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Chapter 1

Smooth families of compact
complex manifolds

In this chapter we introduce the notion of a family f: X — B of compact complex manifolds as
a proper holomorphic submersion of complex manifolds. Easy examples will show that in general
the fibres X, := f~1(t) are not biholomorphic each other, see e.g. Example I.1.4. Using integration
of vector fields we prove that the family is locally trivial if and only if a certain morphism IS of
sheaves over B is trivial, while the restriction of S at a point b € B is a linear map KS: T; p —
HY(Xy,Tx,), called the Kodaira-Spencer map, which can interpreted as the first derivative at the
point b of the map

B — {isomorphism classes of complex manifolds}, ¢+— X;.

Then, according to Kodaira, Nirenberg and Spencer we define a deformation of a complex man-
ifolds X as the data of a family X — B, of a base point 0 € B and of an isomorphism X ~ Xj.
The isomorphism class of a deformation involves only the structure of f in a neighbourhood of Xj.

For every complex manifold M we denote by:
e O (U) the C-algebra of holomorphic functions f: U — C defined on an open subset U C M.
e O) the trivial complex line bundle C x M — M.

e Ty the holomorphic tangent bundle to M. The fibre of Th; at a point € M, i.e. the complex
tangent space at z, is denoted by T as.

If € M is a point we denote by Oy, the C-algebra of germs of holomorphic functions at a
point & € M; a choice of local holomorphic coordinates z1, ..., z,, z;(xz) = 0, gives an isomorphism
Ome =C{z,...,2,}, being C{z1,...,2,} the C-algebra of convergent power series.

In order to avoid a too heavy notation we sometimes omit the subscript M, when the underlying
complex manifold is clear from the context.

I.1 Smooth families of compact complex manifolds

Definition I.1.1. A smooth family of compact complex manifolds is a proper holomorphic map
f: M — B such that:

1. M, B are nonempty complex manifolds and B is connected.

2. The differential of f, fi: Tp pmr — Ty (p), B is surjective at every point p € M.
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Two families f: M — B, g: N — B over the same base are isomorphic if there exists a holomorphic
isomorphism N — M commuting with f and g.

From now on, when there is no risk of confusion, we shall simply say smooth family instead of
smooth family of compact complex manifolds.

Note that if f: M — B is a smooth family then f is open, closed and surjective. If V' C B is an
open subset then f: f~1(V) — V is a smooth family; more generally for every holomorphic map of
connected complex manifolds C' — B, the pull-back M xp C — C'is a smooth family.

For every b € B we denote My, = f~1(b): M, is a regular submanifold of M.

Definition I.1.2. A smooth family f: M — B is called trivial if it is isomorphic to the product
My x B — B for some (and hence all) b € B. Tt is called locally trivial if there exists an open
covering B = UU, such that every restriction f: f~1(U,) — U, is trivial.

Lemma 1.1.3. Let f: M — B be a smooth family, b € B. The normal bundle Ny, jar of My in M
is trivial.

Proof. Let £ =T, g x My — M, be the trivial bundle with fibre T3, g. The differential f,: T, »r —
Ty, B, © € M, induces a surjective morphism of vector bundles (Ts)|ps, — E whose kernel is exactly
T, -

By definition Ny, /ar = (Tas) a1, /Tar, and then Ny, pp = Ty p X My, O

The following examples of families show that, in general, if a,b € B, a # b, then M, is not
biholomorphic to M, and therefore that non every family is locally trivial.
Example 1.1.4. Consider B =C — {0, 1},
M = {([.’E(),x17$2],)\) S ]P2 X B | .’b%x(] = .’El(l'l — 1'())($1 — )\SL’O)},

and f: M — B the projection. Then f is a family and the fibre M) is a smooth plane cubic with
j-invariant
(A2 —X+1)3

AZ(A—1)2

(Recall that two elliptic curves are biholomorphic if and only if they have the same j-invariant.)

J(My) =28

Example 1.1.5. (The universal family of hypersurfaces)
d
For fixed integers n,d > 0, consider the projective space PV, N = ( + n) — 1, with homogeneous
n

coordinates a;q,...;,, i; > 0, >_;i; = d, and denote

> Qi .., inff6°"'$?l”_0}~

X = {([:c], a]) € " x PV
ig+...+in=d

X is a smooth hypersurface of P” x PV, the differential of the projection X — P¥ is not surjective
at a point ([z], [a]) if and only if [z] is a singular point of X,.

The subset B = {[a] € PV | X, is smooth } is open; if M = f~Y(B) then f: M — B is a family
and every smooth hypersurface of degree d of P" is isomorphic to a fibre of f.

Example 1.1.6 (Hopf surfaces). Let A € GL(2,C) be a matrix with eigenvalues of norm > 1 and
let (A) ~ Z C GL(2,C) be the subgroup generated by A. The action of (4) on X = C? — {0} is
free and properly discontinuous: in fact a linear change of coordinates C': C2 — C? changes the
action of (A) into the action of (C~*AC) and therefore it is not restrictive to assume A is a lower
triangular matrix.

Therefore the quotient S4 = X/(A) is a compact complex manifold called Hopf surface: the holo-
morphic map X — S4 is the universal cover and then for every point © € S4 there exists a natural
isomorphism 71 (S4,z) ~ (A). We have already seen that if A, B are conjugated matrix then S4
is biholomorphic to Sg. Conversely if f: S4 — Sp is a biholomorphism then f lifts to a biholo-
morphism g: X — X such that gA = B¥g; since f induces an isomorphism of fundamental groups
k=+1.

By Hartogs’ theorem g extends to a biholomorphism g: C? — C? such that g(0) = 0; since for every
x#0 nILH;O A"(z) = +oo and nlLII;O B™"(x) = 0 it must be gA = Byg. Taking the differential at 0 of
gA = Bg we get that A is conjugated to B.



CHAPTER 1. SMOOTH FAMILIES OF COMPACT COMPLEX MANIFOLDS 5

Example 1.1.7 (Complete family of Hopf surfaces). Denote B = {(a,b,c) € C?||a| > 1, |¢| > 1},
X =B x (C?—-{0}) and let Z ~ G C Aut(X) be the subgroup generated by

(aa ba C, 21, 22) = (a, bv C,azy, bZl + CZ?)

The action of G on X is free and properly discontinuous, let M = X/G be its quotient and
f: M — B the projection on the first coordinates: f is a family whose fibres are Hopf surfaces.
Every Hopf surface is isomorphic to a fibre of f, this motivate the adjective “complete”. In particular
all the Hopf surfaces are diffeomorphic to S* x S? (to see this look at the fibre over (2,0, 2)).

Theorem I.1.8. Let M—-B be a smooth family of compact complex manifolds. Then for every
point 0 € B there exist an open neighbourhood 0 € U C B and a diffeomorphism ¢: My x U —
FYU), where My = f~1(0) C M, such that:

1. ¢(x,0) =z and fo(x,t) =t for every x € My and t € U.
2. ¢ is transversely holomorphic, i.e. for every x € My the map ¢: {x} xU — M is holomorphic.

In particular, if B is connected, then the diffeomorphism type of the fibre My is independent from
be B.

Proof. (cf. also [13], [111]) It is not restrictive to assume B C C™ a polydisk with coordinates
t1,...,t, and 0 € B the base point of the deformation. After a possible shrinking of B there exist a
finite open covering M = UW,, a = 1,...,r, and holomorphic projections p,: W, — U, = W,N M,
such that (pg, f): W, — U, x B is a biholomorphism for every a and U, is a local chart with
coordinates z': U, = C,i=1,...,m.

Let po: My — [0,1] be a C* partition of unity subordinate to the covering {U,} and denote
V, = p-1(]0,1]); we note that {V,} is a covering of My and V, C U,. After a possible shrinking of
B we may assume p; (V) closed in M.

For every subset C' C {1,...,r} and every x € My we denote

Ho= W= Upra' Vo) | x [ (V= | Va | €M x My,
acC agC acC agC

Cp={alzeV,}, H:UHC.
c

Clearly (z,z) € He, and then H is an open subset of M x M, containing the graph G of the
inclusion My — M. Since the projection pr: M x My — M is open and M, is compact, after a
possible shrinking of B we may assume pr(H) = M.

Moreover if (y,2) € H and x € V, then (y,x) € Hc for some C containing a and therefore y € W,.
For every a consider the C* function ¢,: H N (M x U,) — C™,

0y 2) = 3 o) S () (o) — (@)
b

By the properties of H, g, is well defined and separately holomorphic in the variable y. If (y,z) €
HnN (M x (U,NU.)) then

ZC

0z%

qc(y,7) = 5= (2)qa(y, 7)

and then
I'={(y,z) € H|qu(y,z) =0 whenever x € U,}

is a well defined closed subset of H. o
If y € Vo C Mo and x is sufficiently near to y then z € (Nyec, Us — Upge Vo) and, for every b € Cy,

Zb
2(y) = 2"(x) + gza (@)(z*(y) — 2%(2)) + o([[z*(y) — z* (@)

Therefore
qa(y, ) = 2%(y) — 2*(x) + o([|z"(y) — 2*(2)])).
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In particular the map z +— ¢, (y, ) is a local diffeomorphism at z = y.

Denote K C H the open subset of points (y,z) such that, if y € p;1(V,) then u — ¢,(y,u) has
maximal rank at u = x; note that K contains G.

Let Ty be the connected component of I' N K that contains G; I'y is a C'°°-subvariety of K and
the projection pr: I'o — M is a local diffeomorphism. Possibly shrinking B we may assume that
pr: g — M is a diffeomorphism.

By implicit function theorem I’y is the graph of a C'°° projection ~v: M — M.

After a possible shrinking of B, the map (v, f): M — My x B is a diffeomorphism, take ¢ = (v, f)~!.
To prove that, for every x € My, the map t — ¢(x, t) is holomorphic we note that f: ¢p({z}xB) — B
is bijective and therefore ¢(x, —) = f~ipr: {z} x B — ¢({z} x B).

The map f~': B — ¢({x} x B) is holomorphic if and only if ¢({z} x B) = v~!(z) is a holomorphic
subvariety and this is true because for z fixed every map y — ¢,(y, x) is holomorphic. O

I.2 Cech and Dolbeault cohomology

We assume that the reader is familiar with cohomology theory of sheaves and with Dolbeault
theorem. In this section we fix some notation used in the rest of the book.
If M is a complex manifold and E is a holomorphic vector bundle on M, we denote:

e FEV the dual bundle of E.

e I'(U, E) the space of holomorphic sections s: U — F on an open subset U C M.
e Q1. = Ty, the holomorphic cotangent bundle of M.

o 08 = APT), the bundle of holomorphic differential p-forms.

For every open subset U C M we denote by I'(U, AY") the C-vector space of differential (p, q)-

forms on U. If z,..., 2, are local holomorphic coordinates, then ¢ € T'(U, AY7) is written locally
as ¢ = Y ¢y gdzr ANdZy, where I = (i1,...,ip), J = (j1,....Jq), dzr = dzgy N+~ Ndz;,, dZ; =
dzj, \---ANdzj, and the ¢; ; are C* functions.
Similarly, if E — M is a holomorphic vector bundle we denote by I'(U, A?*4(E)) the space of
differential (p, ¢)-forms on U with value in E; locally, if eq,. .., e, is a local frame for F, an element
of T(U, AP4(E)) is written as >.._, ¢;e;, with ¢; € I'(U, AP?). Note that there exist natural
isomorphisms I'(U, AP4(E)) ~ T'(U, A%4(Q}, ® E)).

The Dolbeault’s cohomology of a holomorphic vector bundle E, denoted by Hg’*(M , E) is the
cohomology of the Dolbeault complex

0——T(M, APO(E))-2r(M, AP E) -2 .. 2, Ari(E)-2s - ..

Notice that Hg’o (M,E) =T(M,Q%, ® E) is the space of holomorphic p-forms with values in E.
From now on, for simplicity of notation, we denote HY(M,E) = Hg’q(M, E), h{(M,E) =
dime HY(M, E), H1{(M,QP(E)) = Hg’q(M, E).

The Hodge numbers of a fixed compact complex manifold M are by definition
WP = dime HE'(M, 0) = dime Hy (M, 7).
The Betti numbers of M are the dimensions of the spaces of the De Rham cohomology of M, i.e.

. d-closed p-forms
bp:dlm(cHg(M,C), Hg(M7(C) = m

Let U = {U,}, a € Z, be an open covering of a complex manifold M; for every ag,...,ar € Z
we denote Us,,... q), = Uqo N---NU,,. For every sheaf of abelian groups F on M we denote by

CU,F): U, F)-Lctu,F)-Scru,F)-S
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the corresponding alternating Cech complex. Here C* (U, E) is the group of alternating sequences
{fao.arrants @050k €L, fag.ar....an € F(Uag.....ar)- Alternating means that for every permuta-
tion o € Xy 11 we have fao(0)7ao(1)7"')ao'(k) = (=1)7 fag,ar,....ar a0d fagas,.. .0, = 0 whenever a; = a;
for some ¢ # j. The cohomology of the above complex is denoted H*(U, F).

Proposition 1.2.1. For every holomorphic vector bundle E and every open covering U = {U,},
a € T, there exists a natural morphism of C-vector spaces 0: H*(U, E) — H%k(M, E).

Proof. Lett,: M — C, a € Z, be a differentiable partition of unity subordinate to the covering {U, }:
this means that supp(t,) C U,, the family of supports {supp(t,)} is locally finite and ) t, = 1.
Given f € C*(U,E) and a € T we consider

Z faer,. 7Ck te, "'/\étCk EF(UavAO’k(E))a

~~~~

= X tatn(f) € T AN(E))
Since every fq.c,,....c, is holomorphic we have d¢, = 0 and then
=D OtaAda(f)= D feprcxOlog Av-- AOle,.
a COs-++,Ck

We claim that ¢ is a morphism of complexes; in fact

Zt Z dfaco, 7Ck Co "'/\gtck —

C05--5Ck

> ta | O ZZ(‘%CI/\ > facordicnOtog A At A N, | =

a =0 c¢; COyeeyCiyernsCh
=" t.06(f) = 06(f).

Setting # as the morphism induced by ¢ in cohomology, we need to prove that 6 is independent
from the choice of the partition of unity. We first note that, if df = 0 then, over U, N U, we have

¢a(f) - ¢b(f) = Zch_“,ck (fa,cl ..... Ck - fb,cl ,,,,, Ck)gtcl /\ A /\ atck
k i— 3. Y
= Zq ..... Cr Zi:l(_l) 1fa’bacla~-~7éiy~-~7ckatcl N-ee N O,

k o _
= i:l(_l)l ! ch, Chk faper,éi. -70k8t61 ARERNi /7

—Zzatcl/\ Z fabc1 ..... Ciyerns ck,gtcl/\"'/\gtci/\"'/\gtck

i=1 ¢ e, Ciyenns

=0.
Let v, be another partition of 1, 5, = t, — v4, and denote, for f € Z¥(U, E),

Z fa,cl,...,ckgvcl AR /\g’l)ck7

C1,..+,Ck

U= )" faerenOtey Ao At AVe Qv Nov NDvg,, j=1,....k

,,,,,

The same argument as above shows that q~5a = q~5b and ) = wg for every a, b, j. Therefore all the
¥} come from a global section ¢/ € I'(M, A%*~!(E)); moreover ¢ — ¢ = 3~ ,(=1)7"'9¢7 and then

o, (;NS determine the same cohomology class. O
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A well known theorem of Leray asserts that if ¢ is a open Stein covering of M then the above
morphism 6 is an isomorphism. The explicit description of ! is rather easy for k = 1. Assume
that U = {U,} be an open covering of a complex manifold M such that H%(Ua, E) =0 for every a.

Given ¢ € T'(M, A*!(E)) a d-closed form, then for every a there exists 1, € ['(U,, A*°(E)) such
that O, = ¢. Setting fop = Vo — 1 we have f = {fup} € C*(U, E) and df = 0. The cohomology
class of f in H'(U, E) is well defined and then we have defined a map

o: Ho'(M,E) — H'U,E), ¢+ [f].

We left to the reader the easy verification that o = 6~ 1.

Example 1.2.2. Let T — P! be the holomorphic tangent bundle, x¢, z; homogeneous coordinates
on P!, U; = {z; # 0}. Since the tangent bundle of U; = C is trivial, by Dolbeault’s lemma,
HY(U;,T) =0 and by Leray’s theorem H*(P*,T) = H'({Uy,U1},T), i =0,1.

Consider the affine coordinates s = x1/xg, t = xo/21, then the holomorphic sections of T' over
Uo, Uy and Up,; = Uy N U, are given respectively by convergent power series

S L WY S PL
;ais 95 ;bit 2 i;mcis 75

Since, over Up 1, t = s ! and — = —s2— the Cech differential is given by

ot ds’
400 28 400 Za +00 Za 2 23
d (ZO a;s %,;bit (r“)t) = ;ais % + ; bg_iS %,

and then H'({Uy,U;},T) =0 and

0 0 0 0 o 0
0 _ /(2 _,29 o 9 20 O
H ({Uo,Ul},T)—<<aS, t 8t>’<883’ t8t>’(8 55’ 8t>>'

Example 1.2.3. If X = P! x C? then H'(X,Tx) = 0. If C C P! is an affine open subset with
affine coordinate s, then H°(X,Ty) is the free O(C™)-module generated by

9 9 9 9 50
oty ot 5‘5’865’8 Os’

The proof is essentially the same (replacing the constant terms a;, b;, ¢; with holomorphic functions
over C") of Example 1.2.2.

I.3 The Kodaira-Spencer map

Given a holomorphic map f: X — Y of complex manifolds and complexified vector fields n €
(X, A%(Tx)), v € (Y, A%°(Ty)) we write v = f.n if for every € X we have f.n(z) = v(f(x)),
where f.: T, x — Tj(y),y is the differential of f.

Let f: M — B be a fixed smooth family of compact complex manifolds, dim B = n, dim M =
m + n; for every b € B we let My, = f~1(b).

Definition 1.3.1. A holomorphic coordinate chart (21,...,2m,t1,...,tn): U — C™T U C M
open, is called admissible if f(U) is contained in a coordinate chart (vq,...,v,): V — C", V C B,
such that ¢t; = v; o f foreveryi=1,...,n.

Since the differential of f has everywhere maximal rank, by the implicit function theorem, M
admits a locally finite covering of admissible coordinate charts.

Lemma 1.3.2. Let f: M — B be a smooth family of compact complex manifolds. For every
v € I'(B, A%(Tg)) there exists n € T(M, A%°(Tyr)) such that fun =-.
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Proof. Let M = UU, be a locally finite covering of admissible charts; on every U, there exists n, €
['(U,, A%%(Tyy)) such that f.n, = . It is then sufficient to take n = > pa7a, being pq: Uy — C
a partition of unity subordinate to the covering {U,}. O

Let Ty C Ty be the holomorphic vector subbundle of tangent vectors v such that f,v = 0. If
0 0
21y vy Zmst1, ..., Ly is an admissible system of local coordinates then —, ..., —— is a local frame

0z’ 0z,
of Ty. Note that the restriction of Ty to My is equal to Ty, .
For every open subset V' C B let I'(V,Tg) be the space of holomorphic vector fields on V.
For every v € I'(V,Tg) take n € T'(f~1(V), A%(Ty)) such that f.n = 7. In an admissible

0 0
system of local coordinates z;,t; we have n =", n;(z, t)a— + Z 'yi(t)é—t, with v;(¢) holomorphic,
Z - 7
J

_ _ 9 _
on=>3, ani(z,t)a and then dn € T'(f~1(V), A% (T})).
Obviously 97 is O-closed and then we can define the Kodaira-Spencer map

KS(V)p: D(V.Tp) — H'(f (V). Ty),  KS(V);(v) = [9n].
Lemma 1.3.3. The map KS(V)¢ is a well-defined homomorphism of O(V')-modules.
Proof. If i) € T(f~1(V), A%*(Tyy)), fuiy = 7, then n — 7 € (f~1(V), A%%(Ty)) and [07] = (]

HY(f~1(V), Ty). If g € O(V) then f.(f*g)n = g7, o(f*g)n = (f*9)0n.

If Vi C Vo C B then the Kodaira-Spencer maps KS(V;)¢: I'(V;, Tp) — HY (f~1(Vi), Ty),i = 1,2,
commute with the restriction maps I'(Va, Tg) — T'(V4,Tg), H'(f~1(Va),T¢) — H'(f~1(V1),T}).
Therefore we get a well defined Op -linear map

€
O

ICSfi @B,b — (le*Tf)b,

where O and (R! f.T}), are by definition the direct limits, over the set of open neighbourhood
V of b, of I'(V,Tg) and H*(f~*(V),T}) respectively.

If b € B, then there exists a linear map KSy: Ty, p — HY(My, Tyy,) such that for every open
subset b € V C B there exists a commutative diagram

KS(V);
—

F(VlTB) Hl(f‘ll(V), Ty)
Ty.5 B m (M, To)

where the vertical arrows are the natural restriction maps. In fact, if V' is a polydisk then T} g is
the quotient of the complex vector space I'(V, T) by the subspace I = {y € I'(V,Tg) | v(b) = 0};
by O(V)-linearity I is contained in the kernel of r o KS(V);.

The Kodaira-Spencer map has at least two geometric interpretations: obstruction to the holo-
morphic lifting of vector fields and first-order variation of complex structures (this is a concrete
feature of the general philosophy that deformations are a derived construction of automorphisms).

Proposition 1.3.4. Let f: M — B be a family of compact complex manifolds and v € T'(V,Tg),
then KS(V)¢() = 0 if and only if there exists n € D(f~1(V),Tar) such that fin=r.

Proof. One implication is trivial; conversely let n € T'(f~'(V), A®*(Ty)) such that f.n = ~. If
[On] = 0 then there exists 7 € I'(f~1(V), A%°(T})) such that d(n —7) =0, n —7 € T(f~(V), Tm)
and fi(n—7)=1. O

To compute the Kodaira-Spencer map in terms of Cech cocycles we assume that V is a polydisk
with coordinates t1,...,t, and we fix a locally finite covering & = {U,} of admissible holomorphic
coordinates z2{,..., zy, t{,...,t2: Uy, — C, t¢ = f*t;. On U, NU, we have the transition functions

rmo

zb*gfya(z“,t“), i=1,....m

G =

t?:tf’j Z':].,...,n
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0
Consider a fixed integer h = 1,...,n and n € T(f~4(V), A%°(Ty)) such that f.n = s in local
h
coordinates we have

_ a( a 4a 0 i _ b b bi 87

Since, for every a, n — (,f? € I'(U,, A”°(Ty)) and 8( - 82“) =0n, KS(V); (%) € H'(U,Ty)
h h

is represented by the cocycle

) ) 0 o 0 09} a 0
KS(V — = - ) - - = - == = 1.1
Vs (ath>b,a ()~ () =35~ a1 oty 0 (Y
The above formula allows to prove easily the invariance of the Kodaira-Spencer maps under

base change; more precisely if f: M — B is a smooth family, ¢: C — B a holomorphic map, ¢, f
the pullbacks of ¢ and f,

ceC,b= f(c).
Theorem 1.3.5. In the above notation, via the natural isomorphism My = fﬁl(c), we have
KS; = KSy¢.: Tp.c — HY(My, Tg,).

Proof. Tt is not restrictive to assume B C C}, C' C C? polydisks, ¢ = {u; = 0} and b = {¢; = 0},
ti = ¢i(u). If 22,t%: U, — C, 2°,t*: U, — C are admissible local coordinate sets with transition
functions z¢ = gfya(z“,t“), then 2%, u®: U, xp C — C, 2°,t*: U, xgp C — C are admissible with

transition functions 2! = gga(za, ¢(u®)). Therefore

) 990, 0 99} , dp; O )
(L)~ st (0 )
duyp, ba - ouf 0z o atj ouf 97! duyp, ba
O
I.4 Rigid varieties
For every 0 < R < 400 the polydisk of radius R is defined as
AR ={(z1,...,2,) €C" | |zs| < R, i=1,...,n}.
Lemma 1.4.1. Let f: M — A% be a smooth family of compact complex manifolds and ty,...,t, a
set of linear coordinates in the polydisk A%, C C™. If there exist holomorphic vector fields x1, ..., Xn
9]
on M such that f.xp = T then there exists 0 < r < R such that f: f~1(A") — A" is the trivial
h

family.
Proof. For every r < R, h < n denote
Af:{(zl,...,zn)GC”Hzﬂ <7y lenl <Tozne1 =0,.00,2, =0} C AR

We prove by induction on h that there exists R > r, > 0 such that the restriction of the family
f over Af}h is trivial. Taking ro = R the statement is obvious for h = 0. Assume that the family
is trivial over Afh,
the family trivial over A%. The integration of the vector field x;+1 gives an open neighbourhood
M x {0} CU € M x C and a holomorphic map H: U — M with the following properties (see e.g.

[?, Ch. VII)):

h < n; shrinking A% if necessary it is not restrictive to assume R = r, and
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1. For every z € M, {2} x CNU = {a} x A(z) with A(z) a disk.
2. For every x € M the map H, = H(z,—): A(z) — M is the solution of the Cauchy problem

O (I A0)

H,(0)==x

In particular if H(x,t) is defined then f(H(x,t)) = f(z)+(0,...,¢,...,0) (¢ in the (h+1)-th
coordinate).

3. f V.C M isopen and V x A C U then for every t € A the map H(—,t): V — M is an open
embedding.

Since f is proper there exists 7 < R such that f~*(A”) x A, C U; then the holomorphic map
H: f~1(AM x A, — f~1(Alr1) is a biholomorphism giving a trivialization of the family over
AltL O

Example 1.4.2. The Lemma [.4.1 is generally false if f is not proper (cf. the exercise in Lecture 1 of
[61]). Consider for instance an irreducible polynomial @ € Clz1,...,2,,t]; denote by f: C? x C; —
C; the projection on the second factor and

oQ
al’i

V= {(m,t) ‘Q(x,t) =Xty =0,i= 1n}

Assume that f(V) is a finite set of points and set
B=C- f(V), X ={(z,t) € C" x B| Q(z,t) =0}.

Then X is a smooth hypersurface, the restriction f: X — B is surjective and its differential is
surjective everywhere. Since X is closed in the affine variety C™ x B, by Hilbert’s Nullstellensatz
there exist regular functions gy, ..., g, € O(C™ x B) such that

n

0
g::Z;giaZEl (mod Q).

On the open subset U = {g # 0} the algebraic vector field

g (0Q0 9Q D\ 9 gdQd
X= Z (830181? 81&83@)87& ;ga

0
is tangent to X and lifts —.

In general the fibres of f: X — B are not biholomorphic: consider for example the case
Q(z,y,A) = y* —z(z — 1)(x — A). Then B = C — {0,1} and f: X — B is the restriction to
the affine subspace 29 # 0 of the family M — B of Example I.1.4. The fibre Xy = f~1()) is
M)y, — {point}, where M, is an elliptic curve with j-invariant j(\) = 28(A\%2 — A + 1)3A72(\ — 1)72.
If X, is biholomorphic to X} then, by Riemann’s extension theorem, also M, is biholomorphic to
My, and then j(a) = j(b).

Theorem 1.4.3. A family M-L.B of compact complex manifolds is locally trivial at a point by € B
if and only if KSf: ©ppy — (R £ Tf)p, is trivial.

Proof. One implication is clear; conversely assume KS; = 0, it is not restrictive to assume B a
polydisk with coordinates ¢1,...,t, and f a smooth family. After a possible shrinking of B we have

KS(B)y <§t> =0 for every i = 1,...,n. According to 1.3.4 there exist holomorphic vector fields

& such that f.& = ; by 1.4.1 the family is trivial over a smaller polydisk A C B. O

ot
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Note that if a smooth family f: M — B is locally trivial, then for every b € B the Kodaira-
Spencer map KS¢: Ty, g — H'(My, Thy,) is trivial for every b € B. Conversely we have the following
result.

Corollary 1.4.4. Let f: M — B a smooth family of compact complex manifolds. If the dimension
of HY(My, Thy,) is independent on b and KSy = 0 at every point b € B, then the family is locally
trivial.

Proof. According to base change theorem ([4, Ch. 3, Thm. 4.12], [60, I, Thm. 2.2], [56]) the sheaf
R'f.Ty is locally free and for every b € B the natural map R'f. Ty ®o, C, — H'(My,Th,) is an
isomorphism. Thus the morphism KS&; is trivial if and only if KSy = 0 at every point. O

Corollary 1.4.5. Let f: M — B a smooth family of compact complex manifolds. If H* (Mg, Tar,) =
0 then the family is locally trivial in a neighbourhood of 0 € B.

Proof. By semicontinuity theorem we have H*(Mj, Ty, ) = 0 for every b in a open neighbourhood
of 0. O

Definition 1.4.6. A compact complex manifold X is called rigid if H!(X,Tx) = 0.
Example 1.4.7. Every product of projective speces is a rigid manifold.

The next examples show that Corollary 1.4.4 is generally false if the dimension H!(M,, Tyy,) is
not constant.

Example 1.4.8. Consider the following family of Hopf surfaces f: M — B, where B =C, M =
X/G, X = B x (C? - {0}) and G ~ Z is generated by (b, z1, 22) — (b,221,b%21 + 222). In the
2 0
b* 2
My is not biholomorphic to M, for every b # 0. This family is isomorphic to N x¢ B, where B — C
is the map b — b and N is the quotient of C x (C? — {0}) by the group generated by (s, 21, z2) —
(8,221,821 + 222). By base-change property, the Kodaira-Spencer map KSy: Ty 5 — H' (Mo, T, )
is trivial.
On the other hand the family is trivial over B — {0}, in fact the map

(B ={0}) x (C* = {0}) = (B—{0}) x (C* = {0}), (b, 21,22) > (b, b721, 22)

induces to the quotient an isomorphism (B — {0}) x M; ~ (M — f~1(0)). Therefore the Kodaira-
Spencer map KS¢: T, g — H'(My,Thy,) is trivial for every b. According to Corollary 1.4.4 the
dimension of H'(My,Tys,) is not constant: in fact it is proved in [60] that h'(Mg, Th,) = 4 and
hl(Mb7TMb) =2 forb 7’5 0.

notation Example 1.1.6 the fibre M is the Hopf surface S,;), where A(b) = and then

Example 1.4.9. Let M C Cy x P2 x P. be the submanifold defined by the equations
upry = u1(z2 —bxo),  uoT2 = u1T3,

f: M — C the projection onto the first factor and f*: M* = (M — f~1(0)) — (C — {0}) its
restriction. We left to the reader the easy verification that f is a smooth family of compact complex
manifolds. Here we prove that:

1. f* is a trivial family.

2. f is not locally trivial at b = 0.

Proof of 1. After the linear change of coordinates xs — bxzy — x( the equations of M* C C — {0} x
P3 x P! become

UpT1 = U1Tp, UpT2 = ULT3

and there exists an isomorphism of families C — {0} x P! x PL — M*, given by

(b, [to, t1], [uo, u1]) — (b, [tour, touo, trur, truo], [uo, u1]).
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Proof of 2. Let Y ~ P! C M be the subvariety of equation b = 2; = 2o = 23 = 0. Assume f
locally trivial, then there exist an open neighbourhood 0 € U C C and a commutative diagram of
holomorphic maps

Y xU -
T
v 4 oc

where i is the inclusion, j is injective and extends the identity Y x {0} — Y C M.
Possibly shrinking U it is not restrictive to assume that the image of j is contained in the open
subset Vo = {zg # 0}. For b # 0 the holomorphic map ¢: Vo N M}, — C3,

r1 T2 I3
6(()7 [.130,331,%‘2,1‘3]7 [UOa Ul]) - <7 ) > )
o To Lo

is injective; therefore for b € U, b # 0, the holomorphic map Jj(—,b): Y ~ P! — C3 is injective.
This contradicts the maximum principle of holomorphic functions. O

Applying the base change C — C, b — b2, to the family M — C of Example 1.4.9 we get a
family with trivial KS at every point of the base but not locally trivial at 0. It is not difficult to
prove that My is the Segre-Hirzebruch surface Fy and then H*(Fo, Tf,) = C, while P! x P! is rigid.

1.5 Deformations

For every pair of pointed complex manifolds (M, z), (N,y) we denote by Morger((M, ), (N, y))
the set of germs of holomorphic maps f: (M,z) — (N,y). Every element of Morger (M, z), (N, y))
is an equivalence class of pairs (U, f), where x € U C M is an open neighbourhood of z, f: U — N
is a holomorphic map such that f(xz) = y and (U, f) ~ (V,g) if and only if there exists an open
subset x € W C U NV such that fiy = gjw-

Roughly speaking a deformation is a “framed germ” of family; more precisely

Definition I.5.1. Let (B,by) be a germ of complex manifold, a deformation Mo—i>Mi>(B, bo)
of a compact complex manifold My over (B,bg) is a pair of holomorphic maps

My——M-1.B
such that:
1. fi(Mp) = bo.

2. There exists an open neighbourhood by € U C B such that f: f~1(U) — U is a proper
smooth family.

3. i: My — f~1(bo) is an isomorphism of complex manifolds.
M is called the total space of the deformation and (B, bg) the base germ space.

Definition 1.5.2. Two deformations of M, over the same base
My—M-Lo(Bbg), My N—2(B, o)

are isomorphic if there exists an open neighbourhood by € U C B, and a commutative diagram of
holomorphic maps

My —"= f~1(U)

|

g U) ——>U

with the diagonal arrow a holomorphic isomorphism.
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For every germ of complex manifold (B, by) we denote by Def, (B, bg) the set of isomorphism
classes of deformations of My with base (B, by).

If ¢ MOLML(B,bO) is a deformation and g: (C,cg) — (B,by) is a morphism of germs of
complex manifolds then

g Mo(ﬂ’)M x5 C25(C,eo)

is a deformation with base point ¢y. It is clear that the isomorphism class of g*¢ depends only by
the class of g in Morger((C,co), (B, bo)).
Therefore every g € Morger((C, co), (B,bg)) induces a well defined pull-back morphism

g*Z DefMO(B,bo) — DefMO(C, Co).

Given any deformation My — ML(B, bo), it is well defined the Kodaira-Spencer map KS¢: Ty, p —
H*Y(My, Tr,) which is invariant under isomorphism of deformations.

Definition I.5.3. A deformation £ : M, LML(B, bg) of a compact complex manifold My, with
Kodaira-Spencer map KSy: Ty, 5 — H' (Mo, Thr, ), is called:

1. Versal if KSy is surjective and for every germ of complex manifold (C,cp) the morphism
Morger((C, co), (B, by)) — Defp, (C, co), g— g &
is surjective.
2. Semiuniversal if it is versal and KS; is bijective.

3. Universal if KS; is bijective and for every pointed complex manifolds (C,¢g) the morphism
MorGer((C7 CO)7 (Bab())) - DefMo(Cv CO)7 g— g*f
is bijective.

Versal deformations are also called complete; semiuniversal deformations are also called miniver-
sal or Kuranishi deformations.

Note that if £ is semiuniversal, g1, g2 € Morger((C, o), (B, bg)) and ¢g7¢ = ¢3¢ then, according
to Theorem 1.3.5, dg1 = dgo2: T¢y,c — Tb,,B-

Definition 1.5.4. A deformation My — M — (B, bg) is called trivial if it is isomorphic to
My 0 agy x BE(B, bo).

Corollary 1.5.5. Let X be a compact complex manifold. If H'(X,Tx) = 0 then every deformation
of X is trivial.

Example 1.5.6. In the notation of Example 1.4.9, the deformation M, — ML((C,O) is not
universal: in order to see this it is sufficient to prove that M is isomorphic to the deformation g* M,
where g: (C,0) — (C,0) is the holomorphic map g(b) = b + b?. The equation of g*M is

Ugxr1 = ’U,l(SCQ — (b + bz)llio), UgTy = U3,
and the isomorphism of deformations ¢* M — M is given by

(b, [xo, 21, 2, 23], [U0, u1]) = (b, [(1 + b)zg, 21, T2, x3], [ug, u1]).
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I.6 Historical survey, I

The deformation theory of complex manifolds began in the years 1957-1960 by a series of papers of
Kodaira-Spencer [58], [59], [60] and Kodaira-Nirenberg-Spencer [57].

The main results of these papers were the completeness and existence theorem for versal defor-
mations.

Theorem 1.6.1 (Completeness theorem, [59]). A deformation & over a smooth germ (B,0) of
a compact complex manifold My is versal if and only if the Kodaira-Spencer map KS¢: Ty p —
HY (Mo, Thy,) is surjective.

Note that if a deformation My— M i>(B70) is versal then we can take a linear subspace
0 € C C B making the Kodaira-Spencer map Tp.c — H'(My,Ta,) bijective; by completeness
theorem My — M xp C — (C,0) is semiuniversal.

In general, a compact complex manifold does not have a versal deformation over a smooth
germ. The problem of determining when such a deformation exists is one of the most difficult in
deformation theory. A partial answer is given by

Theorem 1.6.2 (Existence theorem, [57]). Let My be a compact complex manifold. If H*(My, Tas,) =
0 then My admits a semiuniversal deformation over a smooth base.

The condition H?(My,Ta,) = 0 is sufficient but it is quite far from being necessary. The
“majority” of manifolds having a versal deformation over a smooth germ has the above cohomology
group different from 0.

The next problem is to determine when a semiuniversal deformation is universal: a sufficient
(and almost necessary) condition is given by the following theorem.

Theorem 1.6.3. ([98], [112]) Let & : My—M—(B,0) be a semiuniversal deformation of a
compact complex manifold My. If b — hO(My, Thy,) is constant (e.g. if H°(Mo,Tas,) = 0) then &
s universal.

Remark 1.6.4. If a compact complex manifold M has finite holomorphic automorphisms then
HO(M,Ty) = 0, while the converse is generally false (take as an example the Fermat quartic
surface in P3, cf. [102]).

Example 1.6.5. If M is a compact manifolds with ample canonical bundle then, by a theorem of
Matsumura [84], H%(Mo, Ths,) = 0.

One of the most famous theorems in deformation theory (at least in algebraic geometry) is the
stability theorem of submanifolds proved by Kodaira in 1963.
Definition 1.6.6. Let Y be a closed submanifold of a compact complex manifold X. Y is called

stable if for every deformation X—i>XL>(B, 0) there exists a deformation YL))L(B, 0) and a
commutative diagram of holomorphic maps

J

Y ——)Y
i'Xl / ig
f
X—8B
Not every submanifold is stable, for instance consider the submanifold Y of Example 1.4.8.

Theorem 1.6.7 (Kodaira stability theorem, [55]). Let Y be a closed submanifold of a compact
complex manifold X. If H'(Y, Ny/x) =0 then'Y is stable.

1.7 Exercises

Exercise 1.7.1. In the notation of Example 1.1.6, if A = ™7 € GL(2,C), 7 = a +1ib, b < 0,
then the Hopf surface S4 is the total space of a holomorphic G-principal bundle S4 — P!, where
G=C/(Z+7Z).
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Exercise 1.7.2. Let p > 0 be a fixed integer and M a compact complex manifold. For every 0 <
q < p, denote by F, C H}(M,C) the subspace of cohomology classes represented by a d-closed form
N € i< I'(M, AP~5"). Prove that there exist injective linear morphisms F, /F, 1 — Hg_q’q(M, 0).
Deduce that b, <7 AP~

Exercise 1.7.3. There exists an action of the group Aut(Mj) of holomorphic isomorphisms of My
on the set Def s, (B, bg): if g € Aut(Mp) and ¢ : MOLML(B, by) is a deformation we define

.1
€9 My~ M-L5(B,by).

Prove that &9 = ¢ if and only if g: f~1(by) — f~'(by) can be extended to an isomorphism
g: f7HV) — f~Y(V), by € V open neighbourhood, such that fg = f.

Exercise 1.7.4. A universal deformation & : My——M i>(B, bp) induces a representation (i.e. a
homomorphism of groups)

p: Aut(My) — Autger(B, bo), p(g)*€=¢&9, g€ Aut(My).
Every other universal deformation over the germ (B, bg) gives a conjugate representation.

Exercise 1.7.5. The deformation M0—>ML>(C, where f is the family of Example 1.4.9, is not
universal.



Chapter 11

Analytic algebras and singularities

Historically, a major step in deformation theory has been the introduction of deformations of com-
plex manifolds over (possibly non reduced) analytic singularities. This chapter is a short introduc-
tory course on analytic algebras and analytic singularities; moreover we give an elementary proof of
the Nullstellenstaz for the ring C{z1,..., z,} of convergent complex power series. Quite important
in deformation theory are the smoothness criterion I1.2.3 and the two dimension bounds I1.5.3 and
11.5.4.

II.1 Analytic algebras

Let C{z1,...,2,} be the ring of convergent power series with complex coefficient. Every f €
C{z1,...,2n} defines a holomorphic function in a nonempty open neighbourhood U of 0 € C"; for
notational simplicity we still denote by f: U — C this function.

If f is a holomorphic function in a neighbourhood of 0 and f(0) # 0 then 1/f is holomorphic
in a (possibly smaller) neighbourhood of 0. This implies that f is invertible in C{z1,...,z,} if and
only if f(0) # 0 and therefore C{zy,...,2,} is a local ring with maximal ideal

m = (21, 2m) = {f | f(0) = 0}.

The multiplicity of a power series f € C{z1,...,z,} is the biggest integer s such that f € m®.
Moreover the following results hold:

o C{z1,...,2,} is Noetherian ([40, I1.B.9], [33]).
o C{z1,...,2,} is a unique factorization domain ([40, I1.B.7], [33]).
o C{z1,...,2,} is a Henselian ring ([76], [32], [33]).

o C{z1,...,2,} is a regular local ring of dimension n (see e.g. [3], [33], [85] for the basics about
dimension theory of local Noetherian ring).

We recall, for the reader’s convenience, that the dimension of a local Noetherian ring A with

maximal ideal m is the minimum integer d such that there exist fi,..., f4 € m with the property

(f1,..., fa) = m. In particular dim A = 0 if and only if v/O = m, i.e. if and only if m is nilpotent.
We also recall that a morphism of local rings f: (A, m) — (B, n) is called local if f(m) C n.

Definition I1.1.1. A C-algebra is called an analytic algebra if it is isomorphic to C{z1, ..., 2, }/1,
for some n > 0 and some ideal I C (z1,...,2,). A morphism of analytic algebras is a local morphism
of local C-algebras.

Every analytic algebra is a local Noetherian ring. We denote by An the category of analytic
algebras.

17
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Theorem II.1.2 (Implicit function theorem). Let fi,..., fm € C{x1,...,Zn,y1,...,Ym} be power
ofi
ayj
series 1 (x), ..., m(x) € C{xy,...,x,} of positive multiplicity such that

filxr, .. xn, ¥1(x), ..., o, (x)) =0 for every i=1,...,m.

The morphisms of analytic algebras

series of positive multiplicity such that det ( (O)) # 0. Then there exist m convergent power

T Ty (C{xlv"'?xnayla"'aym} yl'—wbl(a:)
C{xla--'»xn} - - C{xlw'wxn}
(fr,-os fm)
are isomorphisms and each one the inverse of the other.
Proof. See e.g. [40]. O

(C{zh...,zk}

i for some k > 0 and some

Corollary I1.1.3. Every analytic algebra is isomorphic to
ideal I C (21,...,21)%

Proof. Let A = C{z1,...,2,}/I be an analytic algebra. If the ideal I is not contained in (21, ..., 2,)?,
then there exists f € I and an index i such that g—i(O) = 0; up to permutation of indices we may
suppose i = n. Therefore A is isomorphic to C{z1,...,2z,—1}/J, where J is the kernel of the
surjective (by implicit function theorem) morphism

C{z1,...,2n-1,2n}

C{Zl,...72 ,1}—> — A.
! (f)
The conclusion follows by induction on n. O
Lemma I1.1.4. Let (R, m) be an analytic algebra. For every finite sequence r1,...,r, € m there

exists a unique morphism of analytic algebras
f:C{z1,...,zn} = R
such that f(z;) = r;.
Proof. We first note that, by the lemma of Artin-Rees ([3, 10.19]), N,m™ = 0 and then every local

homomorphism f: C{z1,...,2,} — R is uniquely determined by its factorizations
fs: C{Zl7"'azns} N ES
(2155 2n) m
Since C{z1,...,2n}/(21,...,2,)° is a C-algebra generated by z1, ..., z,, every fs is uniquely deter-
mined by f(2;); this proves the unicity.
In order to prove the existence it is not restrictive to assume R = C{uq, ..., un }; the convergent

power series r; gives a germ of holomorphic map
r=(ry,...,m): (C™,0) = (C",0),

and r*(z;) = r;, where r*: C{z1,...,2,} — C{uq,...,up} is the induced morphism of analytic
algebras. O

Lemma I1.1.5. Given an analytic algebra R and an integer n > 0 there exists an analytic algebra
R{z1,...,2n} and a morphism i: R — R{z,...,z,} having the following universal property. For
every morphism of analytic algebras f: R — A and every sequence ay,...,a, € my there exists an
unique morphism of analytic algebras g: R{z1,...,zn} — A such that gi = f and g(2;) = a;.

Proof. It R =C{y1,...,ym}/1I, define i: C{z1,...,2,} — C{y1,..-,Ym,21,---,2n} as the natural
inclusion and R{z1,...,2n} = C{y1, ..., Ym,21,--.,2n}/(@(I)), where (i(I)) is the ideal generated
by i(I). The proof of the universal property is an easy consequence of Lemma I1.1.4 and it is left
to the reader. O

Notice that (R{z1,...,2n}){#n+1,---»2m} = R{z1, ..., 2m}.
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I1.2 Tangent space and smoothness

da fare: spazio tangente di Zariski, criterio di surgettivita’

Definition II.2.1. An analytic algebra is called smooth if it is isomorphic to the power series
algebra C{z1,...,z2;} for some k > 0. A morphism of analytic algebras f: R — S is smooth if
there exists an isomorphism ¢: S — R{z1,..., 2} such that ¢f is the natural inclusion.

Notice that an analytic algebra R is smooth if and only if the morphism C — R is smooth.
Composition of smooth morphisms is a smooth morphism.

Proposition I1.2.2. Let R be an analytic algebra. The following conditions are equivalent:
1. R is smooth.
2. For every surjective morphism of analytic algebras B — A, the morphism
Moran(R, B) — Moran (R, A)
18 surjective.

3. For every n > 2 the morphism
C{t} C{t}
Moran (R, (t")> — Moran <R, (tT)
18 surjective.

Proof. The implication [1 = 2] is an immediate consequence of Lemma II.1.4 and [2 = 3] is trivial.
In order to prove [3 = 1] we write R = C{z1,...,2,}/I, where I C (z1,...,2x)?, and we denote
by m: C{z1,...,2r} — R the projection. Assume I # 0 and let s > 2 be the the greatest integer
such that I C (21,...,2;)%: we claim that Moray, (R, C{t}/(t*!)) — Moran (R, C{t}/(t?)) is not
surjective. Choosing f € I — (z1,...,2;)*"!, after a possible generic linear change of coordinates
of the form z; — z; + a;21, ag,...,ar € C, we may assume that f contains the monomial z7
with a nonzero coefficient, say f = cz{ +---; let a: R — C{t}/(t?) be the morphism defined by
a(z1) = t, a(z;) = 0 for i > 1. Assume that there exists 3: R — C{t}/(t**!) that lifts «, then
B(z1) —t, B(22),. .., B(zk) € (t?) and therefore Br(f) = ct* (mod t5T1). O

Proposition I1.2.3. Let f: R — S be a morphism of analytic algebras. The following conditions
are equivalent:

1. f is smooth.
2. For every surjective morphism of analytic algebras a.: B — A, the morphism
Moran (S, B) — Moran (R, B) XMoran(Rr,4) MOran (S, A)
18 surjective.
3. For every surjective morphism of local Artinian C-algebras a: B — A, the morphism
Moran (S, B) — Moran (R, B) XMoran(Rr,4) MOTAn (S, A)
18 surjective.

Proof. The only non trivial implication is [3 = 1]. We first note that an element of the fibered
product
1\/IOI“An (R, B) XMorAn(R,A) 1\/IOI“An (S, A)

is nothing else than a commutative diagram of morphisms of analytic algebras

!
——

|

T<~—"
S <—— WU

Da finire.
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Example I1.2.4. The morphism of analytic algebras
S C257) S & C),
(@3, y°) (2%, 22y2, )
is not smooth. However for every n > m the natural morphism

Moran (S, C{t}> — Moran (R, (C{t}> X Moran (R, S5 Moran (S C{t})

(") (") @ ()

is surjective

I1.3 Analytic singularities

Here we briefly recall the basic definition and some properties: we refer to [21, 32, 33, 73] for proofs
and more details.

Let U C C™ be an open subset and Z = (g1,...,9m) C Oy a finitely generated ideal sheaf,
15, 9m € DU, T). Setting V={uecU|gi(u) =" = gn(u) =0} and Oy = Opy/Z, we have
that the pair (V, Oy ) is a C-ringed space called local model.

Definition I1.3.1. A complex space is a Hausdorff C-ringed space locally isomorphic to a local
model.

In particular, if (X, Ox) is a complex space, then for every « € X the stalk Ox , is an analytic
algebra. Conversely, every analytic algebra R = C{z1,...,2,}/I is isomorphic to the stalk of the
structure sheaf of a complex space: in fact, if fi,..., fi, is a set of generatorsof the the ideal I and
then we have R = Ox o, where (X,0) C (C",0) is the complex analytic subspace defined by the
equations f; =--- = f,,, = 0.

Definition II.3.2. An analytic singularity is a germ (X, z) of a complex space at a point.
A morphism of analytic singularities is a germ of morphism of complex spaces. The category of
analytic singularities will be denoted by Ger.

Theorem I1.3.3 (Grothendieck, [35]). The functor
Ger — An°PP, (X,z) — Ox 4,
is an equivalence of categories.
Proof. See [35, 21]. O

Definition I1.3.4. The Zariski tangent space T, x of an analytic singularity (X, z) is the C-vector
space Derc(Ox 5, C).

. . m . . . .
Notice that T, x is the dual vector space of — where m is the maximal ideal of Ox ,; in

particular Tx , is finite dimesional and its dimension is equal the minimum number of generators
of m. Every morphism of singularities (X, z) — (Y,y) induces a linear morphism of Zariski tangent
spaces Ty, x — T}, y.

The dimension of an analytic singularity (X, z) is by definition the dimension of the analytic
algebra Ox ,: in particular we have dim(X, z) < dim 7T} x.

Definition I1.3.5. A fat point is an analytic singularity of dimension 0.

Lemma I1.3.6. An analytic singularity (X, x) is a fat point if and only if the analytic algebra Ox 4
is Artinian.

Proof. By definition of dimension, an analytic algebra has dimension 0 if and only if its maximal
ideal is nilpotent. O
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I1.4 The curve selection lemma

The aim of this section is to give, following [76], an elementary proof the following theorem.

Theorem IT.4.1 (curve selection lemma). Let I C C{z1,...,2,} be a proper ideal and h ¢ V/T.
Then there exists a morphism of analytic algebras ¢: C{z1,...,z,} — C{t} such that (I) =0 and

o(h) #0.

Before proving Theorem I1.4.1 we need a series of results that are of independent interest. We
recall the following

Definition I1.4.2. A power series p € C{z1,...,2,,t} is called a Weierstrass polynomial in t of
degree d > 0 if
d—1
p:td—&-Zpi(zl,...,zn)tl, pi(0) = 0.
i=0

In particular if p(21, ..., z,,t) is a Weierstrass polynomial in ¢ of degree d then p(0,...,0,t) = t¢.

Theorem I1.4.3 (Weierstrass preparation theorem). Let f € C{z1,...,2,,t} be a power series
such that f(0,...,0,t) # 0. Then there exists a unique e € C{z1,...,z,,t} such that e(0) # 0 and
ef is a Weierstrass polynomial in t.

Proof. For the proof we refer to [32], [33], [38], [56], [40], [76]. O

Corollary I1.4.4. Let f € C{z1,...,2n} be a power series of multiplicity d. Then, after a possible
generic linear change of coordinates there exists e € C{z1,...,2,} such that e(0) # 0 and ef is a
Weierstrass polynomial of degree d in z,.

Proof. After a generic change of coordinates of the form z; — 2z; + a;2,, a; € C, the series
f(0,...,0, z,) has multiplicity d. O

Lemma I1.4.5. Let f,g € C{x1,...,x,}[t] with g a Weierstrass polynomial. If f = hg for some
heC{xy,...,z,,t} then h € C{x1,...,x,}I].

Proof. Write g = t*+ 3 g;(z)t* ™", g:(0) =0, f = Yi_, fil@)t"™* h =3, hi(x)t’, we need to prove
that h; = 0 for every ¢ > r — s. Assume the contrary and choose an index j > r — s such that the
multiplicity of h; takes the minimum among all the multiplicities of the power series h;, i > r — s.
From the equality 0 = h; +3_,_ gihj4i we get a contradiction. O

Notice that if ¢ is not a Weierstrass polynomial, then the above result is false: consider for
instance the case n =0, f =t and g =t + 2.

Lemma I1.4.6. Let f € C{xz1,...,z,}[t] be an irreducible monic polynomial of degree d. Then the
polynomial fo(t) = f(0,...,0,t) € C[t] has a root of multiplicity d.

Proof. Let ¢ € C be aroot of fo(t). If the multiplicity of ¢ is I < d then the multiplicity of the power
series fo(t + ¢) € C{t} is exactly [ and therefore f(z1,...,2n,t+ ¢) is divided in C{x1,...,z,}[t]
by a Weierstrass polynomial of degree [. O

Lemma I1.4.7. Let p € C{z}[y] be a monic polynomial of positive degree d in y. Then there exists
a homomorphism ¢: C{x}y] — C{t} such that ¢(p) =0 and ¢(x) =t* for some integer s > 0.

Proof. If d = 1 then p(z,y) = y — p1(z) and we can consider the morphism ¢ given by ¢(x) = ¢,
#(y) = p1(t). By induction we can assume that the theorem holds for monic polynomials of degree
<d.

If p is reducible we have done, otherwise, writing p = y? + p1(z)y?=! + --- + pg(x), after the
coordinate change z — x, y — y — p1(x)/d we can assume p; = 0. For every i > 2 denote by
w(pi) = a; > 0 the multiplicity of p; (we set «; = +o0 if p; = 0). Let j > 2 be a fixed index such

«@ ,
that =2 < = for every i. Setting m = a;, we want to prove that the monic polynomial p(¢&7,y)
j i
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is not irreducible. In fact p(¢7,y) = y? + 3,55 hi(€)y?™?, where h;(€) = p;(&7). For every i the
multiplicity of h; is ja; > ic; = 4m and then

) ¢m —dm h’i g —1 —1
9(&y) = p(&, &Myt =14+ gfu.)yd =y + ) ni(©)y
is a well defined element of C{¢,y}. Since 71 = 0 and 1;(0) # 0 the polynomial ¢ is not irreducible
and then, by induction there exists a nontrivial morphism v : C{¢}[y] — C{¢} such that ¢ (q) = 0,

$(€) = t* and we can take ¢(z) = ¥ (¢’) = /* and ¢(y) = P(E™y). 0

Theorem I1.4.8 (Weierstrass division theorem). Let p € C{z1,...,2n,t}, p # 0, be a Weierstrass
polynomial of degree d > 0 in t. Then for every f € C{z1,...,2zn,t} there exists a unique h €
C{z1,...,2n,t} such that f — hp € C{z1,..., 2z, }[t] is a polynomial of degree < d in t.

Proof. For the proof we refer to [32], [33], [38], [56], [40], [76]. O
We note that an equivalent statement for the division theorem is the following:

Corollary 11.4.9. Ifp € C{z1,...,2n,t}, p # 0, is a Weierstrass polynomial of degree d > 0 in t,
then C{z1,...,2n,t}/(p) is a free C{z1, ..., z, }-module with basis 1,t,...,t31,

Proof. Clear. O

Theorem I11.4.10 (Newton-Puiseux). Let f € C{x,y} be a power series of positive multiplicity.
Then there exists a nontrivial morphism of analytic algebras ¢: C{z,y} — C{t} such that ¢(f) = 0.
Moreover, if f is irreducible then ker ¢ = (f).

In the above statement nontrivial means that ¢(z) # 0 or ¢(y) # 0.

Proof. After a linear change of coordinates we can assume f(0,y) a non zero power series of mul-
tiplicity d > 0; by preparation theorem there exists an invertible power series e such that p = ef
is a Weierstrass polynomial of degree d in y. According to Lemma I1.4.7 there exists a homomor-
phism ¢: C{z}[y] — C{t} such that ¢(p) = 0 and 0 # ¢(x) € (t). Therefore ¢(p(0,y)) € (t)
and, being p a Weierstrass polynomial we have ¢(y) € (¢) and then ¢ extends to a local morphism
¢: Clw,y} — C{t}.

Assume now f irreducible, up to a possible change of coordinates and multiplication for an
invertible element we may assume that f € C{z}[y] is an irreducible Weierstrass polynomial of
degree d > 0. Let ¢: C{z,y} — C{t} be a nontrivial morphism such that ¢(f) = 0, then ¢(z) # 0
(otherwise ¢(y)? = ¢(f) = 0) and therefore ker(¢) N C{x} = 0 Let g € ker(¢), by division theorem
there exists r € C{z}[y] such that g = hf + r and then r € ker(¢).

Let R(f,r) € C{z} be the resultant of the elimination of y on the polynomials f,r. By general
properties of the resultatnt we have R(f,r) € (f,r) C ker(¢) and then R(f,r) € ker(¢) NC{z} = 0;
since C{z} is a unique factorization domain, this implies that f divides r. O

We recall that, if A is a commutative ring and p,q € A[z] with p monic polynomial, then the
resultant R(p, q) is equal to the determinant of the morphism of free A-modules

multiplication by g: M — M

(p) (p)

Lemma I1.4.11. Let A be an integral domain and 0 # p C A[t] a prime ideal such that pN A = 0.
Denote by K the fraction field of A and by p© C K|x] the ideal generated by p. Then:

1. p° is a prime ideal of the euclidean ring Klz].
2. peNAlz] =p.

3. There exists g € p such that for every monic polynomial p & p we have R(p,q) # 0.
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Proof. [1] We have p® = {B ‘ pEP,acA— {0}} 1 2LP2
a a1 az

there exists a € A — {0} such that api;ps € p. Since p N A = 0 it must be p; € p or p, € p. This
shows that p€ is prime.

[2] If ¢ € p® N Alx], then there exists a € A, a # 0 such that ag € p and, since p N A = 0 we have
qenp.

[3] Let ¢ € p — {0} be of minimal degree. Since K[t] is an Euclidean ring, p¢ = ¢K[t] and, since p°
is prime, ¢ is irreducible in K[t]. If p € A[t] \ p is a monic polynomial then p & p¢ = ¢K|[t] and then
R(p,q) #0. O

Theorem I1.4.12. Let A be a unitary ring, p C A[t] a prime ideal and denote q = ANp. If p # q[t]
(e.g. if p is proper and contains a monic polynomial) then there exists g € p such that for every
monic polynomial p € p we have R(p,q) & q. If moreover A is a unique factorization domain we
can choose q irreducible.

€ p© with p; € Alz] and a; € A, then

Proof. The ideal q is prime and q[t] C p, therefore the image of p in (A/q)[t] = A[t]/q[¢] is still a
prime ideal satisfying the hypothesis of Lemma I1.4.11. It is therefore sufficient to take g as any
lifting of the element described in Lemma I1.4.11 and use the functorial properties of the resultant.

If A is UFD and ¢ is not irreducible we can write ¢ = hg with g € p irreducible; using the
bilinearity relations of resultant R(p, f) = R(p, h)R(p, g) we get R(p,g) & q. O

The division theorem allows to extend the definition of the resultant to power series. In fact
if p € C{z1,...,2,}[t] is a Weierstrass polynomial in ¢ of degree d, for every f € C{z1,...,z2,,t}
we can define the resultant R(p, f) € C{z1,...,2,} as the determinant of the morphism of free
C{z1, ..., zp-module
CC{zn, .z t) _ C{z1,...,2n,t}

' (») (»)

induced by the multiplication with f. It is clear that R(p, f) = R(p,r) whenever f —r € (p).

f

Lemma I1.4.13. Let p € C{z1,...,2n,t} be a Weierstrass polynomial of positive degree in t and
V C C{z1,...,2n,t} a C-vector subspace. Then R(p, f) = 0 for every f € V if and only if there
exists a Weierstrass polynomial q of positive degree such that:

1. q divides p in C{z1,..., 2, }[t]
2. VCqC{z,...,zn,t}

Proof. One implication is clear, in fact if p = gr then the multiplication by ¢ in not injective in
C{z1,...,2n,t}/(p); therefore R(p,q) = 0 and by Binet’s theorem R(p, f) = 0 for every f € (q).

For the converse let p = p1ps . . . ps be the irreducible decomposition of p in the UFD C{z1, ..., z, }[t].
If R(p,f) =0and r = f — hp € C{z1,...,2,}[t] is the remainder of the division then R(p,r) =0
and then there exists a factor p; dividing r and therefore also dividing f. In particular, setting
V: =V N (p;), we have V = U,;V; and therefore V = V; for at least one index ¢ and we can take

q = Di- O

Theorem 11.4.14. Letp C C{z1,...,z,} be a prime ideal and h & p. Then there exists a morphism
of analytic algebras ¢: C{z1,...,z,} — C{t} such that ¢(p) =0 and ¢(h) # 0.

Proof. We first consider the easy cases n = 1 and p = 0. If p = 0 then, after a possible change of
coordinates, we may assume h(0,...,0,¢) # 0 and therefore we can take ¢(z;) =0fori=1,...,n—1
and ¢(z,) = t. If n = 1 the only prime nontrivial ideal is (z1) and therefore the trivial morphism
¢: C{z1} — C C C{t} satisfies the statement of the theorem.

Assume then n > 1, p # 0 and fix a nonzero element g € p. After a possible linear change
of coordinates and multiplication by invertible elements we may assume both h and g Weierstrass
polynomials in the variable z,. Denoting

v=pNC{z,...,2n-1}[2n], q=pNC{z1,...,zn1t=tNC{z1,...,2n-1},

according to Theorem I1.4.12, there exists f € t such that R(h,f) € q. On the other hand,
since g € p, we have R(g, f) € q for every f € p. By induction on n there exists a morphism



CHAPTER II. ANALYTIC ALGEBRAS AND SINGULARITIES 24

¥: Cl{z1,..., 201} — C{z} such that ¢(q) = 0 and (R(h, f)) # 0. Denoting by ¢o: C{z1,...,2,} —
C{x,z,} the natural extension of ¢ we have R((h),¢(f)) # 0 and R(1(g),¥(f)) = 0 for every
f €p. Applying Lemma I1.4.13 to the Weierstrass polynomial 1(g) and the vector space V = 1(p)
we prove the existence of an irreducible factor p of ¥(g) such that ¢ (p) C pC{z, z,,}. In particular

p divides 9 (f), therefore R(1(h),p) # 0 and ¢ (h) & pC{z, z, }.
By Newton-Puiseux’ theorem there exists n: C{z, z, } — C{t} such that n(p) = 0 and n(¢(h)) #
0. It is therefore sufficient to take ¢ as the composition of 1 and 7. O

Proof of Theorem II.4.1. If h ¢ \/T then there exists (cf. [3]) a prime ideal p such that I C p and
héep. O

II.5 Curvilinear obstructions and lower dimension bounds
of analytic algebras

As an application of Theorem I1.4.1 we give some bounds for the dimension of an analytic algebra;
this bounds will be very useful in deformation and moduli theory. The first bound (Lemma II.5.3)
is completely standard and the proof is reproduced here for completeness; the second bound (Theo-
rem I1.5.4, communicated to the author by H. Flenner) finds application in the “T"'-lifting” approach
to deformation problems.

We need the following two results of commutative algebra.

Lemma I1.5.1. Let (A, m) be a local Noetherian ring and J C I C A two ideals. If J+ml =1
then J = 1.

Proof. This a special case of Nakayama’s lemma [3], [76]. O

Lemma I1.5.2. Let (A, m) be a local Noetherian ring and f € m, then dim A/(f) > dim A — 1.
Moreover, if f is nilpotent then dim A/(f) = dim A, while if f is not a zerodivisor then dim A/(f) =
dim A — 1.

Proof. [3]. O

Lemma I1.5.3. Let R be an analytic algebra with mazimal ideal m, then dim R < dimg¢ % and
equality holds if and only if R is smooth.

Proof. Let n = dimg¢ % and f1,..., fn € minducing a basis of % If J=1(f1,..., fn) by assump-
m m

tion J +m? = m and then by Lemma I1.5.1 J =m, R/J =C and 0 = dim R/J > dim R — n.

According to Lemma I1.1.3 we can write R = C{z1, ..., 2, }/I for some ideal contained in (21, . . ., z, )%
Since C{z1,...,2,} is an integral domain, according to Lemma I1.5.2 dim R = n if and only if
I1=0. O

Theorem I1.5.4. Let R = P/I be an analytic algebra, where P = C{z1,...,2,} and I C P is a
proper ideal. Denoting by m = (21,...,2,) the mazimal ideal of P and by J C I the ideal

of
8Zi

J{fef‘ el Vil,...,n}

have dim R > n — dimg ———.
we have dim R > n lmCJ+mI

Proof. (taken from [19]) We first introduce the curvilinear obstruction map

1
~r: Moran (P, C{t}) — Hom¢ (J—f—m[’(c> .

Given ¢: P — C{t}, if ¢(I) = 0 we define vy;(¢) = 0; while if ¢(I) # 0 and s is the biggest integer
such that ¢(I) C (¢°) then we define, for every f € I, v1(¢)f as the coefficient of ¢° in the power
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series expansion of ¢(f) = f(P(z1),...,¢(zn)). It is clear that v;(¢)(mI) = 0, while if ¢(I) C (¢°)
and f € J we have

-3 5 f 2 6() 8 ¢

and therefore ¢(f) € (¢t>*1) (this is the point where the characteristic of the field plays an essential
role). The vectors in the image of v; are called curvilinear obstructions and we will prove the
theorem by showing that there exist n — dim R linearly independent curvilinear obstructions.

The ideal I is finitely generated, say I = (f1,..., fd), according to Nakayama’s lemma we
can assume fi,..., fq a basis of I/mI. By repeated application of Theorem I1.4.1 (and possibly
reordering the f;’s) we can assume that there exists an h < d such that the following holds:

1. fi ¢ \/(fla---;fi—l) fOI'ZSh,

2. for every i < h there exists a morphism of analytic algebras ¢; : P — C{t} such that
®i(fi) #0, ¢;(f;) = 01if j < i and the multiplicity of ¢;(f;)) is bigger than or equal to the
multiplicity of ¢;(f;)) for every j > i.

3. IC \/(fl,...,fh).
Condition 3) implies that dim R = dim P/(f1,..., fn) > n — h, hence it is enough to prove that
I
Yi(@1),...,vi(¢n) are linearly independent in Homg (J—i—mf(C) and this follows immediately

from the fact that the matrix a;; = vr(¢:)f;, t,j = 1,...,h, has rank h, being triangular with
nonzero elements on the diagonal. O

Example I1.5.5. Here it is an example where the dimension bound of Theorem I1.5.4 is better than
the standard one. Let I C C{x,y} be the ideal generated by the polynomial f = x® +y° + 23y3 and
by its partial derivatives f, = bz* + 322%y3, f, = by* + 323y?. Clearly f € J={g € I | gu, gy € I}
and, in order to prove that J+mlI # m/ it is sufficient to prove that f € mI. Assume f—cf € (fs, fy)
for some ¢ € m, then since 1 — ¢ is invertible we have f € (fz, fy), say f = afz + bf,. Looking at
the homogeneous components of degree < 5 we get

£ 2 Y 2
€ —-+m°, be=+m
*S75 5

and then
f**ft**fy***x y cm (fa:»fy)

which is not possible.

I1.6 Artin’s theorem on the solution of analytic equations

All the algebraic results of this chapter that make sense also for the ring of formal power series
C[[z1,- .., 2n]] and their quotients, remain true: in particular the Weierstrass preparation and divi-
sion theorem holds with the same statement [68]. In many cases, especially in deformation theory,
we seek for solutions of systems of analytic equations but we are able to solve these equation only
formally; in this situation a great help comes from the following theorem, proved by M. Artin in
1968.

Theorem I1.6.1 (Artin [1]). Let n,m, N,c be non negative integers and let

fl(xay) :fi(xlv"'aznayh'"ayl\/) Gc{xlw"aznaylv"'ayN}a 1:177m

be convergent power series. Assume that there exist N formal power series §;(x) € Cl[x1, ..., Z4]],
i=1,...,N, without constant terms such that f;(x,y(x)) = 0 for every i =1,...,m. Then there
exists N convergent power series y;(x) € C{x1,...,x,} such that fi(xz,y(x)) = 0 for every i and
yi(x) =7;(z) (mod m®), where m is the mazimal ideal of Cl[x1,...,zy]].
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Here we will prove Artin’s theorem under the additional assumption that the f;’s are polyno-
mials: the proof of the general case uses the same ideas but it is technically more difficult. More
precisely we give a complete proof of the following theorem.

Theorem 11.6.2. Let n,m, N, c be non negative integers and let

fz(xay) :fi(xlw")xnaylw")yl\f) E(C[xlr--axnayl)"'ay]\f]a 1= 1)"'am'

be m polynomials. Assume that there exists N formal power series Y;(x) € Cl[x1,...,xn]], ¢ =
1,..., N, such that f;(x,5(x)) = 0 for every i = 1,...,m. Then there exist N convergent power
series yi(z) € C{x1,...,zn} such that fi(z,y(x)) = 0 for every i and y;(x) = y,(x) (mod m°),
where m is the mazimal ideal of Cllx1, ..., zy]].

We work by induction on n, being the theorem trivially true for n = 0; so we assume n > 0 and
the theorem true for n — 1. The proof of inductive step is a consequence of Weierstrass preparation
and implicit function theorems.

Lemma I1.6.3. Let g, f1,..., fm € Clx1,...,Zn,y1,...,yn] and ¢ a positive integer. Assume that
there exist formal power series §;,(x) € C[[z1,...,2,]], i =1,..., N, such that

1. g(z,y(z)) # 0,
2. g(x,y(x)) divides f;(x,7y(x)) in the ring Clx1,...,x,]] for everyi=1,...,m.

Then there exist N convergent power series y;(x) € C{xy,...,2,} such that y;(x) = 7, (x)
(mod m¢) and:

1. g(z,y(x)) # 0,
2. g(z,y(x)) divides f;(x,y(z)) in the ring C{z1,...,z,} for everyi=1,...,m.

Proof. Let’s denote by r the multiplicity of g(z,%(z)); it is not restrictive to assume ¢ > r. Up to
a linear change of the coordinates z; we have, by Weierstrass preparation theorem

9(x,5(x)) = (z}, + @ (2)2y "+ + 8 (2))e(@),

where €(x) is invertible and every @;(x) is a formal power series in 1, ..., Z,_1.
By Weierstrass division theorem we have

r—1
7i(2) = (o), @@z + o+ @ (@))ui(e) + )7 (@),
j=0
where the 7, ;(z)’s are formal power series in 1, ..., 7,-1. Now, it follows easily from Taylor formula

that we may replace the power series 7;(