THE THOM-WHITNEY-SULLIVAN CONSTRUCTION

1. SIMPLICIAL OBJECTS

Let A be the category of finite ordinals: the objects are objects are [0] = {0}, [1] = {0, 1},
[2] = {0, 1,2} ecc. and morphisms are the non decreasing maps.

Finally Ayon is the category with the same objects as above and whose morphisms are order-
preserving injective maps among them.

In order to avoid heavy notations it is convenient to denote also [n] = @) for every n < 0 and
write

M(n,m) = Mora([n], [m]) = {f: {0,1,...,n} = {0,1,....m} | f(i) < f(i + 1)},

I(n,m) =Mora,_.([n],[m]) ={f: {0,1,...,n} = {0,1,...,m} | f(i) < f(i+1)}.

Every morphism in Ay, different from the identity, is a finite composition of face morphisms:

. . p ifp<k .
Op: [t —1 , 0 = , k=0,...,1.
i li=1 = [ o) {p+1 e i

Equivalently 0 is the unique strictly monotone map whose image misses k.
The relations about compositions of them are generated by

010k = Ok+10;, for every | < k.

Definition 1.1 ([We94]). Let C be a category:

(1) A cosimplicial object in C is a covariant functor A%: A — C.

(2) A semicosimplicial object in C is a covariant functor A% Ao — C.
(3) A simplicial object in C is a contravariant functor Ax: A — C.

(4) A semisimplicial object in C is a contravariant functor Aa: A,uen — C.

Notice that a semicosimplicial object A? is a diagram in C:

S _—
AO*)AlﬁAQH"'a

—
where each A; is in C, and, for each i > 0, there are ¢ + 1 morphisms
Op: Ai_q1 — A;, k=0,...,1,
such that 9,0, = Or4+10;, for any | < k.
Example 1.2. Let K be a field. Define the standard n-simplex over K as the affine space
A" ={(to,... tn) EK" | tg 4+t +---+1t, =1}
The vertices of A™ are the points
eo = (1,0,...,0), e =(0,1,...,0),...,e, =(0,0,...,1).

Then the family {A"}, n > 0, is a cosimplicial affine space, where for every monotone map
fin] — [m] we set f: A" — A™ as the affine map such that f(e;) = eyq). Equivalently
f(to, ... tn) = D tiegiy = (uo, - .., um), where

u; = Z t; (we intend that th =0).
Ll ()=4} 0

In particular, for m = n + 1 we have
ak(tm S ,tn) = (t07 ey tey—1,0,t, ... ,tn),

and this explain why 0y is called face map.
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Example 1.3 ([FHTO01]). For every 0 < p < n, let AP, be the vector space of polynomial differential
p-forms on the standard n-simplex A™. Then, the space of polynomial differential forms on the
standard n-simplex

A, :éAﬁ _ Klto, ..., tn, dto, ..., dty]
hert (1=t o dty)
is a differential graded algebra. Notice that there exists a natural isomorphism of differential graded
algebras
K[tl, N ,tn, dtl, e ,dtn} — An
Since every affine map f: A" — A™ induce by pull-back a morphism of differential graded
algebra f*: A,, —, we have that the sequence {A,} is a simplicial differential graded algebra.
In particular the face maps 95 : AP — AP |k =0,...,n, are given by pull-back of forms under
the inclusion of standard simplices

(th s atn—l) = (th s atk—1307tk7 s atn—l)'

2. INTEGRATION AND STOKES FORMULA

Lemma 2.1. Let K be a field of characteristic 0, then there exists a unique sequence of linear maps

/ A, K, n>0,

such that:
(1) / n=01ine AP andp #n.
A'n.
g0 Klto] _
@ [ A==k [ ) =000,

Kotk ! - - - ke
(ko + k1 + -+ b +m)

(3)/ thoth o tkedty A A dty, =

4) (Stokes formula) For everyn >0 and w € A", we have
( Y n

n

dw = Z(—n’f/ Ofw.

An Pt An—1
Proof. The unicity follows from the first two conditions. To prove the existence, define
kqle k!
(k1 + -+ kn+n)!
and extend by K linearity to a map fn: A — K. We first prove by induction on ky the formula
kolky!- -« k!
(ko 4+ k14 +kn+n)
Assume ko > 0 and denote a = (kg — 1)!k1!- -k, b=ko + k1 + -+ + ky, + n. Since

/ tlf1~~tﬁ"dt1/\~~~/\dtn=

/ thoghr kgt A A dty, =

n
ot ol gl g (= Y ),
=1

by induction hypothesis, we have

Fogh ghnge A pdt — — S O
/ntootll...tn dty A /\dtn—(b_l)! ;b!(kz—kl)
_a a _ab—a(b—ko) koa
~ (b-1) (b ko) = bl o

Notice that the symmetric group &,,41 acts on (Apr), by permutation of indices and, for every

o € S,41, we have
/ o(w) = (—1)0/ w,

(It is sufficient to check the above identity for transpositions).
By linearity, it is sufficient to prove Stokes formula for w of type

w=tMtkndty A AdE A Aty
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Up to permutation of indices, we may assume ¢ = n. Assume first &, = 0, i.e.,
w=th A A A dt, .
In this case, dw = 0, fw = 0 for every k # 0,n, and
Fow =ttt A Ndty_y = (1) A A A dt

Orw=th ot tdty A Adiy g

/ Jpw + (—1)"/ Orw=0.
An—1 An—1

Next, assume k,, > 0, then 0w = 0 for every k # 0, and

/ dw :/ (=) Ytttk lat A A dE, =
A, n

/ 35‘w=/ etk dtg A A dty o
n—1 An—1

= (—1)"—1/ the gk dty AN Nty =
An—1

therefore

(=) eyl e k!
(k1 4+ +kyp+n—1)0"

(=D)Ll k!
(k1 +- -+ ky+n—1)"

O

Exercise Prove that for K = R the operator [ An 18 equal to the usual integration on the
topological simplex A™ N {t; > 0 Vi}.

3. THE THOM-WHITNEY-SULLIVAN CONSTRUCTION

Here we consider only the semicosimplicial case; the sare results holds, with minor modification
also in the cosimplicial case.

Let
S _—
VAZ V0*>V14§V2*>'”a

be a semicosimplicial vector space. Then the graded vector space &, -, V»[—n] has two differentials

d=>) (~1)"d,,  where d, is the differential of V,,

and
0= Z(—l)i()i where 0; are the face maps.
More explicitly, if v € Vi, then the degree of v is i +n and
d(v) = (=1)"d,(v) € Vi, 0(v) = 0o(v) — 01 (v) + -+ + (=1)" 1 O0py1(v) € V).
Since d? = 0% = dO + 0d = 0 the following definition makes sense:

Definition 3.1. The normal complex of V2 is the differentiao graded vector space

N(VA) = (@nzovn[_”]’“ 9).

The above definition of normal complez is valid only in the semicosimplicial case. In the
cosimplicial case we have N(VA) = (@,soKn[-n],d + 0) where Ko = Vy and

K, = m ker(f: V, — Vio1), n > 0.
fEM(n,n—1)

Definition 3.2. The Thom-Whitney-Sullivan differential graded vector space of V2 is
TW(VS) =Tot(@ TW(V2)P4,d,0)
p.q

where

TW (VAP = {(z,) € H AL @ VI | (0F @ Id)xy, = (Id ® Ok )xpn—1, forevery 0 <k <n}.
n>0

It is immediate to see that TW(VA) is a differential graded subspace of the total complex of
the double complex @, , [[,,50 A5 ® Vi
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Theorem 3.3 (Whitney). The map
I:TW(VA) = N(V2)
induced by
inclusion Tojecti Id
TW(VA)p7q cl H Aﬁ ® Vﬂ? projection Ag ® qu pr ®
n>0

Vp[_p]p+q

18 a quasiisomorphism of differential graded vector spaces.
We will prove this theorem later on, after a series of preliminary results.

Example 3.4. Let £ be a sheaf of differential graded vector spaces over an algebraic variety X
and U = {U;} an open cover of X; assume that the set of indices ¢ is totally ordered. Then, we can
define the semicosimplicial DG vector space of Cech cochains of £ with respect to he cover U:

L) : L L) == TLic; £Uij) =% li<;j<x £LUisz) i# o

P

Clearly, in this case, the total complex Tot(£(U)) is the associated Cech complex C* (U, £). We will
denote by TW (U, L) the associated Thom-Whitney complex. The integration map TW (U, L) —
C*(U, L) is a surjective quasiisomorphism. If £ is a quasicoherent DG-sheaf and every U; is affine,
then the cohomology of TW (U, L) is the same of the cohomology of L.

Example 3.5. Let

A > e ;
g gOHg];H%EQH'-.?

be a semicosimplicial differential graded Lie algebra, i.e., each g; is a DGLA each 0 is a morphism
of DGLAs. Then, in this case too, we can apply the Thom-Whitney construction: it is evident
TW (g®) has a structure of a differential graded lie algebra.

Example 3.6. Let x : L — M be a morphism of differential graded Lie algebras. Then, we can
consider the semicosimplicial DGLA

XA: 3M§o§'w with Jyp = x and 9; = 0.
It turns out that the normal complex N(x2) coincides with the mapping cone of ¥, i.e.,
Nx®i=LioM™'  d(l,m)=(dl,x()—dm),
and the Thom-Whitney-Sullivan construction coincides with the homotopy fiber of x:
TW(x?®) ~ {(I,m(t,dt)) € L x M[t,dt] | m(0,0) =0, m(1,0) = x(I)}.

Lemma 3.7. Let g® be a semicosimplicial DGLA, L a DGLA and ¢ : L — go a morphism of
DGLA, such that 9y o p = 0y o . Define h: L — TW(g?) as

B(D) = (p(1) @ 1,80(6(1) © 1L,83(p (D) @1, () @ 1,..).
Then, h is a well defined morphism of DGLAs giving a commutative diagram
TW(g*)
/ l
I
Y A
L—— TOt(g )a
where 1 : L — Tot(g?) is the composition of ¢ with the inclusion gy C Tot(g*).
Proof. Since 0y0 = Ok+10y, for all k, we have that
58 (05 (p() @ 1) = 85 (p(1) ® 6*(1) =I5 (p(1)) ® 1 =

O(95 (1)) @ 1= 0k(35 (1)) @ 1),
i.e., for every | € L, h(l) € TW (g®). Moreover, h commutes with the differentials; in fact, by
hypothesis, dg,(¢(1)) = ¢(dr (1)), and so

h(d (1)) = (dg, (#(1)) ® 1, 8o(dg, (¢(1))) ® 1,05 (dg, (9(1)) @ 1., 0 (dg, (2(1) @ 1,...)

is equal to
(dgo (2(1)) ® 1, dg, (Do(9 (1)) © 1,dg, (35 (0(1)) ® 1., dg,, (5 (¢(1)) ©1,...) =
drw (p(1) © 1,3(p(1) © 1,35 (p()) @ 1,..., 5 (p(1)) ® 1,...)
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(since all 9y are DGLA morphisms). Analogously, since §p and ¢ commutes with brackets, h
commutes with the brackets, i.e., h is a DGLAs morphism.

Finally, since I contracts the polynomial differential forms in A,, by integrating over the standard
simplex A,,, we have that, I(h(l)) = ¢(I) € g}, for every | € L*. O

4. HOMOTOPY OPERATORS
For every n > —1, consider the affine space
Cn = {(57t07t1,...,tn) S Kn+2 | S+Ztl = 1}

The identity on K"*?2 induces an isomorphism ¢: A"*! — C™ and therefore an integration operator

/ K[S,to,...,tn,dS,dt(),...,dtn] K / / %
: - = :
T GES L —1,ds+ S dty) ’ A N

We have affine maps
ilAn—>Cn, i(t07...,tn):(O,to,...7tn)
and for every f € M(n,m) we also denote

fiC" 0™ f(1,0,...,0) = (1,0,...,0), f(e)) =esq, i > 0.

f: C" x A™ — A™, f((s,to, vy tn), ) = sv+ Ztief(i),
FrA" <A™ =A™ f(u,v) = f(i(u),v).
Finally define for every £k =0,...,n

~

fk: Clx A™ 5 A™, ﬁ(u,v) = f(Ou,v).
Lemma 4.1. In the notation above:

(1) fe = fok,
(2) f is the composition of the projection A™ x A™ — A™ and f: A" — A™.

Proof. Trivial. O

Lemma 4.2. In the notation above, for every g € M(m,p) we have a commutative diagram

Cn x Am Lo Am
lldxg J{g
C™ x AP L AP
Proof. Trivial. O
Passing to differential forms we have morphisms for differential graded alebras
i A — By ® A,

where
K[S,to, . ,tn, d87dt0, ey dtn]

By, =
(s+ > ti—1,ds+ > dt;)

is the de Rham algebra of C™.

Definition 4.3. For everyn > —1, m > 0 and f € M (n,m) define the operator hy € Hom "' (A,,, Apm)
as the composition

Jon ®Id
_

hy: Am 2o By Ap Ap.

Notice that for n = —1 the above operator equals the identity.

Lemma 4.4. For everyn >0, m >0, f € M(n,m) and n € A,, we have

n

by d)n) = hy(dn) + (=1)"dhy(n) = | "= > (=1)*hga, ().
k=0

In particular, for n =0 we have hy(dn)+dhg(n) = n(eso)) —n and then the evaluation at a vertex
18 homotopic to the identity.
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Proof. For every § € B,, we have by Stokes formula

[oas= ] i*ﬁ_g(_l)k/cw -

Writing
f*n:Zﬂi@)aia Bi € By, a; € Ay,
we have l
dhy(n dZ(/ > _Z</nﬂi>daia
F*(dn) = df*( Zdﬁu@aﬁ-z 1)%6; @ dav,
hy(dn) = (/ d@) ®a; + "“Z (/ ) ® da,
i on
Therefore

batin) + -1'aiso) =3 ([ as)wa

i

Flhotn ()

- (/ ) ®Id>( 2 1) () — S (~1 (/C_ ®Id) (0 © 1d)f* (n)

k=0

- </ ) ®Id> NOE ;:o(l)k </Cn1 ®Id> 7oK (n)

n

— [ Fa= 31 hso, ().

A k=0

Lemma 4.5. Given f € M(n,m), g € M(m,p) and n € A, we have:
9" hgr(n) = hy(g™n).
Proof. Immediate consequence of the commutative diagram

n ®Id
A pga, ety

b e I
> Jon ®Id
A, ——B, A, ——— A,

5. WHITNEY ELEMENTARY FORMS

Definition 5.1. For every f € M(n,m) define the elementary form

f—n'z tf )dtf ©) A ~/\(ﬁf(\i)/\-~-/\dtf(n)€Az.
Denote by W,,, C A,, the graded subspace generated by the elementary forms.
Notice that wy # 0 if and only if f is injective.

Lemma 5.2. We have:
(1) For every f € M(n,m) and every g € M(p, m) we have

g*wf = Z Wh .
{heM(n,p)|f=gh}

In particular for n = p we have g*wy # 0 if and only if f =g.
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(2) For every f € M(n,m)
dwf = Z(—l)k Z Wg-
k {9l90k=1}
(3) For every f € I(n,m) we have

f*wf =1.
A

In particular {W,,} is a simplicial differential graded subspace of {A.,}

Proof. The first item is easy and left as an exercise. More generally, for every finite sequence
0 <ig,i1,...,i, < m denote

n
=nl Z(*l)ktikdtio Ao Ndty, Ao ANdt,,
k=0

Wig,... in
then
m
Wig,..viin = D Wisig,sin:
i=0
In fact
n
dwio ’’’’’ in :n'Zdtm /\/\dtzk /\/\dtzn = (’I’L-’-l)'dtm /\/\dtzk /\/\dtzn
k=0
and

m m m
D Wi = (A DY tadtiy Ace Adby A Adti, — (n 1) db Awgg, s,
=0 =0 i=0
= (n+4Dldt;y A--- Adty, A+ Adt;,
It is now sufficient to observe that for f € M(n,m) we have

n

Do wigntm =2 DY W) f i) p ) = (DD wy
1=0

k=0 Fk=1)<i<f(k) k {glgox=Ff}

Since

Frop=n> (=1)*tedto A+ A dtp A+ A dty,
k=0

using the equalities dtg = — >, dt;, >, t; = 1 we obtain

ffwy =nl <t0dt1 A ANdt, — Z(—l)"’tkdtk A A d/t\k Ao A dtn>
k=1

=nllto+ -+ ta)dtr Ao Adty, =nldty A~ ANdity,
and then
f*wf:n!/ dty A -+ Ndt, = 1.
An n

Remark 5.3. For later use we point out that

() ker(95: Wy — W) = Wit
k=0

Definition 5.4. For every m > 0 define the operators

Tt Am — Wi, Tm(N) = Z Z (/A f*77> wy

n=0 fel(n,m)
m

Ky Am — A, Km(n)zz Z wg Ahyg(n).
n=0 fel(n,m)

Theorem 5.5. In the above notation we have:

(1) 7 is a projector, i.e. T2, = Tpm;
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Kd+ dK,, = m, — Id;

Kpg* =9 Km,  mpg" =g Tm,  for every g € M(p,m).

Proof. The first item is trivial. For the second we have

K (dn) + dK,y,(n) =

Z > dwp Ahg(n +Z > wp A((=1)"dhg(n) + hy(dn))

n=0 fel(n,m) n=0 fel(n,m)
_Z S dwp by +Z > wm(/ frn = 1)’“hfak(n)>
n=0 fel(n,m) n=0 fel(n,m)

Since hy = Id and 3 ;1o my Wf = 2img ti = 1 We have

Ky (dn) + dKm(n) — mm(n) +n = Z Z dwy Nhg(n Z Z W /\Z hfak
n=0 fel(n,m) n=1 fel(n,m)
The vanishing of the right side follows from the equations
m m—1

S0 dwpAhp(n) =" > dwp Ahg(n) =
n=0 fel(n,m) n=0 fel(n,m)

m—1 n m n

=D > D EDE YT we Ak )= Y Y (=Drwg Ahga, ().
n=0 fel(n,m) k=0 {g9lf=g0x} n=1gel(n,m) k=0

For the last item it is sufficient to prove that K,g* = ¢* K,y;

Z Z “(wg) ANg he(n Z Z Z wn A g hyg(n) =

n=0 fel(n,m) n=0 fel(n,m){h€M(n,p)|f=gh}
_Z Z wi A g hgn(n Z Z wh A hi(g™n) = Kp(g™n).
n=0hel(n,p) n=0hel(n,p)

6. PROOF OF WHITNEY’S THEOREM
Let

A —_— p—
Ve W=V —=Voa—=<""">

be a fixed semicosimplicial vector space.
For every p, g we will denote

art =Tl Afevy,  wri= ][ wievy,
n>0 n>0
K: AP9 — AP~=ha, K(zg,x1,...) = (Ko(zo), K1(z1),-..),
m: APY — Wp,qa 7T(Z‘0, Ty, .- ) = (FO(Z‘O)77T1($1)7 s ')7
TW (VAP = {(x,) € AP1 | (0} @ Id)xn, = (Id @ Oy)p_1 VO < k < n},
WA =TW(VEPIAWPe, W) =W
Since the homotopy operator K, are simplicial we have clearly that K preserves TW (V2) and
7 is a projection of TW (VA) onto W (V4).

Lemma 6.1. The inclusion W(V2) — TW (VA) and the map ©: TW (VA) — W(VA) are homo-
topy equivalences.

Proof. Immediate from formula dK + Kd =« — Id. O
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Lemma 6.2. For every p,q the map
. , o ©rId
(;5: W(VA)p’q inclusion H W,’L’@V,‘f projection Wg@qu pr ‘/pq
n>0
18 an isomorphism whose components of its inverse E are
En: Vi —WEa Vi, E,(v) = Z wr @ f(v).
fel(p;n)

Proof. Let’s first prove that for every v € V! the sequence E,(v) belongs to W»4. For every

g € I(n,m) we have

(¢ @ IDE )= Y gwofe) = Y Y wi@gh@)=

fel(p,m) fel(p,m) {h|f=gh}
= Y wnegh) = (1d® ) Fal)
hel(p,n)

It is obvious that ¢ o E' = Id and if ¢(z,) = 0 then ), = 0 and if @, = } ;70 wWr @ vy then
(f*®Id)(zn) = ffwy@vy = (Id® f)(zp) = 0 and then vy = 0. This proves that ¢ is injective. O

Lemma 6.3. The map ¢: W(V2) — N(V2) is a isomorphism of complexes and I = ¢ o .

Proof. We have already proved that it is bijective. As easy application od Stokes formula show that
0P = ¢d. O
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