
CHAPTER 1

L∞-algebras

1.1. Koszul sign and unshuffles

Given a graded vector space V , the twist map extends naturally, for every n ≥ 0, to an
action of the symmetric group Σn on the graded vector space

⊗n
V :

tw : V ⊗n × Σn → V ⊗n.

More explicitely, setting σtw = tw(−, σ−1) : V ⊗n → V ⊗n, for v1, . . . , vn homogeneous vectors
and σ ∈ Σn we have:

σtw(v1 ⊗ · · · ⊗ vn) = ±(vσ−1(1) ⊗ · · · ⊗ vσ−1(n)),

where the sign is the signature of the restriction of σ to the subset of indices i such that vi has
odd degree.

Definition 1.1.1. The Koszul sign ε(σ, V ; v1, . . . , vn) = ±1 is defined by the relation

σ−1
tw (v1 ⊗ · · · ⊗ vn) = ε(V, σ; v1, . . . , vn)(vσ(1) ⊗ · · · ⊗ vσ(n))

The antisymmetric Koszul sign χ(σ, V ; v1, . . . , vn) = ±1 is the product of the Koszul
sign and the signature of the permutation:

χ(σ, V ; v1, . . . , vn) = (−1)σε(σ, V ; v1, . . . , vn).

For notational simplicity we shall write ε(σ; v1, . . . , vn) or ε(σ) for the Koszul sign when
there is no possible confusion about V and v1, . . . , vn; similarly for χ(σ; v1, . . . , vn) and χ(σ).

Notice that for σ, τ ∈ Σn we have

tw(v1 ⊗ · · · ⊗ vn, στ) = ε(σ; v1, . . . , vn)tw(vσ(1) ⊗ · · · ⊗ vσ(n), τ)

and therefore
ε(στ ; v1, . . . , vn) = ε(σ; v1, . . . , vn)ε(τ ; vσ(1), . . . , vσ(n)).

Lemma 1.1.2. Given homogeneous vectors v1, . . . , vn ∈ V and σ ∈ Σn we have

χ(σ, sV ; sv1, . . . , svn) = (−1)
Pn
i=1(n−i)(vσ(i)−vi)ε(σ, V ; v1, . . . , vn).

Proof. It is sufficient to check for σ a trasposition of two consecutive elements, and this is
easy. �

Definition 1.1.3. Let V,W be graded vector spaces, a multilinear map

f : V × · · · × V →W

is called (graded) symmetric if

f(vσ(1), . . . , vσ(n)) = ε(σ)f(v1, . . . , vn), for every σ ∈ Σn.

It is called (graded) skewsymmetric if

f(vσ(1), . . . , vσ(n)) = χ(σ)f(v1, . . . , vn), for every σ ∈ Σn.

Definition 1.1.4. The symmetric powers of a graded vector space V are defined as

V �n =
⊙n

V =
⊗n

V

I
,

where I is the subspace generated by the vectors

v1 ⊗ · · · ⊗ vn − ε(σ)vσ(1) ⊗ · · · ⊗ vσ(n), vi ∈ V, σ ∈ Σn .

We will denote by π :
⊗n

V →
⊙n

V the natural projection and

v1 � · · · � vn = π(v1 ⊗ · · · ⊗ vn).
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Definition 1.1.5. The exterior powers of a graded vector space V are defined as

V ∧n =
∧n

V =
⊗n

V

J
,

where J is the subspace generated by the vectors

v1 ⊗ · · · ⊗ vn − χ(σ)vσ(1) ⊗ · · · ⊗ vσ(n), vi ∈ V, σ ∈ Σn .

We will denote by π :
⊗n

V →
∧n

V the natural projection and

v1 ∧ · · · ∧ vn = π(v1 ⊗ · · · ⊗ vn).

Definition 1.1.6. The set of unshuffles of type (p, q) is the subset S(p, q) ⊂ Σp+q of permu-
tations σ such that σ(i) < σ(i+ 1) for every i 6= p. Equivalently

S(p, q) = {σ ∈ Σp+q | σ(1) < σ(2) < . . . < σ(p), σ(p+ 1) < σ(p+ 2) < . . . < σ(p+ q)}.

The unshuffles are a set of representatives for the left cosets of the canonical embedding of
Σp × Σq inside Σp+q. More precisely for every η ∈ Σp+q there exists a unique decomposition
η = στ with σ ∈ S(p, q) and τ ∈ Σp × Σq.

1.2. L∞-algebras

Let (L, d, [, ]) be a differential graded Lie algebra. Then we have:
(1) d(d(x1)) = 0;
(2) d[x1, x2]−

(
[dx1, x2]− (−1)x1 x2 [dx2, x1]

)
= 0;

(3) [[x1, x2], x3]− (−1)x2 x3 [[x1, x3], x2] + (−1)x1(x2+x3)[[x2, x3], x1] = 0;
Using the formalism of unshuffles we can write Leibniz and Jacobi identities respectively as∑

σ∈S(2,0)

χ(σ)d[xσ(1), xσ(2)]−
∑

σ∈S(1,1)

χ(σ)[dxσ(1), xσ(2)] = 0

and ∑
σ∈S(2,1)

χ(σ)[[xσ(1), xσ(2)], xσ(3)] = 0.

Definition 1.2.1. An L∞ structure on a graded vector space L is a sequence of skewsymmetric
maps

ln :
∧n

L→ L, deg(ln) = 2− n, n > 0,

such that for every n > 0 and every sequence of homogeneous vectors x1, . . . , xn ∈ L we have:
n∑
k=1

(−1)n−k
∑

σ∈S(k,n−k)

χ(σ) ln−k+1(lk(xσ(1), . . . , xσ(k)), xσ(k+1), . . . , xσ(n)) = 0.

An L∞-algebra is a graded vector space endowed with an L∞ structure.

Sometimes, L∞-algebras are also called strong homotopy Lie algebras.

Remark 1.2.2. (1) Every DGLA (L, d, [, ]) is also an L∞ algebras with l1 = d, l2 = [, ]
and ln = 0 for every n > 2.

(2) For an L∞-algebra (L, l1, l2, . . .) we have deg(l1) = 1 and l21 = 0 and then (L, l1) is a
DG-vector space.

(3) For an L∞-algebra (L, l1, l2, . . .) the morphism l2 induces a structure of graded Lie
algebra in the cohomology of the complex (L, l1). In fact if l1(x) = l1(y) = 0 we have
l1(l2(x, y)) = ±l2(l1(x), y)± l2(l1(y), x) = 0. The equation

3∑
k=1

(−1)3−k
∑

σ∈S(k,3−k)

χ(σ) l4−k(lk(xσ(1), . . . , xσ(k)), xσ(k+1), . . . , xσ(3)) = 0.

implies that if l1(xi) = 0 then∑
σ∈S(2,1)

χ(σ) l2(l2(xσ(1), xσ(2)), xσ(3))

belongs to the image of l1 and then

[ , ] : H∗(L, l1)×H∗(L, l1)→ H∗(L, l1), [x, y] = l2(x, y),
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satisfies the graded Jacobi identity.

Example 1.2.3. Let L be a graded vector space and φ : L0 ×L0 ×L0 → L−1 a skewsymmetric
map. Then the sequence

ln(x1, . . . , xn) =

{
φ(x1, x2, x3) if n = 3 and xi ∈ L0,

0 otherwise,

gives an L∞ structure on L.

Definition 1.2.4. A linear morphism f : (L, l1, l2, . . .) → (H,h1, h2, . . .) of L∞-algebras is a
linear map f : L→ H of degree 0 such that

fln(x1, . . . , xn) = hn(f(x1), . . . , f(xn))

for every n > 0 and every x1, . . . , xn ∈ L.

� Do not confuse the notion of linear morphism of L∞-algebras with the notion of L∞-morphism

(that we will give later). Every linear morphism is also an L∞-morphism but the converse is

not true.

Remark 1.2.5. In literature there exist two different (equivalent) definitions of L∞-algebras
depending by different sign conventions. Here we follow [36, 75, 77], while in [80, 81] the maps
lk differ from ours by the sign (−1)k(k+1)/2.

1.3. L∞[1]-algebras

Definition 1.3.1. An L∞[1] structure on a graded vector space V is a sequence of symmetric
maps

qn : V �n → V, deg(qn) = 1, n > 0,
such that for every n > 0 and every sequence of homogeneous vectors v1, . . . , vn ∈ V we have:

(1)
n∑
k=1

∑
σ∈S(k,n−k)

ε(σ) qn−k+1(qk(vσ(1), . . . , vσ(k)), vσ(k+1), . . . , vσ(n)) = 0.

An L∞[1]-algebra is a graded vector space endowed with an L∞[1] structure.

Theorem 1.3.2. For every graded vector space V there exists a canonical bijection from the set
of L∞[1] structures on V and the set of L∞ structures on sV . This bijection is induced by the
relations

lk(sv1, . . . , svk) = −(−1)
P
i(k−i)visqk(v1, . . . , vk).

Proof. Immediate consequence of Lemma 1.1.2. Notice that for every k we have a com-
mutative diagram

V ⊗k
qk //

s⊗k

��

V

s

��
(sV )⊗k

−lk // sV

�

Remark 1.3.3. Since V = (sV )[1] the above theorem says that there is a bijection between
L∞ structures on L and L∞[1] structures on L[1]. Very often, in literature an L∞ structure on
a graded vector space L is defined as an L∞[1] structures on L[1].

Definition 1.3.4. Given f ∈ Hom∗K (V �n+1, V ) and g ∈ Hom∗K (V �m+1, V ) their symmetric
Gerstenhaber bracket is defined as

[f, g] = f ◦ g − (−1)f gg ◦ f ∈ Hom∗K (V �n+m+1, V ),

where

f ◦ g(v0, . . . , vn+m) =
∑

σ∈S(m+1,n)

ε(σ)f(g(vσ(0), . . . , vσ(m)), vσ(m+1), . . . , vσ(m+n)).
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Thus, a sequence of maps qk ∈ Hom1
K (V �k, V ) gives an L∞[1] structure on V if and only if

for every n > 0 we have ∑
a+b=n+1

[qa, qb] = 0.

In fact
n∑
k=1

[qn−k+1, qk] =
n∑
k=1

qn−k+1 ◦ qk +
n∑
k=1

qk ◦ qn−k+1 = 2
n∑
k=1

(qn−k+1 ◦ qk)

and we recover exactly the left side of (1).

1.4. Extension of scalars

Given a graded vector space V and a DG-algebra (A, d) we have natural scalar extension
maps

Hom∗K (V ⊗n, V ) ·̃−→Hom∗K ((V ⊗A)⊗n, V ⊗A)

defined in the following way:

f̃(v ⊗ a) = f(v)⊗ a+ (−1)vv ⊗ d(a), for n = 1,

f̃(v1 ⊗ a1, . . . , vn ⊗ an) = (−1)
P
i<j ai vjf(v1, . . . , vn)⊗ a1a2 · · · an, for n > 1.

Notice that (−1)
P
i<j ai vj is the Koszul sign relating the sequences v1, a1, v2, . . . , vn, an and

v1, . . . , vn, a1, . . . , an. Moreover scalar extension preserves symmetry and skewsymmetry.

Lemma 1.4.1. Scalar extension commutes with the bijection described in Theorem 1.3.2.

Proof. Easy and straightforward. �

Proposition 1.4.2. Scalar extension preserves L∞ and L∞[1] structures.

Proof. It is sufficient to prove the theorem only for L∞[1] structures. This is an easy
consequence of the Leibniz rule in the DG-algebra A and it is left as an exercise. �

It is obvious that for every L∞-algebra L and every morphism of DG-algebras f : A → B,
the morphism IdL ⊗ f : L⊗A→ L⊗B is a linear morphism of L∞-algebras.

1.5. Maurer-Cartan and deformation functors associated to L∞-algebras

Most of the notions concernings differential graded Lie algebras extends to this more general
framework. For instance, the descending central series L[n] of an L∞-algebra (L, l1, l2, . . .) is
defined recursively as L[1] = L and

L[n] = Span{lk(x1, . . . , xk) | k ≥ 2, xi ∈ L[ni], 0 < ni < n, n1 + · · ·+ nk ≥ n}.

An L∞-algebra (L, l1, l2, . . .) is called nilpotent if L[n] = 0 for n >> 0; notice that this implies
in particular that ln = 0 for n >> 0.

Definition 1.5.1. A Maurer-Cartan element in a nilpotent L∞-algebra (L, l1, l2, . . .) is a vector
x ∈ L1 that satisfies the Maurer-Cartan equation:∑

n>0

1
n!
ln(x, x, . . . , x) = 0.

The subset of Maurer-Cartan elements will be denoted MC(L).

Thus for every L∞-algebra L it makes sense to consider the Maurer-Cartan functor

MCL : Art→ Set, MCL(A) = MC(L⊗mA),

where the L∞ structure on L⊗mA is given by scalar extension.

Lemma 1.5.2. The tangent space of MCL is Z1(L, l1) and there exists a canonical complete
obstruction theory with values in H2(L, l1).
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Proof. The first part is clear, since if m2
A = 0, then the Maurer-Cartan equation reduces to

l1(x) = 0. Assume that 0→ I → A→ B → 0 is a small extension in Art, let y ∈ MC(L⊗mB)
and choose a lifting x ∈ L1 ⊗mA of it. Denoting

h(x) =
∑
n>0

1
n!
ln(x, x, . . . , x) ∈ L2 ⊗ I,

for every s ∈ L1 ⊗ I we have h(x + s) = h(x) + l1(s) and then y admits a lifting to MCL(A) if
and only if h(x) is a coboundary in the complex (L⊗ I, l1). For every n > 0 we have

0 =
n∑
k=1

(−1)n−k
∑

σ∈S(k,n−k)

χ(σ) ln−k+1(lk(x, . . . , x), x, . . . , x)

and then
n∑
k=1

(−1)n−k
(
n

k

)
ln−k+1(lk(x, . . . , x), x, . . . , x) = 0 .

Dividing for n! we get
n∑
k=1

(−1)n−k
ln−k+1

(n− k)!

(
lk
k!

(x, . . . , x), x, . . . , x
)

= 0

and summing over all n > 0 we obtain (setting a = n− k + 1)∑
a,k>0

(−1)a−1 la
(a− 1)!

(
lk
k!

(x, . . . , x), x, . . . , x
)

= 0 ,

∑
a>0

(−1)a−1 la
(a− 1)!

(h(x), x, . . . , x) = l1(h(x)) = 0.

Thus h(x) is a cocycle in (L⊗ I, l1) and its cohomology class is well defined. �

The notions of linear morphism and nilpotency for L∞[1]-algebras are defined similarly to
the L∞ case.

Definition 1.5.3. The Maurer-Cartan equation on a nilpotent L∞[1]-algebra (V, q1, q2, . . .) is
defined as ∑

n>0

1
n!
qn(v, v, . . . , v) = 0, v ∈ V 0.

It is clear that the the bijection s : V 0 → (sV )1 preserves solutions of Maurer-Cartan equa-
tions.

Definition 1.5.4. Let (L, l1, l2, . . .) be a nilpotent L∞-algebra and x, y ∈ MC(L). We shall
say that x and y are homotopy equivalent if there is some ξ ∈ MC(L ⊗ K [t, dt]) such that
e0(ξ) = x and e1(ξ) = y, where e0, e1 : L ⊗ K [t, dt] → L = L ⊗ K are the evaluation maps at
t = 0 and t = 1 respectively.

We will denote by Def(L) the quotient of MC(L) under the equivalence relation generated
by homotopy.

We will prove later that homotopy is already an equivalence relation: here we dont need this
result.

The construction of Def(L) is functorial and then we may define a functor

DefL : Art→ Set, DefL(A) = Def(L⊗mA).

It is easy to see that the tangent space of the functor DefL is H1(L, l1). This follows from
Lemma 1.5.2, from the fact the morphisms of DG-vector spaces

e1, e0 : L[t, dt]→ L

are homotopic via the homotopy IdL⊗
∫ 1

0
and observing that for z ∈ Z1(L) and u ∈ L0 we have

z + l1(u)t+ udt ∈ Z1(L[t, dt]).

Proposition 1.5.5. Let L be a differential graded Lie algebra. Then for every For every A ∈
Art the homotopy equivalence in MCL(A) is the same as gauge equivalence and then the above
definition of DefL coincides with the one given in Section ??.
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Proof. It is sufficient to prove that x, y ∈ MCL(A) are gauge equivalent if and only if they
are homotopy equivalent. So first, assume ea ∗ x = y for some a ∈ L0; then we can consider
z(t) = eta ∗ x ∈ MCL[t,dt](A) and therefore z(0) = x and z(1) = y. Conversely assume that
z(0) = x and z(1) = y for some z(t) ∈ MCL[t,dt](A); by Corollary ?? there exists p(t) ∈ L0[t]
such that p(0) = 0 and z(t) = ep(t) ∗ x. Then y = z(1) = ep(1) ∗ x and this imply that y is gauge
equivalent to x. �

Remark 1.5.6. As a consequence of Proposition 1.5.5 we have that the bifunctor

Def : DGLA×Art→ Set

is completely determined by the Maurer-Cartan bifunctor

MC: DGLA×Art→ Set.

1.6. Construction of L∞[1] structures via derived brackets

Assume it is given a graded Lie algebra L and a decomposition L = V ⊕A as graded vector
spaces, with V,A graded Lie subalgebra and A abelian. Denoting by P ∈ Hom0

K (L,L) the
projection on A with kernel equal to V we have:

(1) P 2 = P ,
(2) [Pf, Pg] = 0 for every f, g ∈ L,
(3) P [f, g] = P [Pf, g] + P [f, Pg] = P [f, Pg]− (−1)f gP [g, Pf ] for every f, g ∈ L.

The second item is clearly equivalent to the abelianity of A. The third item is equivalent
to the equality P [f − Pf, g − Pg] = 0 and then it is equivalent to the fact that V = kerP is a
graded Lie subalgebra of L.

Lemma 1.6.1. Let f ∈ Der∗K (L,L). Then f(V ) ⊂ V if and only if Pf = PfP .

Proof. Assume Pf = PfP , then for every v ∈ V we have Pfv = PfPv = 0. Conversely
assume f(V ) ⊂ V , then for every x ∈ L we have

Pfx = Pf(Px+ (x− Px)) = PfPx+ Pf(x− Px) = PfPx,

where the last equality follow from the fact that f(x− Px) ∈ V . �

Remark 1.6.2. For every v ∈ V , the inner derivation f = [v,−] satisfies the assumption of
Lemma 1.6.1.

Example 1.6.3. Let A be a unitary graded commutative algebra and L = Der∗A(A[t], A[t]).

Denote by ∂ : A[t] → A[t] be the usual derivation operator ∂ =
d

dt
∈ Der0A(A[t], A[t]); we may

consider A as an abelian graded subalgebra of L, where every a ∈ A is identified with the
operator a∂. Then we have a decomposition

L = A[t]∂ = gA ⊕A

where gA = ⊕n>0At
n∂ is the subalgebra of derivations vanishing fot t = 0: the operator P is

therefore given by
P (q(t)∂) = q(0)∂, q(t) ∈ A[t].

Example 1.6.4. Let A be a unitary graded commutative algebra and L = Hom∗K (A,A). We
may consider A as an abelian graded subalgebra of L, where every a ∈ A is identified with the
operator

a : A→ A, a(b) = ab.

Then we have
L = V ⊕A, V = {f ∈ L | f(1) = 0},

and therefore we have
P : L→ L, P (f)(a) = f(1)a.
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For every f ∈ Der∗(L,L) end every integer n > 0 denote:

fn :
⊙n

A→ L, f1(a) = f(a),

fn(a1, . . . , an) = [fn−1(a1, . . . , an−1), an].

The fact that f is a derivation implies that every fn is graded symmetric (easy to prove).
Since A is abelian, if f(A) ⊂ A then fn = 0 for every n > 1.

Definition 1.6.5. In the notation above, the morphism

Φnf : A�n → A, Φnf = Pfn,

is called the n-th derived bracket of f ∈ Der∗(L,L). By convention, we set Φ0
f = 0.

Example 1.6.6. Let A be a unitary graded commutative algebra over a field of characteristic
0, then the multiplication maps

µn : A�n+1 → A, µn(a0, . . . , an) = a0a1 · · · an,

can be interpreted as derived brackets. In fact, in the set-up of Example 1.6.3 denote

hm =
tm+1∂

(m+ 1)!
∈ L.

For a fixed integer n ≥ 0 consider the inner derivation f = [hn,−]. Then f1(a) = [hn, a∂] =
−ahn−1 and more generally

fm(a1, . . . , am) = (−1)ma1 · · · amhn−m,

giving
Φn+1
f = (−1)n+1µn, Φi+1

f = 0 for every i 6= n.

Theorem 1.6.7 ([6, 126, 127]). In the above set-up, for every f, g ∈ Der∗(L,L) such that
f(V ) ⊂ V, g(V ) ⊂ V and every n > 0 we have

Φn[f,g] =
∑

a+b=n+1

[Φaf ,Φ
b
g].

Proof. For notational simplicity, in the next formulas we denote by ±K the correct Koszul
sign. The first step of the proof is to prove that, for every f, g ∈ Der∗(L,L) and n > 0 we have

[f, g]n(a1, . . . , an) =
n∑
k=0

∑
σ∈S(k,n−k)

±K [fk(aσ(1), . . . , aσ(k)), gn−k(aσ(k+1), . . . , aσ(n))],

where we intend that

[f0(∅), a] = f(a), [b, g0(∅)] = −(−1)b gg(b).

For n = 1 we have

[f, g]1(a) = f(g(a))−(−1)f gg(f(a)) = [f0, g1(a)]−(−1)f g[g0, f1(a)] = [f0, g1(a)]+(−1)a g[f1(a), g0].

For n > 1 we have

[f, g]n(a1, . . . , an) = [[f, g]n−1(a1, . . . , an−1), an]

=
n−1∑
k=0

∑
σ∈S(k,n−1−k)

±K [[fk(aσ(1), . . . , aσ(k)), gn−1−k(aσ(k+1), . . . , aσ(n−1))], an]

=
n−1∑
k=0

∑
σ∈S(k,n−1−k)

±K [fk+1(aσ(1), . . . , aσ(k), an), gn−1−k(aσ(k+1), . . . , aσ(n−1))]+

+
n−1∑
k=0

∑
σ∈S(k,n−1−k)

±K [fk(aσ(1), . . . , aσ(k)), gn−k(aσ(k+1), . . . , aσ(n−1), an)]
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=
n∑
k=1

∑
σ∈S(k,n−1−k),σ(n)<n

±K [fk(aσ(1), . . . , aσ(k)), gn−k(aσ(k+1), . . . , aσ(n))]+

+
n−1∑
k=0

∑
σ∈S(k,n−k),σ(n)=n

±K [fk(aσ(1), . . . , aσ(k)), gn−k(aσ(k+1), . . . , aσ(n))]

If f(V ), g(V ) ⊂ V , then the equality

P [fn(a1, . . . , an), gm(b1, . . . , bm)] =

= P [Φnf (a1, . . . , an), gm(b1, . . . , bm)] + P [fn(a1, . . . , an),Φmg (b1, . . . , bm)]
holds for every n,m ≥ 0. For n,m > 0 this follows from the properties of the projection operator
P , while for n = 0 we have:

P [f0, gm(b1, . . . , bm)] = Pf(gm(b1, . . . , bm)) = PfP (gm(b1, . . . , bm)) = P [f0,Φmg (b1, . . . , bm)].

Since
P [fn(a1, . . . , an),Φmg (b1, . . . , bm)] = Pfn+1(a1, . . . , an,Φmg (b1, . . . , bm)).

we have
P [fn(a1, . . . , an), gm(b1, . . . , bm)] =

= Φn+1
f (a1, . . . , an,Φmg (b1, . . . , bm))−±KΦm+1

g (b1, . . . , bm,Φnf (a1, . . . , an)),
where the Koszul sign relates the sequences

fn, a1, . . . , an, gm, b1, . . . , bm and gm, b1, . . . , bm, fn, a1, . . . , an

and then it is equal to

±K = (−1)(fn+a1+···+an)(gm+b1+···+bm) = (−1)fn(a1,...,an) gm(b1,...,bm).

We are now ready to prove the theorem, i.e. to prove the formula

P [f, g]n =
n∑
k=1

[Pfk, Pgn−k+1].

By the previous computation we have

P [f, g]n(a1, . . . , an) =
n∑
k=0

∑
σ∈S(k,n−k)

±K P [fk(aσ(1), . . . , aσ(k)), gn−k(aσ(k+1), . . . , aσ(n))],

=
n∑
k=0

∑
σ∈S(k,n−k)

±K Pfk+1(aσ(1), . . . , aσ(k), Pgn−k(aσ(k+1), . . . , aσ(n)))

−
n∑
k=0

∑
σ∈S(k,n−k)

±K Pgn−k+1(aσ(1), . . . , aσ(n−k), Pfk(aσ(n−k+1), . . . , aσ(n)))

=
n∑
k=1

Pfk ◦ Pgn−k+1(a1, . . . , an)− (−1)f g
n∑
k=1

Pgn−k+1 ◦ Pfk(a1, . . . , an)

=
n∑
k=1

[Pfk, Pgn−k+1](a1, . . . , an).

�

Corollary 1.6.8. In the above set-up if f ∈ Der1(L,L), f(V ) ⊂ V and f2 = 0, then the
sequence qk = Φkf gives an L∞[1] structure on A.
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