CHAPTER 1

L_{∞}-algebras

1.1. Koszul sign and unshuffles

Given a graded vector space V, the twist map extends naturally, for every $n \geq 0$, to an action of the symmetric group Σ_{n} on the graded vector space $\otimes^{n} V$:

$$
\text { tw }: V^{\otimes n} \times \Sigma_{n} \rightarrow V^{\otimes n} .
$$

More explicitely, setting $\sigma_{\mathrm{tw}}=\operatorname{tw}\left(-, \sigma^{-1}\right): V^{\otimes n} \rightarrow V^{\otimes n}$, for v_{1}, \ldots, v_{n} homogeneous vectors and $\sigma \in \Sigma_{n}$ we have:

$$
\sigma_{\mathrm{tw}}\left(v_{1} \otimes \cdots \otimes v_{n}\right)= \pm\left(v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(n)}\right)
$$

where the sign is the signature of the restriction of σ to the subset of indices i such that v_{i} has odd degree.

Definition 1.1.1. The Koszul $\operatorname{sign} \varepsilon\left(\sigma, V ; v_{1}, \ldots, v_{n}\right)= \pm 1$ is defined by the relation

$$
\sigma_{\mathrm{tw}}^{-1}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\varepsilon\left(V, \sigma ; v_{1}, \ldots, v_{n}\right)\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}\right)
$$

The antisymmetric Koszul sign $\chi\left(\sigma, V ; v_{1}, \ldots, v_{n}\right)= \pm 1$ is the product of the Koszul sign and the signature of the permutation:

$$
\chi\left(\sigma, V ; v_{1}, \ldots, v_{n}\right)=(-1)^{\sigma} \varepsilon\left(\sigma, V ; v_{1}, \ldots, v_{n}\right)
$$

For notational simplicity we shall write $\varepsilon\left(\sigma ; v_{1}, \ldots, v_{n}\right)$ or $\varepsilon(\sigma)$ for the Koszul sign when there is no possible confusion about V and v_{1}, \ldots, v_{n}; similarly for $\chi\left(\sigma ; v_{1}, \ldots, v_{n}\right)$ and $\chi(\sigma)$.

Notice that for $\sigma, \tau \in \Sigma_{n}$ we have

$$
\operatorname{tw}\left(v_{1} \otimes \cdots \otimes v_{n}, \sigma \tau\right)=\varepsilon\left(\sigma ; v_{1}, \ldots, v_{n}\right) \operatorname{tw}\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}, \tau\right)
$$

and therefore

$$
\varepsilon\left(\sigma \tau ; v_{1}, \ldots, v_{n}\right)=\varepsilon\left(\sigma ; v_{1}, \ldots, v_{n}\right) \varepsilon\left(\tau ; v_{\sigma(1)}, \ldots, v_{\sigma(n)}\right)
$$

Lemma 1.1.2. Given homogeneous vectors $v_{1}, \ldots, v_{n} \in V$ and $\sigma \in \Sigma_{n}$ we have

$$
\chi\left(\sigma, s V ; s v_{1}, \ldots, s v_{n}\right)=(-1)^{\sum_{i=1}^{n}(n-i)\left(\overline{v_{\sigma(i)}}-\overline{v_{i}}\right)} \varepsilon\left(\sigma, V ; v_{1}, \ldots, v_{n}\right)
$$

Proof. It is sufficient to check for σ a trasposition of two consecutive elements, and this is easy.
Definition 1.1.3. Let V, W be graded vector spaces, a multilinear map

$$
f: V \times \cdots \times V \rightarrow W
$$

is called (graded) symmetric if

$$
f\left(v_{\sigma(1)}, \ldots, v_{\sigma(n)}\right)=\varepsilon(\sigma) f\left(v_{1}, \ldots, v_{n}\right), \quad \text { for every } \sigma \in \Sigma_{n}
$$

It is called (graded) skewsymmetric if

$$
f\left(v_{\sigma(1)}, \ldots, v_{\sigma(n)}\right)=\chi(\sigma) f\left(v_{1}, \ldots, v_{n}\right), \quad \text { for every } \sigma \in \Sigma_{n}
$$

Definition 1.1.4. The symmetric powers of a graded vector space V are defined as

$$
V^{\odot n}=\bigodot^{n} V=\frac{\bigotimes^{n} V}{I}
$$

where I is the subspace generated by the vectors

$$
v_{1} \otimes \cdots \otimes v_{n}-\varepsilon(\sigma) v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}, \quad v_{i} \in V, \quad \sigma \in \Sigma_{n}
$$

We will denote by $\pi: \otimes^{n} V \rightarrow \bigodot^{n} V$ the natural projection and

$$
v_{1} \odot \cdots \odot v_{n}=\pi\left(v_{1} \otimes \cdots \otimes v_{n}\right)
$$

Definition 1.1.5. The exterior powers of a graded vector space V are defined as

$$
V^{\wedge n}=\bigwedge^{n} V=\frac{\bigotimes^{n} V}{J}
$$

where J is the subspace generated by the vectors

$$
v_{1} \otimes \cdots \otimes v_{n}-\chi(\sigma) v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}, \quad v_{i} \in V, \quad \sigma \in \Sigma_{n}
$$

We will denote by $\pi: \bigotimes^{n} V \rightarrow \bigwedge^{n} V$ the natural projection and

$$
v_{1} \wedge \cdots \wedge v_{n}=\pi\left(v_{1} \otimes \cdots \otimes v_{n}\right)
$$

Definition 1.1.6. The set of unshuffles of type (p, q) is the subset $S(p, q) \subset \Sigma_{p+q}$ of permutations σ such that $\sigma(i)<\sigma(i+1)$ for every $i \neq p$. Equivalently
$S(p, q)=\left\{\sigma \in \Sigma_{p+q} \mid \sigma(1)<\sigma(2)<\ldots<\sigma(p), \quad \sigma(p+1)<\sigma(p+2)<\ldots<\sigma(p+q)\right\}$.
The unshuffles are a set of representatives for the left cosets of the canonical embedding of $\Sigma_{p} \times \Sigma_{q}$ inside Σ_{p+q}. More precisely for every $\eta \in \Sigma_{p+q}$ there exists a unique decomposition $\eta=\sigma \tau$ with $\sigma \in S(p, q)$ and $\tau \in \Sigma_{p} \times \Sigma_{q}$.

1.2. L_{∞}-algebras

Let $(L, d,[]$,$) be a differential graded Lie algebra. Then we have:$
(1) $d\left(d\left(x_{1}\right)\right)=0$;
(2) $d\left[x_{1}, x_{2}\right]-\left(\left[d x_{1}, x_{2}\right]-(-1)^{\overline{x_{1}} \overline{x_{2}}}\left[d x_{2}, x_{1}\right]\right)=0$;
(3) $\left[\left[x_{1}, x_{2}\right], x_{3}\right]-(-1)^{\overline{x_{2}} \overline{x_{3}}}\left[\left[x_{1}, x_{3}\right], x_{2}\right]+(-1)^{\overline{x_{1}}\left(\overline{x_{2}}+\overline{x_{3}}\right)}\left[\left[x_{2}, x_{3}\right], x_{1}\right]=0$;

Using the formalism of unshuffles we can write Leibniz and Jacobi identities respectively as

$$
\sum_{\sigma \in S(2,0)} \chi(\sigma) d\left[x_{\sigma(1)}, x_{\sigma(2)}\right]-\sum_{\sigma \in S(1,1)} \chi(\sigma)\left[d x_{\sigma(1)}, x_{\sigma(2)}\right]=0
$$

and

$$
\sum_{\sigma \in S(2,1)} \chi(\sigma)\left[\left[x_{\sigma(1)}, x_{\sigma(2)}\right], x_{\sigma(3)}\right]=0 .
$$

Definition 1.2.1. An L_{∞} structure on a graded vector space L is a sequence of skewsymmetric maps

$$
l_{n}: \bigwedge^{n} L \rightarrow L, \quad \operatorname{deg}\left(l_{n}\right)=2-n, \quad n>0
$$

such that for every $n>0$ and every sequence of homogeneous vectors $x_{1}, \ldots, x_{n} \in L$ we have:

$$
\sum_{k=1}^{n}(-1)^{n-k} \sum_{\sigma \in S(k, n-k)} \chi(\sigma) l_{n-k+1}\left(l_{k}\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right), x_{\sigma(k+1)}, \ldots, x_{\sigma(n)}\right)=0
$$

An L_{∞}-algebra is a graded vector space endowed with an L_{∞} structure.
Sometimes, L_{∞}-algebras are also called strong homotopy Lie algebras.
Remark 1.2.2. (1) Every DGLA ($L, d,[$,$]) is also an L_{\infty}$ algebras with $l_{1}=d, l_{2}=[$,] and $l_{n}=0$ for every $n>2$.
(2) For an L_{∞}-algebra $\left(L, l_{1}, l_{2}, \ldots\right)$ we have $\operatorname{deg}\left(l_{1}\right)=1$ and $l_{1}^{2}=0$ and then $\left(L, l_{1}\right)$ is a DG-vector space.
(3) For an L_{∞}-algebra $\left(L, l_{1}, l_{2}, \ldots\right)$ the morphism l_{2} induces a structure of graded Lie algebra in the cohomology of the complex $\left(L, l_{1}\right)$. In fact if $l_{1}(x)=l_{1}(y)=0$ we have $l_{1}\left(l_{2}(x, y)\right)= \pm l_{2}\left(l_{1}(x), y\right) \pm l_{2}\left(l_{1}(y), x\right)=0$. The equation

$$
\sum_{k=1}^{3}(-1)^{3-k} \sum_{\sigma \in S(k, 3-k)} \chi(\sigma) l_{4-k}\left(l_{k}\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right), x_{\sigma(k+1)}, \ldots, x_{\sigma(3)}\right)=0
$$

implies that if $l_{1}\left(x_{i}\right)=0$ then

$$
\sum_{\sigma \in S(2,1)} \chi(\sigma) l_{2}\left(l_{2}\left(x_{\sigma(1)}, x_{\sigma(2)}\right), x_{\sigma(3)}\right)
$$

belongs to the image of l_{1} and then

$$
[,]: H^{*}\left(L, l_{1}\right) \times H^{*}\left(L, l_{1}\right) \rightarrow H^{*}\left(L, l_{1}\right), \quad[x, y]=l_{2}(x, y)
$$

satisfies the graded Jacobi identity.
Example 1.2.3. Let L be a graded vector space and $\phi: L^{0} \times L^{0} \times L^{0} \rightarrow L^{-1}$ a skewsymmetric map. Then the sequence

$$
l_{n}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}\phi\left(x_{1}, x_{2}, x_{3}\right) & \text { if } n=3 \text { and } x_{i} \in L^{0} \\ 0 & \text { otherwise }\end{cases}
$$

gives an L_{∞} structure on L.
Definition 1.2.4. A linear morphism $f:\left(L, l_{1}, l_{2}, \ldots\right) \rightarrow\left(H, h_{1}, h_{2}, \ldots\right)$ of L_{∞}-algebras is a linear map $f: L \rightarrow H$ of degree 0 such that

$$
f l_{n}\left(x_{1}, \ldots, x_{n}\right)=h_{n}\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)
$$

for every $n>0$ and every $x_{1}, \ldots, x_{n} \in L$.

[^0]Remark 1.2.5. In literature there exist two different (equivalent) definitions of L_{∞}-algebras depending by different sign conventions. Here we follow $[\mathbf{3 6}, \mathbf{7 5}, 77]$, while in $[\mathbf{8 0}, \mathbf{8 1}]$ the maps l_{k} differ from ours by the sign $(-1)^{k(k+1) / 2}$.

1.3. $L_{\infty}[1]$-algebras

Definition 1.3.1. An $L_{\infty}[1]$ structure on a graded vector space V is a sequence of symmetric maps

$$
q_{n}: V^{\odot n} \rightarrow V, \quad \operatorname{deg}\left(q_{n}\right)=1, \quad n>0
$$

such that for every $n>0$ and every sequence of homogeneous vectors $v_{1}, \ldots, v_{n} \in V$ we have:

$$
\begin{equation*}
\sum_{k=1}^{n} \sum_{\sigma \in S(k, n-k)} \varepsilon(\sigma) q_{n-k+1}\left(q_{k}\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right), v_{\sigma(k+1)}, \ldots, v_{\sigma(n)}\right)=0 \tag{1}
\end{equation*}
$$

An $L_{\infty}[1]$-algebra is a graded vector space endowed with an $L_{\infty}[1]$ structure.
Theorem 1.3.2. For every graded vector space V there exists a canonical bijection from the set of $L_{\infty}[1]$ structures on V and the set of L_{∞} structures on $s V$. This bijection is induced by the relations

$$
l_{k}\left(s v_{1}, \ldots, s v_{k}\right)=-(-1)^{\sum_{i}(k-i) \overline{v_{i}}} s q_{k}\left(v_{1}, \ldots, v_{k}\right) .
$$

Proof. Immediate consequence of Lemma 1.1.2. Notice that for every k we have a commutative diagram

Remark 1.3.3. Since $V=(s V)[1]$ the above theorem says that there is a bijection between L_{∞} structures on L and $L_{\infty}[1]$ structures on $L[1]$. Very often, in literature an L_{∞} structure on a graded vector space L is defined as an $L_{\infty}[1]$ structures on $L[1]$.

Definition 1.3.4. Given $f \in \operatorname{Hom}_{\mathbb{K}}^{*}\left(V^{\odot n+1}, V\right)$ and $g \in \operatorname{Hom}_{\mathbb{K}}^{*}\left(V^{\odot m+1}, V\right)$ their symmetric Gerstenhaber bracket is defined as

$$
[f, g]=f \circ g-(-1)^{\bar{f} \bar{g}} g \circ f \in \operatorname{Hom}_{\mathbb{K}}^{*}\left(V^{\odot n+m+1}, V\right),
$$

where

$$
f \circ g\left(v_{0}, \ldots, v_{n+m}\right)=\sum_{\sigma \in S(m+1, n)} \epsilon(\sigma) f\left(g\left(v_{\sigma(0)}, \ldots, v_{\sigma(m)}\right), v_{\sigma(m+1)}, \ldots, v_{\sigma(m+n)}\right) .
$$

Thus, a sequence of maps $q_{k} \in \operatorname{Hom}_{\mathbb{K}}^{1}\left(V^{\odot}, V\right)$ gives an $L_{\infty}[1]$ structure on V if and only if for every $n>0$ we have

$$
\sum_{a+b=n+1}\left[q_{a}, q_{b}\right]=0
$$

In fact

$$
\sum_{k=1}^{n}\left[q_{n-k+1}, q_{k}\right]=\sum_{k=1}^{n} q_{n-k+1} \circ q_{k}+\sum_{k=1}^{n} q_{k} \circ q_{n-k+1}=2 \sum_{k=1}^{n}\left(q_{n-k+1} \circ q_{k}\right)
$$

and we recover exactly the left side of (1).

1.4. Extension of scalars

Given a graded vector space V and a DG-algebra (A, d) we have natural scalar extension maps

$$
\operatorname{Hom}_{\mathbb{K}}^{*}\left(V^{\otimes n}, V\right) \xrightarrow{\tilde{\rightarrow}} \operatorname{Hom}_{\mathbb{K}}^{*}\left((V \otimes A)^{\otimes n}, V \otimes A\right)
$$

defined in the following way:

$$
\begin{aligned}
\tilde{f}(v \otimes a) & =f(v) \otimes a+(-1)^{\bar{v}} v \otimes d(a), \quad \text { for } n=1, \\
\tilde{f}\left(v_{1} \otimes a_{1}, \ldots, v_{n} \otimes a_{n}\right) & =(-1)^{\sum_{i<j} \overline{a_{i}} \overline{v_{j}}} f\left(v_{1}, \ldots, v_{n}\right) \otimes a_{1} a_{2} \cdots a_{n}, \quad \text { for } n>1 .
\end{aligned}
$$

Notice that $(-1)^{\sum_{i<j} \overline{a_{i}} \overline{v_{j}}}$ is the Koszul sign relating the sequences $v_{1}, a_{1}, v_{2}, \ldots, v_{n}, a_{n}$ and $v_{1}, \ldots, v_{n}, a_{1}, \ldots, a_{n}$. Moreover scalar extension preserves symmetry and skewsymmetry.

Lemma 1.4.1. Scalar extension commutes with the bijection described in Theorem 1.3.2.
Proof. Easy and straightforward.
Proposition 1.4.2. Scalar extension preserves L_{∞} and $L_{\infty}[1]$ structures.
Proof. It is sufficient to prove the theorem only for $L_{\infty}[1]$ structures. This is an easy consequence of the Leibniz rule in the DG-algebra A and it is left as an exercise.

It is obvious that for every L_{∞}-algebra L and every morphism of DG-algebras $f: A \rightarrow B$, the morphism $\operatorname{Id}_{L} \otimes f: L \otimes A \rightarrow L \otimes B$ is a linear morphism of $L_{\infty^{-}}$-algebras.

1.5. Maurer-Cartan and deformation functors associated to L_{∞}-algebras

Most of the notions concernings differential graded Lie algebras extends to this more general framework. For instance, the descending central series $L^{[n]}$ of an L_{∞}-algebra $\left(L, l_{1}, l_{2}, \ldots\right)$ is defined recursively as $L^{[1]}=L$ and

$$
L^{[n]}=\operatorname{Span}\left\{l_{k}\left(x_{1}, \ldots, x_{k}\right) \mid k \geq 2, x_{i} \in L^{\left[n_{i}\right]}, 0<n_{i}<n, n_{1}+\cdots+n_{k} \geq n\right\}
$$

An L_{∞}-algebra $\left(L, l_{1}, l_{2}, \ldots\right)$ is called nilpotent if $L^{[n]}=0$ for $n \gg 0$; notice that this implies in particular that $l_{n}=0$ for $n \gg 0$.

Definition 1.5.1. A Maurer-Cartan element in a nilpotent L_{∞}-algebra $\left(L, l_{1}, l_{2}, \ldots\right)$ is a vector $x \in L^{1}$ that satisfies the Maurer-Cartan equation:

$$
\sum_{n>0} \frac{1}{n!} l_{n}(x, x, \ldots, x)=0
$$

The subset of Maurer-Cartan elements will be denoted MC(L).
Thus for every L_{∞}-algebra L it makes sense to consider the Maurer-Cartan functor

$$
\mathrm{MC}_{L}: \text { Art } \rightarrow \text { Set }, \quad \mathrm{MC}_{L}(A)=\mathrm{MC}\left(L \otimes \mathfrak{m}_{A}\right)
$$

where the L_{∞} structure on $L \otimes \mathfrak{m}_{A}$ is given by scalar extension.
Lemma 1.5.2. The tangent space of MC_{L} is $Z^{1}\left(L, l_{1}\right)$ and there exists a canonical complete obstruction theory with values in $H^{2}\left(L, l_{1}\right)$.

Proof. The first part is clear, since if $\mathfrak{m}_{A}^{2}=0$, then the Maurer-Cartan equation reduces to $l_{1}(x)=0$. Assume that $0 \rightarrow I \rightarrow A \rightarrow B \rightarrow 0$ is a small extension in Art, let $y \in \operatorname{MC}\left(L \otimes \mathfrak{m}_{B}\right)$ and choose a lifting $x \in L^{1} \otimes \mathfrak{m}_{A}$ of it. Denoting

$$
h(x)=\sum_{n>0} \frac{1}{n!} l_{n}(x, x, \ldots, x) \in L^{2} \otimes I
$$

for every $s \in L^{1} \otimes I$ we have $h(x+s)=h(x)+l_{1}(s)$ and then y admits a lifting to $\mathrm{MC}_{L}(A)$ if and only if $h(x)$ is a coboundary in the complex $\left(L \otimes I, l_{1}\right)$. For every $n>0$ we have

$$
0=\sum_{k=1}^{n}(-1)^{n-k} \sum_{\sigma \in S(k, n-k)} \chi(\sigma) l_{n-k+1}\left(l_{k}(x, \ldots, x), x, \ldots, x\right)
$$

and then

$$
\sum_{k=1}^{n}(-1)^{n-k}\binom{n}{k} l_{n-k+1}\left(l_{k}(x, \ldots, x), x, \ldots, x\right)=0
$$

Dividing for n ! we get

$$
\sum_{k=1}^{n}(-1)^{n-k} \frac{l_{n-k+1}}{(n-k)!}\left(\frac{l_{k}}{k!}(x, \ldots, x), x, \ldots, x\right)=0
$$

and summing over all $n>0$ we obtain (setting $a=n-k+1$)

$$
\begin{aligned}
& \sum_{a, k>0}(-1)^{a-1} \frac{l_{a}}{(a-1)!}\left(\frac{l_{k}}{k!}(x, \ldots, x), x, \ldots, x\right)=0 \\
& \sum_{a>0}(-1)^{a-1} \frac{l_{a}}{(a-1)!}(h(x), x, \ldots, x)=l_{1}(h(x))=0
\end{aligned}
$$

Thus $h(x)$ is a cocycle in $\left(L \otimes I, l_{1}\right)$ and its cohomology class is well defined.
The notions of linear morphism and nilpotency for $L_{\infty}[1]$-algebras are defined similarly to the L_{∞} case.
Definition 1.5.3. The Maurer-Cartan equation on a nilpotent $L_{\infty}[1]$-algebra (V, q_{1}, q_{2}, \ldots) is defined as

$$
\sum_{n>0} \frac{1}{n!} q_{n}(v, v, \ldots, v)=0, \quad v \in V^{0}
$$

It is clear that the the bijection $s: V^{0} \rightarrow(s V)^{1}$ preserves solutions of Maurer-Cartan equations.

Definition 1.5.4. Let $\left(L, l_{1}, l_{2}, \ldots\right)$ be a nilpotent L_{∞}-algebra and $x, y \in \operatorname{MC}(L)$. We shall say that x and y are homotopy equivalent if there is some $\xi \in \operatorname{MC}(L \otimes \mathbb{K}[t, d t])$ such that $e_{0}(\xi)=x$ and $e_{1}(\xi)=y$, where $e_{0}, e_{1}: L \otimes \mathbb{K}[t, d t] \rightarrow L=L \otimes \mathbb{K}$ are the evaluation maps at $t=0$ and $t=1$ respectively.

We will denote by $\operatorname{Def}(L)$ the quotient of $\mathrm{MC}(L)$ under the equivalence relation generated by homotopy.

We will prove later that homotopy is already an equivalence relation: here we dont need this result.

The construction of $\operatorname{Def}(L)$ is functorial and then we may define a functor

$$
\operatorname{Def}_{L}: \text { Art } \rightarrow \text { Set, } \quad \operatorname{Def}_{L}(A)=\operatorname{Def}\left(L \otimes \mathfrak{m}_{A}\right)
$$

It is easy to see that the tangent space of the functor Def_{L} is $H^{1}\left(L, l_{1}\right)$. This follows from Lemma 1.5.2, from the fact the morphisms of DG-vector spaces

$$
e_{1}, e_{0}: L[t, d t] \rightarrow L
$$

are homotopic via the homotopy $\operatorname{Id}_{L} \otimes \int_{0}^{1}$ and observing that for $z \in Z^{1}(L)$ and $u \in L^{0}$ we have $z+l_{1}(u) t+u d t \in Z^{1}(L[t, d t])$.
Proposition 1.5.5. Let L be a differential graded Lie algebra. Then for every For every $A \in$ Art the homotopy equivalence in $\mathrm{MC}_{L}(A)$ is the same as gauge equivalence and then the above definition of Def_{L} coincides with the one given in Section ??.

Proof. It is sufficient to prove that $x, y \in \mathrm{MC}_{L}(A)$ are gauge equivalent if and only if they are homotopy equivalent. So first, assume $e^{a} * x=y$ for some $a \in L^{0}$; then we can consider $z(t)=e^{t a} * x \in \operatorname{MC}_{L[t, d t]}(A)$ and therefore $z(0)=x$ and $z(1)=y$. Conversely assume that $z(0)=x$ and $z(1)=y$ for some $z(t) \in \operatorname{MC}_{L[t, d t]}(A)$; by Corollary ?? there exists $p(t) \in L^{0}[t]$ such that $p(0)=0$ and $z(t)=e^{p(t)} * x$. Then $y=z(1)=e^{p(1)} * x$ and this imply that y is gauge equivalent to x.

Remark 1.5.6. As a consequence of Proposition 1.5 .5 we have that the bifunctor

$$
\text { Def }: \mathbf{D G L A} \times \text { Art } \rightarrow \text { Set }
$$

is completely determined by the Maurer-Cartan bifunctor

$$
\text { MC }: \mathbf{D G L A} \times \text { Art } \rightarrow \text { Set. }
$$

1.6. Construction of $L_{\infty}[1]$ structures via derived brackets

Assume it is given a graded Lie algebra L and a decomposition $L=V \oplus A$ as graded vector spaces, with V, A graded Lie subalgebra and A abelian. Denoting by $P \in \operatorname{Hom}_{\mathbb{K}}^{0}(L, L)$ the projection on A with kernel equal to V we have:
(1) $P^{2}=P$,
(2) $[P f, P g]=0$ for every $f, g \in L$,
(3) $P[f, g]=P[P f, g]+P[f, P g]=P[f, P g]-(-1)^{\bar{f} \bar{g}} P[g, P f]$ for every $f, g \in L$.

The second item is clearly equivalent to the abelianity of A. The third item is equivalent to the equality $P[f-P f, g-P g]=0$ and then it is equivalent to the fact that $V=\operatorname{ker} P$ is a graded Lie subalgebra of L.

Lemma 1.6.1. Let $f \in \operatorname{Der}_{\mathbb{K}}^{*}(L, L)$. Then $f(V) \subset V$ if and only if $P f=P f P$.
Proof. Assume $P f=P f P$, then for every $v \in V$ we have $P f v=P f P v=0$. Conversely assume $f(V) \subset V$, then for every $x \in L$ we have

$$
P f x=P f(P x+(x-P x))=P f P x+P f(x-P x)=P f P x,
$$

where the last equality follow from the fact that $f(x-P x) \in V$.
Remark 1.6.2. For every $v \in V$, the inner derivation $f=[v,-]$ satisfies the assumption of Lemma 1.6.1.

Example 1.6.3. Let A be a unitary graded commutative algebra and $L=\operatorname{Der}_{A}^{*}(A[t], A[t])$. Denote by $\partial: A[t] \rightarrow A[t]$ be the usual derivation operator $\partial=\frac{d}{d t} \in \operatorname{Der}_{A}^{0}(A[t], A[t])$; we may consider A as an abelian graded subalgebra of L, where every $a \in A$ is identified with the operator $a \partial$. Then we have a decomposition

$$
L=A[t] \partial=\mathfrak{g}_{A} \oplus A
$$

where $\mathfrak{g}_{A}=\oplus_{n>0} A t^{n} \partial$ is the subalgebra of derivations vanishing fot $t=0$: the operator P is therefore given by

$$
P(q(t) \partial)=q(0) \partial, \quad q(t) \in A[t] .
$$

Example 1.6.4. Let A be a unitary graded commutative algebra and $L=\operatorname{Hom}_{\mathbb{K}}^{*}(A, A)$. We may consider A as an abelian graded subalgebra of L, where every $a \in A$ is identified with the operator

$$
a: A \rightarrow A, \quad a(b)=a b .
$$

Then we have

$$
L=V \oplus A, \quad V=\{f \in L \mid f(1)=0\}
$$

and therefore we have

$$
P: L \rightarrow L, \quad P(f)(a)=f(1) a .
$$

For every $f \in \operatorname{Der}^{*}(L, L)$ end every integer $n>0$ denote:

$$
\begin{gathered}
f_{n}: \bigodot^{n} A \rightarrow L, \quad f_{1}(a)=f(a), \\
f_{n}\left(a_{1}, \ldots, a_{n}\right)=\left[f_{n-1}\left(a_{1}, \ldots, a_{n-1}\right), a_{n}\right]
\end{gathered}
$$

The fact that f is a derivation implies that every f_{n} is graded symmetric (easy to prove). Since A is abelian, if $f(A) \subset A$ then $f_{n}=0$ for every $n>1$.

Definition 1.6.5. In the notation above, the morphism

$$
\Phi_{f}^{n}: A^{\odot n} \rightarrow A, \quad \Phi_{f}^{n}=P f_{n}
$$

is called the n-th derived bracket of $f \in \operatorname{Der}^{*}(L, L)$. By convention, we set $\Phi_{f}^{0}=0$.
Example 1.6.6. Let A be a unitary graded commutative algebra over a field of characteristic 0 , then the multiplication maps

$$
\mu_{n}: A^{\odot n+1} \rightarrow A, \quad \mu_{n}\left(a_{0}, \ldots, a_{n}\right)=a_{0} a_{1} \cdots a_{n}
$$

can be interpreted as derived brackets. In fact, in the set-up of Example 1.6.3 denote

$$
h_{m}=\frac{t^{m+1} \partial}{(m+1)!} \in L
$$

For a fixed integer $n \geq 0$ consider the inner derivation $f=\left[h_{n},-\right]$. Then $f_{1}(a)=\left[h_{n}, a \partial\right]=$ $-a h_{n-1}$ and more generally

$$
f_{m}\left(a_{1}, \ldots, a_{m}\right)=(-1)^{m} a_{1} \cdots a_{m} h_{n-m}
$$

giving

$$
\Phi_{f}^{n+1}=(-1)^{n+1} \mu_{n}, \quad \Phi_{f}^{i+1}=0 \text { for every } i \neq n
$$

Theorem 1.6.7 ([6, 126, 127]). In the above set-up, for every $f, g \in \operatorname{Der}^{*}(L, L)$ such that $f(V) \subset V, g(V) \subset V$ and every $n>0$ we have

$$
\Phi_{[f, g]}^{n}=\sum_{a+b=n+1}\left[\Phi_{f}^{a}, \Phi_{g}^{b}\right] .
$$

Proof. For notational simplicity, in the next formulas we denote by \pm_{K} the correct Koszul sign. The first step of the proof is to prove that, for every $f, g \in \operatorname{Der}^{*}(L, L)$ and $n>0$ we have

$$
[f, g]_{n}\left(a_{1}, \ldots, a_{n}\right)=\sum_{k=0}^{n} \sum_{\sigma \in S(k, n-k)} \pm_{K}\left[f_{k}\left(a_{\sigma(1)}, \ldots, a_{\sigma(k)}\right), g_{n-k}\left(a_{\sigma(k+1)}, \ldots, a_{\sigma(n)}\right)\right]
$$

where we intend that

$$
\left[f_{0}(\emptyset), a\right]=f(a), \quad\left[b, g_{0}(\emptyset)\right]=-(-1)^{\bar{b}} \bar{g} g(b)
$$

For $n=1$ we have
$[f, g]_{1}(a)=f(g(a))-(-1)^{\bar{f} \bar{g}} g(f(a))=\left[f_{0}, g_{1}(a)\right]-(-1)^{\bar{f} \bar{g}}\left[g_{0}, f_{1}(a)\right]=\left[f_{0}, g_{1}(a)\right]+(-1)^{\bar{a} \bar{g}}\left[f_{1}(a), g_{0}\right]$.
For $n>1$ we have

$$
\begin{gathered}
{[f, g]_{n}\left(a_{1}, \ldots, a_{n}\right)=\left[[f, g]_{n-1}\left(a_{1}, \ldots, a_{n-1}\right), a_{n}\right]} \\
=\sum_{k=0}^{n-1} \sum_{\sigma \in S(k, n-1-k)} \pm_{K}\left[\left[f_{k}\left(a_{\sigma(1)}, \ldots, a_{\sigma(k)}\right), g_{n-1-k}\left(a_{\sigma(k+1)}, \ldots, a_{\sigma(n-1)}\right)\right], a_{n}\right] \\
=\sum_{k=0}^{n-1} \sum_{\sigma \in S(k, n-1-k)} \pm_{K}\left[f_{k+1}\left(a_{\sigma(1)}, \ldots, a_{\sigma(k)}, a_{n}\right), g_{n-1-k}\left(a_{\sigma(k+1)}, \ldots, a_{\sigma(n-1)}\right)\right]+ \\
+\sum_{k=0}^{n-1} \sum_{\sigma \in S(k, n-1-k)} \pm_{K}\left[f_{k}\left(a_{\sigma(1)}, \ldots, a_{\sigma(k)}\right), g_{n-k}\left(a_{\sigma(k+1)}, \ldots, a_{\sigma(n-1)}, a_{n}\right)\right]
\end{gathered}
$$

$$
\begin{aligned}
& =\sum_{k=1}^{n} \sum_{\sigma \in S(k, n-1-k), \sigma(n)<n} \pm_{K}\left[f_{k}\left(a_{\sigma(1)}, \ldots, a_{\sigma(k)}\right), g_{n-k}\left(a_{\sigma(k+1)}, \ldots, a_{\sigma(n)}\right)\right]+ \\
& +\sum_{k=0}^{n-1} \sum_{\sigma \in S(k, n-k), \sigma(n)=n} \pm_{K}\left[f_{k}\left(a_{\sigma(1)}, \ldots, a_{\sigma(k)}\right), g_{n-k}\left(a_{\sigma(k+1)}, \ldots, a_{\sigma(n))}\right]\right.
\end{aligned}
$$

If $f(V), g(V) \subset V$, then the equality

$$
\begin{gathered}
P\left[f_{n}\left(a_{1}, \ldots, a_{n}\right), g_{m}\left(b_{1}, \ldots, b_{m}\right)\right]= \\
=P\left[\Phi_{f}^{n}\left(a_{1}, \ldots, a_{n}\right), g_{m}\left(b_{1}, \ldots, b_{m}\right)\right]+P\left[f_{n}\left(a_{1}, \ldots, a_{n}\right), \Phi_{g}^{m}\left(b_{1}, \ldots, b_{m}\right)\right]
\end{gathered}
$$

holds for every $n, m \geq 0$. For $n, m>0$ this follows from the properties of the projection operator P, while for $n=0$ we have:

$$
P\left[f_{0}, g_{m}\left(b_{1}, \ldots, b_{m}\right)\right]=\operatorname{Pf}\left(g_{m}\left(b_{1}, \ldots, b_{m}\right)\right)=\operatorname{Pf} P\left(g_{m}\left(b_{1}, \ldots, b_{m}\right)\right)=P\left[f_{0}, \Phi_{g}^{m}\left(b_{1}, \ldots, b_{m}\right)\right] .
$$

Since

$$
P\left[f_{n}\left(a_{1}, \ldots, a_{n}\right), \Phi_{g}^{m}\left(b_{1}, \ldots, b_{m}\right)\right]=P f_{n+1}\left(a_{1}, \ldots, a_{n}, \Phi_{g}^{m}\left(b_{1}, \ldots, b_{m}\right)\right)
$$

we have

$$
\begin{gathered}
P\left[f_{n}\left(a_{1}, \ldots, a_{n}\right), g_{m}\left(b_{1}, \ldots, b_{m}\right)\right]= \\
=\Phi_{f}^{n+1}\left(a_{1}, \ldots, a_{n}, \Phi_{g}^{m}\left(b_{1}, \ldots, b_{m}\right)\right)- \pm_{K} \Phi_{g}^{m+1}\left(b_{1}, \ldots, b_{m}, \Phi_{f}^{n}\left(a_{1}, \ldots, a_{n}\right)\right),
\end{gathered}
$$

where the Koszul sign relates the sequences

$$
f_{n}, a_{1}, \ldots, a_{n}, g_{m}, b_{1}, \ldots, b_{m} \quad \text { and } \quad g_{m}, b_{1}, \ldots, b_{m}, f_{n}, a_{1}, \ldots, a_{n}
$$

and then it is equal to

$$
\pm_{K}=(-1)^{\left(\overline{f_{n}}+\overline{a_{1}}+\cdots+\overline{a_{n}}\right)\left(\overline{g_{m}}+\overline{b_{1}}+\cdots+\overline{b_{m}}\right)}=(-1)^{\overline{f_{n}\left(a_{1}, \ldots, a_{n}\right)} \overline{g_{m}\left(b_{1}, \ldots, b_{m}\right)}} .
$$

We are now ready to prove the theorem, i.e. to prove the formula

$$
P[f, g]_{n}=\sum_{k=1}^{n}\left[P f_{k}, P g_{n-k+1}\right]
$$

By the previous computation we have

$$
\begin{aligned}
& P[f, g]_{n}\left(a_{1}, \ldots, a_{n}\right)=\sum_{k=0}^{n} \sum_{\sigma \in S(k, n-k)} \pm_{K} P\left[f_{k}\left(a_{\sigma(1)}, \ldots, a_{\sigma(k)}\right), g_{n-k}\left(a_{\sigma(k+1)}, \ldots, a_{\sigma(n)}\right)\right] \\
& =\sum_{k=0}^{n} \sum_{\sigma \in S(k, n-k)} \pm_{K} P f_{k+1}\left(a_{\sigma(1)}, \ldots, a_{\sigma(k)}, P g_{n-k}\left(a_{\sigma(k+1)}, \ldots, a_{\sigma(n)}\right)\right) \\
& -\sum_{k=0}^{n} \sum_{\sigma \in S(k, n-k)} \pm_{K} P g_{n-k+1}\left(a_{\sigma(1)}, \ldots, a_{\sigma(n-k)}, P f_{k}\left(a_{\sigma(n-k+1)}, \ldots, a_{\sigma(n)}\right)\right) \\
& =\sum_{k=1}^{n} P f_{k} \circ P g_{n-k+1}\left(a_{1}, \ldots, a_{n}\right)-(-1)^{\bar{f} \bar{g} \sum_{k=1}^{n} P g_{n-k+1} \circ P f_{k}\left(a_{1}, \ldots, a_{n}\right)} \\
& =\sum_{k=1}^{n}\left[P f_{k}, P g_{n-k+1}\right]\left(a_{1}, \ldots, a_{n}\right)
\end{aligned}
$$

Corollary 1.6.8. In the above set-up if $f \in \operatorname{Der}^{1}(L, L), f(V) \subset V$ and $f^{2}=0$, then the sequence $q_{k}=\Phi_{f}^{k}$ gives an $L_{\infty}[1]$ structure on A.

[^0]: (2) Do not confuse the notion of linear morphism of L_{∞}-algebras with the notion of L_{∞}-morphism (that we will give later). Every linear morphism is also an L_{∞}-morphism but the converse is not true.

