CHAPTER 1

L_{∞} -algebras

1.1. Koszul sign and unshuffles

Given a graded vector space V, the twist map extends naturally, for every $n \ge 0$, to an action of the symmetric group Σ_n on the graded vector space $\bigotimes^n V$:

$$\mathrm{tw} \colon V^{\otimes n} \times \Sigma_n \to V^{\otimes n}$$

More explicitly, setting $\sigma_{tw} = tw(-, \sigma^{-1}): V^{\otimes n} \to V^{\otimes n}$, for v_1, \ldots, v_n homogeneous vectors and $\sigma \in \Sigma_n$ we have:

$$\sigma_{\mathsf{tw}}(v_1 \otimes \cdots \otimes v_n) = \pm (v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(n)}),$$

where the sign is the signature of the restriction of σ to the subset of indices *i* such that v_i has odd degree.

Definition 1.1.1. The Koszul sign $\varepsilon(\sigma, V; v_1, \ldots, v_n) = \pm 1$ is defined by the relation

$$\sigma_{\mathsf{tw}}^{-1}(v_1 \otimes \cdots \otimes v_n) = \varepsilon(V, \sigma; v_1, \dots, v_n)(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)})$$

The antisymmetric Koszul sign $\chi(\sigma, V; v_1, \ldots, v_n) = \pm 1$ is the product of the Koszul sign and the signature of the permutation:

 $\chi(\sigma, V; v_1, \dots, v_n) = (-1)^{\sigma} \varepsilon(\sigma, V; v_1, \dots, v_n).$

For notational simplicity we shall write $\varepsilon(\sigma; v_1, \ldots, v_n)$ or $\varepsilon(\sigma)$ for the Koszul sign when there is no possible confusion about V and v_1, \ldots, v_n ; similarly for $\chi(\sigma; v_1, \ldots, v_n)$ and $\chi(\sigma)$.

Notice that for $\sigma, \tau \in \Sigma_n$ we have

ε

$$\texttt{tw}(v_1 \otimes \cdots \otimes v_n, \sigma \tau) = \varepsilon(\sigma; v_1, \dots, v_n) \texttt{tw}(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}, \tau)$$

and therefore

$$(\sigma \tau; v_1, \dots, v_n) = \varepsilon(\sigma; v_1, \dots, v_n) \varepsilon(\tau; v_{\sigma(1)}, \dots, v_{\sigma(n)})$$

Lemma 1.1.2. Given homogeneous vectors $v_1, \ldots, v_n \in V$ and $\sigma \in \Sigma_n$ we have

$$\chi(\sigma, sV; sv_1, \dots, sv_n) = (-1)^{\sum_{i=1}^n (n-i)(\overline{v_{\sigma(i)}} - \overline{v_i})} \varepsilon(\sigma, V; v_1, \dots, v_n)$$

PROOF. It is sufficient to check for σ a trasposition of two consecutive elements, and this is easy.

Definition 1.1.3. Let *V*, *W* be graded vector spaces, a multilinear map

$$f: V \times \cdots \times V \to W$$

is called (graded) symmetric if

$$f(v_{\sigma(1)},\ldots,v_{\sigma(n)}) = \varepsilon(\sigma)f(v_1,\ldots,v_n), \quad \text{for every } \sigma \in \Sigma_n$$

It is called (graded) skewsymmetric if

$$f(v_{\sigma(1)},\ldots,v_{\sigma(n)}) = \chi(\sigma)f(v_1,\ldots,v_n), \quad \text{for every } \sigma \in \Sigma_n$$

Definition 1.1.4. The symmetric powers of a graded vector space V are defined as

$$V^{\odot n} = \bigodot^n V = \frac{\bigotimes^n V}{I},$$

where I is the subspace generated by the vectors

$$v_1 \otimes \cdots \otimes v_n - \varepsilon(\sigma) v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}, \quad v_i \in V, \quad \sigma \in \Sigma_n$$

We will denote by $\pi: \bigotimes^n V \to \bigcirc^n V$ the natural projection and

$$v_1 \odot \cdots \odot v_n = \pi(v_1 \otimes \cdots \otimes v_n)$$

Definition 1.1.5. The exterior powers of a graded vector space V are defined as

$$V^{\wedge n} = \bigwedge^{n} V = \frac{\bigotimes^{n} V}{J}$$

where J is the subspace generated by the vectors

 $v_1 \otimes \cdots \otimes v_n - \chi(\sigma) v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}, \quad v_i \in V, \quad \sigma \in \Sigma_n.$

We will denote by $\pi: \bigotimes^n V \to \bigwedge^n V$ the natural projection and

 $v_1 \wedge \cdots \wedge v_n = \pi(v_1 \otimes \cdots \otimes v_n).$

Definition 1.1.6. The set of **unshuffles** of type (p,q) is the subset $S(p,q) \subset \Sigma_{p+q}$ of permutations σ such that $\sigma(i) < \sigma(i+1)$ for every $i \neq p$. Equivalently

 $S(p,q) = \{ \sigma \in \Sigma_{p+q} \mid \sigma(1) < \sigma(2) < \ldots < \sigma(p), \quad \sigma(p+1) < \sigma(p+2) < \ldots < \sigma(p+q) \}.$

The unshuffles are a set of representatives for the left cosets of the canonical embedding of $\Sigma_p \times \Sigma_q$ inside Σ_{p+q} . More precisely for every $\eta \in \Sigma_{p+q}$ there exists a unique decomposition $\eta = \sigma \tau$ with $\sigma \in S(p,q)$ and $\tau \in \Sigma_p \times \Sigma_q$.

1.2. L_{∞} -algebras

Let (L, d, [,]) be a differential graded Lie algebra. Then we have:

(1) $d(d(x_1)) = 0;$

(2) $d[x_1, x_2] - ([dx_1, x_2] - (-1)^{\overline{x_1} \, \overline{x_2}} [dx_2, x_1]) = 0;$

(3) $[[x_1, x_2], x_3] - (-1)^{\overline{x_2} \overline{x_3}} [[x_1, x_3], x_2] + (-1)^{\overline{x_1}(\overline{x_2} + \overline{x_3})} [[x_2, x_3], x_1] = 0;$

Using the formalism of unshuffles we can write Leibniz and Jacobi identities respectively as

$$\sum_{\sigma \in S(2,0)} \chi(\sigma) d[x_{\sigma(1)}, x_{\sigma(2)}] - \sum_{\sigma \in S(1,1)} \chi(\sigma) [dx_{\sigma(1)}, x_{\sigma(2)}] = 0$$

and

$$\sum_{\sigma \in S(2,1)} \chi(\sigma)[[x_{\sigma(1)}, x_{\sigma(2)}], x_{\sigma(3)}] = 0.$$

Definition 1.2.1. An L_{∞} structure on a graded vector space L is a sequence of skewsymmetric maps

$$l_n \colon \bigwedge^n L \to L, \qquad \deg(l_n) = 2 - n, \quad n > 0,$$

such that for every n > 0 and every sequence of homogeneous vectors $x_1, \ldots, x_n \in L$ we have:

$$\sum_{k=1}^{n} (-1)^{n-k} \sum_{\sigma \in S(k,n-k)} \chi(\sigma) \, l_{n-k+1}(l_k(x_{\sigma(1)},\ldots,x_{\sigma(k)}),x_{\sigma(k+1)},\ldots,x_{\sigma(n)}) = 0.$$

An L_{∞} -algebra is a graded vector space endowed with an L_{∞} structure.

Sometimes, L_{∞} -algebras are also called **strong homotopy Lie algebras**.

- **Remark 1.2.2.** (1) Every DGLA (L, d, [,]) is also an L_{∞} algebras with $l_1 = d$, $l_2 = [,]$ and $l_n = 0$ for every n > 2.
 - (2) For an L_{∞} -algebra $(L, l_1, l_2, ...)$ we have $\deg(l_1) = 1$ and $l_1^2 = 0$ and then (L, l_1) is a DG-vector space.
 - (3) For an L_{∞} -algebra $(L, l_1, l_2, ...)$ the morphism l_2 induces a structure of graded Lie algebra in the cohomology of the complex (L, l_1) . In fact if $l_1(x) = l_1(y) = 0$ we have $l_1(l_2(x, y)) = \pm l_2(l_1(x), y) \pm l_2(l_1(y), x) = 0$. The equation

$$\sum_{k=1}^{3} (-1)^{3-k} \sum_{\sigma \in S(k,3-k)} \chi(\sigma) \, l_{4-k}(l_k(x_{\sigma(1)},\ldots,x_{\sigma(k)}),x_{\sigma(k+1)},\ldots,x_{\sigma(3)}) = 0.$$

implies that if $l_1(x_i) = 0$ then

$$\sum_{e \in S(2,1)} \chi(\sigma) \, l_2(l_2(x_{\sigma(1)}, x_{\sigma(2)}), x_{\sigma(3)})$$

belongs to the image of l_1 and then

$$[\ ,\]\colon H^*(L,l_1)\times H^*(L,l_1)\to H^*(L,l_1),\qquad [x,y]=l_2(x,y),$$

satisfies the graded Jacobi identity.

Example 1.2.3. Let L be a graded vector space and $\phi: L^0 \times L^0 \times L^0 \to L^{-1}$ a skewsymmetric map. Then the sequence

$$l_n(x_1, \dots, x_n) = \begin{cases} \phi(x_1, x_2, x_3) & \text{if } n = 3 \text{ and } x_i \in L^0, \\ 0 & \text{otherwise,} \end{cases}$$

gives an L_{∞} structure on L.

Definition 1.2.4. A linear morphism $f: (L, l_1, l_2, ...) \to (H, h_1, h_2, ...)$ of L_{∞} -algebras is a linear map $f: L \to H$ of degree 0 such that

$$fl_n(x_1,\ldots,x_n) = h_n(f(x_1),\ldots,f(x_n))$$

for every n > 0 and every $x_1, \ldots, x_n \in L$.

 $\stackrel{\frown}{\geq}$ Do not confuse the notion of linear morphism of L_{∞} -algebras with the notion of L_{∞} -morphism (that we will give later). Every linear morphism is also an L_{∞} -morphism but the converse is not true.

Remark 1.2.5. In literature there exist two different (equivalent) definitions of L_{∞} -algebras depending by different sign conventions. Here we follow [36, 75, 77], while in [80, 81] the maps l_k differ from ours by the sign $(-1)^{k(k+1)/2}$.

1.3. $L_{\infty}[1]$ -algebras

Definition 1.3.1. An $L_{\infty}[1]$ structure on a graded vector space V is a sequence of symmetric maps

$$q_n: V^{\odot n} \to V, \qquad \deg(q_n) = 1, \quad n > 0,$$

such that for every n > 0 and every sequence of homogeneous vectors $v_1, \ldots, v_n \in V$ we have:

(1)
$$\sum_{k=1}^{n} \sum_{\sigma \in S(k,n-k)} \varepsilon(\sigma) q_{n-k+1}(q_k(v_{\sigma(1)},\ldots,v_{\sigma(k)}),v_{\sigma(k+1)},\ldots,v_{\sigma(n)}) = 0$$

An $L_{\infty}[1]$ -algebra is a graded vector space endowed with an $L_{\infty}[1]$ structure.

Theorem 1.3.2. For every graded vector space V there exists a canonical bijection from the set of $L_{\infty}[1]$ structures on V and the set of L_{∞} structures on sV. This bijection is induced by the relations

$$l_k(sv_1,\ldots,sv_k) = -(-1)^{\sum_i (k-i)\overline{v_i}} sq_k(v_1,\ldots,v_k).$$

PROOF. Immediate consequence of Lemma 1.1.2. Notice that for every k we have a commutative diagram

$$V^{\otimes k} \xrightarrow{q_k} V$$

$$\downarrow_{s^{\otimes k}} \qquad \qquad \downarrow_s$$

$$(sV)^{\otimes k} \xrightarrow{-l_k} sV$$

Remark 1.3.3. Since V = (sV)[1] the above theorem says that there is a bijection between L_{∞} structures on L and $L_{\infty}[1]$ structures on L[1]. Very often, in literature an L_{∞} structure on a graded vector space L is defined as an $L_{\infty}[1]$ structures on L[1].

Definition 1.3.4. Given $f \in \operatorname{Hom}_{\mathbb{K}}^{*}(V^{\odot n+1}, V)$ and $g \in \operatorname{Hom}_{\mathbb{K}}^{*}(V^{\odot m+1}, V)$ their symmetric **Gerstenhaber bracket** is defined as

$$[f,g] = f \circ g - (-1)^{\overline{f} \ \overline{g}} g \circ f \in \operatorname{Hom}_{\mathbb{K}}^{*}(V^{\odot n+m+1}, V),$$

where

$$f \circ g(v_0, \dots, v_{n+m}) = \sum_{\sigma \in S(m+1,n)} \epsilon(\sigma) f(g(v_{\sigma(0)}, \dots, v_{\sigma(m)}), v_{\sigma(m+1)}, \dots, v_{\sigma(m+n)}).$$

1.5. MAURER-CARTAN AND DEFORMATION FUNCTORS ASSOCIATED TO $L_\infty\text{-}\mathrm{ALGEBRAS}$

Thus, a sequence of maps $q_k \in \operatorname{Hom}^1_{\mathbb{K}}(V^{\odot k}, V)$ gives an $L_{\infty}[1]$ structure on V if and only if for every n > 0 we have

$$\sum_{a+b=n+1} [q_a, q_b] = 0.$$

In fact

$$\sum_{k=1}^{n} [q_{n-k+1}, q_k] = \sum_{k=1}^{n} q_{n-k+1} \circ q_k + \sum_{k=1}^{n} q_k \circ q_{n-k+1} = 2\sum_{k=1}^{n} (q_{n-k+1} \circ q_k)$$

and we recover exactly the left side of (1).

1.4. Extension of scalars

Given a graded vector space V and a DG-algebra $({\cal A},d)$ we have natural scalar extension maps

$$\operatorname{Hom}_{\mathbb{K}}^{*}(V^{\otimes n}, V) \xrightarrow{\tilde{\cdot}} \operatorname{Hom}_{\mathbb{K}}^{*}((V \otimes A)^{\otimes n}, V \otimes A)$$

defined in the following way:

$$\tilde{f}(v \otimes a) = f(v) \otimes a + (-1)^{\overline{v}} v \otimes d(a), \quad \text{for } n = 1,$$

$$\tilde{f}(v_1 \otimes a_1, \dots, v_n \otimes a_n) = (-1)^{\sum_{i < j} \overline{a_i} \ \overline{v_j}} f(v_1, \dots, v_n) \otimes a_1 a_2 \cdots a_n, \quad \text{for } n > 1.$$

Notice that $(-1)^{\sum_{i < j} \overline{a_i} \ \overline{v_j}}$ is the Koszul sign relating the sequences $v_1, a_1, v_2, \ldots, v_n, a_n$ and $v_1, \ldots, v_n, a_1, \ldots, a_n$. Moreover scalar extension preserves symmetry and skewsymmetry.

Lemma 1.4.1. Scalar extension commutes with the bijection described in Theorem 1.3.2.

PROOF. Easy and straightforward.

Proposition 1.4.2. Scalar extension preserves L_{∞} and $L_{\infty}[1]$ structures.

PROOF. It is sufficient to prove the theorem only for $L_{\infty}[1]$ structures. This is an easy consequence of the Leibniz rule in the DG-algebra A and it is left as an exercise.

It is obvious that for every L_{∞} -algebra L and every morphism of DG-algebras $f: A \to B$, the morphism $\mathrm{Id}_L \otimes f: L \otimes A \to L \otimes B$ is a linear morphism of L_{∞} -algebras.

1.5. Maurer-Cartan and deformation functors associated to L_{∞} -algebras

Most of the notions concernings differential graded Lie algebras extends to this more general framework. For instance, the descending central series $L^{[n]}$ of an L_{∞} -algebra $(L, l_1, l_2, ...)$ is defined recursively as $L^{[1]} = L$ and

$$L^{[n]} = \operatorname{Span}\{l_k(x_1, \dots, x_k) \mid k \ge 2, \ x_i \in L^{[n_i]}, \ 0 < n_i < n, \ n_1 + \dots + n_k \ge n\}.$$

An L_{∞} -algebra $(L, l_1, l_2, ...)$ is called **nilpotent** if $L^{[n]} = 0$ for n >> 0; notice that this implies in particular that $l_n = 0$ for n >> 0.

Definition 1.5.1. A Maurer-Cartan element in a nilpotent L_{∞} -algebra $(L, l_1, l_2, ...)$ is a vector $x \in L^1$ that satisfies the Maurer-Cartan equation:

$$\sum_{n>0} \frac{1}{n!} l_n(x, x, \dots, x) = 0.$$

The subset of Maurer-Cartan elements will be denoted MC(L).

Thus for every L_{∞} -algebra L it makes sense to consider the Maurer-Cartan functor

$$\mathrm{MC}_L \colon \mathbf{Art} \to \mathbf{Set}, \qquad \mathrm{MC}_L(A) = \mathrm{MC}(L \otimes \mathfrak{m}_A),$$

where the L_{∞} structure on $L \otimes \mathfrak{m}_A$ is given by scalar extension.

Lemma 1.5.2. The tangent space of MC_L is $Z^1(L, l_1)$ and there exists a canonical complete obstruction theory with values in $H^2(L, l_1)$.

4

PROOF. The first part is clear, since if $\mathfrak{m}_A^2 = 0$, then the Maurer-Cartan equation reduces to $l_1(x) = 0$. Assume that $0 \to I \to A \to B \to 0$ is a small extension in **Art**, let $y \in \mathrm{MC}(L \otimes \mathfrak{m}_B)$ and choose a lifting $x \in L^1 \otimes \mathfrak{m}_A$ of it. Denoting

$$h(x) = \sum_{n>0} \frac{1}{n!} l_n(x, x, \dots, x) \in L^2 \otimes I,$$

for every $s \in L^1 \otimes I$ we have $h(x+s) = h(x) + l_1(s)$ and then y admits a lifting to $MC_L(A)$ if and only if h(x) is a coboundary in the complex $(L \otimes I, l_1)$. For every n > 0 we have

$$0 = \sum_{k=1}^{n} (-1)^{n-k} \sum_{\sigma \in S(k,n-k)} \chi(\sigma) \, l_{n-k+1}(l_k(x,\dots,x),x,\dots,x)$$

and then

$$\sum_{k=1}^{n} (-1)^{n-k} \binom{n}{k} l_{n-k+1} (l_k(x, \dots, x), x, \dots, x) = 0$$

Dividing for n! we get

$$\sum_{k=1}^{n} (-1)^{n-k} \frac{l_{n-k+1}}{(n-k)!} \left(\frac{l_k}{k!} (x, \dots, x), x, \dots, x \right) = 0$$

and summing over all n > 0 we obtain (setting a = n - k + 1)

$$\sum_{a,k>0} (-1)^{a-1} \frac{l_a}{(a-1)!} \left(\frac{l_k}{k!} (x, \dots, x), x, \dots, x \right) = 0,$$

$$\sum_{a>0} (-1)^{a-1} \frac{l_a}{(a-1)!} (h(x), x, \dots, x) = l_1(h(x)) = 0.$$

Thus h(x) is a cocycle in $(L \otimes I, l_1)$ and its cohomology class is well defined.

The notions of linear morphism and nilpotency for $L_{\infty}[1]$ -algebras are defined similarly to the L_{∞} case.

Definition 1.5.3. The Maurer-Cartan equation on a nilpotent $L_{\infty}[1]$ -algebra $(V, q_1, q_2, ...)$ is defined as

$$\sum_{n>0} \frac{1}{n!} q_n(v, v, \dots, v) = 0, \qquad v \in V^0.$$

It is clear that the bijection $s \colon V^0 \to (sV)^1$ preserves solutions of Maurer-Cartan equations.

Definition 1.5.4. Let $(L, l_1, l_2, ...)$ be a nilpotent L_{∞} -algebra and $x, y \in MC(L)$. We shall say that x and y are **homotopy equivalent** if there is some $\xi \in MC(L \otimes \mathbb{K}[t, dt])$ such that $e_0(\xi) = x$ and $e_1(\xi) = y$, where $e_0, e_1 \colon L \otimes \mathbb{K}[t, dt] \to L = L \otimes \mathbb{K}$ are the evaluation maps at t = 0 and t = 1 respectively.

We will denote by Def(L) the quotient of MC(L) under the equivalence relation generated by homotopy.

We will prove later that homotopy is already an equivalence relation: here we dont need this result.

The construction of Def(L) is functorial and then we may define a functor

$$\operatorname{Def}_L : \operatorname{Art} \to \operatorname{Set}, \qquad \operatorname{Def}_L(A) = \operatorname{Def}(L \otimes \mathfrak{m}_A).$$

It is easy to see that the tangent space of the functor Def_L is $H^1(L, l_1)$. This follows from Lemma 1.5.2, from the fact the morphisms of DG-vector spaces

$$e_1, e_0 \colon L[t, dt] \to L$$

are homotopic via the homotopy $\mathrm{Id}_L \otimes \int_0^1$ and observing that for $z \in Z^1(L)$ and $u \in L^0$ we have $z + l_1(u)t + udt \in Z^1(L[t, dt])$.

Proposition 1.5.5. Let L be a differential graded Lie algebra. Then for every For every $A \in$ **Art** the homotopy equivalence in $MC_L(A)$ is the same as gauge equivalence and then the above definition of Def_L coincides with the one given in Section ??.

 \Box

PROOF. It is sufficient to prove that $x, y \in MC_L(A)$ are gauge equivalent if and only if they are homotopy equivalent. So first, assume $e^a * x = y$ for some $a \in L^0$; then we can consider $z(t) = e^{ta} * x \in MC_{L[t,dt]}(A)$ and therefore z(0) = x and z(1) = y. Conversely assume that z(0) = x and z(1) = y for some $z(t) \in MC_{L[t,dt]}(A)$; by Corollary ?? there exists $p(t) \in L^0[t]$ such that p(0) = 0 and $z(t) = e^{p(t)} * x$. Then $y = z(1) = e^{p(1)} * x$ and this imply that y is gauge equivalent to x.

Remark 1.5.6. As a consequence of Proposition 1.5.5 we have that the bifunctor

 $\mathrm{Def}\colon\mathbf{DGLA}\times\mathbf{Art}\to\mathbf{Set}$

is completely determined by the Maurer-Cartan bifunctor

$$\mathrm{MC}\colon \mathbf{DGLA}\times\mathbf{Art}\to\mathbf{Set}.$$

1.6. Construction of $L_{\infty}[1]$ structures via derived brackets

Assume it is given a graded Lie algebra L and a decomposition $L = V \oplus A$ as graded vector spaces, with V, A graded Lie subalgebra and A abelian. Denoting by $P \in \operatorname{Hom}^{0}_{\mathbb{K}}(L, L)$ the projection on A with kernel equal to V we have:

- (1) $P^2 = P$,
- (2) [Pf, Pg] = 0 for every $f, g \in L$,
- (3) $P[f,g] = P[Pf,g] + P[f,Pg] = P[f,Pg] (-1)^{\overline{f}} \overline{g} P[g,Pf]$ for every $f,g \in L$.

The second item is clearly equivalent to the abelianity of A. The third item is equivalent to the equality P[f - Pf, g - Pg] = 0 and then it is equivalent to the fact that $V = \ker P$ is a graded Lie subalgebra of L.

Lemma 1.6.1. Let $f \in \text{Der}^*_{\mathbb{K}}(L, L)$. Then $f(V) \subset V$ if and only if Pf = PfP.

PROOF. Assume Pf = PfP, then for every $v \in V$ we have Pfv = PfPv = 0. Conversely assume $f(V) \subset V$, then for every $x \in L$ we have

$$Pfx = Pf(Px + (x - Px)) = PfPx + Pf(x - Px) = PfPx,$$

where the last equality follow from the fact that $f(x - Px) \in V$.

Remark 1.6.2. For every $v \in V$, the inner derivation f = [v, -] satisfies the assumption of Lemma 1.6.1.

Example 1.6.3. Let A be a unitary graded commutative algebra and $L = \text{Der}^*_A(A[t], A[t])$. Denote by $\partial: A[t] \to A[t]$ be the usual derivation operator $\partial = \frac{d}{dt} \in \text{Der}^0_A(A[t], A[t])$; we may consider A as an abelian graded subalgebra of L, where every $a \in A$ is identified with the operator $a\partial$. Then we have a decomposition

$$L = A[t]\partial = \mathfrak{g}_A \oplus A$$

where $\mathfrak{g}_A = \bigoplus_{n>0} A t^n \partial$ is the subalgebra of derivations vanishing for t = 0: the operator P is therefore given by

$$P(q(t)\partial) = q(0)\partial, \qquad q(t) \in A[t]$$

Example 1.6.4. Let A be a unitary graded commutative algebra and $L = \text{Hom}_{\mathbb{K}}^*(A, A)$. We may consider A as an abelian graded subalgebra of L, where every $a \in A$ is identified with the operator

$$a: A \to A, \qquad a(b) = ab.$$

Then we have

$$L = V \oplus A, \qquad V = \{f \in L \mid f(1) = 0\},\$$

and therefore we have

$$P: L \to L, \qquad P(f)(a) = f(1)a.$$

For every $f \in \text{Der}^*(L, L)$ end every integer n > 0 denote:

$$f_n: \bigodot^n A \to L, \qquad f_1(a) = f(a),$$

 $f_n(a_1,\ldots,a_n) = [f_{n-1}(a_1,\ldots,a_{n-1}),a_n].$

The fact that f is a derivation implies that every f_n is graded symmetric (easy to prove). Since A is abelian, if $f(A) \subset A$ then $f_n = 0$ for every n > 1.

Definition 1.6.5. In the notation above, the morphism

$$\Phi_f^n \colon A^{\odot n} \to A, \qquad \Phi_f^n = Pf_n,$$

is called the *n*-th **derived bracket** of $f \in \text{Der}^*(L, L)$. By convention, we set $\Phi_f^0 = 0$.

Example 1.6.6. Let A be a unitary graded commutative algebra over a field of characteristic 0, then the multiplication maps

$$\mu_n \colon A^{\odot n+1} \to A, \qquad \mu_n(a_0, \dots, a_n) = a_0 a_1 \cdots a_n,$$

can be interpreted as derived brackets. In fact, in the set-up of Example 1.6.3 denote

$$h_m = \frac{t^{m+1}\partial}{(m+1)!} \in L.$$

For a fixed integer $n \ge 0$ consider the inner derivation $f = [h_n, -]$. Then $f_1(a) = [h_n, a\partial] =$ $-ah_{n-1}$ and more generally

$$f_m(a_1,\ldots,a_m) = (-1)^m a_1 \cdots a_m h_{n-m}$$

giving

$$\Phi_f^{n+1} = (-1)^{n+1} \mu_n, \qquad \Phi_f^{i+1} = 0 \text{ for every } i \neq n.$$

Theorem 1.6.7 ([6, 126, 127]). In the above set-up, for every $f, g \in \text{Der}^*(L, L)$ such that $f(V) \subset V, g(V) \subset V$ and every n > 0 we have

$$\Phi^n_{[f,g]} = \sum_{a+b=n+1} [\Phi^a_f, \Phi^b_g].$$

PROOF. For notational simplicity, in the next formulas we denote by \pm_K the correct Koszul sign. The first step of the proof is to prove that, for every $f, g \in \text{Der}^*(L, L)$ and n > 0 we have

$$[f,g]_n(a_1,\ldots,a_n) = \sum_{k=0}^n \sum_{\sigma \in S(k,n-k)} \pm_K [f_k(a_{\sigma(1)},\ldots,a_{\sigma(k)}),g_{n-k}(a_{\sigma(k+1)},\ldots,a_{\sigma(n)})],$$

where we intend that

$$[f_0(\emptyset), a] = f(a), \qquad [b, g_0(\emptyset)] = -(-1)^{b \,\overline{g}} g(b).$$

For n = 1 we have

$$[f,g]_1(a) = f(g(a)) - (-1)^{\overline{f} \ \overline{g}} g(f(a)) = [f_0,g_1(a)] - (-1)^{\overline{f} \ \overline{g}} [g_0,f_1(a)] = [f_0,g_1(a)] + (-1)^{\overline{a} \ \overline{g}} [f_1(a),g_0]$$

For $n > 1$ we have

$$[f,g]_{n}(a_{1},\ldots,a_{n}) = [[f,g]_{n-1}(a_{1},\ldots,a_{n-1}),a_{n}]$$

$$= \sum_{k=0}^{n-1} \sum_{\sigma \in S(k,n-1-k)} \pm_{K} [[f_{k}(a_{\sigma(1)},\ldots,a_{\sigma(k)}),g_{n-1-k}(a_{\sigma(k+1)},\ldots,a_{\sigma(n-1)})],a_{n}]$$

$$= \sum_{k=0}^{n-1} \sum_{\sigma \in S(k,n-1-k)} \pm_{K} [f_{k+1}(a_{\sigma(1)},\ldots,a_{\sigma(k)},a_{n}),g_{n-1-k}(a_{\sigma(k+1)},\ldots,a_{\sigma(n-1)})] + \sum_{k=0}^{n-1} \sum_{\sigma \in S(k,n-1-k)} \pm_{K} [f_{k}(a_{\sigma(1)},\ldots,a_{\sigma(k)}),g_{n-k}(a_{\sigma(k+1)},\ldots,a_{\sigma(n-1)},a_{n})]$$

1.6. CONSTRUCTION OF $L_{\infty}[1]$ STRUCTURES VIA DERIVED BRACKETS

$$= \sum_{k=1}^{n} \sum_{\sigma \in S(k,n-1-k),\sigma(n) < n} \pm_{K} [f_{k}(a_{\sigma(1)}, \dots, a_{\sigma(k)}), g_{n-k}(a_{\sigma(k+1)}, \dots, a_{\sigma(n)})] + \sum_{k=0}^{n-1} \sum_{\sigma \in S(k,n-k),\sigma(n) = n} \pm_{K} [f_{k}(a_{\sigma(1)}, \dots, a_{\sigma(k)}), g_{n-k}(a_{\sigma(k+1)}, \dots, a_{\sigma(n)})]$$

If $f(V), g(V) \subset V$, then the equality

 $P[f_n(a_1,\ldots,a_n),g_m(b_1,\ldots,b_m)] =$

$$= P[\Phi_f^n(a_1, \dots, a_n), g_m(b_1, \dots, b_m)] + P[f_n(a_1, \dots, a_n), \Phi_g^m(b_1, \dots, b_m)]$$

holds for every $n, m \ge 0$. For n, m > 0 this follows from the properties of the projection operator P, while for n = 0 we have:

 $P[f_0, g_m(b_1, \dots, b_m)] = Pf(g_m(b_1, \dots, b_m)) = PfP(g_m(b_1, \dots, b_m)) = P[f_0, \Phi_g^m(b_1, \dots, b_m)].$

Since

$$P[f_n(a_1,...,a_n), \Phi_g^m(b_1,...,b_m)] = Pf_{n+1}(a_1,...,a_n, \Phi_g^m(b_1,...,b_m)).$$

we have

$$P[f_n(a_1,\ldots,a_n),g_m(b_1,\ldots,b_m)] =$$

 $=\Phi_f^{n+1}(a_1,\ldots,a_n,\Phi_g^m(b_1,\ldots,b_m))-\pm_K\Phi_g^{m+1}(b_1,\ldots,b_m,\Phi_f^n(a_1,\ldots,a_n)),$ the Keerul sign relates the sequences

where the Koszul sign relates the sequences

 $f_n, a_1, \dots, a_n, g_m, b_1, \dots, b_m$ and $g_m, b_1, \dots, b_m, f_n, a_1, \dots, a_n$

and then it is equal to

$$\pm_K = (-1)^{\overline{(f_n + \overline{a_1} + \dots + \overline{a_n})}(\overline{g_m} + \overline{b_1} + \dots + \overline{b_m})} = (-1)^{\overline{f_n(a_1, \dots, a_n)}} \overline{g_m(b_1, \dots, b_m)}.$$

We are now ready to prove the theorem, i.e. to prove the formula

$$P[f,g]_n = \sum_{k=1}^n [Pf_k, Pg_{n-k+1}].$$

By the previous computation we have

$$P[f,g]_{n}(a_{1},\ldots,a_{n}) = \sum_{k=0}^{n} \sum_{\sigma \in S(k,n-k)} \pm_{K} P[f_{k}(a_{\sigma(1)},\ldots,a_{\sigma(k)}),g_{n-k}(a_{\sigma(k+1)},\ldots,a_{\sigma(n)})],$$

$$= \sum_{k=0}^{n} \sum_{\sigma \in S(k,n-k)} \pm_{K} Pf_{k+1}(a_{\sigma(1)},\ldots,a_{\sigma(k)},Pg_{n-k}(a_{\sigma(k+1)},\ldots,a_{\sigma(n)}))$$

$$- \sum_{k=0}^{n} \sum_{\sigma \in S(k,n-k)} \pm_{K} Pg_{n-k+1}(a_{\sigma(1)},\ldots,a_{\sigma(n-k)},Pf_{k}(a_{\sigma(n-k+1)},\ldots,a_{\sigma(n)}))$$

$$= \sum_{k=1}^{n} Pf_{k} \circ Pg_{n-k+1}(a_{1},\ldots,a_{n}) - (-1)^{\overline{f}} \overline{g} \sum_{k=1}^{n} Pg_{n-k+1} \circ Pf_{k}(a_{1},\ldots,a_{n})$$

$$= \sum_{k=1}^{n} [Pf_{k},Pg_{n-k+1}](a_{1},\ldots,a_{n}).$$

Corollary 1.6.8. In the above set-up if $f \in \text{Der}^1(L,L)$, $f(V) \subset V$ and $f^2 = 0$, then the sequence $q_k = \Phi_f^k$ gives an $L_{\infty}[1]$ structure on A.