
THE THOM-WHITNEY-SULLIVAN CONSTRUCTION

1. Simplicial objects

Let ∆ be the category of finite ordinals: the objects are objects are [0] = {0}, [1] = {0, 1},
[2] = {0, 1, 2} ecc. and morphisms are the non decreasing maps.

Finally ∆mon is the category with the same objects as above and whose morphisms are order-
preserving injective maps among them.

In order to avoid heavy notations it is convenient to denote also [n] = ∅ for every n < 0 and
write

M(n,m) = Mor∆([n], [m]) = {f : {0, 1, . . . , n} → {0, 1, . . . ,m} | f(i) ≤ f(i+ 1)},

I(n,m) = Mor∆mon([n], [m]) = {f : {0, 1, . . . , n} → {0, 1, . . . ,m} | f(i) < f(i+ 1)}.
Every morphism in ∆mon, different from the identity, is a finite composition of face morphisms:

∂k : [i− 1]→ [i], ∂k(p) =

{
p if p < k

p+ 1 if k ≤ p
, k = 0, . . . , i.

Equivalently ∂k is the unique strictly monotone map whose image misses k.
The relations about compositions of them are generated by

∂l∂k = ∂k+1∂l , for every l ≤ k.

Definition 1.1 ([We94]). Let C be a category:

(1) A cosimplicial object in C is a covariant functor A∆ : ∆→ C.
(2) A semicosimplicial object in C is a covariant functor A∆ : ∆mon → C.
(3) A simplicial object in C is a contravariant functor A∆ : ∆→ C.
(4) A semisimplicial object in C is a contravariant functor A∆ : ∆mon → C.

Notice that a semicosimplicial object A∆ is a diagram in C:

A0
// // A1

////// A2

//////// · · · ,

where each Ai is in C, and, for each i > 0, there are i+ 1 morphisms

∂k : Ai−1 → Ai, k = 0, . . . , i,

such that ∂l∂k = ∂k+1∂l, for any l ≤ k.

Example 1.2. Let K be a field. Define the standard n-simplex over K as the affine space

∆n = {(t0, . . . , tn) ∈ Kn+1 | t0 + t1 + · · ·+ tn = 1}.

The vertices of ∆n are the points

e0 = (1, 0, . . . , 0), e1 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

Then the family {∆n}, n ≥ 0, is a cosimplicial affine space, where for every monotone map
f : [n] → [m] we set f : ∆n → ∆m as the affine map such that f(ei) = ef(i). Equivalently
f(t0, . . . , tn) =

∑
tief(i) = (u0, . . . , um), where

ui =
∑

{j|f(j)=i}

tj (we intend that
∑
∅

tj = 0).

In particular, for m = n+ 1 we have

∂k(t0, . . . , tn) = (t0, . . . , tk−1, 0, tk, . . . , tn),

and this explain why ∂k is called face map.
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Example 1.3 ([FHT01]). For every 0 ≤ p ≤ n, let Apn be the vector space of polynomial differential
p-forms on the standard n-simplex ∆n. Then, the space of polynomial differential forms on the
standard n-simplex

An =
n⊕
p=0

Apn =
K[t0, . . . , tn, dt0, . . . , dtn]

(1−
∑
ti,
∑
dti)

is a differential graded algebra. Notice that there exists a natural isomorphism of differential graded
algebras

K[t1, . . . , tn, dt1, . . . , dtn]→ An.

Since every affine map f : ∆n → ∆m induce by pull-back a morphism of differential graded
algebra f∗ : Am →n we have that the sequence {An} is a simplicial differential graded algebra.

In particular the face maps ∂∗k : Apn → Apn−1, k = 0, . . . , n, are given by pull-back of forms under
the inclusion of standard simplices

(t0, . . . , tn−1) 7→ (t0, . . . , tk−1, 0, tk, . . . , tn−1).

2. Integration and Stokes formula

Lemma 2.1. Let K be a field of characteristic 0, then there exists a unique sequence of linear maps∫
∆n

: An → K, n ≥ 0,

such that:

(1)
∫

∆n

η = 0 if η ∈ Apn and p 6= n.

(2)
∫

∆0
: A0

0 =
K[t0]

(t0 − 1)
→ K,

∫
0

p(t0) = p(1).

(3)
∫

∆n

tk0
0 t

k1
1 · · · tkn

n dt1 ∧ · · · ∧ dtn =
k0!k1! · · · kn!

(k0 + k1 + · · ·+ kn + n)!
.

(4) (Stokes formula) For every n > 0 and ω ∈ An−1
n , we have∫

∆n

dω =
n∑
k=0

(−1)k
∫

∆n−1
∂∗kω.

Proof. The unicity follows from the first two conditions. To prove the existence, define∫
∆n

tk1
1 · · · tkn

n dt1 ∧ · · · ∧ dtn =
k1! · · · kn!

(k1 + · · ·+ kn + n)!

and extend by K linearity to a map
∫
n

: Ann → K. We first prove by induction on k0 the formula∫
∆n

tk0
0 t

k1
1 · · · tkn

n dt1 ∧ · · · ∧ dtn =
k0!k1! · · · kn!

(k0 + k1 + · · ·+ kn + n)!
.

Assume k0 > 0 and denote a = (k0 − 1)!k1! · · · kn!, b = k0 + k1 + · · ·+ kn + n. Since

tk0
0 t

k1
1 · · · tkn

n = tk0−1
0 tk1

1 · · · tkn
n (1−

n∑
i=1

ti),

by induction hypothesis, we have∫
∆n

tk0
0 t

k1
1 · · · tkn

n dt1 ∧ · · · ∧ dtn =
a

(b− 1)!
−

n∑
i=1

a

b!
(ki + 1)

=
a

(b− 1)!
− a

b!
(b− k0) =

ab− a(b− k0)
b!

=
k0a

b!
.

Notice that the symmetric group Sn+1 acts on (APL)n by permutation of indices and, for every
σ ∈ Sn+1, we have ∫

∆n

σ(ω) = (−1)σ
∫

∆n

ω.

(It is sufficient to check the above identity for transpositions).
By linearity, it is sufficient to prove Stokes formula for ω of type

ω = tk1
1 · · · tkn

n dt1 ∧ · · · ∧ d̂ti ∧ · · · ∧ dtn.
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Up to permutation of indices, we may assume i = n. Assume first kn = 0, i.e.,

ω = tk1
1 · · · t

kn−1
n−1 dt1 ∧ · · · ∧ dtn−1.

In this case, dω = 0, ∂∗kω = 0 for every k 6= 0, n, and

∂∗0ω = tk1
0 · · · t

kn−1
n−2 dt0 ∧ · · · ∧ dtn−2 = (−1)n−1tk1

0 · · · t
kn−1
n−2 dt1 ∧ · · · ∧ dtn−1,

∂∗nω = tk1
1 · · · t

kn−1
n−1 dt1 ∧ · · · ∧ dtn−1;

therefore ∫
∆n−1

∂∗0ω + (−1)n
∫

∆n−1
∂∗nω = 0.

Next, assume kn > 0, then ∂∗kω = 0 for every k 6= 0, and∫
∆n

dω =
∫

∆n

(−1)n−1knt
k1
1 · · · tkn−1

n dt1 ∧ · · · ∧ dtn =
(−1)n−1k1! · · · kn!

(k1 + · · ·+ kn + n− 1)!
,

∫
n−1

∂∗0ω =
∫

∆n−1
tk1
0 · · · t

kn
n−1dt0 ∧ · · · ∧ dtn−2

= (−1)n−1

∫
∆n−1

tk1
0 · · · t

kn
n−1dt1 ∧ · · · ∧ dtn−1 =

(−1)n−1k1! · · · kn!
(k1 + · · ·+ kn + n− 1)!

.

�

Exercise Prove that for K = R the operator
∫

∆n is equal to the usual integration on the
topological simplex ∆n ∩ {ti ≥ 0 ∀i}.

3. The Thom-Whitney-Sullivan construction

Here we consider only the semicosimplicial case; the sare results holds, with minor modification
also in the cosimplicial case.

Let
V ∆ : V0

//// V1
////// V2

//////// · · · ,
be a semicosimplicial vector space. Then the graded vector space

⊕
n≥0 Vn[−n] has two differentials

d =
∑
n

(−1)ndn, where dn is the differential of Vn,

and
∂ =

∑
i

(−1)i∂i, where ∂i are the face maps.

More explicitly, if v ∈ V in, then the degree of v is i+ n and

d(v) = (−1)ndn(v) ∈ V i+1
n , ∂(v) = ∂0(v)− ∂1(v) + · · ·+ (−1)n+1∂n+1(v) ∈ V in+1.

Since d2 = ∂2 = d∂ + ∂d = 0 the following definition makes sense:

Definition 3.1. The normal complex of V ∆ is the differentiao graded vector space

N(V ∆) = (
⊕

n≥0
Vn[−n], d+ ∂).

� The above definition of normal complex is valid only in the semicosimplicial case. In the
cosimplicial case we have N(V ∆) = (

⊕
n≥0Kn[−n], d+ ∂) where K0 = V0 and

Kn =
⋂

f∈M(n,n−1)

ker(f : Vn → Vn−1), n > 0.

Definition 3.2. The Thom-Whitney-Sullivan differential graded vector space of V ∆ is

TW (V ∆) = Tot(
⊕

p,q
TW (V ∆)p,q, d, ∂)

where

TW (V ∆)p,q = {(xn) ∈
∏
n≥0

Apn ⊗ V qn | (∂∗k ⊗ Id)xn = (Id⊗ ∂k)xn−1, for every 0 ≤ k ≤ n}.

It is immediate to see that TW (V ∆) is a differential graded subspace of the total complex of
the double complex

⊕
p,q

∏
n≥0A

p
n ⊗ V qn .
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Theorem 3.3 (Whitney). The map

I : TW (V ∆)→ N(V ∆)

induced by

TW (V ∆)p,q inclusion−−−−−−→
∏
n≥0

Apn ⊗ V qn
projection−−−−−−→ App ⊗ V qp

R
∆p ⊗Id−−−−−→ Vp[−p]p+q

is a quasiisomorphism of differential graded vector spaces.

We will prove this theorem later on, after a series of preliminary results.

Example 3.4. Let L be a sheaf of differential graded vector spaces over an algebraic variety X
and U = {Ui} an open cover of X; assume that the set of indices i is totally ordered. Then, we can
define the semicosimplicial DG vector space of Čech cochains of L with respect to he cover U :

L(U) :
∏
i L(Ui) // //

∏
i<j L(Uij)

//////
∏
i<j<k L(Uijk)

//////// · · · .

Clearly, in this case, the total complex Tot(L(U)) is the associated Čech complex C∗(U ,L). We will
denote by TW (U ,L) the associated Thom-Whitney complex. The integration map TW (U ,L) →
C∗(U ,L) is a surjective quasiisomorphism. If L is a quasicoherent DG-sheaf and every Ui is affine,
then the cohomology of TW (U ,L) is the same of the cohomology of L.

Example 3.5. Let
g∆ : g0

//// g1
////// g2

//////// · · · ,
be a semicosimplicial differential graded Lie algebra, i.e., each gi is a DGLA each ∂k is a morphism
of DGLAs. Then, in this case too, we can apply the Thom-Whitney construction: it is evident
TW (g∆) has a structure of a differential graded lie algebra.

Example 3.6. Let χ : L → M be a morphism of differential graded Lie algebras. Then, we can
consider the semicosimplicial DGLA

χ∆ : L
//// M

////// 0
//////// · · · , with ∂0 = χ and ∂1 = 0.

It turns out that the normal complex N(χ∆) coincides with the mapping cone of χ, i.e.,

N(χ∆)i = Li ⊕M i−1, d(l,m) = (dl, χ(l)− dm),

and the Thom-Whitney-Sullivan construction coincides with the homotopy fiber of χ:

TW (χ∆) ' {(l,m(t, dt)) ∈ L×M [t, dt] | m(0, 0) = 0, m(1, 0) = χ(l)}.

Lemma 3.7. Let g∆ be a semicosimplicial DGLA, L a DGLA and ϕ : L → g0 a morphism of
DGLA, such that ∂0 ◦ ϕ = ∂1 ◦ ϕ. Define h : L→ TW (g∆) as

h(l) = (ϕ(l)⊗ 1, ∂0(ϕ(l))⊗ 1, ∂2
0(ϕ(l))⊗ 1, . . . , ∂n0 (ϕ(l))⊗ 1, . . .).

Then, h is a well defined morphism of DGLAs giving a commutative diagram

TW (g∆)

I

��
L

h

<<xxxxxxxxx ψ // Tot(g∆),

where ψ : L→ Tot(g∆) is the composition of ϕ with the inclusion g0 ⊂ Tot(g∆).

Proof. Since ∂0∂k = ∂k+1∂0, for all k, we have that

δk(∂n0 (ϕ(l))⊗ 1) = ∂n0 (ϕ(l))⊗ δk(1) = ∂n0 (ϕ(l))⊗ 1 =

∂k(∂n−1
0 (ϕ(l)))⊗ 1 = ∂k(∂n−1

0 (ϕ(l))⊗ 1),
i.e., for every l ∈ L, h(l) ∈ TW (g∆). Moreover, h commutes with the differentials; in fact, by
hypothesis, dg0(ϕ(l)) = ϕ(dL(l)), and so

h(dL(l)) = (dg0(ϕ(l))⊗ 1, ∂0(dg0(ϕ(l)))⊗ 1, ∂2
0(dg0(ϕ(l)))⊗ 1, . . . , ∂n0 (dg0(ϕ(l)))⊗ 1, . . .)

is equal to

(dg0(ϕ(l))⊗ 1, dg1(∂0(ϕ(l)))⊗ 1, dg2(∂2
0(ϕ(l)))⊗ 1, . . . , dgn(∂n0 (ϕ(l)))⊗ 1, . . .) =

dTW (ϕ(l)⊗ 1, ∂0(ϕ(l))⊗ 1, ∂2
0(ϕ(l))⊗ 1, . . . , ∂n0 (ϕ(l))⊗ 1, . . .)
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(since all ∂0 are DGLA morphisms). Analogously, since δ0 and ϕ commutes with brackets, h
commutes with the brackets, i.e., h is a DGLAs morphism.

Finally, since I contracts the polynomial differential forms in An by integrating over the standard
simplex ∆n, we have that, I(h(l)) = ϕ(l) ∈ gi0, for every l ∈ Li. �

4. Homotopy operators

For every n ≥ −1, consider the affine space

Cn = {(s, t0, t1, . . . , tn) ∈ Kn+2 | s+
∑

ti = 1}.

The identity on Kn+2 induces an isomorphism c : ∆n+1 → Cn and therefore an integration operator∫
Cn

:
K[s, t0, . . . , tn, ds, dt0, . . . , dtn]

(s+
∑
ti − 1, ds+

∑
dti)

→ K,
∫
Cn

η =
∫

∆n

c∗η.

We have affine maps

i : ∆n → Cn, i(t0, . . . , tn) = (0, t0, . . . , tn)

and for every f ∈M(n,m) we also denote

f : Cn → Cm, f(1, 0, . . . , 0) = (1, 0, . . . , 0), f(ei) = ef(i), i ≥ 0.

f̂ : Cn ×∆m → ∆m, f̂((s, t0, . . . , tn), v) = sv +
∑

tief(i),

f̃ : ∆n ×∆m → ∆m, f̃(u, v) = f̂(i(u), v).
Finally define for every k = 0, . . . , n

f̂k : Cn−1 ×∆m → ∆m, f̂k(u, v) = f̂(∂ku, v).

Lemma 4.1. In the notation above:
(1) f̂k = f̂∂k,
(2) f̃ is the composition of the projection ∆n ×∆m → ∆n and f : ∆n → ∆m.

Proof. Trivial. �

Lemma 4.2. In the notation above, for every g ∈M(m, p) we have a commutative diagram

Cn ×∆m

Id×g
��

bf // ∆m

g

��
Cn ×∆p

cgf // ∆p

Proof. Trivial. �

Passing to differential forms we have morphisms for differential graded alebras

f̂∗ : Am → Bn ⊗Am,
where

Bm =
K[s, t0, . . . , tn, ds, dt0, . . . , dtn]

(s+
∑
ti − 1, ds+

∑
dti)

is the de Rham algebra of Cn.

Definition 4.3. For every n ≥ −1,m ≥ 0 and f ∈M(n,m) define the operator hf ∈ Hom−n−1(Am, Am)
as the composition

hf : Am
bf∗−→ Bn ⊗Am

R
Cn ⊗Id−−−−−→ Am.

Notice that for n = −1 the above operator equals the identity.

Lemma 4.4. For every n ≥ 0, m ≥ 0, f ∈M(n,m) and η ∈ Am we have

[hf , d](η) = hf (dη) + (−1)ndhf (η) =
∫

∆n

f∗η −
n∑
k=0

(−1)khf∂k
(η).

In particular, for n = 0 we have hf (dη) +dhf (η) = η(ef(0))− η and then the evaluation at a vertex
is homotopic to the identity.
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Proof. For every β ∈ Bn we have by Stokes formula∫
Cn

dβ =
∫

∆n

i∗β −
n∑
k=0

(−1)k
∫
Cn−1

∂∗kβ.

Writing
f̂∗η =

∑
i

βi ⊗ αi, βi ∈ Bn, αi ∈ Am

we have

dhf (η) = d
∑
i

(∫
Cn

βi

)
αi =

∑
i

(∫
Cn

βi

)
dαi ,

f̂∗(dη) = df̂∗(η) =
∑
i

dβi ⊗ αi +
∑
i

(−1)βiβi ⊗ dαi,

hf (dη) =
∑
i

(∫
Cn

dβi

)
⊗ αi + (−1)n+1

∑
i

(∫
Cn

βi

)
⊗ dαi,

Therefore

hf (dη) + (−1)ndhf (η) =
∑
i

(∫
Cn

dβi

)
⊗ αi

=
∑
i

(∫
∆n

i∗βi

)
⊗ αi −

n∑
k=0

(−1)k
∑
i

(∫
Cn−1

∂∗kβi

)
⊗ αi

=
(∫

∆n

⊗Id
)

(i∗ ⊗ Id)f̂∗(η)−
n∑
k=0

(−1)k
(∫

Cn−1
⊗Id

)
(∂∗k ⊗ Id)f̂∗(η)

=
(∫

∆n

⊗Id
)
f̃∗(η)−

n∑
k=0

(−1)k
(∫

Cn−1
⊗Id

)
f̂∂k

∗
(η)

=
∫

∆n

f∗η −
n∑
k=0

(−1)khf∂k
(η).

�

Lemma 4.5. Given f ∈M(n,m), g ∈M(m, p) and η ∈ Ap we have:

g∗hgf (η) = hf (g∗η).

Proof. Immediate consequence of the commutative diagram

Ap

g∗

��

cgf∗ // Bn ⊗Ap

Id⊗g∗

��

R
Cn ⊗Id // Ap

g∗

��
Am

bf∗ // Bn ⊗Am
R

Cn ⊗Id // Am

�

5. Whitney elementary forms

Definition 5.1. For every f ∈M(n,m) define the elementary form

ωf = n!
n∑
i=0

(−1)itf(i)dtf(0) ∧ · · · ∧ d̂tf(i) ∧ · · · ∧ dtf(n) ∈ Anm.

Denote by Wm ⊂ Am the graded subspace generated by the elementary forms.

Notice that ωf 6= 0 if and only if f is injective.

Lemma 5.2. We have:
(1) For every f ∈M(n,m) and every g ∈M(p,m) we have

g∗ωf =
∑

{h∈M(n,p)|f=gh}

ωh.

In particular for n = p we have g∗ωf 6= 0 if and only if f = g.
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(2) For every f ∈M(n,m)

dωf =
∑
k

(−1)k
∑

{g|g∂k=f}

ωg.

(3) For every f ∈ I(n,m) we have ∫
∆n

f∗ωf = 1.

In particular {Wm} is a simplicial differential graded subspace of {Am}

Proof. The first item is easy and left as an exercise. More generally, for every finite sequence
0 ≤ i0, i1, . . . , in ≤ m denote

ωi0,...,in = n!
n∑
k=0

(−1)ktikdti0 ∧ · · · ∧ d̂tik ∧ · · · ∧ dtin ,

then

dωi0,...,in =
m∑
i=0

ωi,i0,...,in .

In fact

dωi0,...,in = n!
n∑
k=0

dti0 ∧ · · · ∧ dtik ∧ · · · ∧ dtin = (n+ 1)!dti0 ∧ · · · ∧ dtik ∧ · · · ∧ dtin .

and
m∑
i=0

ωi,i0,...,in = (n+ 1)!
m∑
i=0

tidti0 ∧ · · · ∧ dtik ∧ · · · ∧ dtin − (n+ 1)
m∑
i=0

dti ∧ ωi0,...,in

= (n+ 1)!dti0 ∧ · · · ∧ dtik ∧ · · · ∧ dtin
It is now sufficient to observe that for f ∈M(n,m) we have

m∑
i=0

ωi,f(0),...,f(n) =
n∑
k=0

(−1)k
∑

f(k−1)<i<f(k)

ωf(0),...,f(k−1),i,f(k),...,f(n) =
∑
k

(−1)k
∑

{g|g∂k=f}

ωg.

Since

f∗ωf = n!
n∑
k=0

(−1)ktkdt0 ∧ · · · ∧ d̂tk ∧ · · · ∧ dtn,

using the equalities dt0 = −
∑
i>0 dti,

∑
i ti = 1 we obtain

f∗ωf = n!

(
t0dt1 ∧ · · · ∧ dtn −

n∑
k=1

(−1)ktkdtk ∧ · · · ∧ d̂tk ∧ · · · ∧ dtn

)
= n!(t0 + · · ·+ tn)dt1 ∧ · · · ∧ dtn = n! dt1 ∧ · · · ∧ dtn

and then ∫
∆n

f∗ωf = n!
∫

∆n

dt1 ∧ · · · ∧ dtn = 1.

�

Remark 5.3. For later use we point out that
m⋂
k=0

ker(∂∗k : Wm →Wm−1) = Wm
m .

Definition 5.4. For every m ≥ 0 define the operators

πm : Am →Wm, πm(η) =
m∑
n=0

∑
f∈I(n,m)

(∫
∆n

f∗η

)
ωf

Km : Am → Am, Km(η) =
m∑
n=0

∑
f∈I(n,m)

ωf ∧ hf (η).

Theorem 5.5. In the above notation we have:
(1) πm is a projector, i.e. π2

m = πm;
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(2)
Kmd+ dKm = πm − Id;

(3)
Kpg

∗ = g∗Km, πpg
∗ = g∗πm, for every g ∈M(p,m).

Proof. The first item is trivial. For the second we have

Km(dη) + dKm(η) =
m∑
n=0

∑
f∈I(n,m)

dωf ∧ hf (η) +
m∑
n=0

∑
f∈I(n,m)

ωf ∧ ((−1)ndhf (η) + hf (dη))

=
m∑
n=0

∑
f∈I(n,m)

dωf ∧ hf (η) +
m∑
n=0

∑
f∈I(n,m)

ωf ∧

(∫
∆n

f∗η −
n∑
k=0

(−1)khf∂k
(η)

)
Since h∅ = Id and

∑
f∈I(0,m) ωf =

∑m
i=0 ti = 1 we have

Km(dη) + dKm(η)− πm(η) + η =
m∑
n=0

∑
f∈I(n,m)

dωf ∧ hf (η)−
m∑
n=1

∑
f∈I(n,m)

ωf ∧
n∑
k=0

(−1)khf∂k
(η).

The vanishing of the right side follows from the equations
m∑
n=0

∑
f∈I(n,m)

dωf ∧ hf (η) =
m−1∑
n=0

∑
f∈I(n,m)

dωf ∧ hf (η) =

=
m−1∑
n=0

∑
f∈I(n,m)

n∑
k=0

(−1)k
∑

{g|f=g∂k}

ωg ∧ hg∂k
(η) =

m∑
n=1

∑
g∈I(n,m)

n∑
k=0

(−1)kωg ∧ hg∂k
(η).

For the last item it is sufficient to prove that Kpg
∗ = g∗Km;

g∗Km(η) =
m∑
n=0

∑
f∈I(n,m)

g∗(ωf ) ∧ g∗hf (η) =
m∑
n=0

∑
f∈I(n,m)

∑
{h∈M(n,p)|f=gh}

ωh ∧ g∗hf (η) =

=
m∑
n=0

∑
h∈I(n,p)

ωh ∧ g∗hgh(η) =
m∑
n=0

∑
h∈I(n,p)

ωh ∧ hh(g∗η) = Kp(g∗η).

�

6. Proof of Whitney’s theorem

Let
V ∆ : V0

// // V1
////// V2

//////// · · · ,
be a fixed semicosimplicial vector space.

For every p, q we will denote

Ap,q =
∏
n≥0

Apn ⊗ V qn , W p,q =
∏
n≥0

W p
n ⊗ V qn ,

K : Ap,q → Ap−1,q, K(x0, x1, . . .) = (K0(x0),K1(x1), . . .),

π : Ap,q →W p,q, π(x0, x1, . . .) = (π0(x0), π1(x1), . . .),

TW (V ∆)p,q = {(xn) ∈ Ap,q | (∂∗k ⊗ Id)xn = (Id⊗ ∂k)xn−1 ∀0 ≤ k ≤ n},

W (V ∆)p,q = TW (V ∆)p,q ∩W p,q, W (V ∆) =
⊕
p,q

W (V ∆)p,q.

Since the homotopy operator Km are simplicial we have clearly that K preserves TW (V ∆) and
π is a projection of TW (V ∆) onto W (V ∆).

Lemma 6.1. The inclusion W (V ∆)→ TW (V ∆) and the map π : TW (V ∆)→W (V ∆) are homo-
topy equivalences.

Proof. Immediate from formula dK +Kd = π − Id. �
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Lemma 6.2. For every p, q the map

φ : W (V ∆)p,q inclusion−−−−−−→
∏
n≥0

W p
n ⊗ V qn

projection−−−−−−→W p
p ⊗ V qp

R
∆p ⊗Id−−−−−→ V qp

is an isomorphism whose components of its inverse E are

En : V qp →W p
n ⊗ V qn , En(v) =

∑
f∈I(p,n)

ωf ⊗ f(v).

Proof. Let’s first prove that for every v ∈ V qp the sequence En(v) belongs to W p,q. For every
g ∈ I(n,m) we have

(g∗ ⊗ Id)Em(v) =
∑

f∈I(p,m)

g∗ωf ⊗ f(v) =
∑

f∈I(p,m)

∑
{h|f=gh}

ωh ⊗ gh(v) =

=
∑

h∈I(p,n)

ωh ⊗ gh(v) = (Id⊗ g)En(v).

It is obvious that φ ◦ E = Id and if φ(xn) = 0 then xp = 0 and if xn =
∑
f∈I(p,n) ωf ⊗ vf then

(f∗⊗ Id)(xn) = f∗ωf ⊗ vf = (Id⊗ f)(xp) = 0 and then vf = 0. This proves that φ is injective. �

Lemma 6.3. The map φ : W (V ∆)→ N(V ∆) is a isomorphism of complexes and I = φ ◦ π.

Proof. We have already proved that it is bijective. As easy application od Stokes formula show that
∂φ = φd. �
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