THE THOM-WHITNEY-SULLIVAN CONSTRUCTION

1. Simplicial objects

Let $\boldsymbol{\Delta}$ be the category of finite ordinals: the objects are objects are $[0]=\{0\},[1]=\{0,1\}$, $[2]=\{0,1,2\}$ ecc. and morphisms are the non decreasing maps.

Finally $\boldsymbol{\Delta}_{\text {mon }}$ is the category with the same objects as above and whose morphisms are orderpreserving injective maps among them.

In order to avoid heavy notations it is convenient to denote also $[n]=\emptyset$ for every $n<0$ and write

$$
\begin{gathered}
M(n, m)=\operatorname{Mor}_{\Delta}([n],[m])=\{f:\{0,1, \ldots, n\} \rightarrow\{0,1, \ldots, m\} \mid f(i) \leq f(i+1)\} \\
I(n, m)=\operatorname{Mor}_{\Delta_{\operatorname{mon}}}([n],[m])=\{f:\{0,1, \ldots, n\} \rightarrow\{0,1, \ldots, m\} \mid f(i)<f(i+1)\}
\end{gathered}
$$

Every morphism in $\boldsymbol{\Delta}_{\text {mon }}$, different from the identity, is a finite composition of face morphisms:

$$
\partial_{k}:[i-1] \rightarrow[i], \quad \partial_{k}(p)=\left\{\begin{array}{ll}
p & \text { if } p<k \\
p+1 & \text { if } k \leq p
\end{array}, \quad k=0, \ldots, i .\right.
$$

Equivalently ∂_{k} is the unique strictly monotone map whose image misses k.
The relations about compositions of them are generated by

$$
\partial_{l} \partial_{k}=\partial_{k+1} \partial_{l}, \quad \text { for every } l \leq k
$$

Definition 1.1 ([We94]). Let \mathbf{C} be a category:
(1) A cosimplicial object in \mathbf{C} is a covariant functor $A^{\Delta}: \boldsymbol{\Delta} \rightarrow \mathbf{C}$.
(2) A semicosimplicial object in \mathbf{C} is a covariant functor $A^{\Delta}: \boldsymbol{\Delta}_{m o n} \rightarrow \mathbf{C}$.
(3) A simplicial object in \mathbf{C} is a contravariant functor $A_{\Delta}: \boldsymbol{\Delta} \rightarrow \mathbf{C}$.
(4) A semisimplicial object in \mathbf{C} is a contravariant functor $A_{\Delta}: \boldsymbol{\Delta}_{\text {mon }} \rightarrow \mathbf{C}$.

Notice that a semicosimplicial object A^{Δ} is a diagram in \mathbf{C} :

$$
A_{0} \Longrightarrow A_{1} \Longrightarrow A_{2} \equiv \ggg>,
$$

where each A_{i} is in \mathbf{C}, and, for each $i>0$, there are $i+1$ morphisms

$$
\partial_{k}: A_{i-1} \rightarrow A_{i}, \quad k=0, \ldots, i,
$$

such that $\partial_{l} \partial_{k}=\partial_{k+1} \partial_{l}$, for any $l \leq k$.
Example 1.2. Let \mathbb{K} be a field. Define the standard n-simplex over \mathbb{K} as the affine space

$$
\Delta^{n}=\left\{\left(t_{0}, \ldots, t_{n}\right) \in \mathbb{K}^{n+1} \mid t_{0}+t_{1}+\cdots+t_{n}=1\right\}
$$

The vertices of Δ^{n} are the points

$$
e_{0}=(1,0, \ldots, 0), \quad e_{1}=(0,1, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 1)
$$

Then the family $\left\{\Delta^{n}\right\}, n \geq 0$, is a cosimplicial affine space, where for every monotone map $f:[n] \rightarrow[m]$ we set $f: \Delta^{n} \rightarrow \Delta^{m}$ as the affine map such that $f\left(e_{i}\right)=e_{f(i)}$. Equivalently $f\left(t_{0}, \ldots, t_{n}\right)=\sum t_{i} e_{f(i)}=\left(u_{0}, \ldots, u_{m}\right)$, where

$$
u_{i}=\sum_{\{j \mid f(j)=i\}} t_{j} \quad\left(\text { we intend that } \sum_{\emptyset} t_{j}=0\right) .
$$

In particular, for $m=n+1$ we have

$$
\partial_{k}\left(t_{0}, \ldots, t_{n}\right)=\left(t_{0}, \ldots, t_{k-1}, 0, t_{k}, \ldots, t_{n}\right)
$$

and this explain why ∂_{k} is called face map.

Example 1.3 ([FHT01]). For every $0 \leq p \leq n$, let A_{n}^{p} be the vector space of polynomial differential p-forms on the standard n-simplex Δ^{n}. Then, the space of polynomial differential forms on the standard n-simplex

$$
A_{n}=\bigoplus_{p=0}^{n} A_{n}^{p}=\frac{\mathbb{K}\left[t_{0}, \ldots, t_{n}, d t_{0}, \ldots, d t_{n}\right]}{\left(1-\sum t_{i}, \sum d t_{i}\right)}
$$

is a differential graded algebra. Notice that there exists a natural isomorphism of differential graded algebras

$$
\mathbb{K}\left[t_{1}, \ldots, t_{n}, d t_{1}, \ldots, d t_{n}\right] \rightarrow A_{n}
$$

Since every affine map $f: \Delta^{n} \rightarrow \Delta^{m}$ induce by pull-back a morphism of differential graded algebra $f^{*}: A_{m} \rightarrow_{n}$ we have that the sequence $\left\{A_{n}\right\}$ is a simplicial differential graded algebra.

In particular the face maps $\partial_{k}^{*}: A_{n}^{p} \rightarrow A_{n-1}^{p}, k=0, \ldots, n$, are given by pull-back of forms under the inclusion of standard simplices

$$
\left(t_{0}, \ldots, t_{n-1}\right) \mapsto\left(t_{0}, \ldots, t_{k-1}, 0, t_{k}, \ldots, t_{n-1}\right)
$$

2. Integration and Stokes formula

Lemma 2.1. Let \mathbb{K} be a field of characteristic 0, then there exists a unique sequence of linear maps

$$
\int_{\Delta^{n}}: A_{n} \rightarrow \mathbb{K}, \quad n \geq 0
$$

such that:
(1) $\int_{\Delta^{n}} \eta=0$ if $\eta \in A_{n}^{p}$ and $p \neq n$.
(2) $\int_{\Delta^{0}}: A_{0}^{0}=\frac{\mathbb{K}\left[t_{0}\right]}{\left(t_{0}-1\right)} \rightarrow \mathbb{K}, \quad \int_{0} p\left(t_{0}\right)=p(1)$.
(3) $\int_{\Delta^{n}} t_{0}^{k_{0}} t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} d t_{1} \wedge \cdots \wedge d t_{n}=\frac{k_{0}!k_{1}!\cdots k_{n}!}{\left(k_{0}+k_{1}+\cdots+k_{n}+n\right)!}$.
(4) (Stokes formula) For every $n>0$ and $\omega \in A_{n}^{n-1}$, we have

$$
\int_{\Delta^{n}} d \omega=\sum_{k=0}^{n}(-1)^{k} \int_{\Delta^{n-1}} \partial_{k}^{*} \omega
$$

Proof. The unicity follows from the first two conditions. To prove the existence, define

$$
\int_{\Delta^{n}} t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} d t_{1} \wedge \cdots \wedge d t_{n}=\frac{k_{1}!\cdots k_{n}!}{\left(k_{1}+\cdots+k_{n}+n\right)!}
$$

and extend by \mathbb{K} linearity to a map $\int_{n}: A_{n}^{n} \rightarrow \mathbb{K}$. We first prove by induction on k_{0} the formula

$$
\int_{\Delta^{n}} t_{0}^{k_{0}} t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} d t_{1} \wedge \cdots \wedge d t_{n}=\frac{k_{0}!k_{1}!\cdots k_{n}!}{\left(k_{0}+k_{1}+\cdots+k_{n}+n\right)!}
$$

Assume $k_{0}>0$ and denote $a=\left(k_{0}-1\right)!k_{1}!\cdots k_{n}!, b=k_{0}+k_{1}+\cdots+k_{n}+n$. Since

$$
t_{0}^{k_{0}} t_{1}^{k_{1}} \cdots t_{n}^{k_{n}}=t_{0}^{k_{0}-1} t_{1}^{k_{1}} \cdots t_{n}^{k_{n}}\left(1-\sum_{i=1}^{n} t_{i}\right)
$$

by induction hypothesis, we have

$$
\begin{gathered}
\int_{\Delta^{n}} t_{0}^{k_{0}} t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} d t_{1} \wedge \cdots \wedge d t_{n}=\frac{a}{(b-1)!}-\sum_{i=1}^{n} \frac{a}{b!}\left(k_{i}+1\right) \\
=\frac{a}{(b-1)!}-\frac{a}{b!}\left(b-k_{0}\right)=\frac{a b-a\left(b-k_{0}\right)}{b!}=\frac{k_{0} a}{b!} .
\end{gathered}
$$

Notice that the symmetric group \mathfrak{S}_{n+1} acts on $\left(A_{P L}\right)_{n}$ by permutation of indices and, for every $\sigma \in \mathfrak{S}_{n+1}$, we have

$$
\int_{\Delta^{n}} \sigma(\omega)=(-1)^{\sigma} \int_{\Delta^{n}} \omega
$$

(It is sufficient to check the above identity for transpositions).
By linearity, it is sufficient to prove Stokes formula for ω of type

$$
\omega=t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} d t_{1} \wedge \cdots \wedge \widehat{d t}_{i} \wedge \cdots \wedge d t_{n}
$$

Up to permutation of indices, we may assume $i=n$. Assume first $k_{n}=0$, i.e.,

$$
\omega=t_{1}^{k_{1}} \cdots t_{n-1}^{k_{n-1}} d t_{1} \wedge \cdots \wedge d t_{n-1}
$$

In this case, $d \omega=0, \partial_{k}^{*} \omega=0$ for every $k \neq 0, n$, and

$$
\begin{gathered}
\partial_{0}^{*} \omega=t_{0}^{k_{1}} \cdots t_{n-2}^{k_{n-1}} d t_{0} \wedge \cdots \wedge d t_{n-2}=(-1)^{n-1} t_{0}^{k_{1}} \cdots t_{n-2}^{k_{n-1}} d t_{1} \wedge \cdots \wedge d t_{n-1} \\
\partial_{n}^{*} \omega=t_{1}^{k_{1}} \cdots t_{n-1}^{k_{n-1}} d t_{1} \wedge \cdots \wedge d t_{n-1}
\end{gathered}
$$

therefore

$$
\int_{\Delta^{n-1}} \partial_{0}^{*} \omega+(-1)^{n} \int_{\Delta^{n-1}} \partial_{n}^{*} \omega=0
$$

Next, assume $k_{n}>0$, then $\partial_{k}^{*} \omega=0$ for every $k \neq 0$, and

$$
\begin{aligned}
\int_{\Delta^{n}} d \omega & =\int_{\Delta^{n}}(-1)^{n-1} k_{n} t_{1}^{k_{1}} \cdots t_{n}^{k_{n}-1} d t_{1} \wedge \cdots \wedge d t_{n}=\frac{(-1)^{n-1} k_{1}!\cdots k_{n}!}{\left(k_{1}+\cdots+k_{n}+n-1\right)!}, \\
\int_{n-1} \partial_{0}^{*} \omega & =\int_{\Delta^{n-1}} t_{0}^{k_{1}} \cdots t_{n-1}^{k_{n}} d t_{0} \wedge \cdots \wedge d t_{n-2} \\
& =(-1)^{n-1} \int_{\Delta^{n-1}} t_{0}^{k_{1}} \cdots t_{n-1}^{k_{n}} d t_{1} \wedge \cdots \wedge d t_{n-1}=\frac{(-1)^{n-1} k_{1}!\cdots k_{n}!}{\left(k_{1}+\cdots+k_{n}+n-1\right)!} .
\end{aligned}
$$

Exercise Prove that for $\mathbb{K}=\mathbb{R}$ the operator $\int_{\Delta^{n}}$ is equal to the usual integration on the topological simplex $\Delta^{n} \cap\left\{t_{i} \geq 0 \forall i\right\}$.

3. The Thom-Whitney-Sullivan construction

Here we consider only the semicosimplicial case; the sare results holds, with minor modification also in the cosimplicial case.

Let

$$
V^{\Delta}: \quad V_{0} \Longrightarrow V_{1} \Longrightarrow V_{2} \Longrightarrow \overrightarrow{3} \cdots,
$$

be a semicosimplicial vector space. Then the graded vector space $\bigoplus_{n \geq 0} V_{n}[-n]$ has two differentials

$$
d=\sum_{n}(-1)^{n} d_{n}, \quad \text { where } \quad d_{n} \text { is the differential of } V_{n}
$$

and

$$
\partial=\sum_{i}(-1)^{i} \partial_{i}, \quad \text { where } \quad \partial_{i} \text { are the face maps. }
$$

More explicitly, if $v \in V_{n}^{i}$, then the degree of v is $i+n$ and

$$
d(v)=(-1)^{n} d_{n}(v) \in V_{n}^{i+1}, \quad \partial(v)=\partial_{0}(v)-\partial_{1}(v)+\cdots+(-1)^{n+1} \partial_{n+1}(v) \in V_{n+1}^{i}
$$

Since $d^{2}=\partial^{2}=d \partial+\partial d=0$ the following definition makes sense:
Definition 3.1. The normal complex of V^{Δ} is the differentiao graded vector space

$$
N\left(V^{\Delta}\right)=\left(\bigoplus_{n \geq 0} V_{n}[-n], d+\partial\right)
$$

The above definition of normal complex is valid only in the semicosimplicial case. In the cosimplicial case we have $N\left(V^{\Delta}\right)=\left(\bigoplus_{n \geq 0} K_{n}[-n], d+\partial\right)$ where $K_{0}=V_{0}$ and

$$
K_{n}=\bigcap_{f \in M(n, n-1)} \operatorname{ker}\left(f: V_{n} \rightarrow V_{n-1}\right), \quad n>0
$$

Definition 3.2. The Thom-Whitney-Sullivan differential graded vector space of V^{Δ} is

$$
T W\left(V^{\Delta}\right)=\operatorname{Tot}\left(\bigoplus_{p, q} T W\left(V^{\Delta}\right)^{p, q}, d, \partial\right)
$$

where

$$
T W\left(V^{\Delta}\right)^{p, q}=\left\{\left(x_{n}\right) \in \prod_{n \geq 0} A_{n}^{p} \otimes V_{n}^{q} \mid\left(\partial_{k}^{*} \otimes I d\right) x_{n}=\left(I d \otimes \partial_{k}\right) x_{n-1}, \text { for every } 0 \leq k \leq n\right\}
$$

It is immediate to see that $T W\left(V^{\Delta}\right)$ is a differential graded subspace of the total complex of the double complex $\bigoplus_{p, q} \prod_{n \geq 0} A_{n}^{p} \otimes V_{n}^{q}$.

Theorem 3.3 (Whitney). The map

$$
I: T W\left(V^{\Delta}\right) \rightarrow N\left(V^{\Delta}\right)
$$

induced by

$$
T W\left(V^{\Delta}\right)^{p, q} \xrightarrow{\text { inclusion }} \prod_{n \geq 0} A_{n}^{p} \otimes V_{n}^{q} \xrightarrow{\text { projection }} A_{p}^{p} \otimes V_{p}^{q} \xrightarrow{\int_{\Delta^{p}} \otimes I d} V_{p}[-p]^{p+q}
$$

is a quasiisomorphism of differential graded vector spaces.
We will prove this theorem later on, after a series of preliminary results.
Example 3.4. Let \mathcal{L} be a sheaf of differential graded vector spaces over an algebraic variety X and $\mathcal{U}=\left\{U_{i}\right\}$ an open cover of X; assume that the set of indices i is totally ordered. Then, we can define the semicosimplicial DG vector space of Čech cochains of \mathcal{L} with respect to he cover \mathcal{U} :

$$
\mathcal{L}(\mathcal{U}): \quad \prod_{i} \mathcal{L}\left(U_{i}\right) \Longrightarrow \prod_{i<j} \mathcal{L}\left(U_{i j}\right) \Longrightarrow \rightrightarrows \prod_{i<j<k} \mathcal{L}\left(U_{i j k}\right) \equiv \geqq<.
$$

Clearly, in this case, the total complex $\operatorname{Tot}(\mathcal{L}(\mathcal{U}))$ is the associated Coch complex $C^{*}(\mathcal{U}, \mathcal{L})$. We will denote by $T W(\mathcal{U}, \mathcal{L})$ the associated Thom-Whitney complex. The integration map $T W(\mathcal{U}, \mathcal{L}) \rightarrow$ $C^{*}(\mathcal{U}, \mathcal{L})$ is a surjective quasiisomorphism. If \mathcal{L} is a quasicoherent DG-sheaf and every U_{i} is affine, then the cohomology of $T W(\mathcal{U}, \mathcal{L})$ is the same of the cohomology of \mathcal{L}.

Example 3.5. Let

$$
\mathfrak{g}^{\Delta}: \quad \mathfrak{g}_{0} \Longrightarrow \mathfrak{g}_{1} \Longrightarrow \mathfrak{g}_{2} \equiv{ }^{\rightrightarrows} \cdots,
$$

be a semicosimplicial differential graded Lie algebra, i.e., each \mathfrak{g}_{i} is a DGLA each ∂_{k} is a morphism of DGLAs. Then, in this case too, we can apply the Thom-Whitney construction: it is evident $T W\left(\mathfrak{g}^{\Delta}\right)$ has a structure of a differential graded lie algebra.
Example 3.6. Let $\chi: L \rightarrow M$ be a morphism of differential graded Lie algebras. Then, we can consider the semicosimplicial DGLA

$$
\chi^{\Delta}: \quad L \Longrightarrow M \Longrightarrow 0 \equiv \not \Longrightarrow \cdots, \quad \text { with } \quad \partial_{0}=\chi \text { and } \partial_{1}=0 \text {. }
$$

It turns out that the normal complex $N\left(\chi^{\Delta}\right)$ coincides with the mapping cone of χ, i.e.,

$$
N\left(\chi^{\Delta}\right)^{i}=L^{i} \oplus M^{i-1}, \quad d(l, m)=(d l, \chi(l)-d m)
$$

and the Thom-Whitney-Sullivan construction coincides with the homotopy fiber of χ :

$$
T W\left(\chi^{\Delta}\right) \simeq\{(l, m(t, d t)) \in L \times M[t, d t] \mid m(0,0)=0, m(1,0)=\chi(l)\}
$$

Lemma 3.7. Let \mathfrak{g}^{Δ} be a semicosimplicial DGLA, L a DGLA and $\varphi: L \rightarrow \mathfrak{g}_{0}$ a morphism of $D G L A$, such that $\partial_{0} \circ \varphi=\partial_{1} \circ \varphi$. Define $h: L \rightarrow T W\left(\mathfrak{g}^{\Delta}\right)$ as

$$
h(l)=\left(\varphi(l) \otimes 1, \partial_{0}(\varphi(l)) \otimes 1, \partial_{0}^{2}(\varphi(l)) \otimes 1, \ldots, \partial_{0}^{n}(\varphi(l)) \otimes 1, \ldots\right) .
$$

Then, h is a well defined morphism of DGLAs giving a commutative diagram

where $\psi: L \rightarrow \operatorname{Tot}\left(\mathfrak{g}^{\Delta}\right)$ is the composition of φ with the inclusion $\mathfrak{g}_{0} \subset \operatorname{Tot}\left(\mathfrak{g}^{\Delta}\right)$.
Proof. Since $\partial_{0} \partial_{k}=\partial_{k+1} \partial_{0}$, for all k, we have that

$$
\begin{gathered}
\delta^{k}\left(\partial_{0}^{n}(\varphi(l)) \otimes 1\right)=\partial_{0}^{n}(\varphi(l)) \otimes \delta^{k}(1)=\partial_{0}^{n}(\varphi(l)) \otimes 1= \\
\partial_{k}\left(\partial_{0}^{n-1}(\varphi(l))\right) \otimes 1=\partial_{k}\left(\partial_{0}^{n-1}(\varphi(l)) \otimes 1\right),
\end{gathered}
$$

i.e., for every $l \in L, h(l) \in T W\left(\mathfrak{g}^{\Delta}\right)$. Moreover, h commutes with the differentials; in fact, by hypothesis, $d_{\mathfrak{g}_{0}}(\varphi(l))=\varphi\left(d_{L}(l)\right)$, and so

$$
h\left(d_{L}(l)\right)=\left(d_{\mathfrak{g}_{0}}(\varphi(l)) \otimes 1, \partial_{0}\left(d_{\mathfrak{g}_{0}}(\varphi(l))\right) \otimes 1, \partial_{0}^{2}\left(d_{\mathfrak{g}_{0}}(\varphi(l))\right) \otimes 1, \ldots, \partial_{0}^{n}\left(d_{\mathfrak{g}_{0}}(\varphi(l))\right) \otimes 1, \ldots\right)
$$

is equal to

$$
\begin{gathered}
\left(d_{\mathfrak{g}_{0}}(\varphi(l)) \otimes 1, d_{\mathfrak{g}_{1}}\left(\partial_{0}(\varphi(l))\right) \otimes 1, d_{\mathfrak{g}_{2}}\left(\partial_{0}^{2}(\varphi(l))\right) \otimes 1, \ldots, d_{\mathfrak{g}_{n}}\left(\partial_{0}^{n}(\varphi(l))\right) \otimes 1, \ldots\right)= \\
d_{T W}\left(\varphi(l) \otimes 1, \partial_{0}(\varphi(l)) \otimes 1, \partial_{0}^{2}(\varphi(l)) \otimes 1, \ldots, \partial_{0}^{n}(\varphi(l)) \otimes 1, \ldots\right)
\end{gathered}
$$

(since all ∂_{0} are DGLA morphisms). Analogously, since δ_{0} and φ commutes with brackets, h commutes with the brackets, i.e., h is a DGLAs morphism.

Finally, since I contracts the polynomial differential forms in A_{n} by integrating over the standard simplex Δ_{n}, we have that, $I(h(l))=\varphi(l) \in \mathfrak{g}_{0}^{i}$, for every $l \in L^{i}$.

4. Homotopy operators

For every $n \geq-1$, consider the affine space

$$
C^{n}=\left\{\left(s, t_{0}, t_{1}, \ldots, t_{n}\right) \in \mathbb{K}^{n+2} \mid s+\sum t_{i}=1\right\}
$$

The identity on \mathbb{K}^{n+2} induces an isomorphism $c: \Delta^{n+1} \rightarrow C^{n}$ and therefore an integration operator

$$
\int_{C^{n}}: \frac{\mathbb{K}\left[s, t_{0}, \ldots, t_{n}, d s, d t_{0}, \ldots, d t_{n}\right]}{\left(s+\sum t_{i}-1, d s+\sum d t_{i}\right)} \rightarrow \mathbb{K}, \quad \int_{C^{n}} \eta=\int_{\Delta^{n}} c^{*} \eta
$$

We have affine maps

$$
i: \Delta^{n} \rightarrow C^{n}, \quad i\left(t_{0}, \ldots, t_{n}\right)=\left(0, t_{0}, \ldots, t_{n}\right)
$$

and for every $f \in M(n, m)$ we also denote

$$
\begin{gathered}
f: C^{n} \rightarrow C^{m}, \quad f(1,0, \ldots, 0)=(1,0, \ldots, 0), \quad f\left(e_{i}\right)=e_{f(i)}, i \geq 0 . \\
\widehat{f}: C^{n} \times \Delta^{m} \rightarrow \Delta^{m}, \quad \widehat{f}\left(\left(s, t_{0}, \ldots, t_{n}\right), v\right)=s v+\sum t_{i} e_{f(i)}, \\
\widetilde{f}: \Delta^{n} \times \Delta^{m} \rightarrow \Delta^{m}, \quad \widetilde{f}(u, v)=\widehat{f}(i(u), v) .
\end{gathered}
$$

Finally define for every $k=0, \ldots, n$

$$
\widehat{f}_{k}: C^{n-1} \times \Delta^{m} \rightarrow \Delta^{m}, \quad \widehat{f_{k}}(u, v)=\widehat{f}\left(\partial_{k} u, v\right)
$$

Lemma 4.1. In the notation above:
(1) $\widehat{\hat{f}_{k}}=\widehat{f \partial_{k}}$,
(2) \widetilde{f} is the composition of the projection $\Delta^{n} \times \Delta^{m} \rightarrow \Delta^{n}$ and $f: \Delta^{n} \rightarrow \Delta^{m}$.

Proof. Trivial.
Lemma 4.2. In the notation above, for every $g \in M(m, p)$ we have a commutative diagram

Proof. Trivial.
Passing to differential forms we have morphisms for differential graded alebras

$$
\widehat{f}^{*}: A_{m} \rightarrow B_{n} \otimes A_{m}
$$

where

$$
B_{m}=\frac{\mathbb{K}\left[s, t_{0}, \ldots, t_{n}, d s, d t_{0}, \ldots, d t_{n}\right]}{\left(s+\sum t_{i}-1, d s+\sum d t_{i}\right)}
$$

is the de Rham algebra of C^{n}.
Definition 4.3. For every $n \geq-1, m \geq 0$ and $f \in M(n, m)$ define the operator $h_{f} \in \operatorname{Hom}^{-n-1}\left(A_{m}, A_{m}\right)$ as the composition

$$
h_{f}: A_{m} \xrightarrow{\widehat{f}^{*}} B_{n} \otimes A_{m} \xrightarrow{\int_{C^{n}} \otimes I d} A_{m} .
$$

Notice that for $n=-1$ the above operator equals the identity.
Lemma 4.4. For every $n \geq 0, m \geq 0, f \in M(n, m)$ and $\eta \in A_{m}$ we have

$$
\left[h_{f}, d\right](\eta)=h_{f}(d \eta)+(-1)^{n} d h_{f}(\eta)=\int_{\Delta^{n}} f^{*} \eta-\sum_{k=0}^{n}(-1)^{k} h_{f \partial_{k}}(\eta)
$$

In particular, for $n=0$ we have $h_{f}(d \eta)+d h_{f}(\eta)=\eta\left(e_{f(0)}\right)-\eta$ and then the evaluation at a vertex is homotopic to the identity.

Proof. For every $\beta \in B_{n}$ we have by Stokes formula

$$
\int_{C^{n}} d \beta=\int_{\Delta^{n}} i^{*} \beta-\sum_{k=0}^{n}(-1)^{k} \int_{C^{n-1}} \partial_{k}^{*} \beta
$$

Writing

$$
\widehat{f}^{*} \eta=\sum_{i} \beta_{i} \otimes \alpha_{i}, \quad \beta_{i} \in B_{n}, \alpha_{i} \in A_{m}
$$

we have

$$
\begin{gathered}
d h_{f}(\eta)=d \sum_{i}\left(\int_{C^{n}} \beta_{i}\right) \alpha_{i}=\sum_{i}\left(\int_{C^{n}} \beta_{i}\right) d \alpha_{i} \\
\widehat{f}^{*}(d \eta)=d \widehat{f}^{*}(\eta)=\sum_{i} d \beta_{i} \otimes \alpha_{i}+\sum_{i}(-1)^{\overline{\beta_{i}}} \beta_{i} \otimes d \alpha_{i} \\
h_{f}(d \eta)=\sum_{i}\left(\int_{C^{n}} d \beta_{i}\right) \otimes \alpha_{i}+(-1)^{n+1} \sum_{i}\left(\int_{C^{n}} \beta_{i}\right) \otimes d \alpha_{i},
\end{gathered}
$$

Therefore

$$
\begin{aligned}
h_{f}(d \eta)+(-1)^{n} d h_{f}(\eta) & =\sum_{i}\left(\int_{C^{n}} d \beta_{i}\right) \otimes \alpha_{i} \\
& =\sum_{i}\left(\int_{\Delta^{n}} i^{*} \beta_{i}\right) \otimes \alpha_{i}-\sum_{k=0}^{n}(-1)^{k} \sum_{i}\left(\int_{C^{n-1}} \partial_{k}^{*} \beta_{i}\right) \otimes \alpha_{i} \\
& =\left(\int_{\Delta^{n}} \otimes I d\right)\left(i^{*} \otimes I d\right) \widehat{f}^{*}(\eta)-\sum_{k=0}^{n}(-1)^{k}\left(\int_{C^{n-1}} \otimes I d\right)\left(\partial_{k}^{*} \otimes I d\right) \widehat{f}^{*}(\eta) \\
& =\left(\int_{\Delta^{n}} \otimes I d\right) \widetilde{f}^{*}(\eta)-\sum_{k=0}^{n}(-1)^{k}\left(\int_{C^{n-1}} \otimes I d\right){\widehat{f \partial_{k}}}^{*}(\eta) \\
& =\int_{\Delta^{n}} f^{*} \eta-\sum_{k=0}^{n}(-1)^{k} h_{f \partial_{k}}(\eta)
\end{aligned}
$$

Lemma 4.5. Given $f \in M(n, m), g \in M(m, p)$ and $\eta \in A_{p}$ we have:

$$
g^{*} h_{g f}(\eta)=h_{f}\left(g^{*} \eta\right)
$$

Proof. Immediate consequence of the commutative diagram

5. Whitney elementary forms

Definition 5.1. For every $f \in M(n, m)$ define the elementary form

$$
\omega_{f}=n!\sum_{i=0}^{n}(-1)^{i} t_{f(i)} d t_{f(0)} \wedge \cdots \wedge \widehat{d t_{f(i)}} \wedge \cdots \wedge d t_{f(n)} \in A_{m}^{n}
$$

Denote by $W_{m} \subset A_{m}$ the graded subspace generated by the elementary forms.
Notice that $\omega_{f} \neq 0$ if and only if f is injective.

Lemma 5.2. We have:

(1) For every $f \in M(n, m)$ and every $g \in M(p, m)$ we have

$$
g^{*} \omega_{f}=\sum_{\{h \in M(n, p) \mid f=g h\}} \omega_{h}
$$

In particular for $n=p$ we have $g^{*} \omega_{f} \neq 0$ if and only if $f=g$.
(2) For every $f \in M(n, m)$

$$
d \omega_{f}=\sum_{k}(-1)^{k} \sum_{\left\{g \mid g \partial_{k}=f\right\}} \omega_{g} .
$$

(3) For every $f \in I(n, m)$ we have

$$
\int_{\Delta^{n}} f^{*} \omega_{f}=1
$$

In particular $\left\{W_{m}\right\}$ is a simplicial differential graded subspace of $\left\{A_{m}\right\}$
Proof. The first item is easy and left as an exercise. More generally, for every finite sequence $0 \leq i_{0}, i_{1}, \ldots, i_{n} \leq m$ denote

$$
\omega_{i_{0}, \ldots, i_{n}}=n!\sum_{k=0}^{n}(-1)^{k} t_{i_{k}} d t_{i_{0}} \wedge \cdots \wedge \widehat{d t_{i_{k}}} \wedge \cdots \wedge d t_{i_{n}}
$$

then

$$
d \omega_{i_{0}, \ldots, i_{n}}=\sum_{i=0}^{m} \omega_{i, i_{0}, \ldots, i_{n}}
$$

In fact

$$
d \omega_{i_{0}, \ldots, i_{n}}=n!\sum_{k=0}^{n} d t_{i_{0}} \wedge \cdots \wedge d t_{i_{k}} \wedge \cdots \wedge d t_{i_{n}}=(n+1)!d t_{i_{0}} \wedge \cdots \wedge d t_{i_{k}} \wedge \cdots \wedge d t_{i_{n}}
$$

and

$$
\begin{aligned}
\sum_{i=0}^{m} \omega_{i, i_{0}, \ldots, i_{n}} & =(n+1)!\sum_{i=0}^{m} t_{i} d t_{i_{0}} \wedge \cdots \wedge d t_{i_{k}} \wedge \cdots \wedge d t_{i_{n}}-(n+1) \sum_{i=0}^{m} d t_{i} \wedge \omega_{i_{0}, \ldots, i_{n}} \\
& =(n+1)!d t_{i_{0}} \wedge \cdots \wedge d t_{i_{k}} \wedge \cdots \wedge d t_{i_{n}}
\end{aligned}
$$

It is now sufficient to observe that for $f \in M(n, m)$ we have

$$
\sum_{i=0}^{m} \omega_{i, f(0), \ldots, f(n)}=\sum_{k=0}^{n}(-1)^{k} \sum_{f(k-1)<i<f(k)} \omega_{f(0), \ldots, f(k-1), i, f(k), \ldots, f(n)}=\sum_{k}(-1)^{k} \sum_{\left\{g \mid g \partial_{k}=f\right\}} \omega_{g}
$$

Since

$$
f^{*} \omega_{f}=n!\sum_{k=0}^{n}(-1)^{k} t_{k} d t_{0} \wedge \cdots \wedge \widehat{d t_{k}} \wedge \cdots \wedge d t_{n}
$$

using the equalities $d t_{0}=-\sum_{i>0} d t_{i}, \sum_{i} t_{i}=1$ we obtain

$$
\begin{aligned}
f^{*} \omega_{f}= & n!\left(t_{0} d t_{1} \wedge \cdots \wedge d t_{n}-\sum_{k=1}^{n}(-1)^{k} t_{k} d t_{k} \wedge \cdots \wedge \widehat{d t_{k}} \wedge \cdots \wedge d t_{n}\right) \\
= & n!\left(t_{0}+\cdots+t_{n}\right) d t_{1} \wedge \cdots \wedge d t_{n}=n!d t_{1} \wedge \cdots \wedge d t_{n}
\end{aligned}
$$

and then

$$
\int_{\Delta^{n}} f^{*} \omega_{f}=n!\int_{\Delta^{n}} d t_{1} \wedge \cdots \wedge d t_{n}=1 .
$$

Remark 5.3. For later use we point out that

$$
\bigcap_{k=0}^{m} \operatorname{ker}\left(\partial_{k}^{*}: W_{m} \rightarrow W_{m-1}\right)=W_{m}^{m}
$$

Definition 5.4. For every $m \geq 0$ define the operators

$$
\begin{aligned}
\pi_{m}: A_{m} \rightarrow W_{m}, & \pi_{m}(\eta)=\sum_{n=0}^{m} \sum_{f \in I(n, m)}\left(\int_{\Delta_{n}} f^{*} \eta\right) \omega_{f} \\
K_{m}: A_{m} \rightarrow A_{m}, & K_{m}(\eta)=\sum_{n=0}^{m} \sum_{f \in I(n, m)} \omega_{f} \wedge h_{f}(\eta) .
\end{aligned}
$$

Theorem 5.5. In the above notation we have:
(1) π_{m} is a projector, i.e. $\pi_{m}^{2}=\pi_{m}$;
(2)

$$
K_{m} d+d K_{m}=\pi_{m}-I d
$$

$$
\begin{equation*}
K_{p} g^{*}=g^{*} K_{m}, \quad \pi_{p} g^{*}=g^{*} \pi_{m}, \quad \text { for every } g \in M(p, m) \tag{3}
\end{equation*}
$$

Proof. The first item is trivial. For the second we have

$$
\begin{aligned}
& K_{m}(d \eta)+d K_{m}(\eta)= \\
& \sum_{n=0}^{m} \sum_{f \in I(n, m)} d \omega_{f} \wedge h_{f}(\eta)+\sum_{n=0}^{m} \sum_{f \in I(n, m)} \omega_{f} \wedge\left((-1)^{n} d h_{f}(\eta)+h_{f}(d \eta)\right) \\
& \quad=\sum_{n=0}^{m} \sum_{f \in I(n, m)} d \omega_{f} \wedge h_{f}(\eta)+\sum_{n=0}^{m} \sum_{f \in I(n, m)} \omega_{f} \wedge\left(\int_{\Delta^{n}} f^{*} \eta-\sum_{k=0}^{n}(-1)^{k} h_{f \partial_{k}}(\eta)\right)
\end{aligned}
$$

Since $h_{\emptyset}=I d$ and $\sum_{f \in I(0, m)} \omega_{f}=\sum_{i=0}^{m} t_{i}=1$ we have

$$
K_{m}(d \eta)+d K_{m}(\eta)-\pi_{m}(\eta)+\eta=\sum_{n=0}^{m} \sum_{f \in I(n, m)} d \omega_{f} \wedge h_{f}(\eta)-\sum_{n=1}^{m} \sum_{f \in I(n, m)} \omega_{f} \wedge \sum_{k=0}^{n}(-1)^{k} h_{f \partial_{k}}(\eta)
$$

The vanishing of the right side follows from the equations

$$
\begin{gathered}
\sum_{n=0}^{m} \sum_{f \in I(n, m)} d \omega_{f} \wedge h_{f}(\eta)=\sum_{n=0}^{m-1} \sum_{f \in I(n, m)} d \omega_{f} \wedge h_{f}(\eta)= \\
=\sum_{n=0}^{m-1} \sum_{f \in I(n, m)} \sum_{k=0}^{n}(-1)^{k} \sum_{\left\{g \mid f=g \partial_{k}\right\}} \omega_{g} \wedge h_{g \partial_{k}}(\eta)=\sum_{n=1}^{m} \sum_{g \in I(n, m)} \sum_{k=0}^{n}(-1)^{k} \omega_{g} \wedge h_{g \partial_{k}}(\eta) .
\end{gathered}
$$

For the last item it is sufficient to prove that $K_{p} g^{*}=g^{*} K_{m}$;

$$
\begin{aligned}
g^{*} K_{m}(\eta) & =\sum_{n=0}^{m} \sum_{f \in I(n, m)} g^{*}\left(\omega_{f}\right) \wedge g^{*} h_{f}(\eta)=\sum_{n=0}^{m} \sum_{f \in I(n, m)} \sum_{\{h \in M(n, p) \mid f=g h\}} \omega_{h} \wedge g^{*} h_{f}(\eta)= \\
& =\sum_{n=0}^{m} \sum_{h \in I(n, p)} \omega_{h} \wedge g^{*} h_{g h}(\eta)=\sum_{n=0}^{m} \sum_{h \in I(n, p)} \omega_{h} \wedge h_{h}\left(g^{*} \eta\right)=K_{p}\left(g^{*} \eta\right) .
\end{aligned}
$$

6. Proof of Whitney's theorem

Let

$$
V^{\Delta}: \quad V_{0} \Longrightarrow V_{1} \Longrightarrow V_{2} \equiv \ggg<,
$$

be a fixed semicosimplicial vector space.
For every p, q we will denote

$$
\begin{gathered}
A^{p, q}=\prod_{n \geq 0} A_{n}^{p} \otimes V_{n}^{q}, \quad W^{p, q}=\prod_{n \geq 0} W_{n}^{p} \otimes V_{n}^{q}, \\
K: A^{p, q} \rightarrow A^{p-1, q}, \quad K\left(x_{0}, x_{1}, \ldots\right)=\left(K_{0}\left(x_{0}\right), K_{1}\left(x_{1}\right), \ldots\right), \\
\pi: A^{p, q} \rightarrow W^{p, q}, \quad \pi\left(x_{0}, x_{1}, \ldots\right)=\left(\pi_{0}\left(x_{0}\right), \pi_{1}\left(x_{1}\right), \ldots\right), \\
T W\left(V^{\Delta}\right)^{p, q}=\left\{\left(x_{n}\right) \in A^{p, q} \mid\left(\partial_{k}^{*} \otimes I d\right) x_{n}=\left(I d \otimes \partial_{k}\right) x_{n-1} \forall 0 \leq k \leq n\right\}, \\
W\left(V^{\Delta}\right)^{p, q}=T W\left(V^{\Delta}\right)^{p, q} \cap W^{p, q}, \quad W\left(V^{\Delta}\right)=\bigoplus_{p, q} W\left(V^{\Delta}\right)^{p, q} .
\end{gathered}
$$

Since the homotopy operator K_{m} are simplicial we have clearly that K preserves $T W\left(V^{\Delta}\right)$ and π is a projection of $T W\left(V^{\Delta}\right)$ onto $W\left(V^{\Delta}\right)$.

Lemma 6.1. The inclusion $W\left(V^{\Delta}\right) \rightarrow T W\left(V^{\Delta}\right)$ and the map $\pi: T W\left(V^{\Delta}\right) \rightarrow W\left(V^{\Delta}\right)$ are homotopy equivalences.

Proof. Immediate from formula $d K+K d=\pi-I d$.

Lemma 6.2. For every p, q the map

$$
\phi: W\left(V^{\Delta}\right)^{p, q} \xrightarrow{\text { inclusion }} \prod_{n \geq 0} W_{n}^{p} \otimes V_{n}^{q} \xrightarrow{\text { projection }} W_{p}^{p} \otimes V_{p}^{q} \xrightarrow{\int_{\Delta^{p}} \otimes I d} V_{p}^{q}
$$

is an isomorphism whose components of its inverse E are

$$
E_{n}: V_{p}^{q} \rightarrow W_{n}^{p} \otimes V_{n}^{q}, \quad E_{n}(v)=\sum_{f \in I(p, n)} \omega_{f} \otimes f(v)
$$

Proof. Let's first prove that for every $v \in V_{p}^{q}$ the sequence $E_{n}(v)$ belongs to $W^{p, q}$. For every $g \in I(n, m)$ we have

$$
\begin{aligned}
\left(g^{*} \otimes I d\right) E_{m}(v) & =\sum_{f \in I(p, m)} g^{*} \omega_{f} \otimes f(v)=\sum_{f \in I(p, m)} \sum_{\{h \mid f=g h\}} \omega_{h} \otimes g h(v)= \\
& =\sum_{h \in I(p, n)} \omega_{h} \otimes g h(v)=(I d \otimes g) E_{n}(v)
\end{aligned}
$$

It is obvious that $\phi \circ E=I d$ and if $\phi\left(x_{n}\right)=0$ then $x_{p}=0$ and if $x_{n}=\sum_{f \in I(p, n)} \omega_{f} \otimes v_{f}$ then $\left(f^{*} \otimes I d\right)\left(x_{n}\right)=f^{*} \omega_{f} \otimes v_{f}=(I d \otimes f)\left(x_{p}\right)=0$ and then $v_{f}=0$. This proves that ϕ is injective.
Lemma 6.3. The map $\phi: W\left(V^{\Delta}\right) \rightarrow N\left(V^{\Delta}\right)$ is a isomorphism of complexes and $I=\phi \circ \pi$.
Proof. We have already proved that it is bijective. As easy application od Stokes formula show that $\partial \phi=\phi d$.

References

[Dup76] J.L. Dupont: Simplicial de Rham cohomology and characteristic classes of flat bundles. Topology 15 (1976) 233-245.
[Dup78] J.L. Dupont: Curvature and characteristic classes. Lecture Notes in Mathematics 640, Springer-Verlag, New York Berlin, (1978).
[FHT01] Y. Félix, S. Halperin, J. Thomas: Rational homotopy theory. Graduate texts in mathematics 205, Springer-Verlag, New York Berlin, (2001).
[Get09] E. Getzler: Lie theory for nilpotent L_{∞}-algebras. Ann. of Math. 170 (1), (2009) 271-301; arXiv:math/0404003v4.
[We94] C.A. Weibel: An introduction to homological algebra. Cambridge Studies in Advanced Mathematics 38, Cambridge Univesity Press, Cambridge, (1994).

