CHAPTER 1

L..-algebras

1.1. Koszul sign and unshuffles

Given a graded vector space V, the twist map extends naturally, for every n > 0, to an
action of the symmetric group ¥,, on the graded vector space ®" V:

tw: VO x ¥, — VO,

More explicitely, setting oy, = tw(—,01): V& — V& for vy, ..., v, homogeneous vectors
and o € X, we have:

Utw(vl Q- ---® Un) = i(’UU*l(l) @ Uofl(n))?

where the sign is the signature of the restriction of o to the subset of indices ¢ such that v; has
odd degree.

Definition 1.1.1. The Koszul sign (o, V;v1,...,v,) = £1 is defined by the relation
O-t_wl(vl K- U’n) = E(M O U1, .. 7vn)(va(1) K- & va(n))

The antisymmetric Koszul sign x(o,V;vq,...,v,) = 1 is the product of the Koszul
sign and the signature of the permutation:

x(o,Viv1,...,05) = (=1)7e(0, V;v1,...,0p).

For notational simplicity we shall write e(o;v1,...,v,) or €(o) for the Koszul sign when
there is no possible confusion about V' and vy, ..., v,; similarly for x(o;v1,...,v,) and x(o).
Notice that for o, 7 € X,, we have
tW(v1 ® -+ @ Uy, 0T) = (0501, .., Vn )W (Vp(1) @ -+ @ Ug(n), T)
and therefore
e(oTiv1,. ., 0n) = (0501, . VR)E(T; Vo (1), - -+ s Va(n))-
Lemma 1.1.2. Given homogeneous vectors vy, ...,v, € V and o € ¥,, we have

x(o,8V;sv1,...,80,) = (_1)2:;;1@—1)(%—@7)5(07 Vivg, ..., 0p).

PROOF. It is sufficient to check for o a trasposition of two consecutive elements, and this is
easy. O

Definition 1.1.3. Let V. W be graded vector spaces, a multilinear map
i Vx-o o xV oW
is called (graded) symmetric if
J(Wo(1)s -y Vo)) = (@) f(v1,...,00), for every o € ¥,,.
It is called (graded) skewsymmetric if
FWo(1)s -y Vo)) = X(0) f(V1,. .., Un), for every o € X,,.
Definition 1.1.4. The symmetric powers of a graded vector space V are defined as
n "V
v =Q'v =S
where I is the subspace generated by the vectors
V1@ ®Vp —(0)V5(1) ® ++ ® Vg (), vu eV, ocex,.
We will denote by 7: ®"V — ()"V the natural projection and
VO Quy,=m(v1 @+ Quy).
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Definition 1.1.5. The exterior powers of a graded vector space V are defined as

n "V
V/\n — V = ®
NV =5
where J is the subspace generated by the vectors
’U1®"'®Un_X(J)7)a'(1)®"'®U0(n)7 v €V, ocex,.

We will denote by 7: @®"V — A"V the natural projection and

VA Aoy =701 ® - ® vy).
Definition 1.1.6. The set of unshuffles of type (p, ¢) is the subset S(p,q) C £,14 of permu-
tations o such that o(i) < o(i + 1) for every i # p. Equivalently

Sp,q) ={o€Ziq|lol)<o(2)<...<0o(p), olp+l)<op+2)<...<olp+q}

The unshuffles are a set of representatives for the left cosets of the canonical embedding of
X, X ¥4 inside Xpy,. More precisely for every n € ¥,,, there exists a unique decomposition
n=or with 0 € S(p,q) and 7 € £, x &.

1.2. L..-algebras

Let (L,d,],]) be a differential graded Lie algebra. Then we have:
(1) d(d(z1)) = 0; _
(2) dlxy,z2) — ([dml,mng(—l)”l 72w, 21]) =0
(3) (w1, 2], 3] — (—=1)™ ™ [[w1, w3), wa] + (= 1) T FT3) [[29, 3], 1] = 0;
Using the formalism of unshuffles we can write Leibniz and Jacobi identities respectively as
> X0z zo@] = Y X(0)dTo(), Te@)] =0
c€S5(2,0) oeS(1,1)

and

> X(OEo@) To@) To)] = 0.
c€eS(2,1)

Definition 1.2.1. An L, structure on a graded vector space L is a sequence of skewsymmetric

maps
ln:/\ L— L, deg(l,)=2—-n, n>0,
such that for every n > 0 and every sequence of homogeneous vectors x1,...,z, € L we have:
z:(fl)"”c Z X(0) ln— k11 (I (Zo(1)s - - s To(k))s Ta(kt1)s - - - > To(n)) = 0.
k=1 oceS(k,n—k)

An L,.-algebra is a graded vector space endowed with an L, structure.
Sometimes, Ly-algebras are also called strong homotopy Lie algebras.

Remark 1.2.2. (1) Every DGLA (L,d,[,]) is also an L., algebras with iy = d, Iz = [,]
and [, = 0 for every n > 2.

(2) For an Loc-algebra (L,lq,la,...) we have deg(l;) = 1 and I3 = 0 and then (L,l;) is a
DG-vector space.

(3) For an Loo-algebra (L,l,la,...) the morphism Iy induces a structure of graded Lie
algebra in the cohomology of the complex (L,l1). In fact if I;(x) = l;1(y) = 0 we have
Li(la(z,y)) = £lo(li(x), y) £ l2(l1(y), z) = 0. The equation

3

Z(—l)s_k Z X(U) l4fk(lk(xa'(l)7 o 7xa(k))7 Lo(k41)s--- 7x0(3)) = 0.
k=1 oeS(k,3—k)

implies that if I3 (x;) = 0 then
> x(0) lalla(To1), To(2) To(3))
cesS(2,1)
belongs to the image of [; and then
[,]: H(L,l1) x H*(L,ly) — H*(L,1y), [z,y] = la(z,y),
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satisfies the graded Jacobi identity.

Example 1.2.3. Let L be a graded vector space and ¢: L° x L% x L® — L1 a skewsymmetric
map. Then the sequence

I ( ) (w1, w0,23) if n=3and 2; € L°,
w(T1, .0, Tn) = .
! 0 otherwise,

gives an L., structure on L.

Definition 1.2.4. A linear morphism f: (L,l1,l3,...) — (H, h1, ho,...) of Ly-algebras is a
linear map f: L — H of degree 0 such that

fln(xlv cee amn) = hn(f(xl)v i 7f(xn))

for every n > 0 and every x1,...,2, € L.

@ Do not confuse the notion of linear morphism of Lo.-algebras with the notion of L.-morphism
(that we will give later). Every linear morphism is also an L.-morphism but the converse is
not true.

Remark 1.2.5. In literature there exist two different (equivalent) definitions of L..-algebras
depending by different sign conventions. Here we follow [36, 75, 77|, while in [80, 81] the maps
I, differ from ours by the sign (—1)F(*+1)/2,

1.3. Ly [1]-algebras

Definition 1.3.1. An L[1] structure on a graded vector space V is a sequence of symmetric

maps

Gn: VO =V, deg(q,) =1, n>0,
such that for every n > 0 and every sequence of homogeneous vectors vy, ...,v, € V we have:
(1) Z Z 8(0-) qn*kJrl(q]C(vU(l)’ cee 7va(k))7 Ua(k+1)a cee 77]0(77.)) =0.

k=1oeS(k,n—k)
An L [1]-algebra is a graded vector space endowed with an L. [1] structure.
Theorem 1.3.2. For every graded vector space V' there exists a canonical bijection from the set
of Loo[l] structures on V' and the set of Lo, structures on sV. This bijection is induced by the

relations
lg(sv1,...,80K) = _(_1)27;(’@*1)%5%(@1’ Cey Vk)-
PRrROOF. Immediate consequence of Lemma 1.1.2. Notice that for every k we have a com-
mutative diagram

yok ——y

(sV)®k ELENEN /e
t
Remark 1.3.3. Since V = (sV)[1] the above theorem says that there is a bijection between

L structures on L and Lo [1] structures on L[1]. Very often, in literature an L, structure on
a graded vector space L is defined as an Lo [1] structures on L[1].

Definition 1.3.4. Given f € Homg (V"™ V) and g € Homyp (VO™ V) their symmetric
Gerstenhaber bracket is defined as

[f.9] = fog— (=1)f 9go f € Homj (VO T+ V),
where

fog(v07‘-'7vn+m) = Z G(U)f(g(vcr(O)u-‘-7Uo'(m))7va(m+1)7-~~7va(m+n))‘
ceS(m+1,n)
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Thus, a sequence of maps gx € Homg (VO V) gives an Lyo[1] structure on V if and only if
for every n > 0 we have
> [ga @] =0.

a+b=n+1
In fact

n n

n n
Z[anlwkly ar] = Z Gn—k+1 © qr + Z Qk © Gn—k+1 = 2 Z(ankJrl ° qi)
k=1 k=1 k

k=1 =1
and we recover exactly the left side of (1).

1.4. Extension of scalars

Given a graded vector space V and a DG-algebra (A, d) we have natural scalar extension
maps
Hom (VE", V) ——Homg ((V © A)®",V © A)
defined in the following way:
flo®a) = fv)®a+ (—1)"v @ d(a), forn =1,
f(vl ®at, ..., Qay) = (fl)z'iqaﬁ”ijf(vl, cey V) ®arag -, for n > 1.

Notice that (—1)Zi<1‘ %% ig the Koszul sign relating the sequences v1,ay,va, ..., vy, a, and
Vly ..y Un,a1,-..,0,. Moreover scalar extension preserves symmetry and skewsymmetry.

Lemma 1.4.1. Scalar extension commutes with the bijection described in Theorem 1.3.2.
PROOF. Easy and straightforward. O
Proposition 1.4.2. Scalar extension preserves Lo and Loo[1] structures.

Proor. It is sufficient to prove the theorem only for L[1] structures. This is an easy
consequence of the Leibniz rule in the DG-algebra A and it is left as an exercise. (]

It is obvious that for every L,-algebra L and every morphism of DG-algebras f: A — B,
the morphism Id;, ® f: L ® A — L ® B is a linear morphism of L.-algebras.

1.5. Maurer-Cartan and deformation functors associated to L.,-algebras

Most of the notions concernings differential graded Lie algebras extends to this more general
framework. For instance, the descending central series L™ of an L..-algebra (Lyly,1a,...) is
defined recursively as LIl = L and

L = Span{lg(z1,...,zk) | k> 2, 2; el 0<n;<n, ni+- - +mny > n}.

An L.-algebra (L,l,ls,...) is called nilpotent if L") = 0 for n >> 0; notice that this implies
in particular that [, = 0 for n >> 0.

Definition 1.5.1. A Maurer-Cartan element in a nilpotent L.-algebra (L,l;,ls,...) is a vector
x € L' that satisfies the Maurer-Cartan equation:

1
Zaln(x,x,...,x) =0.

n>0
The subset of Maurer-Cartan elements will be denoted MC(L).

Thus for every Loo-algebra L it makes sense to consider the Maurer-Cartan functor
MCp: Art — Set, MCp(A) =MC(L®my),
where the Lo, structure on L ® my4 is given by scalar extension.

Lemma 1.5.2. The tangent space of MCy, is Z'(L,l1) and there erists a canonical complete
obstruction theory with values in H?(L,ly).
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PROOF. The first part is clear, since if m% = 0, then the Maurer-Cartan equation reduces to
l1(z) = 0. Assume that 0 - I — A — B — 0 is a small extension in Art, let y € MC(L ® mp)
and choose a lifting x € L' ® m4 of it. Denoting

1
h(zx) = Z azn(gc,gc,...,gc) cel’®1,
n>0
for every s € L' ® I we have h(xz + s) = h(z) + [1(s) and then y admits a lifting to MCp(A) if
and only if h(z) is a coboundary in the complex (L ® I,1;). For every n > 0 we have
n
O:Z(_l)n_k Z X(U) ln_k+1(lk(l‘,...,x),x,...71')
k=1 oeS(k,n—k)
and then
- n—k (T
Z(—l) & lp—pkr1(g(zy . ),y .. ) =0
k=1
Dividing for n! we get

= g e l
Z(—l)" k(n _k;' (l:!(x,...,x)7x7...7m) =0

k=1
and summing over all n > 0 we obtain (setting a =n — k + 1)

> (—1)al(al_“1)! <§:'(xx)xx> =0,

a,k>0
l
—1)et—= e T) = =0.
(1) (@), ) = (b)) = 0
a>0
Thus h(x) is a cocycle in (L ® I,11) and its cohomology class is well defined. O

The notions of linear morphism and nilpotency for L,[1]-algebras are defined similarly to
the Lo, case.

Definition 1.5.3. The Maurer-Cartan equation on a nilpotent Ly [1]-algebra (V,q1,qo,...) is
defined as

1
qurl(vava"wv)zo, ’UGVO.
n>0 n:

It is clear that the the bijection s: V9 — (sV)! preserves solutions of Maurer-Cartan equa-
tions.

Definition 1.5.4. Let (L,l1,ls,...) be a nilpotent L.-algebra and =,y € MC(L). We shall
say that x and y are homotopy equivalent if there is some ¢ € MC(L ® K [t, dt]) such that
eo(§) = z and e1(§) = y, where eg,e;1: L®KIt,dt] — L = L ® K are the evaluation maps at
t =0 and t = 1 respectively.

We will denote by Def(L) the quotient of MC(L) under the equivalence relation generated
by homotopy.

We will prove later that homotopy is already an equivalence relation: here we dont need this
result.
The construction of Def(L) is functorial and then we may define a functor

Defr: Art — Set, Defr,(A) = Def(L @ my).

It is easy to see that the tangent space of the functor Defr, is H'(L,l;). This follows from
Lemma 1.5.2, from the fact the morphisms of DG-vector spaces

€1,€p: L[t, dt] — L
are homotopic via the homotopy Idy ® fol and observing that for z € Z1(L) and u € L° we have
z 4l (u)t +udt € Z(L[t, dt)).

Proposition 1.5.5. Let L be a differential graded Lie algebra. Then for every For every A €
Art the homotopy equivalence in MCp(A) is the same as gauge equivalence and then the above
definition of Defy, coincides with the one given in Section ?7.
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PROOF. It is sufficient to prove that x,y € MCp(A) are gauge equivalent if and only if they
are homotopy equivalent. So first, assume e® x x = y for some a € L°; then we can consider
2(t) = e x x € MCpry a(A) and therefore 2(0) = z and z(1) = y. Conversely assume that
2(0) = z and z(1) = y for some z(t) € MCpy 4(A); by Corollary ?? there exists p(t) € L°[t]
such that p(0) = 0 and z(t) = e?® x 2. Then y = 2(1) = e?()) x 2 and this imply that y is gauge
equivalent to z. O

Remark 1.5.6. As a consequence of Proposition 1.5.5 we have that the bifunctor
Def: DGLA x Art — Set
is completely determined by the Maurer-Cartan bifunctor

MC: DGLA x Art — Set.

1.6. Construction of L.[1] structures via derived brackets

Assume it is given a graded Lie algebra L and a decomposition L =V @ A as graded vector
spaces, with V, A graded Lie subalgebra and A abelian. Denoting by P € Hom{ (L, L) the
projection on A with kernel equal to V' we have:

(1) P2=P,
(2) [Pf,Pg] =0 for every f,g € L, B
(3) PIf,q] = PIPf,q] + P[f, Pg] = P[f,Pg] — (~1)! 9Pg, P[] for every f,g € L.

The second item is clearly equivalent to the abelianity of A. The third item is equivalent
to the equality P[f — Pf,g — Pg] = 0 and then it is equivalent to the fact that V = ker P is a
graded Lie subalgebra of L.

Lemma 1.6.1. Let f € Derg (L,L). Then f(V) CV if and only if Pf = PfP.

PrOOF. Assume Pf = PfP, then for every v € V we have Pfv = PfPv = 0. Conversely
assume f(V) C V, then for every € L we have

Pfx=Pf(Px+ (x— Pzx))=PfPx+ Pf(x — Px) = PfPuz,

where the last equality follow from the fact that f(xz — Px) € V. O
Remark 1.6.2. For every v € V, the inner derivation f = [v, —] satisfies the assumption of
Lemma 1.6.1.

Example 1.6.3. Let A be a unitary graded commutative algebra and L = Der’ (Alt], Aft]).
d
Denote by 0: A[t] — A[t] be the usual derivation operator 9 = 7 € Der'y (A[t], Alt]); we may

consider A as an abelian graded subalgebra of L, where every a € A is identified with the
operator ad. Then we have a decomposition

LZA[L‘]@ZQAEBA

where g4 = ®,>0At"0 is the subalgebra of derivations vanishing fot ¢ = 0: the operator P is
therefore given by

P(q(t)0) = q(0)9,  q(t) € Alt].
Example 1.6.4. Let A be a unitary graded commutative algebra and L = Homy (4, A). We
may consider A as an abelian graded subalgebra of L, where every a € A is identified with the
operator

a: A— A, a(b) = ab.
Then we have
L=V®A,  V={fcL|f1)=0}

and therefore we have

PiL—L,  P()a)=f(a
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For every f € Der*(L, L) end every integer n > 0 denote:
fTL:Q A_>L7 fl(a’):f(a)v

fn(ala e »an) - [fnfl(ala ey an71)7 an]~
The fact that f is a derivation implies that every f, is graded symmetric (easy to prove).
Since A is abelian, if f(A) C A then f, = 0 for every n > 1.

Definition 1.6.5. In the notation above, the morphism
@’;:AG”HA, ¥ =Pfn,
is called the n-th derived bracket of f € Der*(L, L). By convention, we set CI)? =0.

Example 1.6.6. Let A be a unitary graded commutative algebra over a field of characteristic
0, then the multiplication maps

. 1 _
Hn A®t — A, ,U'n(aOa"'van)*aOal"‘ana

can be interpreted as derived brackets. In fact, in the set-up of Example 1.6.3 denote

tm+1
-0 ey
(m+1)!
For a fixed integer n > 0 consider the inner derivation f = [hy,—]. Then fi(a) = [hn,ad] =
—ah,,_1 and more generally
fm(ala ce 7am) = (_l)mal t amhn—wu
giving

(I);ﬁ“ = (=1)"" g, (I>jf1 = 0 for every i # n.

Theorem 1.6.7 ([6, 126, 127]). In the above set-up, for every f,g € Der*(L,L) such that
f(V)ycV,g(V)CV and every n > 0 we have

n a b
(f.9] — Z [@F, @]
a+b=n+1

PROOF. For notational simplicity, in the next formulas we denote by + i the correct Koszul
sign. The first step of the proof is to prove that, for every f,g € Der*(L, L) and n > 0 we have

[f7g]n(a17~~-7an) :Z Z tK [fk:(aa(l)a"~7a0(k))7gn7k(aa(k+l)7”‘7ad(n))]a
k=0 oS (k,n—k)

where we intend that
[fo(0),a] = f(a),  [b,90(0)] = —(~1)®Tg(b).

For n = 1 we have

[, 91(a) = F(9(a)=(=1)! Pg(f(a)) = [fo, 1 (a)]=(=1)7 P[g0, 1(a)] = [fo, g1 (a)]+(=1)" ?[f1(a), go]-

For n > 1 we have
[fvg]n(alv' . '7a’n) = Hfag]nfl(ala .. '7an71)7an]

n—1
- Z Z :tK [[fk(an(l)v e 7a17(k))7gn717k(a'cr(k+l)7 cee 7aﬂ(n—1))]7 an]
k=0 o€eS(k,n—1—k)

n—1

=y > Tr [fer1(@o)s -5 Qo) On)y In-1-k (Ao (ks1)s - - - > Qo(n—1))]+
k=0 oceS(k,n—1—k)

n—1
+ Z Z *x [fre(ao)s -5 Qo)) In—k(Ao(kt1)s - - - 5 Go(n—1)> Gn)]
k=0o0€eS(k,n—1—k)
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= Z Z T [fe(aoys s Ao(k))s Gn—k(Qo(hr)s - - s Qo(n))]+
k=1oceS(k,n—1—k),0(n)<n

n—1
+ Z Z +x [felao@), - Qo)) In—k(Go(kt1), - > Qo(n))]
k=0 oeS(k,n—k),oc(n)=n

If f(V),g(V) C V, then the equality
P[fn(ah ceey an)7gm(b17 C) bm)} =

= P[(I):‘L(ala BERE) an)agm(bl, BRE) bm)] + P[fn(ala BERE) (ln), (I);n(bl, BRI bm)]
holds for every n,m > 0. For n,m > 0 this follows from the properties of the projection operator
P, while for n = 0 we have:

Plfo, gm (b1, ;bm)] = Pf(gm (b1, ..., bm)) = PfP(gm (b1, ..., bm)) = Plfo, ®g' (b1, ..., bm)]-
Since
P[fn(al,...7an)7<l>;”(b1,...,bm)} :an+1(a1,...,am(I);”(bl,...,bm)).
we have

Plfu(ar,...,an), gm(b1,...,bm)] =
=% (an, .y an, B by, b)) — £ (br, b, B (an, - an)),
where the Koszul sign relates the sequences
frns@1y ety Qny Gm, 01, b and G, b1, .o by fry a1, .., Gy

and then it is equal to

tx = (—1) Tt Tt AT @rtbitetbm) = (1) Fn(@0man) g (1,bm)

We are now ready to prove the theorem, i.e. to prove the formula

Plf.gln = > _[Pfi: Pgn—rs1].
k=1

By the previous computation we have

n
P[f,gln(as,...,a,) = Z Z *x Plfe(ao)s - s 0ok))s In—k(Ao(ht1)s - - -5 Go(n))],
k=0c€S(k,n—k)

ZZ Z tx Plrr1(ao1)s -5 Go(k)s PIn—k(o(isi)s - - Qo(n)))
k=0c€eS(k,n—k)

—Z Z *x Pon—ii1(ao)s - Go(n—k), Pfr(Go(n—tt1)s -+ s Go(n)))
k=0o0€eS(k,n—k)

= PfroPgnrii(ar,... an) — (_1)?gngn7k+1 oPfilar,...,an)
k=1 k=1

= Z[Pfkvpgnkarl](al, ce ,an).
k=1

O

Corollary 1.6.8. In the above set-up if f € Der'(L,L), f(V) C V and f> = 0, then the
sequence q = <I>’]3 gives an Loo[1] structure on A.
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