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1 Differential graded Lie algebras

Let L be a lie algebra over a fixed field K of characteristic 0.

Definition 1. A K-linear map d : L→ L is called a derivation if it satisfies the Leibniz rule d[a, b] = [da, b]+[a, db].

Lemma. If d is nilpotent (i.e. dn = 0 for n sufficiently large) then ed =
∑
n≥0

dn

n! : L → L is an isomorphism of
Lie algebras.

Proof. Exercise.

Definition 2. L is called nilpotent if the descending central series L ⊃ [L,L] ⊃ [L, [L,L]] ⊃ · · · stabilizes at 0.
(I.e., if we write [L]2 = [L,L], [L]3 = [L, [L,L]], etc., then [L]n = 0 for n sufficiently large.) Note that in the
finite-dimensional case, this is equivalent to the other common definition that for every x ∈ L, adx is nilpotent.

We have the Baker-Campbell-Hausdorff formula (BCH).

Theorem. For every nilpotent Lie algebra L there is an associative product • : L× L→ L satisfying

1. functoriality in L; i.e. if f : L→M is a morphism of nilpotent Lie algebras then f(a • b) = f(a) • f(b).

2. If I ⊂ R is a nilpotent ideal of the associative unitary K-algebra R and for a ∈ I we define ea =
∑
n≥0

an

n! ∈ R,

then ea•b = ea • eb.

Heuristically, we can write a • b = log(ea • eb).

Proof. Exercise (use the computation of www.mat.uniroma1.it/people/manetti/dispense/BCHfjords.pdf and the
existence of free Lie algebras).

This bullet is defined by the BCH formula, which is universal: a • b = a+ b+ 1
2 [a, b] + . . ..

For any nilpotent Lie algebra L, we define the group exp(L) = {ea|a ∈ L} with ea · eb = ea•b. Of course we
write 1 = e0, and then we have ea · 1 = ea = 1 · ea and eae−a = 1. Associativity comes from the associativity of •.

Definition 3. Define DG to be the category of differential graded vector spaces over K. Objects V ∈ DG look like
V = ⊕n∈ZV n with differential d : V i → V i+1.

This category is equipped with a tensor product V ⊗W given by (V ⊗W )n =
∑
i V

i ⊗Wn−i, d(v ⊗ w) =
dv ⊗ w + (−1)deg(v)v ⊗ dw.

The term (−1)deg(v) = (−1)deg(v) deg(d) (since deg(d) = 1) comes from what is known as the Koszul rule: When
two goats a and b pass through each other, we pick up a factor of (−1)deg a deg b.

This category is also equipped with an internal hom. Let V,W ∈ DG. For any n ∈ Z, we define

Homn(V,W ) = {f : V →W | f K-linear, f(V i) ⊂W i+n ∀i}.

This is a K-vector space. Then we set Hom∗(V,W ) = ⊕n∈ZHomn(V,W ). For any f ∈ Homn(V,W ), we set

(df)(v) = d(f(v))− (−1)ff(dv), where f = deg(f). This is an element of DG.

Example. Let f ∈ Homn(V,W ), g ∈ Homm(H,K). Then we get f⊗g ∈ Homn+m(V ⊗H,W⊗K) by f⊗g(v⊗h) =
f(v)⊗ g(h) · (−1)g·v.

We now come to the main definition of the talk.
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Definition 4. A differential graded Lie algebra (DGLA) is a DG vector space (L, d) with a bracket [·, ·] : Li×Lj →
Li+j such that:

1. [a, b] = −(−1)ab[b, a];

2. graded Leibniz rule: d[a, b] = [da, b] + (−1)a[a, db]

3. graded Jacobi rule: [[a, b], c] = [a, [b, c]]− (−1)ab[b, [a, c]].

Exercise 1. Let x ∈ Li. Then [x, [x, x]] = 0.

Definition 5. A DGLA is called nilpotent if its central series L ⊃ [L,L] ⊃ [L, [L,L]] ⊃ · · · stabilizes to 0.

There are a number of important examples of DGLAs. For more details on this part see also DefHolmaps.pdf
and ArXiv:math/0507284

Example. Let V ∈ DG. Then Hom∗(V, V ) is a DGLA with bracket [f, g] = f ◦ g − (−1)fgg ◦ f .

Example. LetX be a complex manifold and let TX → X be its holomorphic tangent bundle. Write A0,k(TX) for the
differential forms of type (0, k) with values in TX , which are locally given by ϕ =

∑
ϕI

∂
∂zi
dzi1 ∧ . . .∧dzik . We have

the Dolbeault differential ∂ : A0,k(TX)→ A0,k+1(TX), and we obtain the Dolbeault complex KSX = ⊕k≥0A0,k(TX).
This has a DGLA structure. If ϕ,ψ ∈ A0,0(TX), we set [ϕ,ψ] to be the usual bracket of vector fields. We extend
to KSx by assuming that the bracket is antiholomorphic bilinear.

Example. Let X be a differentiable manifold with tangent sheaf TX → X. We have the usual bracket of vector
fields, which can be uniquely extended to a bracket [·, ·] : ΛiTX × ΛjTX → Λi+j−1TX such that

1. [·, ·] : Λ1TX × Λ0TX → Λ0TX is given by [ψ, f ] = ψ(f)

2. for η ∈ ΛiTX , ψ ∈ ΛjTX , φ ∈ ΛkTX , [η, ψ ∧ φ] = [η, ψ] ∧ φ+ (−1)(i−1)jψ ∧ [η, φ]

3. Λ∗TX is a sheaf of DGLAs with d = 0.

We call this bracket the Schouten bracket. (if fact it is a sheaf of Gerstenhaber algebras, see e.g. arxiv:math/0507286v1)

Example (Hochschild DGLA). Consider an associative algebra A with multiplication m : A ⊗ A → A. Write
gi = HomK(A⊗i+1, A) for every i ≥ −1. Then, define ∗ : gi × gj → gi+j by

φ ∗ ψ : (a0, . . . , ai+j) =
∑
s

(−1)sjφ(a0, . . . , as−1, ψ(as, . . . , as+j), . . . , ai+j).

We can now obtain a DGLA structure on g = ⊕igi by setting [φ, ψ] = φ ∗ ψ − (−1)φψψ ∗ φ and dφ = [m,φ].

Now let L be a nilpotent DGLA, and suppose a ∈ L0. Then [a,−] : L → L is a derivation. By the same proof
as in the classical case, e[a,−] : L→ L is an isomorphism of GLAs. (The differential is not preserved.)

As a consequence, if we take Z = {x ∈ L1 | [x, x] = 0}, then e[a,−](Z) ⊂ Z (since [e[a,−]x, e[a,−]x] = e[a,−][x, x] =
0). We thus obtain that Z is stable under the adjoint action exp(L0)→ GL(L1).

2 Deformation theory

The beginning of the story of (this aspect of) deformation theory is with Deligne, Kontsevich, et al., who realized
that every deformation problem (over fields of characteristic 0) is governed by a DGLA via Maurer-Cartan equation
modulo gauge action.

The simplest example1 for us will be the deformations of a differential. Consider a finite cochain complex
V = 0 → V 0 → V 1 → · · · → V n → 0 over K with differential d such that d2 = 0. What is a deformation of
d? If A is a commutative local artinian K-algebra with a map A → K = A/mA, we can define a new complex
V ⊗K A = 0 → V 0 ⊗K A → · · · → V n ⊗K A → 0 with differential d̃, where we require that d̃|V = d. We want to
write A = K ⊕ mA with d̃ = d + ξ for some ξ ∈ Hom1(V, V ) ⊗ mA. (Since A is artinian, mA is nilpotent.) The
integration equation is that d̃2 = 0, which expands to 0 = dξ + ξd + ξ ◦ ξ, an equality in the associative graded
algebra Hom∗(V, V )⊗mA. With the obvious Lie algebra structure, we can write this as 0 = [d, ξ] + 1

2 [ξ, ξ]. Writing
δ for the differential in Hom∗(V, V ), this is 0 = δξ + 1

2 [ξ, ξ]. This is called the Maurer-Cartan equation.

1Taken from MANETTI MARCO (2009). Differential graded Lie algebras and formal deformation theory. In: ABRAMOVICH,
BERTRAM, KATZARKOV, PANDHARIPANDE, THADDEUS. Algebraic Geometry: Seattle 2005. Proc. Sympos. Pure Math. vol.
80, p. 785-810, PROVIDENCE: AMS, ISBN/ISSN: 978-0-8218-4057-3
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Definition 6. Given a DGLA L = ⊕Li, the Maurer-Cartan elements of L are the set MC(L) = {ξ ∈ L1|dξ +
1
2 [ξ, ξ] = 0} ⊂ L1.

But when do two such elements give the same deformation? Given two deformations of d and a collection of
maps φn : V n ⊗ A → V n ⊗ A entertwining the complexes V ∗ ⊗ A with differentials d + ξ and d + η, we say that
ξ ∼ η if φ : V ⊗A→ V ⊗A is an isomorphism of graded A-modules which restricts to the identity on V ⊂ V ⊗A.

We can then write φ = Id + φ̃ for φ̃ : V → V ⊗ mA, and (since we are in characteristic 0) we can write φ = ea

for some a ∈ Hom0(V, V )⊗mA. Then ξ ∼ η iff ea(d+ η)e−a = d+ ξ. The left side can be written as e[a,−](d+ η),
which can be expanded further as

d+ η +
e[a,−] − Id

[a,−]
([a, d+ η]).

At the end, we get that ξ ∼ η iff there is some a ∈ Hom0(V, V )⊗mA such that

ξ = ea ∗ η := η +
e[a,−] − Id

[a,−]
([a, η]− δa).

This is called the gauge action.
Going back to an arbitrary DGLA, we get the following: if L is nilpotent and ξ, η ∈ MC(L) then ξ ∼ η iff

ξ = ea ∗ η for some a ∈ L0. (Here, ∗ is the action of exp(L0) = {ea|a ∈ L0}.)

Definition 7. Let Art be the category of local artinian K-algebras with residue field K. Given A ∈ Art and
a DGLA L, we define two functors MCL : Art → Set and DefL : Art → Set by MCL(A) = MC(L ⊗ mA)
and DefL(A) = MCL(A)/gauge action of exp(L0 ⊗ mA). These give deformations and isomorphism classes of
deformations.

Exercise 2. There is a natural isomorphism DefL(K[ε]/(ε2)) ∼= H1(L).

These functors have several very nice properties.

Theorem (main theorem). 1. If f : L → M is a morphism of DGLAs, this gives natural transformations f :
MCL →MCM and f : DefL → DefM . Thus we can consider this as a bifunctor Def : DGLA×Art→ Set.

2. Assume that f : L → M is a morphism of DGLAs. If f : H1(L) → H1(M) is surjective and f : H2(L) →
H2(M) is injective, then f : DefL → DefM is surjective. That is, any deformation parametrized by M can
be lifted to a deformation parametrized by L.

3. If f : H0(L) → H0(M) is surjective, f : H1(L) → H1(M) is an isomorphism, and f : H2(L) → H2(M) is
injective, then f : DefL → DefM is an isomorphism.

Example. Assume that L is quasi-isomorphic to an abelian DGLA (i.e. one with [·, ·] = 0). Then DefL is a smooth
functor: if A→ B in Art is surjective then DefL(A)→ DefL(B) is surjective.

This is great, because given some DGLA L, if we can find a quasi-isomorphic DGLA M with nicer properties
(even if it has no geometric meaning), we can use DefM in place of DefL.

Example. Suppose X is a complex manifold. The Kodaira-Spencer complex KS = ⊕A0,i(TX) is a DGLA, and
DefKS exactly gives deformation of X. If X is Calabi-Yau, then KS ends up being quasi-isomorphic to an abelian
DGLA, and hence X has unobstructed deformations.

3 Generalizations

Definition 8. If L is a DGLA, then H∗(L) is a graded Lie algebra, which we can consider a DGLA with d = 0.
Then, L is called formal if it is quasi-isomorphic to its cohomology (as a DGLA).

In other words, if L is formal then we have a “zigzag” of hats in the category DGLA beginning at L and
ending at H∗(L). (This ends up implying that we can find a single map between L and H∗(L) which is a quasi-
isomorphism.) Then, formality implies that ξ ∈ DefL(K[t]/(t2)) can be lifted to DefL(K[[t]]) iff ξ can be lifted to
DefL(K[t]/(t3)).

One can embed this theory into the world of L∞-algebras. Here there is no notion of gauge action, but there is
still the Maurer-Cartan equation.
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Theorem. The bifunctor MC : DGLA×Art→ Set, (L,A) 7→MCL(A) determines DefL for every L.

Definition 9. Let x, y ∈ MCL(A). We say that x is homotopy equivalent to y (and write x ∼ y if there is some
ξ ∈MCL[t,dt](A) such that e0(ξ) = x and e1(ξ) = y.

Here, L[t, dt] = L ⊗ K[t, dt]; the second tensor factor is essentially APL of the disk. This has two natural
evaluation maps e0, e1 : L[t, dt]→ L.

Note that this is entirely in terms of the Maurer-Cartan equation, so it can be generalized greatly.

Theorem. Homotopy equivalence is indeed an equivalence relation (even in the L∞-algebra setting). Moreover If
L is a DGLA, then homotopy equivalence is exactly gauge equivalence.

Proof of second statement. Let L be be DGLA, A ∈ Art. Suppose x, y ∈ MC(L ⊗ mA). Recall that x ∼g y if
there is some a ∈ L0 ⊗mA such that ea ∗ x = y, whereas x ∼h y if there is some z(t, dt) ∈MC(L[t, dt]⊗mA) such
that z(0, 0) = x and z(1, 0) = y. So first, assume x ∼g y via a ∈ L0. Then we can consider x ∈ MC(L ⊗ mA) ⊂
MC(L[t, dt]⊗mA). But in fact, the inclusion i : L→ L[t, dt] is a quasi-isomorphism. Since exp(L0[t]) acts by gauge
on MC(L[t, dt] ⊗ mA), then for every t we can set z(t, dt) = eta ∗ x. Then z(0) = x and z(1) = y. On the other
hand, suppose that x ∼h y. Note that MCL = MCL≥1 (in fact Maurer-Cartan only depends on L1 and L2), so
DefL = DefL≥0. Hence MCL[t,dt] = MCL≥0[t,dt]. So it is not restrictive to assume that L = ⊕n≥0Ln. In this case,

L[t, dt]0 = L0[t]. Now let z(t) ∈MC(L[t, dt]⊗mA). Then as we have an isomorphism i : DefL(A)→ DefL[t,dt](A),
we must have some x ∈MCL(A) such that x ∼g z(t) in L[t, dt]⊗mA. So we have a(t) ∈ L[t, dt]0⊗mA = L0[t]⊗mA
such that ea(t) ∗ x = z(t). Now z(0) = ea(0) ∗ x and z(1) = ea(1) ∗ x, and these imply that z(0) ∼g z(1).

One can prove that every z(t) ∈ MCL[t,dt](A) can be written uniquely as ea(t) ∗ x with x ∈ MCL(A) and
a(0) = 0. The proof is similar to the proof of the main theorem (that a quasi-isomorphism of DGLAs induces an
isomorphism of deformation functors).

Proof of main theorem. 2 Let L be a DGLA, and consider MCL : Art → Set. Then there exists an extension
MCL : DG-Art → Set. (An object C ∈ DG-Art is a nilpotent DG-commutative K-algebra with dimK C < ∞.
The natural map Art→ DG-Art is given by considering the maximal ideal. Then as before we have MCL(mA) =
MC(L ⊗K mA) and we obtain DefL : DG-Art → Set as DefL = MCL/gauge. Now, DefL : DG-Art → Set
depends uniquely on MCL : DG-Art → Set, and MCL[t,dt](A) = lim

n→
MCL(mA[t, dt]/(tn, dtn)). We have the

following axiomatic properties of F = DefL:

1. F (0) = ∗

2. If α : A→ C and β : B → C in DG-Art, then we have η : F (A×C B)→ F (A)×F (C) F (B). If α is surjective
then η is surjective. If C2 = 0 and H∗(C) = 0 then η is bijective.

3. If α : A→ B is surjective A kerα = 0 and H∗(kerα) = 0, then F (A)→ F (B) is surjective.

And so suppose we have F : DG-Art→ Set satisfying these axioms. Then F (K[−i]) = T iF (where K[−i] is a shift
of the complex K to be supported in degree i) is a vector space. So T iDefL = Hi(L).

We have the following generalization.

Theorem. If η : F → G is a morphism of functors satisfying the above axioms, then η is an isomorphism iff
η : T iF → T iG are isomorphisms. (These objects T iF should be thought of as something like the homotopy groups
of the functor F , more precisely T iF = π1−i(F ).)

Exercise 3. if L is a DGLA such that H2(L) = 0 then MCL is smooth; that is, for all surjections α : A → B in
Art, MCL(A)→MCL(B) is a surjection.

2There are many different proofs: here we follow M. Manetti: Extended deformation functors. Int. Math. Res. Not. 14 (2002)
719-756; ArXiv:math.AG/9910071.
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