THE FUNCTOR L OF QUILLEN

DEFORMATION THEORY 2011-12; M. M.

Let R be a commutative ring, by a nonassociative ($=$ not necessarily associative) graded R algebra we mean a graded R-module $M=\oplus M^{i}$ endowed with a R-bilinear map $M^{i} \times M^{j} \rightarrow$ M^{i+j}.

The nonassociative algebra M is called unitary if there exist a "unity" $1 \in M^{0}$ such that $1 m=m 1=m$ for every $m \in M$.

A left ideal (resp.: right ideal) of M is a graded submodule $I \subset M$ such that $M I \subset I$ (resp.: $I M \subset I)$. A graded submodule is called an ideal if it is both a left and right ideal.

A homomorphism of R-modules $d: M \rightarrow M$ is called a derivation of degree k if $d\left(M^{i}\right) \subset M^{i+k}$ and satisfies the graded Leibniz rule $d(a b)=d(a) b+(-1)^{k} \bar{a} a d(b)$.

If M is as associative graded algebra we denote by M_{L} the associated graded Lie algebra, with bracket equal to the graded commutator $[a, b]=a b-(-1)^{\bar{a}} \bar{b} b a$.

It is easy to see that if $f: M \rightarrow M$ is a derivation, then also $f: M_{L} \rightarrow M_{L}$ is a derivation.
Notation: For a graded Lie algebra H we denote $[a, b, c]=[a,[b, c]]$ and more generally

$$
\left[a_{1}, \ldots, a_{n}\right]=\left[a_{1},\left[a_{2}, \ldots, a_{n}\right]\right]=\left[a_{1},\left[a_{2},\left[a_{3}, \ldots,\left[a_{n-1}, a_{n}\right] \ldots\right]\right.\right.
$$

Notice that the descending central series $H^{[n]}$ may be defined as

$$
H^{[n]}=\operatorname{Span}\left\{\left[a_{1}, \ldots, a_{n}\right]\right\}, \quad a_{1}, \ldots, a_{n} \in H
$$

Jacoby identity becomes

$$
[[a, b], c]=[a, b, c]-(-1)^{\bar{a} \bar{b}}[b, a, c] .
$$

1. Free graded Lie algebras

Let V be a graded vector space over \mathbb{K}, we denote by

$$
T(V)=\bigoplus_{n \geq 0} \bigotimes^{n} V, \quad \overline{T(V)}=\bigoplus_{n \geq 1} \bigotimes^{n} V
$$

The tensor product induce on $T(V)$ a structure of unital associative graded algebra and $\overline{T(V)}$ is an ideal of $T(V)$. The algebra $T(V)$ is called tensor algebra generated by V and $\overline{T(V)}$ is called the reduced tensor algebra generated by V.
Lemma 1.1. Let V be $a \mathbb{K}$-vector space and $\imath: V \rightarrow \overline{T(V)}$ the natural inclusion. For every graded associative \mathbb{K}-algebra R and every linear map $f \in \operatorname{Hom}_{\mathbb{K}}^{0}(V, R)$ there exists a unique homomorphism of \mathbb{K}-algebras $\phi: \overline{T(V)} \rightarrow R$ such that $f=\phi \imath$.

Proof. Clear.
Lemma 1.2. Let V be $a \mathbb{K}$-vector space and $\imath: V \rightarrow \overline{T(V)}$ the natural inclusion. For every $f \in \operatorname{Hom}_{\mathbb{K}}^{k}(V, \overline{T(V)})$ there exists a unique derivation $\phi: \overline{T(V)} \rightarrow \overline{T(V)}$ such that $f=\phi \imath$.

Proof. Leibniz rule forces to define ϕ as

$$
\phi\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\sum_{i=1}^{n}(-1)^{k\left(\overline{v_{1}}+\cdots+\overline{v_{i}-1}\right)} v_{1} \otimes \cdots \otimes f\left(v_{i}\right) \otimes \cdots \otimes v_{n}
$$

Definition 1.3. Let V be a graded \mathbb{K}-vector space; the free Lie algebra generated by V is the smallest graded Lie subalgebra $\mathbb{L}(V) \subset \overline{T(V)}{ }_{L}$ which contains V.

Equivalently $\mathbb{L}(V)$ is the intersection of all the Lie subalgebras of $T(V)_{L}$ containing V.
For every integer $n>0$ we denote by $\mathbb{L}(V)_{n} \subset \mathbb{L}(V) \cap \bigotimes^{n} V$ the linear subspace generated by all the elements

$$
\left[v_{1}, v_{2}, \ldots, v_{n}\right], \quad n>0, \quad v_{1}, \ldots, v_{n} \in V
$$

By definition $\mathbb{L}(V)_{1}=V, \mathbb{L}(V)_{n}=\left[V, \mathbb{L}(V)_{n-1}\right]$ and therefore $\oplus_{n>0} \mathbb{L}(V)_{n} \subset \mathbb{L}(V)$. On the other hand the Jacobi identity $[[x, y], z]=[x,[y, z]]-[y,[x, z]]$ implies that

$$
\left[\mathbb{L}(V)_{n}, \mathbb{L}(V)_{m}\right] \subset\left[V,\left[\mathbb{L}(V)_{n-1}, \mathbb{L}(V)_{m}\right]\right]+\left[\mathbb{L}(V)_{n-1},\left[V, \mathbb{L}(V)_{m}\right]\right]
$$

and therefore, by induction on $n,\left[\mathbb{L}(V)_{n}, \mathbb{L}(V)_{m}\right] \subset \mathbb{L}(V)_{n+m}$.
This implies that the direct sum $\oplus_{n>0} \mathbb{L}(V)_{n}$ is a graded Lie subalgebra of $\mathbb{L}(V)$; therefore $\oplus_{n>0} \mathbb{L}(V)_{n}=\mathbb{L}(V)$ and for every n

$$
\mathbb{L}(V)_{n}=\mathbb{L}(V) \cap \bigotimes^{n} V, \quad \mathbb{L}(V)^{[n]}=\bigoplus_{i \geq n} \mathbb{L}(V)_{i}
$$

The construction $V \mapsto \mathbb{L}(V)$ is a functor from the category of graded vector spaces to the category of graded Lie algebras, since every morphism of vector spaces $V \rightarrow W$ induce a morphism of algebras $\overline{T(V)} \rightarrow \overline{T(W)}$ which restricts to a morphism of Lie algebras $\mathbb{L}(V) \rightarrow \mathbb{L}(W)$.

Theorem 1.4 (Dynkyn-Sprecht-Wever). Assume that V is a vector space and H a graded Lie algebra with bracket [,]. Let $\sigma_{1} \in \operatorname{Hom}^{0}(V, H)$ be a linear map and define, for every $n \geq 2$, the maps
$\sigma_{n}: \bigotimes^{n} V \rightarrow H, \quad \sigma_{n}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\left[\sigma_{1}\left(v_{1}\right), \sigma_{n-1}\left(v_{2} \otimes \cdots \otimes v_{n}\right)\right]=\left[\sigma_{1}\left(v_{1}\right), \sigma_{1}\left(v_{2}\right), \ldots, \sigma_{1}\left(v_{n}\right)\right]$.
Then the linear map

$$
\sigma=\sum_{n=1}^{\infty} \frac{\sigma_{n}}{n}: \mathbb{L}(V) \rightarrow H, \quad \sigma\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\frac{1}{n}\left[\sigma_{1}\left(v_{1}\right), \sigma_{1}\left(v_{2}\right), \ldots, \sigma_{1}\left(v_{n}\right)\right],
$$

is the unique homomorphism of graded Lie algebras extending σ_{1}.
Proof. The adjoint representation

$$
\theta: V \rightarrow \operatorname{Hom}^{*}(H, H), \quad \theta(v) x=\left[\sigma_{1}(v), x\right]
$$

extends to a morphism of graded associative algebras $\theta: \overline{T(V)} \rightarrow \operatorname{Hom}^{*}(H, H)$ by the composition rule

$$
\theta\left(v_{1} \otimes \cdots \otimes v_{s}\right) x=\theta\left(v_{1}\right) \theta\left(v_{2}\right) \cdots \theta\left(v_{s}\right) x
$$

By definition

$$
\sigma_{n}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\theta\left(v_{1} \otimes \cdots \otimes v_{n-1}\right) \sigma_{1}\left(v_{n}\right)
$$

and more generally, for every $v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{m} \in V$ we have

$$
\sigma_{n+m}\left(v_{1} \otimes \cdots \otimes v_{n} \otimes w_{1} \otimes \ldots \otimes w_{m}\right)=\theta\left(v_{1} \otimes \cdots \otimes v_{n}\right) \sigma_{m}\left(w_{1} \otimes \cdots \otimes w_{m}\right)
$$

Since every element of $\mathbb{L}(V)$ is a linear combination of homogeneous elements it is sufficient to prove, by induction on $n \geq 1$, the following properties
$A_{n}:$ If $m \leq n, x \in \mathbb{L}(V)_{m}$ and $y \in \mathbb{L}(V)_{n}$ then $\sigma([x, y])=[\sigma(x), \sigma(y)]$.
$B_{n}:$ If $m \leq n, y \in \mathbb{L}(V)_{m}$ and $h \in H$ then $\theta(y) h=[\sigma(y), h]$.
The initial step $n=1$ is straightforward, assume therefore $n \geq 2$.
$\left[A_{n-1}+B_{n-1} \Rightarrow B_{n}\right]$ We have to consider only the case $m=n$. The element y is a linear combination of elements of the form $[a, b], a \in V, b \in \mathbb{L}(V)_{n-1}$ and, using B_{n-1} we get

$$
\theta(y) h=[\sigma(a), \theta(b) h]-(-1)^{\bar{a} \bar{b}} \theta(b)[\sigma(a), h]=[\sigma(a),[\sigma(b), h]]-(-1)^{\bar{a} \bar{b}}[\sigma(b),[\sigma(a), h]] .
$$

Using A_{n-1} we get therefore

$$
\begin{aligned}
& \theta(y) h=[[\sigma(a), \sigma(b)], h]=[\sigma(y), h] \\
& \begin{aligned}
{\left[B_{n} \Rightarrow A_{n}\right] }
\end{aligned} \\
& \sigma_{n+m}([x, y])=\theta(x) \sigma_{n}(y)-(-1)^{\bar{x} \bar{y}} \theta(y) \sigma_{m}(x)=\left[\sigma(x), \sigma_{n}(y)\right]-(-1)^{\bar{x}} \bar{y}\left[\sigma(y), \sigma_{m}(x)\right] \\
& = \\
&
\end{aligned}
$$

Since $\mathbb{L}(V)$ is generated by V as a Lie algebra, the unicity of σ follows.
Corollary 1.5. For every vector space V the linear map

$$
\pi: \overline{T(V)} \rightarrow \mathbb{L}(V), \quad \pi\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\frac{1}{n}\left[v_{1}, v_{2}, \ldots, v_{n}\right]
$$

is a projection. In particular for every $n>0$

$$
\mathbb{L}(V)_{n}=\left\{x \in V^{\otimes n} \mid \pi(x)=x\right\}
$$

Proof. The identity on $\mathbb{L}(V)$ is the unique Lie homomorphism extending the natural inclusion $V \rightarrow \mathbb{L}(V)$.

Lemma 1.6. Every $f \in \operatorname{Hom}^{k}(V, \mathbb{L}(V))$ extends to a unique derivation $\mathbb{L}(V) \rightarrow \mathbb{L}(V)$.
Proof. The composition $f: V \rightarrow \mathbb{L}(V) \hookrightarrow \overline{T(V)}$ extends to a derivation $F: \overline{T(V)} \rightarrow \overline{T(V)}$. Leibniz rule gives the unicity and $F(\mathbb{L}(V)) \subset \mathbb{L}(V)$.

2. The functor L of Quillen

Let s be a formal symbol of degree +1 . For every graded vector space V denote

$$
s V=\{s v \mid v \in V\}, \quad \text { and } \quad s \in \operatorname{Hom}^{1}(V, s V), \quad s(v)=s v
$$

Lemma 2.1. For every $x \in V \otimes V$ we have

$$
\pi((s \otimes s) x)=(s \otimes s)\left(\frac{x+\mathrm{tw}(x)}{2}\right)
$$

In particular $(s \otimes s) x \in \mathbb{L}(s V)_{2}$ if and only if $x=\mathrm{tw}(x)$.
Proof. By linearity may assume $x=u \otimes v$. Then $\operatorname{tw}(x)=(-1)^{\bar{u}} \bar{v} v \otimes u$ and

$$
\begin{gathered}
2 \pi((s \otimes s) x)=2 \pi\left((-1)^{\bar{u}} s u \otimes s v\right)=(-1)^{\bar{u}} s u \otimes s v-(-1)^{\bar{u}+(\bar{u}+1)(\bar{v}+1)} s v \otimes s u= \\
=(-1)^{\bar{u}} s u \otimes s v+(-1)^{\bar{v}+\bar{u}} \bar{v} s v \otimes s u=(s \otimes s)(x+\mathrm{tw}(x))
\end{gathered}
$$

Let (C, Δ, δ) be a differential graded cocommutative coalgebra. Denote by:
(1) $d_{1} \in \operatorname{Der}^{1}(\mathbb{L}(s C), \mathbb{L}(s C))$ the derivation induced by the map

$$
d_{1}: s C \rightarrow \mathbb{L}(s C), \quad d_{1}(s v)=-s \delta(v)
$$

(2) $d_{2} \in \operatorname{Der}^{1}(\mathbb{L}(s C), \mathbb{L}(s C))$ the derivation induced by the map

$$
d_{2}: s C \rightarrow \mathbb{L}(s C), \quad d_{2}(s v)=-(s \otimes s) \Delta(v)
$$

(this makes sense since tw $\circ \Delta=\Delta$).
Theorem 2.2. In the above notation $d_{1}^{2}=d_{2}^{2}=\left[d_{1}, d_{2}\right]=0$ and then $\left(\mathbb{L}(s C),[],, d_{1}+d_{2}\right)$ is a $D G L A$.

Proof. $d_{1}^{2}(s v)=s \delta^{2}(v)=0$.

$$
\begin{aligned}
& d_{2} d_{1}(s v)=d_{2}(-s \delta(v))=(s \otimes s) \Delta(\delta(v))=(s \otimes s)(\delta \otimes I d+I d \otimes \delta) \Delta(v)= \\
& \quad=(-s \delta \otimes s+s \otimes s \delta) \Delta(v)=\left(d_{1} \otimes I d+I d \otimes d_{1}\right)(s \otimes s) \Delta(v)=d_{1} d_{2}(s v)
\end{aligned}
$$

Remains to prove that $\left[d_{2}, d_{2}\right]=2 d_{2}^{2}=0$. Given $x \in C \otimes C$ we have the straighforward identities

$$
\begin{gathered}
\left(d_{2} \otimes I d\right)(s \otimes s)(x)=-(s \otimes s \otimes s)(\Delta \otimes I d)(x) \\
\left(I d \otimes d_{2}\right)(s \otimes s)(x)=(s \otimes s \otimes s)(I d \otimes \Delta)(x)
\end{gathered}
$$

and then for $v \in C$ we have

$$
d_{2}^{2}(s v)=-\left(d_{2} \otimes I d+I d \otimes d_{2}\right)(s \otimes s) \Delta(v)=-(s \otimes s \otimes s)(\Delta \otimes I d-I d \otimes \Delta) \Delta(v)=0
$$

Definition 2.3. For every differential graded cocommutative coalgebra C denote $L(C)$ the differential graded Lie algebra $\left(\mathbb{L}(s C),[],, d_{1}+d_{2}\right)$.

It is quite obvious that L is a functor.
Proposition 2.4 (Quillen). The functor L preserves quasiisomorphisms.
Proof. Omitted.

3. TWISTING MORPHISMS

Let (C, Δ, δ) be a differential graded cocommutative coalgebra and $(H,[],, \partial)$ a DGLA. Then the space $\operatorname{Hom}^{*}(C, H)$ has a natural structure of DGLA with differential

$$
d(f)=\partial f-(-1)^{\bar{f}} f \delta
$$

and bracket $[f, g]$ equal to the composition

$$
C \xrightarrow{\Delta} C \otimes C \xrightarrow{f \otimes g} H \otimes H \xrightarrow{[,]} H
$$

Exercise Verify that this is a DGLA.
Definition 3.1. A twisting morphism is a map $\alpha \in \operatorname{Hom}^{1}(C, H)$ satisfying the Maurer-Cartan equation.

The composition with $s: C \rightarrow s C$ give an isomorphism $\operatorname{Hom}^{1}(C, H)=\operatorname{Hom}^{0}(s C, H)$ and then every element $\alpha_{1} \in \operatorname{Hom}^{1}(C, H)$ gives a morphims of graded Lie algebras $\alpha: L(C)=\mathbb{L}(s C) \rightarrow H$.
Lemma 3.2. $\alpha_{1} \in \operatorname{Hom}^{1}(C, H)$ is a twisting morphism if and only if $\alpha: L(C) \rightarrow H$ is a morphism of DGLA:

$$
M C\left(\operatorname{Hom}^{*}(C, H)\right)=\operatorname{Hom}_{D G L A}(L(C), H)
$$

Proof. α is a morphims of DGLA if and only if

$$
d \alpha=\alpha\left(d_{1}+d_{2}\right)
$$

Being the above maps two α-derivations, by Leibniz rule it is sufficient to prove that they coincide on $s C$, i.e. that for every $v \in C$

$$
d \alpha_{1}(s v)=\alpha_{1} d_{1}(s v)+\frac{1}{2} \alpha_{2}\left(d_{2}(s v)\right)
$$

We have $d \alpha_{1}(s v)=d \alpha_{1}(v), \alpha_{1} d_{1}(s v)=-\alpha_{1}(\delta(v))$ and then

$$
d \alpha_{1}(s v)-\alpha_{1} d_{1}(s v)=\left(d \alpha_{1}+\alpha_{1} \delta\right) v=\left(d \alpha_{1}\right) v
$$

Similarly

$$
\alpha_{2}\left(d_{2}(s v)\right)=-\alpha_{2}((s \otimes s) \Delta(v))=-\left[\alpha_{1}, \alpha_{1}\right](v)
$$

