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Let R be a commutative ring, by a nonassociative (= not necessarily associative) graded R-
algebra we mean a graded R-module M = ⊕M i endowed with a R-bilinear map M i ×M j →
M i+j .

The nonassociative algebra M is called unitary if there exist a “unity” 1 ∈ M0 such that
1m = m1 = m for every m ∈M .

A left ideal (resp.: right ideal) of M is a graded submodule I ⊂M such that MI ⊂ I (resp.:
IM ⊂ I). A graded submodule is called an ideal if it is both a left and right ideal.

A homomorphism of R-modules d : M →M is called a derivation of degree k if d(M i) ⊂M i+k

and satisfies the graded Leibniz rule d(ab) = d(a)b+ (−1)k aad(b).
If M is as associative graded algebra we denote by ML the associated graded Lie algebra,

with bracket equal to the graded commutator [a, b] = ab− (−1)a bba.
It is easy to see that if f : M →M is a derivation, then also f : ML →ML is a derivation.

Notation: For a graded Lie algebra H we denote [a, b, c] = [a, [b, c]] and more generally

[a1, . . . , an] = [a1, [a2, . . . , an]] = [a1, [a2, [a3, . . . , [an−1, an] . . .] .

Notice that the descending central series H [n] may be defined as

H [n] = Span{[a1, . . . , an]}, a1, . . . , an ∈ H.
Jacoby identity becomes

[[a, b], c] = [a, b, c]− (−1)a b[b, a, c].

1. Free graded Lie algebras

Let V be a graded vector space over K, we denote by

T (V ) =
⊕

n≥0

⊗n
V, T (V ) =

⊕
n≥1

⊗n
V.

The tensor product induce on T (V ) a structure of unital associative graded algebra and T (V )
is an ideal of T (V ). The algebra T (V ) is called tensor algebra generated by V and T (V ) is
called the reduced tensor algebra generated by V .

Lemma 1.1. Let V be a K-vector space and ı : V → T (V ) the natural inclusion. For every
graded associative K-algebra R and every linear map f ∈ Hom0

K(V,R) there exists a unique
homomorphism of K-algebras φ : T (V )→ R such that f = φı.

Proof. Clear. �

Lemma 1.2. Let V be a K-vector space and ı : V → T (V ) the natural inclusion. For every
f ∈ Homk

K(V, T (V )) there exists a unique derivation φ : T (V )→ T (V ) such that f = φı.

Proof. Leibniz rule forces to define φ as

φ(v1 ⊗ · · · ⊗ vn) =
n∑

i=1

(−1)k(v1+···+vi−1) v1 ⊗ · · · ⊗ f(vi)⊗ · · · ⊗ vn .

�
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Definition 1.3. Let V be a graded K-vector space; the free Lie algebra generated by V is
the smallest graded Lie subalgebra L(V ) ⊂ T (V )L which contains V .

Equivalently L(V ) is the intersection of all the Lie subalgebras of T (V )L containing V .
For every integer n > 0 we denote by L(V )n ⊂ L(V ) ∩

⊗n
V the linear subspace generated

by all the elements
[v1, v2, . . . , vn], n > 0, v1, . . . , vn ∈ V.

By definition L(V )1 = V , L(V )n = [V,L(V )n−1] and therefore ⊕n>0L(V )n ⊂ L(V ). On the
other hand the Jacobi identity [[x, y], z] = [x, [y, z]]− [y, [x, z]] implies that

[L(V )n,L(V )m] ⊂ [V, [L(V )n−1,L(V )m]] + [L(V )n−1, [V,L(V )m]]

and therefore, by induction on n, [L(V )n,L(V )m] ⊂ L(V )n+m.
This implies that the direct sum ⊕n>0L(V )n is a graded Lie subalgebra of L(V ); therefore
⊕n>0L(V )n = L(V ) and for every n

L(V )n = L(V ) ∩
⊗n

V, L(V )[n] =
⊕
i≥n

L(V )i.

The construction V 7→ L(V ) is a functor from the category of graded vector spaces to the cat-
egory of graded Lie algebras, since every morphism of vector spaces V →W induce a morphism
of algebras T (V )→ T (W ) which restricts to a morphism of Lie algebras L(V )→ L(W ).

Theorem 1.4 (Dynkyn-Sprecht-Wever). Assume that V is a vector space and H a graded Lie
algebra with bracket [ , ]. Let σ1 ∈ Hom0(V,H) be a linear map and define, for every n ≥ 2, the
maps

σn :
⊗n

V → H, σn(v1⊗· · ·⊗vn) = [σ1(v1), σn−1(v2⊗· · ·⊗vn)] = [σ1(v1), σ1(v2), . . . , σ1(vn)].

Then the linear map

σ =
∞∑

n=1

σn

n
: L(V )→ H, σ(v1 ⊗ · · · ⊗ vn) =

1
n

[σ1(v1), σ1(v2), . . . , σ1(vn)],

is the unique homomorphism of graded Lie algebras extending σ1.

Proof. The adjoint representation

θ : V → Hom∗(H,H), θ(v)x = [σ1(v), x],

extends to a morphism of graded associative algebras θ : T (V )→ Hom∗(H,H) by the composi-
tion rule

θ(v1 ⊗ · · · ⊗ vs)x = θ(v1)θ(v2) · · · θ(vs)x.
By definition

σn(v1 ⊗ · · · ⊗ vn) = θ(v1 ⊗ · · · ⊗ vn−1)σ1(vn)
and more generally, for every v1, . . . , vn, w1, . . . , wm ∈ V we have

σn+m(v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ . . .⊗ wm) = θ(v1 ⊗ · · · ⊗ vn)σm(w1 ⊗ · · · ⊗ wm).

Since every element of L(V ) is a linear combination of homogeneous elements it is sufficient to
prove, by induction on n ≥ 1, the following properties

An: If m ≤ n, x ∈ L(V )m and y ∈ L(V )n then σ([x, y]) = [σ(x), σ(y)].
Bn: If m ≤ n, y ∈ L(V )m and h ∈ H then θ(y)h = [σ(y), h].

The initial step n = 1 is straightforward, assume therefore n ≥ 2.
[An−1 + Bn−1 ⇒ Bn] We have to consider only the case m = n. The element y is a linear
combination of elements of the form [a, b], a ∈ V , b ∈ L(V )n−1 and, using Bn−1 we get

θ(y)h = [σ(a), θ(b)h]− (−1)a bθ(b)[σ(a), h] = [σ(a), [σ(b), h]]− (−1)a b[σ(b), [σ(a), h]].
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Using An−1 we get therefore

θ(y)h = [[σ(a), σ(b)], h] = [σ(y), h].

[Bn ⇒ An]

σn+m([x, y]) = θ(x)σn(y)− (−1)x yθ(y)σm(x) = [σ(x), σn(y)]− (−1)x y[σ(y), σm(x)]

= n[σ(x), σ(y)]−m(−1)x y[σ(y), σ(x)] = (n+m)[σ(x), σ(y)].

Since L(V ) is generated by V as a Lie algebra, the unicity of σ follows. �

Corollary 1.5. For every vector space V the linear map

π : T (V )→ L(V ), π(v1 ⊗ · · · ⊗ vn) =
1
n

[v1, v2, . . . , vn]

is a projection. In particular for every n > 0

L(V )n = {x ∈ V ⊗n | π(x) = x}.

Proof. The identity on L(V ) is the unique Lie homomorphism extending the natural inclusion
V → L(V ). �

Lemma 1.6. Every f ∈ Homk(V,L(V )) extends to a unique derivation L(V )→ L(V ).

Proof. The composition f : V → L(V ) ↪→ T (V ) extends to a derivation F : T (V ) → T (V ).
Leibniz rule gives the unicity and F (L(V )) ⊂ L(V ). �

2. The functor L of Quillen

Let s be a formal symbol of degree +1. For every graded vector space V denote

sV = {sv | v ∈ V }, and s ∈ Hom1(V, sV ), s(v) = sv.

Lemma 2.1. For every x ∈ V ⊗ V we have

π((s⊗ s)x) = (s⊗ s)
(
x+ tw(x)

2

)
.

In particular (s⊗ s)x ∈ L(sV )2 if and only if x = tw(x).

Proof. By linearity may assume x = u⊗ v. Then tw(x) = (−1)u vv ⊗ u and

2π((s⊗ s)x) = 2π((−1)usu⊗ sv) = (−1)usu⊗ sv − (−1)u+(u+1)(v+1)sv ⊗ su =

= (−1)usu⊗ sv + (−1)v+u vsv ⊗ su = (s⊗ s)(x+ tw(x)).

�

Let (C,∆, δ) be a differential graded cocommutative coalgebra. Denote by:
(1) d1 ∈ Der1(L(sC),L(sC)) the derivation induced by the map

d1 : sC → L(sC), d1(sv) = −sδ(v).

(2) d2 ∈ Der1(L(sC),L(sC)) the derivation induced by the map

d2 : sC → L(sC), d2(sv) = −(s⊗ s)∆(v)

(this makes sense since tw ◦∆ = ∆).

Theorem 2.2. In the above notation d2
1 = d2

2 = [d1, d2] = 0 and then (L(sC), [, ], d1 + d2) is a
DGLA.
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Proof. d2
1(sv) = sδ2(v) = 0.

d2d1(sv) = d2(−sδ(v)) = (s⊗ s)∆(δ(v)) = (s⊗ s)(δ ⊗ Id+ Id⊗ δ)∆(v) =

= (−sδ ⊗ s+ s⊗ sδ)∆(v) = (d1 ⊗ Id+ Id⊗ d1)(s⊗ s)∆(v) = d1d2(sv).
Remains to prove that [d2, d2] = 2d2

2 = 0. Given x ∈ C⊗C we have the straighforward identities

(d2 ⊗ Id)(s⊗ s)(x) = −(s⊗ s⊗ s)(∆⊗ Id)(x),

(Id⊗ d2)(s⊗ s)(x) = (s⊗ s⊗ s)(Id⊗∆)(x),
and then for v ∈ C we have

d2
2(sv) = −(d2 ⊗ Id+ Id⊗ d2)(s⊗ s)∆(v) = −(s⊗ s⊗ s)(∆⊗ Id− Id⊗∆)∆(v) = 0.

�

Definition 2.3. For every differential graded cocommutative coalgebra C denote L(C) the
differential graded Lie algebra (L(sC), [, ], d1 + d2).

It is quite obvious that L is a functor.

Proposition 2.4 (Quillen). The functor L preserves quasiisomorphisms.

Proof. Omitted. �

3. Twisting morphisms

Let (C,∆, δ) be a differential graded cocommutative coalgebra and (H, [, ], ∂) a DGLA. Then
the space Hom∗(C,H) has a natural structure of DGLA with differential

d(f) = ∂f − (−1)ffδ

and bracket [f, g] equal to the composition

C
∆−→C ⊗ C f⊗g−−−→ H ⊗H [,]−→H.

Exercise Verify that this is a DGLA.

Definition 3.1. A twisting morphism is a map α ∈ Hom1(C,H) satisfying the Maurer-Cartan
equation.

The composition with s : C → sC give an isomorphism Hom1(C,H) = Hom0(sC,H) and then
every element α1 ∈ Hom1(C,H) gives a morphims of graded Lie algebras α : L(C) = L(sC)→ H.

Lemma 3.2. α1 ∈ Hom1(C,H) is a twisting morphism if and only if α : L(C) → H is a
morphism of DGLA:

MC(Hom∗(C,H)) = HomDGLA(L(C), H).

Proof. α is a morphims of DGLA if and only if

dα = α(d1 + d2).

Being the above maps two α-derivations, by Leibniz rule it is sufficient to prove that they coincide
on sC, i.e. that for every v ∈ C

dα1(sv) = α1d1(sv) +
1
2
α2(d2(sv))

We have dα1(sv) = dα1(v), α1d1(sv) = −α1(δ(v)) and then

dα1(sv)− α1d1(sv) = (dα1 + α1δ)v = (dα1)v.

Similarly
α2(d2(sv)) = −α2((s⊗ s)∆(v)) = −[α1, α1](v).

�
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