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Introduction

This paper aims to do two things: (1) to give a tutorial introduction to differential
graded Lie algebras, functors of Artin rings and obstructions; (2) to explain ideas and
techniques underlying some recent papers [29, 31, 32, 11, 17] concerning vanishing the-
orems for obstructions to deformations of complex Kähler manifolds.
We assume that the reader has a basic knowledge of algebraic geometry, homological
algebra and deformation theory; for this topic, the young person may read the excellent
expository article of Arcata’s proceedings [39].
The common denominator is the following guiding principle, proposed by Quillen, Deligne
and Drinfeld: in characteristic 0 every deformation problem is governed by a differential
graded Lie algebra. After the necessary background we will restate such principle in a
less vague form (Principle 1.9).
The guiding principle has been confined in the realm of abstract ideas and personal
communications until the appearance of [37, 13, 24, 25]1 where a clever use of it has
permitted interesting applications in concrete deformation problems. In particular the
lecture notes [24] give serious and convincing motivations for the validity of the guiding
principle (called there meta-theorem).
In this paper we apply these ideas in order to prove vanishing theorems for obstruc-
tion spaces. Just to explain the subject of our investigation, consider the example of
deformations of a compact complex manifold X with holomorphic tangent bundle ΘX .
The well known Kuranishi’s theorem [26, 39, 5, 14] asserts that there exists a deforma-

tion X f−→Def(X) of X over a germ of complex space Def(X) with the property that
the Kodaira-Spencer map TDef(X) → H1(X, ΘX) is bijective and every deformation of
X over an analytic germ S is isomorphic to the pull-back of f by a holomorphic map
S → Def(X).
From Kuranishi’s proof follows moreover that:

1. Def(X) � q−1(0), where q : H1(X, ΘX) → H2(X, ΘX) is a germ of holomorphic
map such that q(0) = 0.

2. The differential of q at 0 is trivial.
3. The quadratic part of the Mac-Laurin series of q is isomorphic to the quadratic

map

H1(X, ΘX)→ H2(X, ΘX), x �→ 1
2
[x, x],

where [ , ] is the natural bracket in the graded Lie algebra H∗(X, ΘX).

Date: 13 January 2006.
1This list is not intended to be exhaustive
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Kuranishi’s proof also says that the higher homogeneous components of the Mac-Laurin
series of q depend by the Green’s operator of the elliptic complex associated to the Dol-
beault resolution of ΘX and therefore are extremely difficult to handle (with very few
exceptions, e.g. [42]).
A way to overcome, at least partially, this difficulty is by using infinitesimal methods,
i.e. a deeper study of deformations of X over fat points, and obstruction theory. It is
possible to prove that it is well defined a vector subspace O ⊂ H2(X, ΘX) which is
minimal for the property that the image of q is contained in a germ of smooth subva-
riety Y ⊂ H2(X, ΘX) with tangent space T0Y = O. In particular O = 0 if and only if
q = 0. The advantage of this notion is that the space O, called obstruction space, can
be completely computed by infinitesimal methods.
In this paper we will show how the differential graded Lie algebras can be conveniently
used to construct non trivial morphisms of vector spaces H2(X, ΘX) → W such that
w(O) = 0.

The content of this paper follows closely my talk at the AMS Summer Institute on
Algebraic Geometry, Seattle (WA) 2005. The main differences concern Section 5, where
we answer to some technical questions arised during the talk of B. Fantechi, and Section 6
where we give a new and simpler proof of the Kodaira’s principle ”ambient cohomology
annihilates obstructions”.

1. Differential graded Lie algebras and toy examples of deformation
problems

Let K be a fixed field of characteristic 0: unless otherwise specified the bifunctors
Hom and ⊗ are intended over K. By a graded vector space we intend a Z-graded vector
space over K.
A differential graded vector space is a pair (V, d) where V = ⊕V i is a graded vector
space and d is a differential of degree +1. By following the standard notation, for ev-
ery differential graded vector space (V, d) we denote by Zi(V ) = ker(d : V i → V i+1),
Bi(V ) = Im(d : V i−1 → V i) and H i(V ) = Zi(V )/Bi(V ).

Definition 1.1. A differential graded Lie algebra (DGLA for short) is the data of a
differential graded vector space (L, d) together a with bilinear map [−,−] : L × L → L
(called bracket) of degree 0 such that:

1. (graded skewsymmetry) [a, b] = −(−1)deg(a) deg(b)[b, a].
2. (graded Jacobi identity) [a, [b, c]] = [[a, b], c] + (−1)deg(a) deg(b)[b, [a, c]].
3. (graded Leibniz rule) d[a, b] = [da, b] + (−1)deg(a)[a, db].

The Leibniz rule implies in particular that the bracket of a DGLA L induces a struc-
ture of graded Lie algebra on its cohomology H∗(L) = ⊕iH

i(L).

Example 1.2. Consider a differential graded vector space (V, ∂) and denote

Hom∗(V, V ) = ⊕
i

Homi(V, V ), where

Homi(V, V ) = {f : V → V linear | f(V n) ⊂ f(V n+i) for every n}.
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The bracket

[f, g] = fg − (−1)deg(f) deg(g)gf

and the differential

df = [∂, f ] = ∂f − (−1)deg(f)f∂

make Hom∗(V, V ) a differential graded Lie algebra.
Moreover there exists a natural isomorphism of graded Lie algebras

H∗(Hom∗(V, V )) �−→Hom∗(H∗(V ), H∗(V )).

Example 1.3. Given a differential graded Lie algebra L and a commutative K-algebra
m there exists a natural structure of DGLA in the tensor product L⊗m given by

d(x⊗ r) = dx⊗ r, [x⊗ r, y ⊗ s] = [x, y]⊗ rs.

If m is nilpotent (for example if m is the maximal ideal of a local artinian K-algebra),
then the DGLA L ⊗ m is nilpotent; under this assumption, for every a ∈ L0 ⊗ m the
operator

[a,−] : L⊗m→ L⊗m, [a,−](b) = [a, b],

is a nilpotent derivation and

e[a,−] =
+∞∑
n=0

[a,−]n

n!
: L⊗m→ L⊗m

is an automorphism of the DGLA L⊗m.

In order to introduce the basic ideas of the use of DGLA in deformation theory we
begin with an example where technical difficulties are reduced at minimum. Consider a
finite complex of vector spaces

(V, ∂) : 0−→V 0 ∂−→V 1 ∂−→· · · ∂−→V n−→0.

Given a local artinian K-algebra A with maximal ideal mA and residue field K, we
define a deformation of (V, ∂) over A as a complex of A-modules of the form

0−→V 0 ⊗A
∂A−→V 1 ⊗A

∂A−→· · · ∂A−→V n ⊗A−→0

such that its residue modulo mA gives the complex (V, ∂). Since, as a K vector space,
A = K⊕mA, this last condition is equivalent to say that

∂A = ∂ + ξ, where ξ ∈ Hom1(V, V )⊗mA.

The “integrability” condition ∂
2
A = 0 becomes

0 = (∂ + ξ)2 = ∂ξ + ξ∂ + ξ2 = dξ +
1
2
[ξ, ξ],

where d and [ , ] are the differential and the bracket on the differential graded Lie algebra
Hom∗(V, V )⊗mA.
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Two deformations ∂A, ∂
′
A are isomorphic if there exists a commutative diagram

0 −→ V 0 ⊗A
∂A−→ V 1 ⊗A

∂A−→ · · · ∂A−→ V n ⊗A −→ 0�φ0

�φ1

�φn

0 −→ V 0 ⊗A
∂
′
A−→ V 1 ⊗A

∂
′
A−→ · · · ∂

′
A−→ V n ⊗A −→ 0

such that every φi is an isomorphism of A-modules whose specialization to the residue
field is the identity.
Therefore we can write φ :=

∑
i φi = Id + η, where η ∈ Hom0(V, V ) ⊗ mA and, since

K is assumed of characteristic 0 we can take the logarithm and write φ = ea for some
a ∈ Hom0(V, V ) ⊗ mA. The commutativity of the diagram is therefore given by the
equation ∂

′
A = ea ◦ ∂A ◦ e−a. Writing ∂A = ∂ + ξ, ∂

′
A = ∂ + ξ′ and using the relation

ea ◦ b ◦ e−a = e[a,−](b) we get

ξ′ = e[a,−](∂ + ξ)− ∂ = ξ +
e[a,−] − 1

[a,−]
([a, ξ] + [a, ∂]) = ξ +

∞∑
n=0

([a,−])n

(n + 1)!
([a, ξ]− da).

In particular both the integrability condition and isomorphism are entirely written in
terms of the DGLA structure of Hom∗(V, V ) ⊗ mA. This leads to the following general
construction.

Denote by Art the category of local artinian K-algebras with residue field K and
by Set the category of sets (we ignore all the set-theoretic problems, for example by
restricting to some universe). Unless otherwise specified, for every objects A ∈ Art we
denote by mA its maximal ideal.
Given a differential graded Lie algebra L we define a covariant functor MCL : Art→ Set,

MCL(A) =
{

x ∈ L1 ⊗mA | dx +
1
2
[x, x] = 0

}

The equation dx + [x, x]/2 = 0 is called the Maurer-Cartan equation and MCL is called
the Maurer-Cartan functor associated to L.
Two elements x, y ∈ L⊗mA are said to be gauge equivalent if there exists a ∈ L0 ⊗mA

such that

y = ea ∗ x := x +
∞∑

n=0

([a,−])n

(n + 1)!
([a, x]− da).

The operator ∗ is called gauge action; in fact we have ea ∗ (eb ∗ x) = ea•b ∗ x, where •
is the Baker-Campbell-Hausdorff product [18, 40] in the nilpotent Lie algebra L0 ⊗mA,
and then ∗ is an action of the exponential group exp(L0 ⊗ mA) on the graded vector
space L⊗mA.
It is not difficult to see that the set of solutions of the Maurer-Cartan equation is stable
under the gauge action and then it makes sense to consider the functor DefL : Art→ Set
defined as

DefL(A) =
MCL(A)

gauge equivalence
.

Remark 1.4. Given a surjective morphism A
α−→B in the category Art, an element x ∈

MCL(B) can be lifted to MCL(A) if and only if its equivalence class [x] ∈ DefL(B) can
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be lifted to DefL(A).
In fact if [x] lifts to DefL(A) then there exists y ∈ MCL(A) and b ∈ L0 ⊗mB such that
α(y) = eb ∗ x. It is therefore sufficient to lift b to an element a ∈ L0 ⊗mA and consider
x′ = e−a ∗ y.

The above computation shows that the functor of infinitesimal deformations of a
complex (V, ∂) is isomorphic to DefL, where L is the differential graded Lie algebra
Hom∗(V, V ).

The utility of this approach relies on the following result, sometimes called basic
theorem of deformation theory.

Theorem 1.5 (Schlessinger-Stasheff, Deligne, Goldman-Millson). Let f : L → M be a
morphism of differential graded Lie algebras (i.e. f commutes with differential and brack-
ets). Then f induces a natural transformation of functors DefL → DefM . Moreover, if:

1. f : H0(L)→ H0(M) is surjective;
2. f : H1(L)→ H1(M) is bijective;
3. f : H2(L)→ H2(M) is injective;

then DefL → DefM is an isomorphism.

Where to find a proof. We do not give a proof here and we refer to the existing literature.
The first published proof is contained in [13]; Goldman and Millson assume that both
algebras have nonnegative degrees (i.e. Li = M i = 0 for every i < 0) but their proof can
be easily extended to the general case (as in [27]) by using the remark about stabilizers
given in [24, pag. 19].
Other proofs of (generalizations of) this theorem are in [24, pag. 24], [25] (via homotopy
classification of L∞ algebras) and [28], [30] (via extended deformation functors).
An earlier and essentially equivalent result was given in [37] (Theorem 6.2 in version
October 3, 2000).

Definition 1.6. On the category of differential graded Lie algebras consider the equiv-
alence relation generated by: L ∼ M if there exists a quasiisomorphism L → M . We
shall say that two DGLA are quasiisomorphic if they are equivalent under this relation.

Example 1.7. Denote by K[t, dt] the differential graded algebra of polynomial differ-
ential forms over the affine line and for every DGLA L denote L[t, dt] = L⊗K[t, dt]. As
a graded vector space L[t, dt] is generated by elements of the form aq(t) + bp(t)dt, for
p, q ∈ K[t] and a, b ∈ L. The differential and the bracket on L[t, dt] are

d(aq(t) + bp(t)dt) = (da)q(t) + (−1)deg(a)aq(t)′dt + (db)p(t)dt,

[aq(t), ch(t)] = [a, c]q(t)h(t), [aq(t), ch(t)dt] = [a, c]q(t)h(t)dt.

For every s ∈ K, the evaluation morphism

es : L[t, dt]→ L, es(aq(t) + bp(t)dt) = q(s)a

is a quasiisomorphism of differential graded Lie algebras.

Corollary 1.8. If L, M are quasiisomorphic DGLA, then there exists an isomorphism
of functors DefL � DefM .

It is now possible to state a more concrete interpretation of the guiding principle.
Recall that an infinitesimal deformation is a deformation over a base A ∈ Art.
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Principle 1.9. Let F : Art→ Set be the functor of infinitesimal deformation of some
algebro-geometric object defined over K. Then there exists a differential graded Lie al-
gebra L, defined up to quasiisomorphism, such that F � DefL.

For a slightly stronger version of Principle 1.9 we refer to the discussion in Section 5.9
of [30].

Definition 1.10. A differential graded Lie algebra L is called formal if it is quasiiso-
morphic, to its cohomology graded Lie algebra H∗(L).

Lemma 1.11. For every differential graded vector space (V, ∂), the differential graded
Lie algebra Hom∗(V, V ) is formal.

Proof. More generally, for every pair (V, ∂V ), (W, ∂W ) of differential graded vector spaces
we consider the differential graded vector space

Hom∗(V, W ) =
⊕
i∈Z

Homi(V, W ),

where

Homi(V, W ) = {f : V →W | f(V j) ⊂W i+j} =
∏
j

Hom(V j , W i+j).

and the differential is

δ : Homi(V, W )→ Homi+1(V, W ), δ(f) = ∂W f − (−1)deg(f)f∂V .

For every index i we choose a vector subspace H i ⊂ Zi(V ) such that the projection
H i → H i(V ) is bijective. The graded vector space H = ⊕H i is a quasiisomorphic
subcomplex of V .
The subspace K = {f ∈ Hom∗(V, V ) | f(H) ⊂ H} is a differential graded Lie subalgebra
and there exists a commutative diagram of complexes with exact rows

0 −→ K
α−→ Hom∗(V, V ) −→ Hom∗(H, V/H) −→ 0�β

�γ

�Id

0 −→ Hom∗(H, H) −→ Hom∗(H, V ) −→ Hom∗(H, V/H) −→ 0

The maps α and β are morphisms of differential graded Lie algebras. Since Hom∗(H, V/H)
is acyclic and γ is a quasiisomorphism, it follows that also α and β are quasiisomor-
phisms.

A generic deformation of (V, ∂) over K[[t]] is a differential of the form ∂̃ = ∂ +
tx1 + t2x2 + · · · , where xi ∈ Hom1(V, V ) for every i. Taking the series expansion of the
integrability condition [∂̃, ∂̃] = 0 we get an infinite number of equations

1) [∂, x1] = dx1 = 0
2) [x1, x1] = −2[∂, x2] = −2dx2

...
...

n)
∑n−1

i=1 [xi, xn−i] = −2[∂, xn] = −2dxn

The first equation tell us that ∂ + tx1 is a deformation over K[t]/(t2) of ∂ if and only if
∂x1 + x1∂ = 0. The second equation tell us that ∂ + tx1 extends to a deformation over
K[[t]] only if the morphism of complexes x1 ◦ x1 is homotopically equivalent to 0.
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Vice versa, the existence of x1, x2 satisfying equations 1) and 2) is also sufficient to
ensure that ∂ + tx1 extends to a deformation over K[[t]]. According to Lemma 1.11, the
proof of this fact follows immediately from the following proposition.

Proposition 1.12. If a differential graded Lie algebra L is formal, then the two maps

DefL(K[t]/(t3))→ DefL(K[t]/(t2))

DefL(K[[t]]) := lim
←n

DefL(K[t]/(tn))→ DefL(K[t]/(t2))

have the same image.

Proof. According to Corollary 1.8 we may assume that L is a graded Lie algebra and
therefore its Maurer-Cartan equation becomes [x, x] = 0, x ∈ L1.
Therefore tx1 ∈ DefL(K[t]/(t2)) lifts to DefL(K[t]/(t3)) if and only if there exists x2 ∈ L1

such that

t2[x1, x1] ≡ [tx1 + t2x2, tx1 + t2x2] ≡ 0 (mod t3) ⇐⇒ [x1, x1] = 0

and [x1, x1] = 0 implies that tx1 ∈ DefH(K[t]/(tn)) for every n ≥ 3.

Beware: the formality of L does not imply that DefL(K[[t]]) → DefL(K[t]/(t3)) is
surjective.

2. Three examples of differential graded Lie algebras and related
deformation problems

In this section we leave our toy example we consider three more important examples
of deformation functors, namely deformations of holomorphic bundles, deformations of
complex manifolds and embedded deformations of submanifolds. We work in the complex
analytic category and then K = C.

Unless otherwise specified, every complex manifold is assumed compact and con-
nected. For every complex manifold X we denote by:
• ΘX the holomorphic tangent sheaf of X.
• Ap,q

X the sheaf of differentiable (p, q)-forms of X. More generally if E is locally free
sheaf of OX -modules we denote by Ap,q

X (E) � Ap,q
X ⊗OX

E the sheaf of (p, q)-forms of
X with values in E and by Ap,q

X (E) = Γ(X,Ap,q
X (E)) the space of its global sections.

• For every submanifold Z ⊂ X, we denote by NZ|X the normal sheaf of Z in X.

Example 2.1 (Deformations of locally free sheaves). Let E be a holomorphic locally
free sheaf on a complex manifold X. The functor of isomorphism classes of deformations
of E is denoted by DefE : Art → Set. A deformation of E over A ∈ Art is the data of
a locally free sheaf EA of OX ⊗ A-modules and a morphism πA : EA → E inducing an
isomorphism EA ⊗A C

�−→E .
Two deformations πA : EA → E and π′A : E ′A → E are isomorphic if there exists an
isomorphism θ : EA → E ′A of OX ⊗A-modules such that πA = π′Aθ.
The graded vector space

K = ⊕i≥0K
i, where Ki = A0,i

X (Hom(E , E)),
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endowed with the Dolbeault differential and the natural bracket is a differential graded
Lie algebra such that H i(K) = Exti(E , E).

Theorem 2.2. In the notation above there exists an isomorphism of functors

DefK �DefE .

Proof. This is well known and we refer to [12], [21, Chap. VII], [13, Sec. 9.4], [8, Pag. 238]
for a proof (some of these references deals with the equivalent problem of deformations
of a holomorphic vector bundle).
Here we only note that, for every A ∈ Art and every x ∈ MCK(A), the associated
deformation of E over A is the kernel of

∂ + x : A0,0
X (E)⊗A→ A0,1

X (E)⊗A.

Example 2.3 (Deformations of complex manifolds). Recall that, given a complex man-
ifold X, a deformation of X over a local artinian C-algebra A can be interpreted as a mor-
phism of sheaves of algebras OA → OX such that OA is flat over A and OA⊗A C→ OX

is an isomorphism. Define the functor DefX : Art → Set of infinitesimal deformations
of X setting DefX(A) as the set of isomorphism classes of deformations of X over A.
This functor is isomorphic to the deformation functor associated to the Kodaira-Spencer
differential graded Lie algebra of X, that is

KSX = A0,∗
X (ΘX) = ⊕iA

0,i
X (ΘX).

The differential on KSX is the Dolbeault differential, while the bracket is defined in
local coordinates as the Ω∗-bilinear extension of the standard bracket on A0,0

X (ΘX)
(Ω∗ is the sheaf of antiholomorphic differential forms). By Dolbeault theorem we have
H i(A0,∗

X (ΘX)) = H i(X, ΘX) for every i.
The isomorphism DefKSX

→ DefX is obtained by thinking, via Lie derivation, the
elements of A0,i

X (ΘX) as derivations of degree i of the sheaf of graded algebras ⊕iA0,i
X .

More precisely, to every x ∈ MCKSX
(A) we associate the deformation

OA(x) = ker(A0,0
X ⊗A

∂+lx−−−→ A0,1
X ⊗A),

where in local holomorphic coordinates z1, . . . , zn

x =
∑
i,j

xijdzi
∂

∂zj
, lx(f) =

∑
i,j

xij
∂f

∂zj
dzi.

Equivalently we can interpret every element of A0,1
X (ΘX) as a morphism of vector bundles

T 0,1
X → T 1,0

X and then also as a variation of the almost complex structure of X. The
Maurer-Cartan equation becomes exactly the integrability condition of the Newlander-
Nirenberg theorem (see e.g. [5], [14]).
If we are interested only to infinitesimal deformations, the proof of the isomorphism
DefKSX

→ DefX can be done without using almost complex structures and therefore
without Newlander-Nirenberg theorem; full details will appear in [17].
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Example 2.4 (Embedded deformations of submanifolds). Let X be a complex mani-
fold and let Z ⊂ X be an analytic subvariety defined by a sheaf of ideals I ⊂ OX .
The embedded deformations of Z in X are described by the functor HilbZ

X : Art→ Set,

HilbZ
X(A) = {ideal sheaves IA ⊂ OX ⊗C A, flat over A such that IA ⊗A C = I}.

Theorem 2.5. Assume that Z is smooth: denote by

π : A0,∗
X (ΘX)→ A0,∗

Z (NZ|X)

the natural restriction map and by (see Example 1.7)

L = {a ∈ A0,∗
X (ΘX)[t, dt] | e0(a) = 0, πe1(a) = 0}.

Then L is a differential graded Lie algebra, H i(L) = H i−1(Z, NZ|X) for every i ∈ Z and
there exists an isomorphism of functors DefL � HilbZ

X .

Proof. This is proved in [31]. Later on this paper (see Remark 8.2) we will give an
explicit description of the isomorphism DefL � HilbZ

X .

3. Functors of Artin rings

The philosophical implication of Theorem 1.5 and its Corollary 1.8 is that it is often
useful to consider quasiisomorphisms of DGLA where the domain and/or the target
are differential graded Lie algebras whose elements may have no geometrical meaning.
Therefore it is also useful to have an abstract theory of functors Art → Set that fits
with this mathematical setting. Such theory already exists and was introduced, with
different motivations, by M. Schlessinger in his PhD thesis and published in the paper
[36]. In this section we sketch the main definitions for the benefit of non expert reader;
more details and the original motivation can be found both in the original paper and in
every introductory book of deformation theory (such as [1], [38]).

Definition 3.1. A functor of Artin rings is a covariant functor F : Art → Set such
that F (K) = {one point}.

The functors of Artin rings are the objects of a category whose morphisms are the
natural transformations. For simplicity of notation, if φ : F → G is a natural transfor-
mation we denote by φ : F (A) → G(A) the corresponding morphism of sets for every
A ∈ Art.

Example 3.2. Let R be a local complete K-algebra with residue field K. The functor

hR : Art→ Set, hR(A) = HomK−alg(R, A),

is a functor of Artin rings.

Definition 3.3. A functor F : Art → Set is prorepresentable if it is isomorphic to hR

for some R as in Example 3.2.

The category Art is closed under fiber products, i.e. every pair of morphisms C → A,
B → A may be extended to a commutative diagram

B ×A C −→ C�
�

B −→ A

(1)
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such that the natural map

hR(B ×A C)→ hR(B)×hR(A) hR(C)

is bijective for every R.

Definition 3.4. Let F : Art→ Set be a functor of Artin rings; for every fiber product

B ×A C −→ C�
�

B
β−→ A

in Art consider the induced map η : F (B ×A C)→ F (B)×F (A) F (C).
We shall say that F is homogeneous if η is bijective whenever β is surjective [34, Def.
2.5].
We shall say that F is a deformation functor if:

1. η is surjective whenever β is surjective,
2. η is bijective whenever A = K.

The name deformation functor comes from the fact that almost all functors arising
in deformation theory satisfy the condition of Definition 3.4. Every prorepresentable
functor is a homogeneous deformation functor.

Remark 3.5. Our definition of deformation functors involves conditions that are slightly
more restrictive than the classical Schlessinger conditions H1, H2 of [36] and the semi-
homogeneity condition of [34]. The main motivations of this change are:

1. Functors of Artin rings satisfying Schlessinger condition H1, H2 and H3 do not
necessarily have a ”good” obstruction theory (see [9, Example 6.8]).

2. The definition of deformation functor extends naturally in the framework of derived
deformation theory and extended moduli spaces [28].

Finally it is not difficult to prove that a deformation functor is homogeneous if and only
if satisfies Schlessinger’s condition H4.

The functors MCL (characteristic �= 2) and HilbX
Z (Example 2.4) are homogeneous

deformation functors. The functors DefL (characteristic 0), DefE (Example 2.1) and
DefX (Example 2.3) are deformation functors but not homogeneous in general. The
verification of 3.4 for MCL is clear, while the proof that DefL is a deformation functor
follows from Remark 1.4.
For the proof that HilbX

Z , DefE and DefX are deformation functors we refer to [36]
(especially Examples 3.1 and 3.7), [38], [39] and [43].

Definition 3.6. Let F : Art→ Set be a deformation functor. The set

T 1F = F

(
K[t]
(t2)

)

is called the tangent space of F .

Proposition 3.7. The tangent space of a deformation functor has a natural structure of
vector space over K. For every natural transformation of deformation functors F → G,
the induced map T 1F → T 1G is linear.

Proof. See [36, Lemma 2.10].
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It is notationally convenient to reserve the letter ε to denote elements of A ∈ Art
annihilated by the maximal ideal mA, and in particular of square zero.

Example 3.8. For the functor hR defined in Example 3.2, its tangent space is

T 1 hR = HomK−alg(R, K[ε]) = HomK

(
mR

m2
R

, K

)
.

Therefore T 1 hR is isomorphic to the Zariski tangent space of Spec(R) at its closed point.

The formal smoothness of Spec(R) is equivalent to the property that A→ B surjective
implies hR(A)→ hR(B) surjective. This motivate the following definition.

Definition 3.9. A functor of Artin rings F is called smooth if F (A)→ F (B) is surjec-
tive for every surjective morphism A→ B in Art.
A natural transformation φ : F → G of functors of Artin rings is called smooth if for
every surjective morphism A → B in Art, the map F (A) → G(A) ×G(B) F (B) is also
surjective.

Note that if φ : F → G is a smooth natural transformation, then φ : F (A)→ G(A) is
surjective for every A (take B = K).

In characteristic 0, according to Remark 1.4, for every differential graded Lie algebra
L the natural projection MCL → DefL is smooth.

The majority of deformation functors arising in concrete cases are not proprepre-
sentable; a weaker version, that correspond to the notion of semiuniversal deformation,
is given in next Theorem.

Theorem 3.10 (Schlessinger, [36]). Let F be a deformation functor with finite dimen-
sional vector space. Then there exists a local complete noetherian K-algebra R with
residue field K and a smooth natural transformation hR → F inducing an isomorphism
on tangent spaces T 1 hR = T 1F . Moreover R is unique up to non-canonical isomorphism.

In the situation of Theorem 3.10 the geometric properties of Spec(R) can be deter-
mined in terms of properties of F . Concerning smoothness we have the following:

Lemma 3.11. Let R be a local complete noetherian K-algebra with residue field K, F
a deformation functor and hR → F as in Theorem 3.10. The following conditions are
equivalent:

1. R is isomorphic to a power series ring K[[x1, . . . , xn]].
2. The functor F is smooth.
3. For every s ≥ 2 the morphism

F

(
K[t]

(ts+1)

)
→ F

(
K[t]
(t2)

)

is surjective.

Proof. The only nontrivial implication is [3⇒ 1]. We assume for simplicity that K is an
infinite field; the useless case of K finite would require a different proof.
We first observe that for every s ≥ 1 the map hR

(
K[t]

(ts+1)

)
→ hR

(
K[t]
(t2)

)
is surjective.

Let n be the embedding dimension of R, then we can write R = K[[x1, . . . , xn]]/I for
some ideal I ⊂ (x1, . . . , xn)2; we want to prove that I = 0. Assume therefore I �= 0 and
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denote by s ≥ 2 the greatest integer such that I ⊂ (x1, . . . , xn)s: we claim that

hR

(
K[t]

(ts+1)

)
→ hR

(
K[t]
(t2)

)

is not surjective. Choosing f ∈ I−(x1, . . . , xn)s+1, after a possible generic linear change
of coordinates of the form xi �→ xi + aix1, with a2, . . . , ak ∈ K, we may assume that
f contains the monomial xs

1 with a nonzero coefficient, say f = cxs
1 + . . . ; let α : R →

K[t]/(t2) be the morphism defined by α(x1) = t, α(xi) = 0 for i > 1. Assume that there
exists α̃ : R → K[t]/(ts+1) that lifts α and denote by β : K[[x1, . . . , xn]] → K[t]/(ts+1)
the composition of α̃ with the projection K[[x1, . . . , xn]]→ R. Then β(x1)−t, β(x2), . . . ,
β(xn) ∈ (t2) and therefore β(f) ≡ cts �≡ 0 (mod ts+1).

4. Obstructions

In the set-up of functors of Artin rings, with the term obstructions we intend obstruc-
tions for a deformation functor to be smooth.
We shall say that a morphism α : B → A in Art is a small surjection if α is surjective
and its kernel is annihilated by the maximal ideal mB. The artinian property implies
that every surjective morphism in Art can be decomposed in a finite sequence of small
surjection and then a functor F is smooth if and only if F (B)→ F (A) is surjective for
every small surjection B → A.
A small extension is a small surjection together a framing of its kernel. More precisely
a small extension e in Art is an exact sequence of abelian groups

e : 0−→M−→B
α−→A−→0,

such that α is a morphism in the category Art and M is an ideal of B annihilated by the
maximal ideal mB. In particular M is a finite dimensional vector space over B/mB = K.
A small extension as above is called principal if M = K.

Definition 4.1. Let F be a functor of Artin rings. An obstruction theory (V, ve) for F
is the data of a K-vector space V and for every small extension in Art

e : 0−→M−→B−→A−→0

of an obstruction map ve : F (A)→ V ⊗M satisfying the following properties:
1. If a ∈ F (A) can be lifted to F (B), then ve(a) = 0.
2. (base change) For every commutative diagram

e1 : 0 −→ M1 −→ B1 −→ A1 −→ 0�αM

�αB

�αA

e2 : 0 −→ M2 −→ B2 −→ A2 −→ 0.

with e1, e2 small extensions and αA, αB morphisms in Art, we have

ve2(αA(a)) = (IdV ⊗ αM )(ve1(a)) for every a ∈ F (A1).

Definition 4.2. An obstruction theory (V, ve) for F is called complete if the converse
of item 1 in 4.1 holds; i.e. the lifting exists if and only if the obstruction vanishes.
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Clearly if F admits a complete obstruction theory then it admits infinitely ones; it
is in fact sufficient to embed V in a bigger vector space. One of the main interest is to
look for the “smallest” complete obstruction theory.

Remark 4.3. Let e : 0−→M−→B−→A−→0 be a small extension and a ∈ F (A); the
obstruction ve(a) ∈ V ⊗M is uniquely determined by the values (IdV ⊗ f)ve(a) ∈ V ,
where f varies along a basis of HomK(M, K). On the other hand, by base change we
have (IdV ⊗ f)ve(a) = vε(a), where ε is the small extension

ε : 0−→K −→ B ⊕K

{(m,−f(m)) | m ∈M} −→ A−→0.

This implies that every obstruction theory is uniquely determined by its behavior on
principal small extensions.

Example 4.4. Assume K of characteristic 0 and let L be a differential graded Lie
algebra. We want to show that MCL has a ”natural” obstruction theory (H2(L), ve).
Let’s consider a small extension in Art

e : 0−→M−→A−→B−→0

and let x ∈ MCL(B) = {x ∈ L1 ⊗ mB | dx +
1
2
[x, x] = 0}; we define an obstruction

ve(x) ∈ H2(L⊗M) = H2(L)⊗M in the following way:

First take a lifting x̃ ∈ L1 ⊗mA of x and consider h = dx̃ +
1
2
[x̃, x̃] ∈ L2 ⊗M ; we have

dh = d2x̃ + [dx̃, x̃] = [h, x̃]− 1
2
[[x̃, x̃], x̃].

Since [L2 ⊗M, L1 ⊗ mA] = 0 we have [h, x̃] = 0, by Jacobi identity [[x̃, x̃], x̃] = 0 and
then dh = 0.
Define ve(x) as the class of h in H2(L ⊗M) = H2(L) ⊗M ; the first thing to prove is
that ve(x) is independent from the choice of the lifting x̃; every other lifting is of the
form y = x̃ + z, z ∈ L1 ⊗M and then

dỹ +
1
2
[y, y] = h + dz.

It is evident from the above computation that (H2(L), ve) is a complete obstruction
theory for the functor MCL.

Definition 4.5. A morphism of obstruction theories (V, ve)→ (W, we) is a linear map
θ : V →W such that we = (θ ⊗ Id)ve for every small extension e.
An obstruction theory (OF , obe) for F is called universal if for every obstruction theory
(V, ve) there exists an unique morphism (OF , obe)→ (V, ve).

Theorem 4.6. Let F be a deformation functor, then:
1. There exists an universal obstruction theory (OF , obe) for F which is complete.
2. Every element of the universal obstruction target OF is of the form obe(a) for some

principal extension

e : 0−→K−→B−→A−→0

and some a ∈ F (A).

Proof. For the proof we refer to [9].
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It is clear that the universal obstruction theory (OF , obe) is unique up to isomorphism
and depends only by F and not by any additional data.

Definition 4.7. The obstruction space of a deformation functor F is the universal ob-
struction target OF .

Corollary 4.8. Let (V, ve) be a complete obstruction theory for a deformation functor
F . Then the obstruction space OF is isomorphic to the vector subspace of V generated
by all the obstructions arising from principal extensions.

Proof. Denote by θ : OF → V the morphism of obstruction theories. Every principal
obstruction is contained in the image of θ and, since V is complete, the morphism θ is
injective.

Remark 4.9. Most authors use Corollary 4.8 as a definition of obstruction space.

Example 4.10. Let R be a local complete K-algebra with residue field K and let n =
dimT 1 hR = dimmR/m2

R its embedding dimension. Then we can write R = P/I, where
P = K[[x1, . . . , xn]] and I ⊂ m2

P . We claim that

T 2 hR := HomP (I, K) = HomK(I/mP I, K)

is the obstruction space of hR. In fact for every small extension

e : 0−→M−→B−→A−→0

and every α ∈ hR(A) we can lift α to a commutative diagram

0 −→ I −→ P −→ R −→ 0�oba(α)

�β

�α

0 −→ M −→ B −→ A −→ 0

with β a morphism of K-algebras. It is easy to verify that

obe(α) = β|I ∈ HomK(I/mP I, M) = T 2 hR⊗M

is well defined, it is a complete obstruction and that (T 2 hR, obe) is the universal ob-
struction theory for the functor hR (see [9, Prop. 5.3]).

Let φ : F → G be a natural transformation of deformation functors. Then (OG, obe◦φ)
is an obstruction theory for F and then there exists an unique linear map obφ : OF → OG

which is compatible with φ in the obvious sense.

Theorem 4.11 (Standard smoothness criterion). Let φ : F → G be a morphism of de-
formation functors. The following conditions are equivalent:

1. φ is smooth.
2. T 1φ : T 1F → T 1G is surjective and obφ : OF → OG is bijective.
3. T 1φ : T 1F → T 1G is surjective and obφ : OF → OG is injective.

Proof. In order to avoid confusion we denote by obF
e and obG

e the obstruction maps for
F and G respectively.

[1 ⇒ 2] Every smooth morphism is in particular surjective; therefore if φ is smooth
then the induced morphisms T 1F → T 1G, OF → OG are both surjective.
Assume that obφ(ξ) = 0 and write ξ = obF

e (x) for some x ∈ F (A) and some small
extension e : 0−→K−→B−→A−→0. Since obG

e (φ(x)) = 0 the element x lifts to a pair
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(x, y′) ∈ F (A)×G(A) G(B) and then the smoothness of φ implies that x lifts to F (B).
[3 ⇒ 1] We need to prove that for every small extension e : 0−→K−→B−→A−→0 the
map

F (B)→ F (A)×G(A) G(B)

is surjective. Fix (x, y′) ∈ F (A) ×G(A) G(B) and let y ∈ G(A) be the common image
of x and y′. Then obG

e (y) = 0 because y lifts to G(B), hence obF
e (x) = 0 by injectivity

of obφ. Therefore x lifts to some x′′ ∈ F (B). In general y′′ = φ(x′′) is not equal to y′.
However, (y′′, y′) ∈ G(B) ×G(A) G(B) and therefore there exists v ∈ T 1G such that
θ(y′′, v) = (y′′, y′) where

θ : G(B)× T 1G = F (B ×K K[ε])→ G(B)×G(A) G(B)

is induced by the isomorphism

B ×K K[ε]→ B ×A B, (b, b + αε) �→ (b, b + αε).

By assumption T 1F → T 1G is surjective, v lifts to a w ∈ T 1F and setting θ(x′′, w) =
(x′′, x′) we have that x′ is a lifting of x which maps to y′, as required.

Remark 4.12. In most concrete cases, given a natural transformation F → G it is very
difficult to calculate the map OF → OG, while it is generally easy to describe com-
plete obstruction theories for F and G and compatible morphism between them. In this
situation only the implication [3⇒ 1] of the standard smoothness criterion holds.

Corollary 4.13. Let L be a differential graded Lie algebra. Then the projection MCL →
DefL induces an isomorphism on obstruction spaces. Therefore every obstruction theory
for MCL is invariant under the gauge action and factors to an obstruction theory for
DefL.
In particular, according to Example 4.4, the obstruction space of DefL is contained in
H2(L).

Proof. The projection MCL → DefL is smooth.

Corollary 4.14. Let F be a deformation functor and hR → F a smooth natural trans-
formation. Then the dimension of OF is equal to the minimum number of generators of
an ideal I defining R as a quotient of a power series ring, i.e. R = K[[x1, . . . , xn]]/I.

Proof. Apply Nakayama’s lemma to the K[[x1, . . . , xn]]-module I and use Example 4.10.

5. Special obstructions

Let F be a deformation functor with a complete obstruction theory (V, ve). In con-
crete cases, the difficulty of computation of the map ve reflects the structure of the
small extension e. It is therefore useful to consider obstructions arising from ”special”
small extensions that are easier to compute. The interesting fact is that, under some ad-
ditional condition, the knowledge of this ”special obstructions” gives lots of information.

The primary obstruction is the obstruction map arising from the small extension

0−→ K
xy−→ K[x, y]

(x2, y2)
−→ K[x, y]

(x2, xy, y2)
−→0.
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Note that
K[x, y]

(x2, xy, y2)
=

K[x]
(x2)

×K

K[y]
(y2)

,
K[x, y]
(x2, y2)

=
K[x]
(x2)

⊗ K[y]
(y2)

and then

F

(
K[x, y]

(x2, xy, y2)

)
= F

(
K[x]
(x2)

)
× F

(
K[y]
(y2)

)
= T 1F × T 1F.

It is a formal consequence of base change property that the associated obstruction map

b : T 1F × T 1F → V

is bilinear symmetric.
If F is smooth then the primary obstruction vanishes but the converse is generally
false. If F = DefL for some differential graded Lie algebra and we consider the nat-
ural obstruction theory of Example 4.4, the primary obstruction map T 1F × T 1F =
H1(L) × H1(L) → H2(L) is equal to the induced bracket in cohomology. Therefore,
according to Corollary 1.8, if L is a formal DGLA, then DefL is smooth if and only if
its primary obstruction is trivial.

In characteristic �= 2, the substitution α(t) = x + y gives a morphism of small exten-
sions

0 −→ K
t2−→ K[t]/(t3) −→ K[t]/(t2) −→ 0�2

�α

�
0 −→ K

xy−→ K[x, y]/(x2, y2) −→ K[x, y]/(x2, xy, y2) −→ 0.

From this and base change axiom it follows that the obstruction of lifting x ∈ T 1F to

F (K[t]/(t3)) is equal to
1
2
b(x, x). Therefore the vanishing of the primary obstruction

map is equivalent to the surjectivity of F (K[t]/(t3))→ F (K[t]/(t2)).

The curvilinear obstructions are the obstructions arising from the curvilinear exten-
sions

0−→K
tn−→K[t]/(tn+1)−→K[t]/(tn)−→0.

We have seen that the first curvilinear obstruction (n = 2) is essentially the primary
obstruction map. Lemma 3.11 suggests the validity of Item 1 of the following proposition,
while Item 2 is very surprising.

Proposition 5.1. In the above setup, let Oc
F ⊂ V be the vector subspace generated by

the curvilinear obstructions. Then:
1. If Oc

F = 0 then F is smooth.
2. In general Oc

F is a proper subspace of the obstruction space OF .
3. If K is algebraically closed and F = hR, then dimR ≥ dimK T 1F − dimK Oc

F .

Proof. If F has finite dimensional tangent space then Item 1 follows from Theorem 3.10
and Lemma 3.11; the general case is proved in [9, Cor. 6.4]. Item 3 is proved in [20] (a
simplified proof is in [10]).
Consider the functor F = hR, where R = P/I, P = K[x, y] and I = (x3, y3, x2y2).
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Then OF = HomP (I, K) has dimension 3, while x2y2 ∈ I belongs to the kernel of every
curvilinear obstruction.

We consider now another class of small extensions that, as far as I know, was first
used in [15]; such class is quite useful because in concrete cases the induced obstructions
are usually much easier to understand (see next Remark 8.5).
For every A ∈ Art and every A-module M we denote by A ⊕M the trivial extension
(with multiplication rule (a, m)(b, n) = (ab, an + bm)). We define a semitrivial small
extension as an extension of the form

0→ K → A⊕M → A⊕N → 0

for some A ∈ Art and some short exact sequence 0 → K → M → N → 0 of finitely
generated A-modules with mAK = 0.
Unfortunately, in general the semitrivial obstructions do not generate OF ; consider for
instance F = hR, where

R =
P

I
=

C[x, y]
(f, fx, fy)

, f = x3 + xy5 + y7, fx =
∂f

∂x
, fy =

∂f

∂y
.

Then OF has dimension 3 [35, p. 103], while every semitrivial obstruction φ ∈ HomP (I, C)
verifies φ(f) = 0.
On the positive side we have the following result which is the basic trick of the abstract
T 1-lifting theorem [19], [10].

Theorem 5.2. If K is a field of characteristic 0, then every curvilinear obstruction of
a deformation functor F is semitrivial. In particular F is smooth if and only if every
semitrivial obstruction vanishes.

Proof. Denote by
K[t]s
(tn)

the free
K[t]
(tn)

-module generated by s. To prove the theorem it is

sufficient to consider the morphism

α :
K[t]

(tn+1)
→ K[t]

(tn)
⊕ K[t]s

(tn)
, α(t) = t + s

and apply the base change axiom to the morphism of small extension

0 −→ K
tn−→ K[t]/(tn+1) −→ K[t]/(tn) −→ 0�n

�α

�α

0 −→ K
tn−1s−→ K[t]

(tn)
⊕ K[t]s

(tn)
−→ K[t]

(tn)
⊕ K[t]s

(tn−1)
−→ 0.

Remark 5.3. It is not difficult to prove [4, Appendix] that the space of semitrivial ob-
structions of hR is isomorphic to Ext1R(Ω1

R/K
, K) and then, for K algebraically closed of

characteristic 0, we get the dimension bound

dimR ≥ dimK Ext0R(Ω1
R/K

, K)− dimK Ext1R(Ω1
R/K

, K)

proved first in [35].
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6. Annihilation of obstructions

Let F : Art→ Set be the functor of infinitesimal deformations of some geometric ob-
ject. If such object is ”reasonable”, then F is a deformation functor and it is provided of
a natural and geometrically defined complete obstruction theory (V, ve). As an example
if F = DefX is the functor of deformations of a complex manifold, then it has a natural
obstruction theory with V = H2(ΘX).
Our goal is to determine the obstruction space OF as a subset of V . In general the
inclusion OF ⊂ V is proper: if X is a complex torus of dimension n, then H2(ΘX)
has dimension n2(n− 1)/2, while it is known since the very first works of Kodaira and
Spencer that X has unobstructed deformations [22, p. 408] and then OF = 0.
A way to obtain information about OF is by annihilation maps: we shall say that a
linear map ω : V → W annihilates the obstructions of F if ω(OF ) = 0 or equivalently
if ωve = 0 for every principal small extension e. Analogous definitions can be done for
annihilations of curvilinear and semitrivial obstructions.
The possibility to describe a deformation functor in the form DefL for some differential
graded Lie algebra L gives a simple and powerful way to construct maps ω : H2(L)→W
that annihilate obstructions. The idea is easy: assume it is given a morphism χ : L→M
of DGLA, then, according to Example 4.4, the morphism in cohomology χ : H2(L) →
H2(M) is compatible with the natural transformation χ : DefL → DefM and with ob-
struction maps. Therefore if ω : H2(M)→W annihilates the obstructions of DefM , the
composition ωχ annihilates the obstructions of DefL. The best situation is when DefM
is unobstructed (e.g. if M is abelian) and therefore χ itself annihilates the obstructions
of DefL.
This procedure is purely formal and it is not necessary for the functor DefM to have any
geometrical meaning. In the rest of this section we apply these ideas to deformations of
Kähler manifolds.

Let X be a fixed complex manifold. We denote by (AX , d) = (⊕p,qA
p,q
X , d = ∂ + ∂) its

De Rham complex, by (ker(∂), ∂) the subcomplex of ∂-closed forms and by
(

AX

∂AX
, ∂

)

the quotient complex of ∂-coexact forms. The contraction maps are denoted by

A0,i
X (ΘX)×Ap,q

X
�−→Ap−1,q+i

X ,

while the internal product is denoted by

i : A0,∗
X (ΘX)→ Hom∗(AX , AX), ia(ω) = a�ω, a ∈ A0,∗

X (ΘX), ω ∈ AX .

Denoting by [ , ] the standard bracket (Example 1.2) in the differential graded Lie al-
gebra Hom∗(AX , AX), it is straightforward to check the validity of the Cartan homotopy
formulas (see e.g. [29])

ida = [∂, ia], i[a,b] = [ia, [∂, ib]] = [[ia, ∂], ib].

Now we want to introduce a new differential graded Lie algebra which depends by the
De Rham complex of X (the same construction can be made for every double complex
of vector spaces). Define

Htp
(

ker(∂),
AX

∂AX

)
= ⊕Htpi

(
ker(∂),

AX

∂AX

)
,
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where

Htpi

(
ker(∂),

AX

∂AX

)
= Homi−1

(
ker(∂),

AX

∂AX

)
,

the differential is

Htpi

(
ker(∂),

AX

∂AX

)
� f �→ δ(f) = ∂f + (−1)if∂ ∈ Htpi+1

(
ker(∂),

AX

∂AX

)

and the bracket is

{f, g} = f∂g − (−1)deg(f) deg(g)g∂f.

Proposition 6.1. The linear map

i : A0,∗
X (ΘX)→ Htp

(
ker(∂),

AX

∂AX

)

is a morphism of differential graded Lie algebras.

Proof. Immediate consequence of Cartan formulas.

It is now possible to give an easy proof of the following result known as Kodaira’s
principle (for more complicated proofs see [6], [33] and [29]).

Theorem 6.2. Let X be a compact Kähler manifold. Then the obstruction space of
DefX is contained in the kernel of the map

i : H2(X, ΘX)→ ⊕p,q Hom(Hp(X, Ωq
X), Hp+2(X, Ωq−1

X )).

Proof. For notational simplicity denote by L the DGLA Htp
(

ker(∂),
AX

∂AX

)
. Since X

is Kähler, according to ∂∂-lemma (see e.g. [7]) we have

Hq,p

∂
(ker(∂)) = Hq,p

∂

(
AX

∂AX

)
= Hp(X, Ωq

X)

and therefore

H2(L) = ⊕p+q=r+s−1 Hom(Hp(X, Ωq
X), Hr(X, Ωs

X)).

On the other hand, L is quasiisomorphic to an abelian differential graded Lie algebra:
to see this is sufficient to consider the abelian subalgebra

K =
{

f ∈ L | f(ker(∂)) ⊂ ker(∂)
∂AX

, f(∂AX) = 0
}
� Htp

(
ker(∂)
∂AX

,
ker(∂)
∂AX

)

and observe that the inclusion K ⊂ L is a quasiisomorphism.
According to Corollary 1.8 the functor DefL is isomorphic to DefK and therefore it
is smooth and its obstruction space ODefL

is trivial. By Proposition 6.1 and Example
2.3, the morphism i induces a natural transformation of functors DefX → DefL and
a compatible morphism of obstruction theories ODefX

→ ODefL
= 0. In other words i

annihilates the obstruction space of DefX .

Corollary 6.3 (Bogomolov-Tian-Todorov [3, 41, 42]). Let X be a compact Kähler man-
ifold with trivial canonical bundle. Then X has unobstructed deformations, i.e. DefX is
a smooth functor.
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Proof. Let n = dimX and ω ∈ H0(X, Ωn
X) � C be a holomorphic volume form. Then the

contraction operator induces isomorphisms H i(X, ΘX)�Hom(H0(X, Ωn
X), H i(X, Ωn−1

X ))
and therefore the morphism

i : H2(X, ΘX)→ ⊕p,q Hom(Hp(X, Ωq
X), Hp+2(X, Ωq−1

X ))

is injective.

7. An approach to ”semitrivialized” deformations

Sometimes a deformation of a geometric object is described by a set of deformations
of specific parts of it, plus some compatibility condition. For example a deformation of
a variety X can be described by deformations of the open subsets of an affine covering
{Ui}, plus the condition that the deformations of Ui, Uj are isomorphic on Ui ∩ Uj and
such isomorphisms must satisfy the cocycle condition on triple intersections.
We shall talk about semitrivialized deformations when we consider deformations of a
geometric object together a trivialization of the deformation of a specific part of it.
The most important example concerns embedded deformations of a subvariety Z of a
complex manifold X. Such deformations (over a base B) can be considered as deforma-
tions Z ⊂ X of the inclusion map Z ⊂ X together a trivialization X � X ×B.

Kereping in mind that deformations=solution on Maurer-Cartan and trivializations=actions
of the gauge group, the guiding principle tell us that in characteristic 0 every semitrivial-
ized deformation problem is governed by a morphism of differential graded Lie algebras
χ : L→M , according to the following definition.

Definition 7.1. Let χ : L→M be a morphism of differential graded Lie algebras. For
every A ∈ Art denote

MCχ(A) =
{

(x, ea) ∈ (L1 ⊗mA)× exp(M0 ⊗mA) | dx +
1
2
[x, x] = 0, ea ∗ χ(x) = 0

}
,

Defχ(A) =
MCχ(A)

exp(L0 ⊗mA)× exp(dM−1 ⊗mA)
,

where the gauge action is given by the formula

(el, edm) ∗ (x, ea) = (el ∗ x, edmeae−χ(l)) = (el ∗ x, edm•a•(−χ(l))).

The above definition gives two functors of Artin rings

MCχ,Defχ : Art→ Set

that are deformation functors in the sense of Definition 3.4. A proof of this fact, that
involves Baker-Campbell-Hausdorff formula, can be found in [31]. The same argument of
Remark 1.4 shows that the projection MCχ → Defχ is smooth and therefore, according
to Theorem 4.11 MCχ,Defχ have the same obstruction theories.
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The construction of Defχ is also functorial in χ; more precisely, every commutative
diagram of morphisms of differential graded Lie algebras

L
f−→ H�χ

�η

M
f ′
−→ I

induces a natural transformation of functors Defχ → Defη.
In order to compute tangent space and obstruction maps of Defχ we need to introduce

the suspension of the mapping cone of χ; it is the differential graded vector space (Cχ, δ),
where Ci

χ = Li ⊕M i−1 and the differential δ is defined as

δ(l, m) = (dl, χ(l)− dm).

The tangent space of Defχ is isomorphic to H1(Cχ). In fact

MCχ(K[ε]) =
{
(x, ea) ∈ (L1 ⊗Kε)× exp(M0 ⊗Kε) | dx = 0, ea ∗ χ(x) = χ(x)− da = 0

}

�
{
(x, a) ∈ L1 ×M0 | dx = 0, χ(x)− da = 0

}
= ker(δ : C1

χ → C2
χ).

Two elements (x, a), (y, b) ∈ ker δ are gauge equivalent if and only if there exists (c, z) ∈
L0 ×M−1 such that

y = x− dc, b = dz + a− χ(c), or equivalently (x, a)− (y, b) = δ(c, z).

The obstruction space of Defχ is naturally contained in H2(Cχ). Since the two functors
MCχ,Defχ have the same obstruction theories it is sufficient to show that the functor
MCχ has a complete obstruction theory (H2(Cχ), ve). Let

τ : 0−→E−→A
α−→B−→0

be a small extension and (x, eq) ∈ MCχ(B).
Since α is surjective there exists a pair (y, ep) ∈ L1 ⊗ mA × exp(M0 ⊗ mA) such that
α(y) = x and α(p) = q.
Setting

h = dy +
1
2
[y, y] ∈ L2 ⊗ E, r = ep ∗ χ(y) ∈M1 ⊗ E

we have δ(h, r) = 0. In fact,

dh =
1
2
d[y, y] = [dy, y] = [h, y]− 1

2
[[y, y], y].

By Jacobi identity [[y, y], y] = 0, while [h, y] = 0 because mA annihilates E; therefore
dh = 0.
Since χ(y) = e−p ∗ r = r + e−p ∗ 0, we have

χ(h) = d(r + e−p ∗ 0) +
[r + e−p ∗ 0, r + e−p ∗ 0]

2
=

= dr + d(e−p ∗ 0) +
[e−p ∗ 0, e−p ∗ 0]

2
= dr,

where the last equality follows from the fact that e−p ∗ 0 satisfies the Maurer-Cartan
equation in M ⊗mA.
We define vτ (x, eq) ∈ H2(Cχ) ⊗ E as the cohomology class of (h, r). It is clear from
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definition that such class is well defined and is exactly the obstruction of lifting (x, eq)
to MCχ(A).

It is an interesting exercise to show that the primary obstruction map is equal to

H1(Cχ)→ H2(Cχ), (x, a) �→ 1
2
([x, x], [a, χ(x)]).

There exists an analog of Theorem 1.5.

Theorem 7.2. Consider a commutative diagram of of morphisms of differential graded
Lie algebras

L
f−→ H�χ

�η

M
f ′
−→ I

and assume that
1. (f, f ′) : H0(Cχ)→ H0(Cη) is surjective.
2. (f, f ′) : H1(Cχ)→ H1(Cη) is bijective.
3. (f, f ′) : H2(Cχ)→ H2(Cη) is injective.

Then the natural transformation Defχ → Defη is an isomorphism.

Proof. For a proof that use extended deformation functors put together [31, Thm. 7.4]
and [30, Thm. 5.71]. Alternatively use [31, Thm. 2.1] to prove next Corollary 7.3 and
then apply Theorem 1.5.
Another proof involving L∞-algebras follows from the results of [11].

The functors Defχ respect the general Principle 1.9; more precisely:

Corollary 7.3. Let χ : L → M be a morphism of differential graded Lie algebras and
consider the DGLA (see Example 1.7)

H = {(l, m) ∈ L×M [t, dt] | e0(m) = 0, e1(m) = χ(l)}
Then there exists an isomorphism Defχ � DefH .

Proof. Denote

K = {(l, m) ∈ L×M [t, dt] | e1(m) = χ(l)}
and apply Theorem 7.2 or [31, Thm. 2.1] to the commutative diagram of morphisms of
differential graded Lie algebras

L
f−→ K ←↩ H�χ

�e0

�
M

Id−→ M ← 0

f(l) = (l, χ(l)).

Remark 7.4. In most concrete cases the interpretation of a deformations functor as Defχ
is more geometrical than the interpretation as DefH and is more useful in computations.
In other words, Corollary 7.3 is important philosophically but at the moment do not
seems very useful in concrete examples; we refer to [11] for a deeper discussion of this.
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8. Semiregularity annihilates obstructions

One of the most important applications of the formalism introduced in Section 7 is
the description of embedded deformations of a complex submanifold Z ⊂ X in the form
Defχ.

As in Example 2.4, we work over the field K = C and we denote by LZ|X the kernel
of the restriction map

π : A0,∗
X (ΘX)→ A0,∗

Z (NZ|X).

The natural inclusion χ : LZ|X → A0,∗
X (ΘX) is a morphism of differential graded Lie

algebras and its cokernel is isomorphic to the Dolbeault complex of NZ|X ; in particular
for every i ≥ 0

H i(Z, NZ|X) � H i(A0,∗
Z (NZ|X)) � H i+1(Cχ).

The DGLA A0,∗
X (ΘX) can be interpreted, via Lie derivation, as a subalgebra of the

DGLA of derivations of the graded sheaf A0,∗
X . In particular for every A ∈ Art and

every a ∈ A0,∗
X (ΘX)⊗mA, its exponential ea is an automorphism of the graded sheaf of

A-modules A0,0
X ⊗A.

Consider now the associated functor Defχ. Since χ is injective we have, for every
A ∈ Art

MCχ(A) = {eη ∈ AutA(A0,0
X ⊗A) | η ∈ A0,0

X (TX)⊗mA, e−η ∗ 0 ∈ L1
Z|X ⊗mA}.

Under this identification the gauge action becomes

exp(L0
Z|X ⊗mA)×MCχ(A)→ MCχ(A), (eµ, eη) �→ eη ◦ e−µ,

and then

Defχ(A) =
MCχ(A)

exp(L0
Z|X ⊗mA)

.

Denote by I ⊂ A0,0
X the ideal sheaf of differentiable functions vanishing on Z and by

I = OX ∩ I the holomorphic ideal sheaf of Z. Define then

θ : Defχ(A)→ {ideal sheaves of OX ⊗A}, θ(eη) = (OX ⊗A) ∩ eη(I ⊗A).

Theorem 8.1. The above map θ is well defined and gives an isomorphism of functors
θ : Defχ

�−→HilbZ
X .

Proof. See [31].

Remark 8.2. The Theorem 2.5 is an immediate consequence of Theorem 8.1 and Corol-
lary 7.3.

The computation of Section 6, applied to this situation gives a commutative diagram
of morphisms of DGLA

LZ|X
i−→

{
f ∈ Htp

(
ker(∂),

AX

∂AX

)
| f(I ∩ ker(∂)) ⊂ I

I ∩ ∂AX

}
�χ

�η

A0,∗
X (TX) i−→ Htp

(
ker(∂),

AX

∂AX

)
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inducing a map of complexes

A0,∗
Z (NZ|X) = Coker(χ) i−→Coker(η),

and therefore a morphism in cohomology. The analog of Theorem 6.2 becomes:

Theorem 8.3. If X is compact Kähler, then the obstructions of HilbZ
X are contained

in the kernel of

H1(NZ|X) i−→H1(Coker(η)) = ⊕
i

Hom
(

H i(I ∩ ker(∂)), H i

(
AZ

∂AZ

))
.

Proof. (Sketch, for more details see [31]) Since Defχ = HilbZ
X and H1(Coker(η)) =

H2(Cη), it is sufficient to prove that the functor Defη is smooth.
By ∂∂-lemma we have that 0−→I ∩ ∂AX−→∂AX−→∂AZ−→0 is an exact sequence of
acyclic complexes. Denoting

K =
{

f ∈ Htp
(

ker(∂),
AX

∂AX

)
| f(I ∩ ker(∂)) ⊂ I

I ∩ ∂AX

}
,

the projection ker(∂)→ ker(∂)/∂AX induces a commutative diagram

{f ∈ K | f(∂AX) = 0} α−→ K�µ

�η

Htp
(

ker(∂)
∂AX

,
AX

∂AX

)
β−→ Htp

(
ker(∂),

AX

∂AX

)

Since ∂AX is acyclic, β is a quasiisomorphism of DGLA. Moreover, there exists an
exact sequence

0→ Htp
(

∂AX

I ∩ ∂AX
,

AX

∂AX

)
→ Coker(α)→ Htp

(
I ∩ ∂AX ,

I

I ∩ ∂AX

)
→ 0.

Since the complexes
∂AX

I ∩ ∂AX
= ∂AZ and IZ ∩ ∂AX are both acyclic, also Coker(α)

is acyclic and then α is a quasiisomorphism. According to Theorem 7.2 there exists an
isomorphism of functors Defη = Defµ.
On the other side, both algebras on the first column are abelian and then the functor
Defµ is smooth.

Always assuming X Kähler, the semiregularity map, introduced by Kodaira and
Spencer [23] for divisors and generalized by S. Bloch [2] to subvarieties, can be de-
fined in the following way: let n be the dimension of X and denote by H the space of
harmonic forms on X of type (n − p + 1, n − p − 1). By Dolbeault theorem and Serre
duality, the dual of H is isomorphic to Hp+1(X, Ωp−1

X ).
The composition of the contraction map and integration on Z gives a bilinear map

H1(Z, NZ|X)×H → C, (η, ω) �→
∫

Z
η�ω

which induces the linear morphism

π : H1(Z, NZ|X)→ H∨ = Hp+1(X, Ωp−1
X )

called semiregularity map.
Since H ⊂ I ∩ker(∂)∩ker(∂), the following corollary follows immediately from Theorem
8.3.
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Corollary 8.4. Let Z be a smooth closed submanifold of codimension p of a compact
Kähler manifold X. Then the obstruction space of HilbZ

X is contained in the kernel of
the semiregularity map

π : H1(Z, NZ|X)→ Hp+1(X, Ωp−1
X ).

Remark 8.5. Corollary 8.4 was almost proved by S. Bloch in the paper [2]. More precisely
he proved that if the semiregularity map is injective then HilbZ

X is smooth; although not
explicitly stated in [2], the same proof shows that the semiregularity map annihilates
semitrivial obstructions.
The annihilation of semitrivial obstructions by semiregularity map has been recently
generalized to deformations of coherent modules by Buchweitz and Flenner in [4].
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