0 with multiplicity one.That's all for the moment what I want to tell about singularities.ASSOCIATIVE ALGEBRASLet A be an associative algebra with unit. A priori we have TWO deformation theoriesof A: 1) as an algebra with unit, 2) forget about unit.49



CLAIM: These two theories coincide.On the level of plain deformation theory over Artin algebras it is clear:1) if algbera has a unit, then it is unique. Hence, all automorphisms preserve the unit.2) Small deformation of an algbera which has a unit still has a unit: a�b = ab+h �f (a; b)is associative i� f is a cocycle:af(b; c)� f(ab; c) + f(a; bc)� f(a; b)c = 0:Substitute a = b = 1 : f(1; c) = f(1; 1)c: We can apply gauge transformation f(a; b) 7!f(a; b) + ag(b) � g(ab) + g(a)b where g : A ! A is arbitrary linear map. Choose g suchthat g(1) = �f(1; 1): Then new f(1; c) = f(1; c) + 1g(c) � g(c) + g(1)c = 0. Thus newg(1; 1) = 0: Also, using cocyle for b = c = 1 we have new f(a; 1) = a; new f(1; 1) = 0: 1 isa unit for new f ... QEDEXERCISE: prove that for algebra A with unit DGLAs Der(A�) and Der(A�1) arehomotopy equivalent. Here A� is a free resolution of A as an algebra without unit, A�1 isa free resolution with unit.DGLA controlling deformations of A is truncated Hochschild complex: we removefrom A! Hom(A;A)! Hom(A
A;A)! ::: the �rst term A. It looks very unreasonableto do it because for almost all A we will have no-trivial Lie algebra of derivations andcannot construct moduli space, only a miniversal deformation.We will denote by � whole DGLA C � (A;A)[1].ASSUME THAT � IS HOMOTOPY ABELIAN, i.e. that it is qis to a abelian SHLA(=in minimal model all brackets are zero).WE have met already homotopy abelian SHLAs= related with moduli of Calabi-Yau etc. For homotopy abelian SHLA � one can conctructan EXTENDED MODULI SPACE which is a formal graded manifold (may be, in�nite-dimensional). This space M is the spectrum of the total cohomology groups H�(�; 1) andcan be identi�ed with each minimal model.We consider M as just a Z=2-graded manifold. Z-Grading on O(M) means thatalgebraic group Gm (=multiplicative group) acts on M .THEOREM: 1) There is a natural structurte of commutative associative algebra withunit on TM , linear over OM ,2) Let L0 be vector �eld on M = generator of Gm action. De�ne Ln for n � �1 as(n+ 1)-st power of L0. Fields L� satisfy identity [Ln; Lm] = (m� n)Ln+m:(We will prove it on the next lecture).Fixed points of L0 are just points of the ordinary moduli space. Grading on thetangent space at �xed points is k � 2 on HHk(A). Spectrum is integral.So, we have a striking parallel between quasi-homogeneous singularities and algebras.There is no direct correspondence because the spectrum of L0 behave di�erently.I can see two possibilities to explain all this:1) modify somehow the situation with singularities using cyclic automorphism groupand get a germ of manifold with product on Tangent space and Di�(A1) action withintegral spectrum. Then try to guess which alegbras are related with it. Or,2) construct a large connected moduli space containing as open dense submanifoldsModuli of singularities and Extended Moduli of algebras. fFixed points of L0g should havetwo components (quasi-homogeneous singularities and associative algebras).50



Also, in topological sigma-model arise spaces with product on the tangent space and avector �eld L0: (One starts from a (symplectic or algberaic) compact manifold and countsrational curves on it =) Gromov-Witten invariants. For details see paper of Manin andme). I was able to prove in this case analog of the statement 2) in the Theorem. In stringtheory quasihomogeneous singularities give so called Landau-Ginzburg models.Kontsevich Lecture 19Notes by AWA associative algebra =) DGLA � = C(A;A)[1].Assume that � is homotopy abelian (in minimal model, all brackets are zero)Then we get an extended moduli space M which is a formal Z-graded manifold, thefunctions on M being H�(�; 1).Consider M just as a Z=2 graded manifold with a Gm action, where Gm is the mul-tiplicative group of a �eld, considered as an algebraic group.THEOREM 1. On TM there is a natural associative commutative product. 2. L0the generator of the Gm action, Ln = (n+ 1)-st power of L0, [Ln; Lm] = (m� n)Ln+m:HOCHSCHILD COMPLEXC:(A;A). Assume that A has an identity.LEMMA. Hochschild cohomology is Ext�A�bimodules(A;A).PROOF. Construct an explicit free resolution, with homotopy operator given by tensorproduct with 1.MODULI OF MODULESLet R be an associative algebra with unit,M an R module. (For us, R will be A
Aopand M will be A).By general principles, we need to choose a free resolution M : of M and then a DGLAHom(M :;M :). It is also a DGAA, with brackets the usual commutators of the associativeproduct. This gives on the groups ExtA�modules(M;M) an associative product (Yonedaproduct).There is an explicit, smaller, free resolution given as follows. Look at ::: ! R 
 R 
M ! R
M !M .Di�erential and homotopy operators are given by the same formulas as in the Hoch-schild complex. Look on R:[1] 
 M as a free comodule over the free coalgebra 
:R[1]cogenerated by M:Then the complex Hom(M;M) ! Hom(R 
 M;R) ! ::: is quasiisomorphic toHom(M;M). (Note that here and above Hom(M;M) is "underlined Hom", which is ahuge functor much bigger than ordinary Hom.Structure of DGAA on the complex:"Composition product" as in Hochschild complex.EXERCISE. Check that this DGAA structure is quasiisomorphic toHomR�modules(M :;M :):IN THE SPECIAL CASE where R = A 
 Aop and M = A, we have a di�erentresolution.After some work, we get on C:(A;A) a structure of DGAA (usual formulas in Hoch-schild cohomology). 51



EXERCISE. This DGAA is qis to HOM(A:; A:), where A: is free resolution of A.We get a second structure of DGLA on C:(A;A) given by the Gerstenhaber bracket.More precisely, the deformation theory of A itself is given by a DGLA structure onC:(A;A)[1].CLAIM. The DGLA structure obtained from commutators in the DGAA structure ishomotopy abelian.COROLLARY. The Yoneda product on ExtA�bimodules(A;A) is graded commutative.(These measure deformations of A as a bimodule.)The picture above is quite general.Given a homomorphism f : A! A, we can construct a bimodule structure Mf on Awith amb = amf(b). As an A-module, Mf is free with 1 generator.There is a 1{1 correspondence between End(A) and bimodules which are free as A-modules with �xed generator. A lot of our discussion was based on the fact that freemodules could not be deformed. On the other hand, deformations of Id: A! A in endo-morphisms (i.e. derivations) correspond (up to a small di�erence arising from generators)to deformations of A as a bimodule.It is true for plain deformation theory (functors on Artin algebras), and also for theextended deformation theory.So two languages for the same problem give rise to two di�erent DGLA's, but theyturn out to be quasiisomorphic.Now consider arbitrary algebraic structures, not necessarily associative. Let A and Bbe two algebras, f : A! B a morphism.Deformations of (f : A! B) are found by replacing A by a free resolution A:.We consider Hom(A:; B) as (the functions on) an in�nite dimensional manifold, withthe G0j1 action generated by an odd vector �eld. its �xed points are homomorphisms of aformal neighborhood into SHLA...VERY GENERAL STATEMENT{Deformations of the identity map form a homotopyabelian space.CONSIDER Hom(A:; A:) as (functions on) an in�nite dimensional monoid with G0j1action. A formal neighborhood of the identity is a formal Lie group G with an odd vector�eld. Now we can consider the map log from this formal neighborhood to the Lie algebra g.This is a di�eomorphism of formal manifolds. Now the G0j1 action is linear, being the liftof group automorphisms by the exponential map which implies that in these coordinates allthe higher brackets are zero. Thus there is a deep reason for the homotopy commutativitymentioned above.Now the DGLA controlling deformations of A is truncated C:(A;A). One then missesthe di�erence between all derivations and inner derivations.Now use the correspondence bimodules and generators $ endomorphisms. How toget rid of the generators.A bimodule gives a functor from A-modules to A-modules given by tensoring on theleft with the bimodule.One should develop the notion of deformations of an abelian category and get fromthere back to Hochschild cohomology.EXTENDED MODULI SPACE 52



We deform the di�erential in several situations:1. free resolution2. free coalgebra with counit cogenerated by ADe�nition. (Stashe�). An A1 algebra (strong homotopy associative algebra) is aZ-graded vector space V with mapsm0 : 1! V [�2]m1 : V ! V [�1]m2 : V 
 V ! V: : : : : : : : : : : :mn : V 
 V:::
 V ! V [n� 2]satisfying some higher associativity conditions. These conditions are equivalent to sayingthat the di�erential in CoAssoc1(A) is really a di�erential.In the special case where m0 = 0, we get the conditions that m1 is a di�erential, m2is associative up to homotopy, etc.....the extended moduli space = supermoduli space of A1 structures...deformations of Artin Z-graded algebras.Let F be a free coalgebra, F � = formal power series in noncommutative variables (freecomplete associative algebra).Construct a product between derivations of F � which will be a second order di�eren-tial operator moduli derivations. This will eventually lead to the bracket on Hochschildcohomology.PICTURES. Think of derivation of F � as a linear combination of monomials times@=@xi's. This acts on a word by replacing each occurrence of xi by the monomial.Now we de�ne v � u for derivations v and u byv � u(x1; :::; xN) by applying v to the left of u in each term.LEMMA 1. u � v is, modulo derivations, independent of the choice of coordinates. Inother words, [w; u � v]� [w; u] � v � u � [w; v]is a derivation.HERE FOLLOWS A "PICTORIAL" PROOF.Now let d be an odd derivation of F �; [d; d] = 0. This gives an A1 algebra. d de�nesHochschild cohomology.. The condition that [d+ h�v; d+ h�v] = 0 mod H2 means that v isa cocycle.We get a product on Hochschild cohomology is given by v � u.THEOREM. this product is associative and commutative. (5 pages of pictures.)There is also a pictorial proof of the bracket relation on the Ln's. A conceptual proofis still lacking.NEXT TIME. Will explain a conjecture of Deligne related to these matters.Lecture 21Notes by Alan WeinsteinHOCHSCHILD HOMOLOGY COMPUTATIONS53



EXAMPLE A = Matn(k). Compute HH(A) as ExtA�bimodules(A;A).In fact, note that A-A-bimodules are the same as Matn2 -modules.GENERAL REMARK. MatN modules are equivalent as a category to vector spaces(tensor with kN ).So we can get HH�(A) = ExtVect(k; k) = k in degree 0, 0 elsewhere.CONCLUSION. The matrix algebra has no deformations, and all its derivations areinner.EXERCISE. 1. Suppose that A = Matn(B), B another associative algebra. ThenHH�(A) = HH�(B). In fact, the DGLA's C:(: ; :) are qis.MORITA EQUIVALENCE. De�nition. AlgebrasA and B are called Morita equivalentif their categories of modules are equivalent as categories.THEOREM (Morita). A and B are Morita equivalent i� there exists a B-module-AM such which is �nitely generated and projective from each side, with each algebra beingthe commutant of the other. In this case, the equivalence of categories is equivalent as afunctor to 
A, from A-modules to B-modules.FACT. Morita equivalent algebras have isomorphic HH� and homotopy equivalentDGLA's.EXAMPLES OF M.E. ALGEBRASConsider a smooth manifold X. Then then endomorphism algebras of all vectorbundles over X are Morita equivalent.We have a Kunneth formula HH�(A
 B) = HH �( A)
HH�(B).To verify this, using the Ext picture, it is enough to use projective, not necessarilyfree resolutions. In fact, the tensor products of projective resolutions are again projectiveresolutions.At the level of Hochschild cochains, there is no tensor product between the complexes!COMMUTATIVE ALGEBRASIf A is a commutative algebra, we have the Hodge decomposition (Barr, Gerstenhaber,Schack).C�(A;A)[1] = Der(CoAssoc1(A[1])), the di�erential is [m; ], where m is the product.For commutative deformations, the DGLA is the Harrison complex Der(CoLie(A[1])).Let g = Lie(A[1]�), a free Lie superalgebra.(C�(A;A)[1])� > Ass(A[1]�)) = Ug, the enveloping algebra.By the PBW theorem, we get an isomorphism of vector spaces (and g modules) withS � (g).The dual of the di�erential maps generators of g to g. The symmetric powers of g aresubcomplexes of Ug. Passing to the dual, we �nd that the Hochschild complex is a directsum of components Cp(A;A), and HH�(A) = �HH�p (A). What are these subcomplexes?The part where p = 0 gives A in degree 0 and 0 elsewhere.Also, HH0(A) = HH00 (A) = A;C1(A;A) is the Harrison complex.NOTE. The Hodge decomposition on the level of cochains is not compatible withbracket. This complicates the discussion of quantization which follows later today.EXAMPLES. A = k[x]. It is a free associative algebra, from which it follows thatHH0(A) = A;HH1(A) = k[x]@=@x, and higher cohomology is zero.For A = k[x1; ::::; xn], we get the the cohomology is the multivector �elds.54



2 proofs. The �rst is to take tensor products of polynomials in one variable. Thesecond identi�es A-Mod-A as modules over polynomials is 2n variables, and to use anexplicit resolution of A given by the Koszul cohomology.GENERALIZATION. If A is the algebra of functions on any smooth a�ne algebraicvariety X. Then (Hochschild-Kostant-Rosenberg), the Hochschild cohomology is the mul-tivector �elds (with polynomial coe�cients, of course).To prove, we embed X as the diagonal in Y = X � X. Then one uses the factthat ExtOY (OX ; OX) is given by the sections of the exterior powers of the normal bundle,whenever Y is a submanifold of X.On HH�(A), we have the structure of a Gerstenhaber algebra { in this case theproduct and bracket become the wedge and Schouten-Nijenhuis brackets.EXPLICIT COCYCLES. Given a multivector �eld v1 ^ v2::: ^ vk: Then it acts onk-functions by pairing with the wedge product of their di�erentials.EXERCISE. Check that this is really a Hochschild cocycle.HODGE DECOMPOSITION in this case is just in one component in each dimension.Note that a skew symmetric cochain becomes "symmetric" because we have shiftedgrading by 1.COROLLARY. For the algebra A of smooth functions on X, the Harrison cohomologyin degrees > 1 is zero. So, for deformation theory, we have only derivations. So thesesmooth a�ne algebras behave like free algebras. This means that we could use theminstead of free algebras is resolutions.For commutative algebras, we have a clear geometric picture, introduced by Grothen-dieck. (A�ne schemes). For noncommutative algebras, the geometric picture is not soclear.Thus, it is interesting to study "quantization", which for our purposes refers to alge-bras which are close to commutative.Let us consider the commutative algebras of functions on smooth (analytic, alge-braic) manifolds. Then C�(A;A) contains an important subcomplex consisting of thelocal cochains, which are given by multidi�erential operators. (Grothendieck: notion ofdi�erential operator is purely algebraic{multiple commutator with multiplication operatorsis eventually zero.)The spaces of local cochains are countable-dimensional.CLAIM (proof next time). The inclusion of local cochains in all cochains is a quasi-isomorphism. The complex of local cochains also makes sense in the smooth and analyticcases, where the relation with the full Hochschild complex is not so clear.�-products (Berezin, BFFLS, ...)Work in the category of smooth manifolds X;A = C1 functions. Consider formalpaths in the space of associative products on A, starting from the usual product. Theyare formal power series in �h with coe�cients which are bidi�erential operators. We have =P i�hi, with d + 12[; ] = 0:Represent 1 by a bivector �eld. The next equation for associativity gives the fact thatthe Schouten square of 1 is zero; i.e we have a Poisson structure on X.55



So we get a product f � �hg = fg + �hf; g + �h22(f; g) + :::BASIC EXAMPLE. Di�erential operators in a vector space. Consider F (pi; qi) =PFabpaqb. Associate to it the operator in which p is replaced by h@=@x. (Vector �elds tothe right of functions.) De�ne the star product of functions by pulling back the producton di�erential operators. You get the formula��h = exp(�h @@p @@q !):This does not have the good symmetry properties.More generally, if V is a vector space and we have an element a of its tensor square.We can consider a as a di�erential operator of second order on V �V . Then we can de�nethe product f � �hg = exp(ha)f 
 g;restricted to the diagonal.EXERCISE. This is always associative. The underlying Poisson structure is the skewsymmetric part of a.If V is symplectic and a is the Poisson structure inverse to the symplectic form, we getthe so-called Moyal product, which is invariant under the action of the (a�ne) symplecticgroup.APPLICATION. Quantum products on modular forms (Zagier). Recall that a modu-lar form of weight k is a holomorphic function on the upper half plane such that f(t)(d�)k=2is invariant under the action of SL(2; Z). We usually assume that f is bounded asIm� ! +1.The modular forms are generated by E4 and E6, Eisenstein series in degrees 4 and 6.Now consider the region U in C2 consisting of those z1; z2 such that Im(z1=z2) > 0.The modular forms can be thought of as functions on U of various homogenity degrees,invariant under SL(2; Z) sitting in SL(2; C). Now the (complex) Moyal product on C2gives a noncommutative product on the modular forms, which looks very complicated interms of the original Eisenstein coordinates. (The complicated structure was originallyfound by Zagier, who had a hard time proving associativity.)QUANTIZATION OF SYMPLECTIC MANIFOLDSTHEOREM (deWilde Lecomte) For any C1 symplectic manifold, there exists a quan-tization. (Simpler, more recent proof by Fedosov.)QUESTION. Is there a "canonical" quantization in any sense. (We know it only upto equivalence.)QUESTION. What is going on in the complex analytic case.THEOREM (Simpler) H3(X;R) = 0 =) quantization exists.Proof of the simpler case. Cover the domain by a Darboux covering with all inter-sections contractible and put Moyal products there. On the other hand, for this standardexample, all quantizations are equivalent. On intersections, choose isomorphisms betweenthe algebras. On triple intersections, we get a 2 cocycle with values in the derivations of theMoyal algebra, which are all interior, equal to the algebra modulo constants. The obstruc-tion to gluing consistently lies in H2(X; functions=R), which is isomorphic to H3(X;R).56



Kontsevich Lecture 23Notes by Alan WeinsteinMore on Fedosov quantization(X;!) symplectic manifold (C1 for now) We will construct a canonical abelian cat-egory calA and an equivalence class G of objects in it such that for each object in G,End(object) is an algebra A, which calA � A modules.Analogously, if we are given a �eld, we have a groupoid of algebraic closures; if we aregiven a space, we have a fundamental groupoid.To �rst approximation, we want to associate a Hilbert space canonically to a sym-plectic manifold. Already in the linear case, we see that the linear symplectic group actsonly projectively on the naturally associated Hilbert space.As a second approximation, we want to associate an associative algebra to a symplecticmanifold, but the symplectomorphisms do not act on this algebra.So this category is the third approximation.PREPARATION. (Lie algebroid, essentially). Given a Lie group G and a Lie algebraL, and homomorphisms f1 : G ! AutL; f2 : g = LieG ! L which are compatible in thesense that adLf2 = Lie(f1) as maps from LieG to der(L).Now given a principal G-bundle E over X, de�ne an L connection r in E as follows:Over trivializing open domain U , trivialize E, then r will be represented by a 1-formwith values in L; when we change trivializations by g : U ! G, the gauge transformationis: A 7! f1(g�1)A+ f2(g�1dg):LEMMA. This is a well de�ned notion { check consistency for three trivializations.There is a notion of curvature for an L-connection. Let calL be the bundle of Liealgebras associated with the principal bundle. The curvature is a 2-form on X with valuesin calL. In a local trivialization, the curvature is given by R = dA+ 12 [A;A].APPLY THIS TO THE FOLLOWING DATA. G = Sp(2n;R):W = the Weyl algebra= associative algebra with identity generated by coordinates on R2n and h, with thecommutation relation [yi; yj] = �h!ij ; �h commuting with everything. The grading is givenby letting each yi have degree 1 and hbar have degree 2. The completed algebra of formalpower series with the same relations will be denoted Ŵ and will be considered as an R[ [�h] ]module.Now let L = (1=�h)Ŵ ; it is closed under brackets because all brackets in Ŵ contain �h.Also [L; Ŵ ] is contained in Ŵ .L is graded as well, starting with L�2.The action of G as automorphisms of L is the evident one, and the map f2: sp(2n)! L(actually L0) is given by the quadratic functions, with image the expressions (yiyj�yjyi)=�h:Now let X be a symplectic 2n-dimensional manifold, E ! X the symplectic framebundle. Look at L connections on E: First consider the class of connections which insymplectic coordinates xi (and the corresponding trivialization of E) are given by A =P yidxi=�h+ terms of positive degree. This is a well-de�ned notion. (It �xes the �2component of A is zero and the �1 component as the solder form.)The class of such connections is not empty. Locally, these connections form a principalhomogeneous space over the group of sections of the vector bundle of 1 forms with values57



in calL�0. On smooth manifolds, H1(X; sheaf of sections of a vector bundle) = 0; whichguarantees the existence of connections.Now consider the subclass of connections for which we impose the additional conditionthat the component R�1 of the curvature is vanishing.LEMMA: The sheaf of such connections is again locally a principal homogeneous spaceover the sections of a vector bundle.To see this, we write A =P yidxi=�h+�ijk=�hyiyjdxk+P�k(x)dxk+ terms of positivedegree. Here � is symmetric in the �rst two indices.We compute R�1 = dA�1 + [A0; A�1]= [A0; A�1] = [X yldxl=�h;X�:::]= :::and the vanishing condition is equivalent to the linear algebraic equation that � is sym-metric in the last two indices when it is made covariant by contraction with the symplecticform { this is just the torsion zero connection.Now we can prove by induction that the set of connections with A�2 = 0; A�1 is solderform, R�1 = ::: = Rk�1 = 0, is nonempty.Say R = R�2 + Rk + ::: Try to kill Rk.By the Bianchi identity dR + [A;R] = 0. The contribution of R2 is zero because R2is closed and central. So the Bianchi identity tells us that [A�1; Rk] = 0.Lemma. If F2 is a 2-form on X with values in calL such that [A�1; F2] = 0, thenthere exists F1 such that F2 = [A�1; F1]:It is enough to prove this locally using trivializations, since we are dealing with alge-braic equations, whose solutions can be patched together by partitions of unity.In fact, locally, we can identify the relevant forms with the deRham complex of R[[yi]]in which A�1 becomes the usual d, so we can apply the Poincare lemma.REMARK. If F2 has degree k, we can choose F1 to have degree k + 1.Now the lemma implies that locally there is a 1-form Bk+1 such that [A�1; Bk+1] =Rk, and the set of solutions forms an a�ne space locally. Now let r0 = r� Bk+1 to killRk for the new connection.COROLLARY. The set of connections with A�2 = 0; A�1 = solder form, R = R�2is nonempty. Moreover, it is the projective limit of spaces of such connections moduloterms of order geq k, and the successive quotients are a�ne spaces over spaces of sectionsof vector bundles. Thus the space of all these "admissible connections" is contractible.LEMMA. All these connections are gauge equivalent, with gauge group the Lie groupcorresponding to the pronilpotent Lie algebra L�1: (Gauge transformations are sections ofa bundle whose �bre is this group.)Now let A0 and A1 be two such "Fedosov" connections. There is a path At connectingthese two connections. Then ddtAt is a 1-form with values in calL�0. The derivative ofcurvature, which is zero, equals [d+A; ddtAt], so that locally there exists g in calL�1 suchthat [d+A; g] = ddtAt, by the Poincare lemma used previously (but now for 1 forms insteadof 2 forms). A global such g can be build as before.58



This gives us a family gt of sections of calL�1, and we can solve the equationsg(t)�1dg(t) = gt to get a section of exp(calL�1) which realizes the gauge transformationfrom A0 to A1.Let calW be the bundle of Ŵ 's associated with the tangent bundle of the symplecticmanifold X. An L connection de�nes a connection on this bundle of algebras, since L actsby derivations on the associative algebra Ŵ . If the connection is a Fedosov connection,this associated connection is at because R = R2 is central.CLAIM: the space of parallel sections of this associated bundle is canonically isomor-phic as a vector space to C1(X)[ [�h] ]:To see this, we can use the fact that the connection is locally gauge equivalent toone of the form d + A�1: (Standard connection.) Why is the isomorphism canonical? {Because it is given by restriction to the zero section.Now the isomorphism gives us a deformation of the multiplication of C1(X).More generally, we can construct central connections whose curvatures have the form!=�h+ !1 + !2�h+ :::: = (�h):We can invert this to get a series �h!�1 + ::: which is a path in the space of Poissonstructures with value 0 and nondegenerate derivative at �h = 0.THE CANONICAL ABELIAN CATEGORY(X;!) symplectic. We construct a groupoid C whose objects are Fedosov L-connecti-ons (those satisfying all the conditions above). The automorphisms of each object willconsist of the invertible elements of the algebra of parallel sections of the bundle of Weylalgebras for the given connection.Given TWO connections, a morphisms consists of a path between them and the corre-sponding t in �(calL�1). Composition of paths corresponds to composition of morphisms.For insistency, we must associate with each loop of connections and invertible elementin the algebra of parallel sections for the endpoint of the loop. We lift the loop of connec-tions to a path of gauge transformations. We can write g(1) = exp(f) because exp(calL�1)is a nilpotent Lie group. Now f is a parallel section. CLAIM. f is divisible by �h, so it isin fact an element of our algebra.Locally, by gauge transformation, we may assume that A is the standard form in atspace. Then we show by looking term by term that if f is in calL�1, it must be in �hcalL�1.SO WE HAVE A CANONICAL GROUPOID in which the automorphisms of eachobject are the invertible elements. Now we can de�ne the notion of module of this groupoid.ALL OF THE ABOVE WAS BASED ON the vanishing of H1 = existence of connec-tions.On more general "manifolds" (algebraic, analytic), we associated to a symplecticstructure a canonical shear of abelian categories and equivalence classes of generators.Next time { we'll apply this to K3 surfaces.Kontsevich Lecture 27Notes by Alan WeinsteinHIDDEN SMOOTHNESS{CONCLUSIONThesis: every space arising naturally in geometry comes in some sense from a dif-ferential graded manifold. Thus we have a structure sheaf OX , but also a sequence O�kXof sheaves which form a negatively graded commutative algebra (Also an element tX in59



K0(X), a �nite formal linear combination of vector bundles This is the virtual tangentbundle).More precisely, there should exist a �nitely dimension di�erential graded manifold bXand an odd vector �eld d such that X is the zero set of d, and tX = [TXeven]� [TXodd]:These extra data should be "unique up to homotopy".MAIN EXAMPLE: moduli spaces.There are 3 situations where an actual moduli space exists (not just a formal one).1) deformations of algebraic structures (operads) with �nite # of generating operationson �nite dimensional vector spaces.2) nonlinear systems of pseudodi�erential equations with Fredholm property on com-pact manifolds (e.g. conformal structures) =) topological �eld theories.3) deformation problems on projective schemes.Essentially, 2 and 3 can be reduced to 1. For example, let X in PN be a projectivescheme. O(�1) is the tautological line bundle, O(k) is its (�k)-th tensor power, Ak itsspace of sections. These have the properties:1. Ak is �nite dimensional;2. the dimension is "computable" for large k;3. their direct sum is a commutative associative algebra.Finiteness theorems tell us that knowing a �nite (but large) subsequence Ak of thesespaces (k in an interval) with its partially de�ned multiplication implies a complete de-scription of X. In all these situations, for each p in our moduli space M we can associate ahomotopy type of SHLA, usually in nonnegative degrees, with all graded components of �-nite dimension. The absence of associate a homotopy type of SHLA, usually in nonnegativedegrees, with all graded components of �nite dimension. The absence of automorphisms(H0(g:) = 0) implies the existence of a formal moduli space Spec((H0(g:; 1))�), which aformal completion of the actual M at p. Very often, Hi(g) is zero for large (positive andnegative) i.EXAMPLES: moduli spaces of complex structures, vector bundles, holomorphic maps)One can construct locally on M vector bundles ~g which have structures of SHLAequivalent to g.Using the standard resolution, on gets over M a bundle of formal DG manifolds.CONJECTURALLY: there exists a at connection on (CoCom1g[1]) preserving thestructure of DG coalgebra (like in Fedosov quantization) This implies a at connectionon thee dual bundle of complete algebras. Take the at (parallel) sections, which can bequantization). This implies a at connection on thee dual bundle of complete algebras.Take the at (parallel) sections, which can be considered as functions on a supermanifoldbX. REMARK. at connection on vector bundle E over non-smooth M means a trivi-alization for the pull back to any tiny space (spec of a local Artin algebra)...with somecompatibility conditions, of course.DEFORMATIONS OF MAPSLet S and V be complex manifolds, S compact. X = Map(S; V ), a �nite dimensionalcomplex space (via Douady, identifying maps with their graphs). We need to constructthe structure sheaf OX . 60



1. ALGEBRAIC DESCRIPTIONFirst, from the manifold V , we construct A = Dv=Ov, the sheaf of di�erential op-erators modulo multiplication operators. We consider A as a sheaf of left Ov-modules.This sheaf of di�erential operators modulo multiplication operators. We consider A as asheaf of left Ov-modules. This gives us an in�nite dimensional vector bundle in which each�bre is a coalgebra without counit. ... (Its dual space is the algebra (maximal ideal) offormal power series vanishing at a point.) Let L be the free Lie algebra over Ov generatedby A[�1]. The coalgebra structure in A gives rise to a di�erential in L. L is a sheaf ofDGLA's; as a sheaf of complexes L:V is qis TV [�1]. Now for f : S ! V , where S is compact(non necc. smooth), we take the pulled back sheaf f�L of DGLA's (and consider it as asheaf of DGLAs's over C !!!! on S.)EXERCISE. Check that the deformation functor on Artin algebras associated withthis sheaf is equivalent to deformations of maps. Look at the universal map f : X � S !V; � : X � S ! S the projection. Then de�ne tX to be ��(f�TV ).2. ANALYTIC DESCRIPTION. S now compact complex manifold =) ~S the C1supermanifold whose functions are the algebra 
0;�(S), with the Dolbeault operator. Thenlook at bX = the supermanifold fmapsg(bS; V ) as C1 manifold). (Here underline means\considered as a supermanifold".) The underlying topological space consists of the ordinaryC1 maps from S to V . There is an odd vector �eld on bX whose zeroes are the complexanalytic maps. The complex structure on V gives a complex analytic structure on bX.PROBLEM: construct the sheaf of analytic functions on bX. (A sheaf of DG commu-tative algebras).CONJECTURE: The cohomology of this complex would be the same as one gets viathe algebraic approach. (This would be a realization of ideas in "BRST cohomology") Onecan imitate the analytic construction of higher structure sheaves in other cases.1) M =complex structures on a manifold V { assume no holomorphic vector �elds.Form 2M , we have a DGLA, the Kodaira-Spencer algebra (part of Dolbeault). ...... Also,one can consider moduli of holomorphic vector bundles, or moduli of at connections on�nite CW complexes.BASIC IDEA: We always have a manifold, but it looks singular because we havepassed to the 0th cohomology.INTERSECTION. Y1; Y2 � Z (complex) submanifolds. X = Y1 \ Y2 is singular.How to construct higher structure sheaves on X? Locally, Y2 is given by transversalequations fj = 0 in Z. We can restrict these functions to Y1. these restrictions give aKoszul complex which is a DG comm ass algebra: Let's add coordinates �j to Y1 in degree�1. De�ne the di�erential to be d(functions on Y1) = 0; d(�j) = fj . This constructionis not very symmetric. Claim, the cohomology (as sheaves) in Koszul cohomology areTorZ�1(OY1 ; OY2). Proof: the Koszul complex with fj as an OZ module is a free resolutionof OY 2 . .... we take tX to be [TY1 ] + [TY2 ]� [TZ ], all restricted to X.A GENERALIZATION. Given several submanifolds Y1; ::::; Yk; X their intersection,one can reduce to the previous case by looking at the intersection with the main diagonalin Zk.EXERCISE. Locally, a DG manifold such that the coordinates are in degrees 0 and�1 is isomorphic to the Koszul complex for some intersection.61



COROLLARY. If we have a moduli problem g:, and the cohomology is zero except indegree 1 and 2, then it is locally an intersection of two manifolds.COMPARE: A Lie algebroid is a dg manifold (SHLA g: with all cohomology just indegree 0 and 1). If a moduli space is locally an intersection, dimX � rank(tX). One cande�ne a virtual fundamental class of the moduli space, which is an element [X]virtual in anelement of Hclosed2rank(tx)(X;Z):EXAMPLE: say X is globally the intersection of Y1 and Y2 in Z. Then X is homotopyequivalent to its tubular neighborhood in Z. Perturb Y1 and Y2 as C1 manifolds tomake their intersection transverse; their intersection will be oriented smooth manifold,sitting in the tubular neighborhood. One can take the fundamental class of this perturbedintersection, which gives a homology class in H�(Z). In general, when the cohomology forthe moduli problem has only 2 components, the theory of Baum Fulton Macpherson givesa formulation of what should play the role of the fundamental class of the moduli space.WHY ARE THESE FUNDAMENTAL CLASSES SO INTERESTING? There areseveral problems in geometry =) SHLA's in degree 1 and 2. For example:1. moduli spaces of complex curves (2d topological gravity);2. moduli spaces of vector bundles on curves (2d Yang-Mills);3. moduli of complex structures on complex surfaces (self dual 4d gravity);4. moduli of vector bundles on surfaces (self-dual Yang-Mills in 4d));5. maps from non-�xed curves to manifolds (Gromov-Witten invariants);This example (not yet �nished!) was motivation for everything in the course!END OF COURSE
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