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Chapter I

Smooth families of compact
complex manifolds

In this chapter we introduce the notion of a family f : X → B of compact complex manifolds as
a proper holomorphic submersion of complex manifolds. Easy examples will show that in general
the fibres Xt := f−1(t) are not biholomorphic each other, see e.g. Example I.1.4. Using integration
of vector fields we prove that the family is locally trivial if and only if a certain morphism KS of
sheaves over B is trivial, while the restriction of KS at a point b ∈ B is a linear map KS: Tb,B →
H1(Xb, TXb), called the Kodaira-Spencer map, which can interpreted as the first derivative at the
point b of the map

B → {isomorphism classes of complex manifolds}, t 7→ Xt.

Then, according to Kodaira, Nirenberg and Spencer we define a deformation of a complex man-
ifolds X as the data of a family X → B, of a base point 0 ∈ B and of an isomorphism X ' X0.
The isomorphism class of a deformation involves only the structure of f in a neighbourhood of X0.

For every complex manifold M we denote by:

• OM (U) the C-algebra of holomorphic functions f : U → C defined on an open subset U ⊂M .

• OM the trivial complex line bundle C×M →M .

• TM the holomorphic tangent bundle to M . The fibre of TM at a point x ∈M , i.e. the complex
tangent space at x, is denoted by Tx,M .

If x ∈ M is a point we denote by OM,x the C-algebra of germs of holomorphic functions at a
point x ∈M ; a choice of local holomorphic coordinates z1, . . . , zn, zi(x) = 0, gives an isomorphism
OM,x = C{z1, . . . , zn}, being C{z1, . . . , zn} the C-algebra of convergent power series.

In order to avoid a too heavy notation we sometimes omit the subscript M , when the underlying
complex manifold is clear from the context.

I.1 Smooth families of compact complex manifolds

Definition I.1.1. A smooth family of compact complex manifolds is a proper holomorphic map
f : M → B such that:

1. M,B are nonempty complex manifolds and B is connected.

2. The differential of f , f∗ : Tp,M → Tf(p),B is surjective at every point p ∈M .
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Two families f : M → B, g : N → B over the same base are isomorphic if there exists a holomorphic
isomorphism N →M commuting with f and g.

From now on, when there is no risk of confusion, we shall simply say smooth family instead of
smooth family of compact complex manifolds.

Note that if f : M → B is a smooth family then f is open, closed and surjective. If V ⊂ B is an
open subset then f : f−1(V )→ V is a smooth family; more generally for every holomorphic map of
connected complex manifolds C → B, the pull-back M ×B C → C is a smooth family.

For every b ∈ B we denote Mb = f−1(b): Mb is a regular submanifold of M .

Definition I.1.2. A smooth family f : M → B is called trivial if it is isomorphic to the product
Mb × B → B for some (and hence all) b ∈ B. It is called locally trivial if there exists an open
covering B = ∪Ua such that every restriction f : f−1(Ua)→ Ua is trivial.

Lemma I.1.3. Let f : M → B be a smooth family, b ∈ B. The normal bundle NMb/M of Mb in M
is trivial.

Proof. Let E = Tb,B ×Mb →Mb be the trivial bundle with fibre Tb,B . The differential f∗ : Tx,M →
Tb,B , x ∈Mb induces a surjective morphism of vector bundles (TM )|Mb

→ E whose kernel is exactly
TMb

.
By definition NMb/M = (TM )|Mb

/TMb
and then NMb/M = Tb,B ×Mb.

The following examples of families show that, in general, if a, b ∈ B, a 6= b, then Ma is not
biholomorphic to Mb and therefore that non every family is locally trivial.

Example I.1.4. Consider B = C− {0, 1},

M = {([x0, x1, x2], λ) ∈ P2 ×B | x2
2x0 = x1(x1 − x0)(x1 − λx0)},

and f : M → B the projection. Then f is a family and the fibre Mλ is a smooth plane cubic with
j-invariant

j(Mλ) = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2
.

(Recall that two elliptic curves are biholomorphic if and only if they have the same j-invariant.)

Example I.1.5. (The universal family of hypersurfaces)

For fixed integers n, d > 0, consider the projective space PN , N =
(
d+ n

n

)
− 1, with homogeneous

coordinates ai0,...,in , ij ≥ 0,
∑
j ij = d, and denote

X =

{
([x], [a]) ∈ Pn × PN

∣∣∣∣∣ ∑
i0+...+in=d

ai0,...,inx
i0
0 · · ·xinn = 0

}
.

X is a smooth hypersurface of Pn × PN , the differential of the projection X → PN is not surjective
at a point ([x], [a]) if and only if [x] is a singular point of Xa.
The subset B = {[a] ∈ PN | Xa is smooth } is open; if M = f−1(B) then f : M → B is a family
and every smooth hypersurface of degree d of Pn is isomorphic to a fibre of f .

Example I.1.6 (Hopf surfaces). Let A ∈ GL(2,C) be a matrix with eigenvalues of norm > 1 and
let 〈A〉 ' Z ⊂ GL(2,C) be the subgroup generated by A. The action of 〈A〉 on X = C2 − {0} is
free and properly discontinuous: in fact a linear change of coordinates C : C2 → C2 changes the
action of 〈A〉 into the action of 〈C−1AC〉 and therefore it is not restrictive to assume A is a lower
triangular matrix.
Therefore the quotient SA = X/〈A〉 is a compact complex manifold called Hopf surface: the holo-
morphic map X → SA is the universal cover and then for every point x ∈ SA there exists a natural
isomorphism π1(SA, x) ' 〈A〉. We have already seen that if A,B are conjugated matrix then SA
is biholomorphic to SB . Conversely if f : SA → SB is a biholomorphism then f lifts to a biholo-
morphism g : X → X such that gA = Bkg; since f induces an isomorphism of fundamental groups
k = ±1.
By Hartogs’ theorem g extends to a biholomorphism g : C2 → C2 such that g(0) = 0; since for every
x 6= 0 lim

n→∞
An(x) = +∞ and lim

n→∞
B−n(x) = 0 it must be gA = Bg. Taking the differential at 0 of

gA = Bg we get that A is conjugated to B.
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Example I.1.7 (Complete family of Hopf surfaces). Denote B = {(a, b, c) ∈ C3 | |a| > 1, |c| > 1},
X = B × (C2 − {0}) and let Z ' G ⊂ Aut(X) be the subgroup generated by

(a, b, c, z1, z2) 7→ (a, b, c, az1, bz1 + cz2)

The action of G on X is free and properly discontinuous, let M = X/G be its quotient and
f : M → B the projection on the first coordinates: f is a family whose fibres are Hopf surfaces.
Every Hopf surface is isomorphic to a fibre of f , this motivate the adjective “complete”. In particular
all the Hopf surfaces are diffeomorphic to S1 × S3 (to see this look at the fibre over (2, 0, 2)).

Theorem I.1.8. Let M
f−→B be a smooth family of compact complex manifolds. Then for every

point 0 ∈ B there exist an open neighbourhood 0 ∈ U ⊂ B and a diffeomorphism φ : M0 × U →
f−1(U), where M0 = f−1(0) ⊂M , such that:

1. φ(x, 0) = x and fφ(x, t) = t for every x ∈M0 and t ∈ U .

2. φ is transversely holomorphic, i.e. for every x ∈M0 the map φ : {x}×U →M is holomorphic.

In particular, if B is connected, then the diffeomorphism type of the fibre Mb is independent from
b ∈ B.

Proof. (cf. also [13], [111]) It is not restrictive to assume B ⊂ Cn a polydisk with coordinates
t1, . . . , tn and 0 ∈ B the base point of the deformation. After a possible shrinking of B there exist a
finite open covering M = ∪Wa, a = 1, . . . , r, and holomorphic projections pa : Wa → Ua = Wa∩M0

such that (pa, f) : Wa → Ua × B is a biholomorphism for every a and Ua is a local chart with
coordinates zai : Ua → C, i = 1, . . . ,m.
Let ρa : M0 → [0, 1] be a C∞ partition of unity subordinate to the covering {Ua} and denote
Va = ρ−1

a (]0, 1]); we note that {Va} is a covering of M0 and Va ⊂ Ua. After a possible shrinking of
B we may assume p−1

a (Va) closed in M .
For every subset C ⊂ {1, . . . , r} and every x ∈M0 we denote

HC =

⋂
a∈C

Wa −
⋃
a6∈C

p−1
a (Va)

×
⋂
a∈C

Ua −
⋃
a6∈C

Va

 ⊂M ×M0,

Cx = {a |x ∈ Va }, H =
⋃
C

HC .

Clearly (x, x) ∈ HCx and then H is an open subset of M × M0 containing the graph G of the
inclusion M0 → M . Since the projection pr : M ×M0 → M is open and M0 is compact, after a
possible shrinking of B we may assume pr(H) = M .
Moreover if (y, x) ∈ H and x ∈ Va then (y, x) ∈ HC for some C containing a and therefore y ∈Wa.
For every a consider the C∞ function qa : H ∩ (M × Ua)→ Cm,

qa(y, x) =
∑
b

ρb(x)
∂za

∂zb
(x)(zb(pb(y))− zb(x)).

By the properties of H, qa is well defined and separately holomorphic in the variable y. If (y, x) ∈
H ∩ (M × (Ua ∩ Uc)) then

qc(y, x) =
∂zc

∂za
(x)qa(y, x)

and then
Γ = {(y, x) ∈ H | qa(y, x) = 0 whenever x ∈ Ua}

is a well defined closed subset of H.
If y ∈ Va ⊂M0 and x is sufficiently near to y then x ∈ (

⋂
b∈Cy Ub−

⋃
b 6∈C Vb) and, for every b ∈ Cy,

zb(y) = zb(x) +
∂zb

∂za
(x)(za(y)− za(x)) + o(‖za(y)− za(x)‖).

Therefore
qa(y, x) = za(y)− za(x) + o(‖za(y)− za(x)‖).
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In particular the map x 7→ qa(y, x) is a local diffeomorphism at x = y.
Denote K ⊂ H the open subset of points (y, x) such that, if y ∈ p−1

a (Va) then u 7→ qa(y, u) has
maximal rank at u = x; note that K contains G.
Let Γ0 be the connected component of Γ ∩ K that contains G; Γ0 is a C∞-subvariety of K and
the projection pr : Γ0 → M is a local diffeomorphism. Possibly shrinking B we may assume that
pr : Γ0 →M is a diffeomorphism.
By implicit function theorem Γ0 is the graph of a C∞ projection γ : M →M0.
After a possible shrinking of B, the map (γ, f) : M →M0×B is a diffeomorphism, take φ = (γ, f)−1.
To prove that, for every x ∈M0, the map t 7→ φ(x, t) is holomorphic we note that f : φ({x}×B)→ B
is bijective and therefore φ(x,−) = f−1pr : {x} ×B → φ({x} ×B).
The map f−1 : B → φ({x}×B) is holomorphic if and only if φ({x}×B) = γ−1(x) is a holomorphic
subvariety and this is true because for x fixed every map y 7→ qa(y, x) is holomorphic.

I.2 Čech and Dolbeault cohomology

We assume that the reader is familiar with cohomology theory of sheaves and with Dolbeault
theorem. In this section we fix some notation used in the rest of the book.

If M is a complex manifold and E is a holomorphic vector bundle on M , we denote:

• E∨ the dual bundle of E.

• Γ(U,E) the space of holomorphic sections s : U → E on an open subset U ⊂M .

• Ω1
M = T∨M the holomorphic cotangent bundle of M .

• ΩpM =
∧p

T∨M the bundle of holomorphic differential p-forms.

For every open subset U ⊂M we denote by Γ(U,Ap,qM ) the C-vector space of differential (p, q)-
forms on U . If z1, . . . , zn are local holomorphic coordinates, then φ ∈ Γ(U,Ap,qM ) is written locally
as φ =

∑
φI,JdzI ∧ dzJ , where I = (i1, . . . , ip), J = (j1, . . . , jq), dzI = dzi1 ∧ · · · ∧ dzip , dzJ =

dzj1 ∧ · · · ∧ dzjq and the φI,J are C∞ functions.
Similarly, if E → M is a holomorphic vector bundle we denote by Γ(U,Ap,q(E)) the space of
differential (p, q)-forms on U with value in E; locally, if e1, . . . , er is a local frame for E, an element
of Γ(U,Ap,q(E)) is written as

∑r
i=1 φiei, with φi ∈ Γ(U,Ap,q). Note that there exist natural

isomorphisms Γ(U,Ap,q(E)) ' Γ(U,A0,q(ΩpM ⊗ E)).
The Dolbeault’s cohomology of a holomorphic vector bundle E, denoted by Hp,∗

∂
(M,E) is the

cohomology of the Dolbeault complex

0−→Γ(M,Ap,0(E)) ∂−→Γ(M,Ap,1(E)) ∂−→· · · ∂−→Γ(U,Ap,q(E)) ∂−→· · ·

Notice that Hp,0

∂
(M,E) = Γ(M,ΩpM ⊗E) is the space of holomorphic p-forms with values in E.

From now on, for simplicity of notation, we denote Hq(M,E) = H0,q

∂
(M,E), hq(M,E) =

dimC H
q(M,E), Hq(M,Ωp(E)) = Hp,q

∂
(M,E).

The Hodge numbers of a fixed compact complex manifold M are by definition

hp,q = dimC H
p,q

∂
(M,O) = dimC H

0,q

∂
(M,Ωp).

The Betti numbers of M are the dimensions of the spaces of the De Rham cohomology of M , i.e.

bp = dimC H
p
d (M,C), Hp

d (M,C) =
d-closed p-forms
d-exact p-forms

.

Let U = {Ua}, a ∈ I, be an open covering of a complex manifold M ; for every a0, . . . , ak ∈ I
we denote Ua0,...,ak = Ua0 ∩ · · · ∩ Uak . For every sheaf of abelian groups F on M we denote by

C∗(U ,F) : C0(U ,F) d−→C1(U ,F) d−→C2(U ,F) d−→· · ·
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the corresponding alternating Čech complex. Here Ck(U , E) is the group of alternating sequences
{fa0,a1,...,ak}, a0, . . . , ak ∈ I, fa0,a1,...,ak ∈ F(Ua0,...,ak). Alternating means that for every permuta-
tion σ ∈ Σk+1 we have faσ(0),aσ(1),...,aσ(k) = (−1)σfa0,a1,...,ak and fa0,a1,...,ak = 0 whenever ai = aj
for some i 6= j. The cohomology of the above complex is denoted H∗(U ,F).

Proposition I.2.1. For every holomorphic vector bundle E and every open covering U = {Ua},
a ∈ I, there exists a natural morphism of C-vector spaces θ : Hk(U , E)→ H0,k

∂
(M,E).

Proof. Let ta : M → C, a ∈ I, be a differentiable partition of unity subordinate to the covering {Ua}:
this means that supp(ta) ⊂ Ua, the family of supports {supp(ta)} is locally finite and

∑
a ta = 1.

Given f ∈ Ck(U , E) and a ∈ I we consider

φa(f) =
∑

c1,...,ck

fa,c1,...,ck∂tc1 ∧ · · · ∧ ∂tck ∈ Γ(Ua,A0,k(E)),

φ(f) =
∑
a

taφa(f) ∈ Γ(M,A0,k(E)).

Since every fa,c1,...,ck is holomorphic we have ∂φa = 0 and then

∂φ(f) =
∑
a

∂ta ∧ φa(f) =
∑

c0,...,ck

fc0,...,ck∂tc0 ∧ · · · ∧ ∂tck .

We claim that φ is a morphism of complexes; in fact

φ(df) =
∑
a

ta
∑

c0,...,ck

dfa,c0,...,ck∂tc0 ∧ · · · ∧ ∂tck =

∑
a

ta

∂φ(f)−
k∑
i=0

∑
ci

∂tci ∧
∑

c0,...,bci,...,ck
fa,c0,...,bci,...,ck∂tc0 ∧ · · · ∧ ∂̂tci ∧ · · · ∧ ∂tck

 =

=
∑
a

ta∂φ(f) = ∂φ(f).

Setting θ as the morphism induced by φ in cohomology, we need to prove that θ is independent
from the choice of the partition of unity. We first note that, if df = 0 then, over Ua ∩ Ub, we have

φa(f)− φb(f) =
∑
c1,...,ck

(fa,c1,...,ck − fb,c1,...,ck)∂tc1 ∧ · · · ∧ ∂tck

=
∑
c1,...,ck

∑k
i=1(−1)i−1fa,b,c1,...,ĉi,...,ck∂tc1 ∧ · · · ∧ ∂tck

=
∑k
i=1(−1)i−1

∑
c1,...,ck

fa,b,c1,...,ĉi,...,ck∂tc1 ∧ · · · ∧ ∂tck

=
k∑
i=1

∑
ci

∂tci ∧
∑

c1,...,bci,...,ck
fa,b,c1,...,bci,...,ck∂tc1 ∧ · · · ∧ ∂̂tci ∧ · · · ∧ ∂tck

= 0.

Let va be another partition of 1, ηa = ta − va, and denote, for f ∈ Zk(U , E),

φ̃a =
∑

c1,...,ck

fa,c1,...,ck∂vc1 ∧ · · · ∧ ∂vck ,

ψja =
∑

c1,...,ck

fa,c1,...,ck∂tc1 ∧ · · · ∧ ∂tcj−1 ∧ vcj∂vcj+1 ∧ · · · ∧ ∂vck , j = 1, . . . , k.

The same argument as above shows that φ̃a = φ̃b and ψja = ψjb for every a, b, j. Therefore all the
ψja come from a global section ψj ∈ Γ(M,A0,k−1(E)); moreover φ− φ̃ =

∑
j(−1)j−1∂ψj and then

φ, φ̃ determine the same cohomology class.
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A well known theorem of Leray asserts that if U is a open Stein covering of M then the above
morphism θ is an isomorphism. The explicit description of θ−1 is rather easy for k = 1. Assume
that U = {Ua} be an open covering of a complex manifold M such that H1

∂
(Ua, E) = 0 for every a.

Given φ ∈ Γ(M,A0,1(E)) a ∂-closed form, then for every a there exists ψa ∈ Γ(Ua,A0,0(E)) such
that ∂ψa = φ. Setting fa,b = ψa − ψb we have f = {fa,b} ∈ C1(U , E) and df = 0. The cohomology
class of f in H1(U , E) is well defined and then we have defined a map

σ : H0,1

∂
(M,E)→ H1(U , E), φ 7→ [f ].

We left to the reader the easy verification that σ = θ−1.

Example I.2.2. Let T → P1 be the holomorphic tangent bundle, x0, x1 homogeneous coordinates
on P1, Ui = {xi 6= 0}. Since the tangent bundle of Ui = C is trivial, by Dolbeault’s lemma,
H1(Ui, T ) = 0 and by Leray’s theorem Hi(P1, T ) = Hi({U0, U1}, T ), i = 0, 1.
Consider the affine coordinates s = x1/x0, t = x0/x1, then the holomorphic sections of T over
U0, U1 and U0,1 = U0 ∩ U1 are given respectively by convergent power series

+∞∑
i=0

ais
i ∂

∂s
,

+∞∑
i=0

bit
i ∂

∂t
,

+∞∑
i=−∞

cis
i ∂

∂s
.

Since, over U0,1, t = s−1 and
∂

∂t
= −s2 ∂

∂s
, the Cech differential is given by

d

(
+∞∑
i=0

ais
i ∂

∂s
,

+∞∑
i=0

bit
i ∂

∂t

)
=

+∞∑
i=0

ais
i ∂

∂s
+

2∑
i=−∞

b2−is
i ∂

∂s
,

and then H1({U0, U1}, T ) = 0 and

H0({U0, U1}, T ) =
〈(

∂

∂s
,−t2 ∂

∂t

)
,

(
s
∂

∂s
,−t ∂

∂t

)
,

(
s2 ∂

∂s
,−∂

∂t

)〉
.

Example I.2.3. If X = P1 × Cnt then H1(X,TX) = 0. If C ⊂ P1 is an affine open subset with
affine coordinate s, then H0(X,TX) is the free O(Cn)-module generated by

∂

∂t1
, . . . ,

∂

∂tn
,
∂

∂s
, s
∂

∂s
, s2 ∂

∂s
.

The proof is essentially the same (replacing the constant terms ai, bi, ci with holomorphic functions
over Cn) of Example I.2.2.

I.3 The Kodaira-Spencer map

Given a holomorphic map f : X → Y of complex manifolds and complexified vector fields η ∈
Γ(X,A0,0(TX)), γ ∈ Γ(Y,A0,0(TY )) we write γ = f∗η if for every x ∈ X we have f∗η(x) = γ(f(x)),
where f∗ : Tx,X → Tf(x),Y is the differential of f .

Let f : M → B be a fixed smooth family of compact complex manifolds, dimB = n, dimM =
m+ n; for every b ∈ B we let Mb = f−1(b).

Definition I.3.1. A holomorphic coordinate chart (z1, . . . , zm, t1, . . . , tn) : U ↪→ Cm+n, U ⊂ M
open, is called admissible if f(U) is contained in a coordinate chart (v1, . . . , vn) : V ↪→ Cn, V ⊂ B,
such that ti = vi ◦ f for every i = 1, . . . , n.

Since the differential of f has everywhere maximal rank, by the implicit function theorem, M
admits a locally finite covering of admissible coordinate charts.

Lemma I.3.2. Let f : M → B be a smooth family of compact complex manifolds. For every
γ ∈ Γ(B,A0,0(TB)) there exists η ∈ Γ(M,A0,0(TM )) such that f∗η = γ.
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Proof. Let M = ∪Ua be a locally finite covering of admissible charts; on every Ua there exists ηa ∈
Γ(Ua,A0,0(TM )) such that f∗ηa = γ. It is then sufficient to take η =

∑
a ρaηa, being ρa : Ua → C

a partition of unity subordinate to the covering {Ua}.

Let Tf ⊂ TM be the holomorphic vector subbundle of tangent vectors v such that f∗v = 0. If

z1, . . . , zm, t1, . . . , tn is an admissible system of local coordinates then
∂

∂z1
, . . . ,

∂

∂zm
is a local frame

of Tf . Note that the restriction of Tf to Mb is equal to TMb
.

For every open subset V ⊂ B let Γ(V, TB) be the space of holomorphic vector fields on V .
For every γ ∈ Γ(V, TB) take η ∈ Γ(f−1(V ),A0,0(TM )) such that f∗η = γ. In an admissible

system of local coordinates zi, tj we have η =
∑
i ηi(z, t)

∂

∂zi
+
∑
j

γi(t)
∂

∂tj
, with γi(t) holomorphic,

∂η =
∑
i ∂ηi(z, t)

∂

∂zi
and then ∂η ∈ Γ(f−1(V ),A0,1(Tf )).

Obviously ∂η is ∂-closed and then we can define the Kodaira-Spencer map

KS(V )f : Γ(V, TB)→ H1(f−1(V ), Tf ), KS(V )f (γ) = [∂η].

Lemma I.3.3. The map KS(V )f is a well-defined homomorphism of O(V )-modules.

Proof. If η̃ ∈ Γ(f−1(V ),A0,0(TM )), f∗η̃ = γ, then η − η̃ ∈ (f−1(V ),A0,0(Tf )) and [∂η̃] = [∂η] ∈
H1(f−1(V ), Tf ). If g ∈ O(V ) then f∗(f∗g)η = gγ, ∂(f∗g)η = (f∗g)∂η.

If V1 ⊂ V2 ⊂ B then the Kodaira-Spencer maps KS(Vi)f : Γ(Vi, TB)→ H1(f−1(Vi), Tf ), i = 1, 2,
commute with the restriction maps Γ(V2, TB) → Γ(V1, TB), H1(f−1(V2), Tf ) → H1(f−1(V1), Tf ).
Therefore we get a well defined OB,b-linear map

KSf : ΘB,b → (R1f∗Tf )b,

where ΘB,b and (R1f∗Tf )b are by definition the direct limits, over the set of open neighbourhood
V of b, of Γ(V, TB) and H1(f−1(V ), Tf ) respectively.

If b ∈ B, then there exists a linear map KSf : Tb,B → H1(Mb, TMb
) such that for every open

subset b ∈ V ⊂ B there exists a commutative diagram

Γ(V, TB)
KS(V )f−→ H1(f−1(V ), Tf )y yr

Tb,B
KSf−→ H1(Mb, TMb

)

where the vertical arrows are the natural restriction maps. In fact, if V is a polydisk then Tb,B is
the quotient of the complex vector space Γ(V, TB) by the subspace I = {γ ∈ Γ(V, TB) | γ(b) = 0};
by O(V )-linearity I is contained in the kernel of r ◦ KS(V )f .

The Kodaira-Spencer map has at least two geometric interpretations: obstruction to the holo-
morphic lifting of vector fields and first-order variation of complex structures (this is a concrete
feature of the general philosophy that deformations are a derived construction of automorphisms).

Proposition I.3.4. Let f : M → B be a family of compact complex manifolds and γ ∈ Γ(V, TB),
then KS(V )f (γ) = 0 if and only if there exists η ∈ Γ(f−1(V ), TM ) such that f∗η = γ.

Proof. One implication is trivial; conversely let η ∈ Γ(f−1(V ),A0,0(TM )) such that f∗η = γ. If
[∂η] = 0 then there exists τ ∈ Γ(f−1(V ),A0,0(Tf )) such that ∂(η − τ) = 0, η − τ ∈ Γ(f−1(V ), TM )
and f∗(η − τ) = γ.

To compute the Kodaira-Spencer map in terms of Cech cocycles we assume that V is a polydisk
with coordinates t1, . . . , tn and we fix a locally finite covering U = {Ua} of admissible holomorphic
coordinates za1 , . . . , z

a
m, t

a
1 , . . . , t

a
n : Ua → C, tai = f∗ti. On Ua ∩Ub we have the transition functions zbi = gbi,a(za, ta), i = 1, . . . ,m

tbi = tai , i = 1, . . . , n
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Consider a fixed integer h = 1, . . . , n and η ∈ Γ(f−1(V ),A0,0(TM )) such that f∗η =
∂

∂th
; in local

coordinates we have

η =
∑
i

ηai (za, ta)
∂

∂zai
+

∂

∂tah
, η =

∑
i

ηbi (z
b, tb)

∂

∂zbi
+

∂

∂tbh
.

Since, for every a, η− ∂

∂tah
∈ Γ(Ua,A0,0(Tf )) and ∂

(
η − ∂

∂tah

)
= ∂η, KS(V )f

(
∂

∂th

)
∈ H1(U , Tf )

is represented by the cocycle

KS(V )f

(
∂

∂th

)
b,a

=
(
η − ∂

∂tbh

)
−
(
η − ∂

∂tah

)
=

∂

∂tah
− ∂

∂tbh
=
∑
i

∂gbi,a
∂tah

∂

∂zbi
. (I.1)

The above formula allows to prove easily the invariance of the Kodaira-Spencer maps under
base change; more precisely if f : M → B is a smooth family, φ : C → B a holomorphic map, φ̂, f̂
the pullbacks of φ and f ,

M ×B C
φ̂−→ Myf̂ yf

C
φ−→ B

c ∈ C, b = f(c).

Theorem I.3.5. In the above notation, via the natural isomorphism Mb = f̂−1(c), we have

KSf̂ = KSfφ∗ : Tc,C → H1(Mb, TMb
).

Proof. It is not restrictive to assume B ⊂ Cnt , C ⊂ Csu polydisks, c = {ui = 0} and b = {ti = 0},
ti = φi(u). If za, ta : Ua → C, zb, tb : Ub → C are admissible local coordinate sets with transition
functions zbi = gbi,a(za, ta), then za, ua : Ua ×B C → C, zb, tb : Ub ×B C → C are admissible with
transition functions zbi = gbi,a(za, φ(ua)). Therefore

KSf̂

(
∂

∂uh

)
b,a

=
∑
i

∂gbi,a
∂uah

∂

∂zbi
=
∑
i,j

∂gbi,a
∂taj

∂φj
∂uah

∂

∂zbi
= KSf

(
φ∗

∂

∂uh

)
b,a

.

I.4 Rigid varieties

For every 0 < R ≤ +∞ the polydisk of radius R is defined as

∆n
R = {(z1, . . . , zn) ∈ Cn | |zi| < R, i = 1, . . . , n}.

Lemma I.4.1. Let f : M → ∆n
R be a smooth family of compact complex manifolds and t1, . . . , tn a

set of linear coordinates in the polydisk ∆n
R ⊂ Cn. If there exist holomorphic vector fields χ1, . . . , χn

on M such that f∗χh =
∂

∂th
then there exists 0 < r ≤ R such that f : f−1(∆n

r )→ ∆n
r is the trivial

family.

Proof. For every r ≤ R, h ≤ n denote

∆h
r = {(z1, . . . , zn) ∈ Cn | |z1| < r, . . . , |zh| < r, zh+1 = 0, . . . , zn = 0} ⊂ ∆n

R.

We prove by induction on h that there exists R ≥ rh > 0 such that the restriction of the family
f over ∆h

rh
is trivial. Taking r0 = R the statement is obvious for h = 0. Assume that the family

is trivial over ∆h
rh

, h < n; shrinking ∆n
R if necessary it is not restrictive to assume R = rh and

the family trivial over ∆h
R. The integration of the vector field χh+1 gives an open neighbourhood

M × {0} ⊂ U ⊂M ×C and a holomorphic map H : U →M with the following properties (see e.g.
[?, Ch. VII]):
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1. For every x ∈M , {x} × C ∩ U = {x} ×∆(x) with ∆(x) a disk.

2. For every x ∈M the map Hx = H(x,−) : ∆(x)→M is the solution of the Cauchy problem
dHx

dt
(t) = χh+1(Hx(t))

Hx(0) = x

In particular if H(x, t) is defined then f(H(x, t)) = f(x)+(0, . . . , t, . . . , 0) (t in the (h+1)-th
coordinate).

3. If V ⊂M is open and V ×∆ ⊂ U then for every t ∈ ∆ the map H(−, t) : V →M is an open
embedding.

Since f is proper there exists r ≤ R such that f−1(∆h
r ) ×∆r ⊂ U ; then the holomorphic map

H : f−1(∆h
r ) × ∆r → f−1(∆h+1

r ) is a biholomorphism giving a trivialization of the family over
∆h+1
r .

Example I.4.2. The Lemma I.4.1 is generally false if f is not proper (cf. the exercise in Lecture 1 of
[61]). Consider for instance an irreducible polynomial Q ∈ C[x1, . . . , xn, t]; denote by f : Cnx×Ct →
Ct the projection on the second factor and

V =
{

(x, t)
∣∣∣∣Q(x, t) =

∂Q

∂xi
(x, t) = 0, i = 1, . . . , n

}
.

Assume that f(V ) is a finite set of points and set

B = C− f(V ), X = {(x, t) ∈ Cn ×B | Q(x, t) = 0}.

Then X is a smooth hypersurface, the restriction f : X → B is surjective and its differential is
surjective everywhere. Since X is closed in the affine variety Cn × B, by Hilbert’s Nullstellensatz
there exist regular functions g1, . . . , gn ∈ O(Cn ×B) such that

g :=
n∑
i=1

gi
∂Q

∂xi
≡ 1 (mod Q).

On the open subset U = {g 6= 0} the algebraic vector field

χ =
n∑
i=1

gi
g

(
∂Q

∂xi

∂

∂t
− ∂Q

∂t

∂

∂xi

)
=
∂

∂t
−

n∑
i=1

gi
g

∂Q

∂t

∂

∂xi

is tangent to X and lifts
∂

∂t
.

In general the fibres of f : X → B are not biholomorphic: consider for example the case
Q(x, y, λ) = y2 − x(x − 1)(x − λ). Then B = C − {0, 1} and f : X → B is the restriction to
the affine subspace x0 6= 0 of the family M → B of Example I.1.4. The fibre Xλ = f−1(λ) is
Mλ − {point}, where Mλ is an elliptic curve with j-invariant j(λ) = 28(λ2 − λ+ 1)3λ−2(λ− 1)−2.
If Xa is biholomorphic to Xb then, by Riemann’s extension theorem, also Ma is biholomorphic to
Mb and then j(a) = j(b).

Theorem I.4.3. A family M
f−→B of compact complex manifolds is locally trivial at a point b0 ∈ B

if and only if KSf : ΘB,b0 → (R1f∗Tf )b0 is trivial.

Proof. One implication is clear; conversely assume KSf = 0, it is not restrictive to assume B a
polydisk with coordinates t1, . . . , tn and f a smooth family. After a possible shrinking of B we have

KS(B)f

(
∂

∂ti

)
= 0 for every i = 1, . . . , n. According to I.3.4 there exist holomorphic vector fields

ξi such that f∗ξi =
∂

∂ti
; by I.4.1 the family is trivial over a smaller polydisk ∆ ⊂ B.
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Note that if a smooth family f : M → B is locally trivial, then for every b ∈ B the Kodaira-
Spencer map KSf : Tb,B → H1(Mb, TMb

) is trivial for every b ∈ B. Conversely we have the following
result.

Corollary I.4.4. Let f : M → B a smooth family of compact complex manifolds. If the dimension
of H1(Mb, TMb

) is independent on b and KSf = 0 at every point b ∈ B, then the family is locally
trivial.

Proof. According to base change theorem ([4, Ch. 3, Thm. 4.12], [60, I, Thm. 2.2], [56]) the sheaf
R1f∗Tf is locally free and for every b ∈ B the natural map R1f∗Tf ⊗OB Cb → H1(Mb, TMb

) is an
isomorphism. Thus the morphism KSf is trivial if and only if KSf = 0 at every point.

Corollary I.4.5. Let f : M → B a smooth family of compact complex manifolds. If H1(M0, TM0) =
0 then the family is locally trivial in a neighbourhood of 0 ∈ B.

Proof. By semicontinuity theorem we have H1(Mb, TMb
) = 0 for every b in a open neighbourhood

of 0.

Definition I.4.6. A compact complex manifold X is called rigid if H1(X,TX) = 0.

Example I.4.7. Every product of projective speces is a rigid manifold.

The next examples show that Corollary I.4.4 is generally false if the dimension H1(Mb, TMb
) is

not constant.

Example I.4.8. Consider the following family of Hopf surfaces f : M → B, where B = C, M =
X/G, X = B × (C2 − {0}) and G ' Z is generated by (b, z1, z2) 7→ (b, 2z1, b

2z1 + 2z2). In the

notation Example I.1.6 the fibre Mb is the Hopf surface SA(b), where A(b) =
(

2 0
b2 2

)
and then

M0 is not biholomorphic to Mb for every b 6= 0. This family is isomorphic to N ×CB, where B → C
is the map b 7→ b2 and N is the quotient of C× (C2 − {0}) by the group generated by (s, z1, z2) 7→
(s, 2z1, sz1 + 2z2). By base-change property, the Kodaira-Spencer map KSf : T0,B → H1(M0, TM0)
is trivial.

On the other hand the family is trivial over B − {0}, in fact the map

(B − {0})× (C2 − {0})→ (B − {0})× (C2 − {0}), (b, z1, z2) 7→ (b, b2z1, z2)

induces to the quotient an isomorphism (B − {0})×M1 ' (M − f−1(0)). Therefore the Kodaira-
Spencer map KSf : Tb,B → H1(Mb, TMb

) is trivial for every b. According to Corollary I.4.4 the
dimension of H1(Mb, TMb

) is not constant: in fact it is proved in [60] that h1(M0, TM0) = 4 and
h1(Mb, TMb

) = 2 for b 6= 0.

Example I.4.9. Let M ⊂ Cb × P3
x × P1

u be the submanifold defined by the equations

u0x1 = u1(x2 − bx0), u0x2 = u1x3,

f : M → C the projection onto the first factor and f∗ : M∗ = (M − f−1(0)) → (C − {0}) its
restriction. We left to the reader the easy verification that f is a smooth family of compact complex
manifolds. Here we prove that:

1. f∗ is a trivial family.

2. f is not locally trivial at b = 0.

Proof of 1. After the linear change of coordinates x2 − bx0 7→ x0 the equations of M∗ ⊂ C− {0} ×
P3 × P1 become

u0x1 = u1x0, u0x2 = u1x3

and there exists an isomorphism of families C− {0} × P1
s × P1

u →M∗, given by

(b, [t0, t1], [u0, u1]) 7→ (b, [t0u1, t0u0, t1u1, t1u0], [u0, u1]).
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Proof of 2. Let Y ' P1 ⊂ M0 be the subvariety of equation b = x1 = x2 = x3 = 0. Assume f
locally trivial, then there exist an open neighbourhood 0 ∈ U ⊂ C and a commutative diagram of
holomorphic maps

Y × U j−→ Mypr yf
U

i
↪→ C

where i is the inclusion, j is injective and extends the identity Y × {0} → Y ⊂M0.
Possibly shrinking U it is not restrictive to assume that the image of j is contained in the open
subset V0 = {x0 6= 0}. For b 6= 0 the holomorphic map δ : V0 ∩Mb → C3,

δ(b, [x0, x1, x2, x3], [u0, u1]) =
(
x1

x0
,
x2

x0
,
x3

x0

)
,

is injective; therefore for b ∈ U , b 6= 0, the holomorphic map δj(−, b) : Y ' P1 → C3 is injective.
This contradicts the maximum principle of holomorphic functions.

Applying the base change C → C, b 7→ b2, to the family M → C of Example I.4.9 we get a
family with trivial KS at every point of the base but not locally trivial at 0. It is not difficult to
prove that M0 is the Segre-Hirzebruch surface F2 and then H1(F2, TF2) = C, while P1×P1 is rigid.

I.5 Deformations

For every pair of pointed complex manifolds (M,x), (N, y) we denote by MorGer((M,x), (N, y))
the set of germs of holomorphic maps f : (M,x)→ (N, y). Every element of MorGer((M,x), (N, y))
is an equivalence class of pairs (U, f), where x ∈ U ⊂M is an open neighbourhood of x, f : U → N
is a holomorphic map such that f(x) = y and (U, f) ∼ (V, g) if and only if there exists an open
subset x ∈W ⊂ U ∩ V such that f|W = g|W .

Roughly speaking a deformation is a “framed germ” of family; more precisely

Definition I.5.1. Let (B, b0) be a germ of complex manifold, a deformation M0
i−→M f−→(B, b0)

of a compact complex manifold M0 over (B, b0) is a pair of holomorphic maps

M0
i−→M f−→B

such that:

1. fi(M0) = b0.

2. There exists an open neighbourhood b0 ∈ U ⊂ B such that f : f−1(U) → U is a proper
smooth family.

3. i : M0 → f−1(b0) is an isomorphism of complex manifolds.

M is called the total space of the deformation and (B, b0) the base germ space.

Definition I.5.2. Two deformations of M0 over the same base

M0
i−→M f−→(B, b0), M0

j−→N g−→(B, b0)

are isomorphic if there exists an open neighbourhood b0 ∈ U ⊂ B, and a commutative diagram of
holomorphic maps

M0
i //

j

��

f−1(U)

f

��yyttttttttt

g−1(U) g
// U

with the diagonal arrow a holomorphic isomorphism.
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For every germ of complex manifold (B, b0) we denote by DefM0(B, b0) the set of isomorphism
classes of deformations of M0 with base (B, b0).

If ξ : M0
i−→M f−→(B, b0) is a deformation and g : (C, c0) → (B, b0) is a morphism of germs of

complex manifolds then

g∗ξ : M0
(i,c0)−→M ×B C

pr−→(C, c0)

is a deformation with base point c0. It is clear that the isomorphism class of g∗ξ depends only by
the class of g in MorGer((C, c0), (B, b0)).
Therefore every g ∈ MorGer((C, c0), (B, b0)) induces a well defined pull-back morphism

g∗ : DefM0(B, b0)→ DefM0(C, c0).

Given any deformationM0 →M
f−→(B, b0), it is well defined the Kodaira-Spencer map KSf : Tb0,B →

H1(M0, TM0) which is invariant under isomorphism of deformations.

Definition I.5.3. A deformation ξ : M0
i−→M f−→(B, b0) of a compact complex manifold M0, with

Kodaira-Spencer map KSf : Tb0,B → H1(M0, TM0), is called:

1. Versal if KSf is surjective and for every germ of complex manifold (C, c0) the morphism

MorGer((C, c0), (B, b0))→ DefM0(C, c0), g 7→ g∗ξ

is surjective.

2. Semiuniversal if it is versal and KSf is bijective.

3. Universal if KSf is bijective and for every pointed complex manifolds (C, c0) the morphism

MorGer((C, c0), (B, b0))→ DefM0(C, c0), g 7→ g∗ξ

is bijective.

Versal deformations are also called complete; semiuniversal deformations are also called miniver-
sal or Kuranishi deformations.

Note that if ξ is semiuniversal, g1, g2 ∈ MorGer((C, c0), (B, b0)) and g∗1ξ = g∗2ξ then, according
to Theorem I.3.5, dg1 = dg2 : Tc0,C → Tb0,B .

Definition I.5.4. A deformation M0 →M → (B, b0) is called trivial if it is isomorphic to

M0
Id×{b0}−→ M0 ×B

pr−→(B, b0).

Corollary I.5.5. Let X be a compact complex manifold. If H1(X,TX) = 0 then every deformation
of X is trivial.

Example I.5.6. In the notation of Example I.4.9, the deformation M0 → M
b−→(C, 0) is not

universal: in order to see this it is sufficient to prove that M is isomorphic to the deformation g∗M ,
where g : (C, 0)→ (C, 0) is the holomorphic map g(b) = b+ b2. The equation of g∗M is

u0x1 = u1(x2 − (b+ b2)x0), u0x2 = u1x3,

and the isomorphism of deformations g∗M →M is given by

(b, [x0, x1, x2, x3], [u0, u1]) = (b, [(1 + b)x0, x1, x2, x3], [u0, u1]).
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I.6 Historical survey, I

The deformation theory of complex manifolds began in the years 1957-1960 by a series of papers of
Kodaira-Spencer [58], [59], [60] and Kodaira-Nirenberg-Spencer [57].

The main results of these papers were the completeness and existence theorem for versal defor-
mations.

Theorem I.6.1 (Completeness theorem, [59]). A deformation ξ over a smooth germ (B, 0) of
a compact complex manifold M0 is versal if and only if the Kodaira-Spencer map KSξ : T0,B →
H1(M0, TM0) is surjective.

Note that if a deformation M0−→M
f−→(B, 0) is versal then we can take a linear subspace

0 ∈ C ⊂ B making the Kodaira-Spencer map T0,C → H1(M0, TM0) bijective; by completeness
theorem M0 →M ×B C → (C, 0) is semiuniversal.

In general, a compact complex manifold does not have a versal deformation over a smooth
germ. The problem of determining when such a deformation exists is one of the most difficult in
deformation theory. A partial answer is given by

Theorem I.6.2 (Existence theorem, [57]). Let M0 be a compact complex manifold. If H2(M0, TM0) =
0 then M0 admits a semiuniversal deformation over a smooth base.

The condition H2(M0, TM0) = 0 is sufficient but it is quite far from being necessary. The
“majority” of manifolds having a versal deformation over a smooth germ has the above cohomology
group different from 0.

The next problem is to determine when a semiuniversal deformation is universal: a sufficient
(and almost necessary) condition is given by the following theorem.

Theorem I.6.3. ([98], [112]) Let ξ : M0−→M−→(B, 0) be a semiuniversal deformation of a
compact complex manifold M0. If b 7→ h0(Mb, TMb

) is constant (e.g. if H0(M0, TM0) = 0) then ξ
is universal.

Remark I.6.4. If a compact complex manifold M has finite holomorphic automorphisms then
H0(M,TM ) = 0, while the converse is generally false (take as an example the Fermat quartic
surface in P3, cf. [102]).

Example I.6.5. If M is a compact manifolds with ample canonical bundle then, by a theorem of
Matsumura [84], H0(M0, TM0) = 0.

One of the most famous theorems in deformation theory (at least in algebraic geometry) is the
stability theorem of submanifolds proved by Kodaira in 1963.

Definition I.6.6. Let Y be a closed submanifold of a compact complex manifold X. Y is called
stable if for every deformation X i−→X f−→(B, 0) there exists a deformation Y

j−→Y g−→(B, 0) and a
commutative diagram of holomorphic maps

Y
j //

i|X

��

Y

��~~
~~

~~
~

g

��
X

f // B

Not every submanifold is stable, for instance consider the submanifold Y of Example I.4.8.

Theorem I.6.7 (Kodaira stability theorem, [55]). Let Y be a closed submanifold of a compact
complex manifold X. If H1(Y,NY/X) = 0 then Y is stable.

I.7 Exercises

Exercise I.7.1. In the notation of Example I.1.6, if A = e2πiτI ∈ GL(2,C), τ = a + ib, b < 0,
then the Hopf surface SA is the total space of a holomorphic G-principal bundle SA → P1, where
G = C/(Z + τZ).
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Exercise I.7.2. Let p ≥ 0 be a fixed integer and M a compact complex manifold. For every 0 ≤
q ≤ p, denote by Fq ⊂ Hp

d (M,C) the subspace of cohomology classes represented by a d-closed form
η ∈ ⊕i≤qΓ(M,Ap−i,i). Prove that there exist injective linear morphisms Fq/Fq−1 → Hp−q,q

∂
(M,O).

Deduce that bp ≤
∑
q h

p−q,q.

Exercise I.7.3. There exists an action of the group Aut(M0) of holomorphic isomorphisms of M0

on the set DefM0(B, b0): if g ∈ Aut(M0) and ξ : M0
i−→M f−→(B, b0) is a deformation we define

ξg : M0
ig−1

−→M f−→(B, b0).

Prove that ξg = ξ if and only if g : f−1(b0) → f−1(b0) can be extended to an isomorphism
ĝ : f−1(V )→ f−1(V ), b0 ∈ V open neighbourhood, such that fĝ = f .

Exercise I.7.4. A universal deformation ξ : M0
i−→M f−→(B, b0) induces a representation (i.e. a

homomorphism of groups)

ρ : Aut(M0)→ AutGer(B, b0), ρ(g)∗ξ = ξg, g ∈ Aut(M0).

Every other universal deformation over the germ (B, b0) gives a conjugate representation.

Exercise I.7.5. The deformation M0−→M
f−→C, where f is the family of Example I.4.9, is not

universal.



Chapter II

Analytic algebras and singularities

Historically, a major step in deformation theory has been the introduction of deformations of com-
plex manifolds over (possibly non reduced) analytic singularities. This chapter is a short introduc-
tory course on analytic algebras and analytic singularities; moreover we give an elementary proof of
the Nullstellenstaz for the ring C{z1, . . . , zn} of convergent complex power series. Quite important
in deformation theory are the smoothness criterion II.2.3 and the two dimension bounds II.5.3 and
II.5.4.

II.1 Analytic algebras

Let C{z1, . . . , zn} be the ring of convergent power series with complex coefficient. Every f ∈
C{z1, . . . , zn} defines a holomorphic function in a nonempty open neighbourhood U of 0 ∈ Cn; for
notational simplicity we still denote by f : U → C this function.

If f is a holomorphic function in a neighbourhood of 0 and f(0) 6= 0 then 1/f is holomorphic
in a (possibly smaller) neighbourhood of 0. This implies that f is invertible in C{z1, . . . , zn} if and
only if f(0) 6= 0 and therefore C{z1, . . . , zn} is a local ring with maximal ideal

m = (z1, . . . , zm) = {f | f(0) = 0}.

The multiplicity of a power series f ∈ C{z1, . . . , zn} is the biggest integer s such that f ∈ ms.
Moreover the following results hold:

• C{z1, . . . , zn} is Noetherian ([40, II.B.9], [33]).

• C{z1, . . . , zn} is a unique factorization domain ([40, II.B.7], [33]).

• C{z1, . . . , zn} is a Henselian ring ([76], [32], [33]).

• C{z1, . . . , zn} is a regular local ring of dimension n (see e.g. [3], [33], [85] for the basics about
dimension theory of local Noetherian ring).

We recall, for the reader’s convenience, that the dimension of a local Noetherian ring A with
maximal ideal m is the minimum integer d such that there exist f1, . . . , fd ∈ m with the property√

(f1, . . . , fd) = m. In particular dimA = 0 if and only if
√

0 = m, i.e. if and only if m is nilpotent.
We also recall that a morphism of local rings f : (A,m)→ (B, n) is called local if f(m) ⊂ n.

Definition II.1.1. A C-algebra is called an analytic algebra if it is isomorphic to C{z1, . . . , zn}/I,
for some n ≥ 0 and some ideal I ⊂ (z1, . . . , zn). A morphism of analytic algebras is a local morphism
of local C-algebras.

Every analytic algebra is a local Noetherian ring. We denote by An the category of analytic
algebras.

17
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Theorem II.1.2 (Implicit function theorem). Let f1, . . . , fm ∈ C{x1, . . . , xn, y1, . . . , ym} be power

series of positive multiplicity such that det
(
∂fi
∂yj

(0)
)
6= 0. Then there exist m convergent power

series ψ1(x), . . . , ψm(x) ∈ C{x1, . . . , xn} of positive multiplicity such that

fi(x1, . . . , xn, ψ1(x), . . . , ψm(x)) = 0 for every i = 1, . . . ,m.

The morphisms of analytic algebras

C{x1, . . . , xn}
xi 7→xi−−−−→ C{x1, . . . , xn, y1, . . . , ym}

(f1, . . . , fm)
yi 7→ψi(x)−−−−−−→ C{x1, . . . , xn}

are isomorphisms and each one the inverse of the other.

Proof. See e.g. [40].

Corollary II.1.3. Every analytic algebra is isomorphic to
C{z1, . . . , zk}

I
for some k ≥ 0 and some

ideal I ⊂ (z1, . . . , zk)2.

Proof. LetA = C{z1, . . . , zn}/I be an analytic algebra. If the ideal I is not contained in (z1, . . . , zn)2,

then there exists f ∈ I and an index i such that
∂f

∂zi
(0) 6= 0; up to permutation of indices we may

suppose i = n. Therefore A is isomorphic to C{z1, . . . , zn−1}/J , where J is the kernel of the
surjective (by implicit function theorem) morphism

C{z1, . . . , zn−1} →
C{z1, . . . , zn−1, zn}

(f)
→ A.

The conclusion follows by induction on n.

Lemma II.1.4. Let (R,m) be an analytic algebra. For every finite sequence r1, . . . , rn ∈ m there
exists a unique morphism of analytic algebras

f : C{z1, . . . , zn} → R

such that f(zi) = ri.

Proof. We first note that, by the lemma of Artin-Rees ([3, 10.19]), ∩nmn = 0 and then every local
homomorphism f : C{z1, . . . , zn} → R is uniquely determined by its factorizations

fs :
C{z1, . . . , zn}
(z1, . . . , zn)s

→ R

ms
.

Since C{z1, . . . , zn}/(z1, . . . , zn)s is a C-algebra generated by z1, . . . , zn, every fs is uniquely deter-
mined by f(zi); this proves the unicity.

In order to prove the existence it is not restrictive to assume R = C{u1, . . . , um}; the convergent
power series ri gives a germ of holomorphic map

r = (r1, . . . , rn) : (Cm, 0)→ (Cn, 0),

and r∗(zi) = ri, where r∗ : C{z1, . . . , zn} → C{u1, . . . , um} is the induced morphism of analytic
algebras.

Lemma II.1.5. Given an analytic algebra R and an integer n ≥ 0 there exists an analytic algebra
R{z1, . . . , zn} and a morphism i : R → R{z1, . . . , zn} having the following universal property. For
every morphism of analytic algebras f : R→ A and every sequence a1, . . . , an ∈ mA there exists an
unique morphism of analytic algebras g : R{z1, . . . , zn} → A such that gi = f and g(zi) = ai.

Proof. If R = C{y1, . . . , ym}/I, define i : C{z1, . . . , zn} → C{y1, . . . , ym, z1, . . . , zn} as the natural
inclusion and R{z1, . . . , zn} = C{y1, . . . , ym, z1, . . . , zn}/(i(I)), where (i(I)) is the ideal generated
by i(I). The proof of the universal property is an easy consequence of Lemma II.1.4 and it is left
to the reader.

Notice that (R{z1, . . . , zn}){zn+1, . . . , zm} = R{z1, . . . , zm}.
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II.2 Tangent space and smoothness

da fare: spazio tangente di Zariski, criterio di surgettivita’

Definition II.2.1. An analytic algebra is called smooth if it is isomorphic to the power series
algebra C{z1, . . . , zk} for some k ≥ 0. A morphism of analytic algebras f : R → S is smooth if
there exists an isomorphism φ : S → R{z1, . . . , zk} such that φf is the natural inclusion.

Notice that an analytic algebra R is smooth if and only if the morphism C → R is smooth.
Composition of smooth morphisms is a smooth morphism.

Proposition II.2.2. Let R be an analytic algebra. The following conditions are equivalent:

1. R is smooth.

2. For every surjective morphism of analytic algebras B → A, the morphism

MorAn(R,B)→ MorAn(R,A)

is surjective.

3. For every n ≥ 2 the morphism

MorAn

(
R,

C{t}
(tn)

)
→ MorAn

(
R,

C{t}
(t2)

)
is surjective.

Proof. The implication [1⇒ 2] is an immediate consequence of Lemma II.1.4 and [2⇒ 3] is trivial.
In order to prove [3 ⇒ 1] we write R = C{z1, . . . , zk}/I, where I ⊂ (z1, . . . , zk)2, and we denote
by π : C{z1, . . . , zk} → R the projection. Assume I 6= 0 and let s ≥ 2 be the the greatest integer
such that I ⊂ (z1, . . . , zk)s: we claim that MorAn(R,C{t}/(ts+1)) → MorAn(R,C{t}/(t2)) is not
surjective. Choosing f ∈ I − (z1, . . . , zk)s+1, after a possible generic linear change of coordinates
of the form zi 7→ zi + aiz1, a2, . . . , ak ∈ C, we may assume that f contains the monomial zs1
with a nonzero coefficient, say f = czs1 + · · · ; let α : R → C{t}/(t2) be the morphism defined by
α(z1) = t, α(zi) = 0 for i > 1. Assume that there exists β : R → C{t}/(ts+1) that lifts α, then
β(z1)− t, β(z2), . . . , β(zk) ∈ (t2) and therefore βπ(f) ≡ cts (mod ts+1).

Proposition II.2.3. Let f : R → S be a morphism of analytic algebras. The following conditions
are equivalent:

1. f is smooth.

2. For every surjective morphism of analytic algebras α : B → A, the morphism

MorAn (S,B)→ MorAn (R,B)×MorAn(R,A) MorAn (S,A)

is surjective.

3. For every surjective morphism of local Artinian C-algebras α : B → A, the morphism

MorAn (S,B)→ MorAn (R,B)×MorAn(R,A) MorAn (S,A)

is surjective.

Proof. The only non trivial implication is [3 ⇒ 1]. We first note that an element of the fibered
product

MorAn (R,B)×MorAn(R,A) MorAn (S,A)

is nothing else than a commutative diagram of morphisms of analytic algebras

R
f //

��

S

��
B

α // A .

Da finire.
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Example II.2.4. The morphism of analytic algebras

R =
C{x, y}
(x3, y3)

→ S =
C{x, y}

(x3, x2y2, y3)

is not smooth. However for every n ≥ m the natural morphism

MorAn

(
S,

C{t}
(tn)

)
→ MorAn

(
R,

C{t}
(tn)

)
×

MorAn(R, C{t}
(tm) )

MorAn

(
S,

C{t}
(tm)

)
is surjective

II.3 Analytic singularities

Here we briefly recall the basic definition and some properties: we refer to [21, 32, 33, 73] for proofs
and more details.

Let U ⊂ Cn be an open subset and I = (g1, . . . , gm) ⊂ OU a finitely generated ideal sheaf,
g1, . . . , gm ∈ Γ(U, I). Setting V = {u ∈ U | g1(u) = · · · = gm(u) = 0} and OV = OU/I, we have
that the pair (V,OV ) is a C-ringed space called local model.

Definition II.3.1. A complex space is a Hausdorff C-ringed space locally isomorphic to a local
model.

In particular, if (X,OX) is a complex space, then for every x ∈ X the stalk OX,x is an analytic
algebra. Conversely, every analytic algebra R = C{z1, . . . , zn}/I is isomorphic to the stalk of the
structure sheaf of a complex space: in fact, if f1, . . . , fm is a set of generatorsof the the ideal I and
then we have R = OX,0, where (X, 0) ⊂ (Cn, 0) is the complex analytic subspace defined by the
equations f1 = · · · = fm = 0.

Definition II.3.2. An analytic singularity is a germ (X,x) of a complex space at a point.
A morphism of analytic singularities is a germ of morphism of complex spaces. The category of
analytic singularities will be denoted by Ger.

Theorem II.3.3 (Grothendieck, [35]). The functor

Ger→ Anopp, (X,x) 7→ OX,x,

is an equivalence of categories.

Proof. See [35, 21].

Definition II.3.4. The Zariski tangent space Tx,X of an analytic singularity (X,x) is the C-vector
space DerC(OX,x,C).

Notice that Tx,X is the dual vector space of
m

m2
where m is the maximal ideal of OX,x; in

particular TX,x is finite dimesional and its dimension is equal the minimum number of generators
of m. Every morphism of singularities (X,x)→ (Y, y) induces a linear morphism of Zariski tangent
spaces Tx,X → Ty,Y .

The dimension of an analytic singularity (X,x) is by definition the dimension of the analytic
algebra OX,x: in particular we have dim(X,x) ≤ dimTx,X .

Definition II.3.5. A fat point is an analytic singularity of dimension 0.

Lemma II.3.6. An analytic singularity (X,x) is a fat point if and only if the analytic algebra OX,x
is Artinian.

Proof. By definition of dimension, an analytic algebra has dimension 0 if and only if its maximal
ideal is nilpotent.
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II.4 The curve selection lemma

The aim of this section is to give, following [76], an elementary proof the following theorem.

Theorem II.4.1 (curve selection lemma). Let I ⊂ C{z1, . . . , zn} be a proper ideal and h 6∈
√
I.

Then there exists a morphism of analytic algebras φ : C{z1, . . . , zn} → C{t} such that φ(I) = 0 and
φ(h) 6= 0.

Before proving Theorem II.4.1 we need a series of results that are of independent interest. We
recall the following

Definition II.4.2. A power series p ∈ C{z1, . . . , zn, t} is called a Weierstrass polynomial in t of
degree d ≥ 0 if

p = td +
d−1∑
i=0

pi(z1, . . . , zn)ti, pi(0) = 0.

In particular if p(z1, . . . , zn, t) is a Weierstrass polynomial in t of degree d then p(0, . . . , 0, t) = td.

Theorem II.4.3 (Weierstrass preparation theorem). Let f ∈ C{z1, . . . , zn, t} be a power series
such that f(0, . . . , 0, t) 6= 0. Then there exists a unique e ∈ C{z1, . . . , zn, t} such that e(0) 6= 0 and
ef is a Weierstrass polynomial in t.

Proof. For the proof we refer to [32], [33], [38], [56], [40], [76].

Corollary II.4.4. Let f ∈ C{z1, . . . , zn} be a power series of multiplicity d. Then, after a possible
generic linear change of coordinates there exists e ∈ C{z1, . . . , zn} such that e(0) 6= 0 and ef is a
Weierstrass polynomial of degree d in zn.

Proof. After a generic change of coordinates of the form zi 7→ zi + aizn, ai ∈ C, the series
f(0, . . . , 0, zn) has multiplicity d.

Lemma II.4.5. Let f, g ∈ C{x1, . . . , xn}[t] with g a Weierstrass polynomial. If f = hg for some
h ∈ C{x1, . . . , xn, t} then h ∈ C{x1, . . . , xn}[t].

Proof. Write g = ts +
∑
gi(x)ts−i, gi(0) = 0, f =

∑r
i=0 fi(x)tr−i h =

∑
i hi(x)ti, we need to prove

that hi = 0 for every i > r − s. Assume the contrary and choose an index j > r − s such that the
multiplicity of hj takes the minimum among all the multiplicities of the power series hi, i > r − s.
From the equality 0 = hj +

∑
i>0 gihj+i we get a contradiction.

Notice that if g is not a Weierstrass polynomial, then the above result is false: consider for
instance the case n = 0, f = t3 and g = t+ t2.

Lemma II.4.6. Let f ∈ C{x1, . . . , xn}[t] be an irreducible monic polynomial of degree d. Then the
polynomial f0(t) = f(0, . . . , 0, t) ∈ C[t] has a root of multiplicity d.

Proof. Let c ∈ C be a root of f0(t). If the multiplicity of c is l < d then the multiplicity of the power
series f0(t + c) ∈ C{t} is exactly l and therefore f(x1, . . . , xn, t + c) is divided in C{x1, . . . , xn}[t]
by a Weierstrass polynomial of degree l.

Lemma II.4.7. Let p ∈ C{x}[y] be a monic polynomial of positive degree d in y. Then there exists
a homomorphism φ : C{x}[y]→ C{t} such that φ(p) = 0 and φ(x) = ts for some integer s > 0.

Proof. If d = 1 then p(x, y) = y − p1(x) and we can consider the morphism φ given by φ(x) = t,
φ(y) = p1(t). By induction we can assume that the theorem holds for monic polynomials of degree
< d.

If p is reducible we have done, otherwise, writing p = yd + p1(x)yd−1 + · · · + pd(x), after the
coordinate change x 7→ x, y 7→ y − p1(x)/d we can assume p1 = 0. For every i ≥ 2 denote by
µ(pi) = αi > 0 the multiplicity of pi (we set αi = +∞ if pi = 0). Let j ≥ 2 be a fixed index such
that

αj
j
≤ αi

i
for every i. Setting m = αj , we want to prove that the monic polynomial p(ξj , y)
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is not irreducible. In fact p(ξj , y) = yd +
∑
i≥2 hi(ξ)y

d−i, where hi(ξ) = pi(ξj). For every i the
multiplicity of hi is jαi ≥ iαj = im and then

q(ξ, y) = p(ξj , ξmy)ξ−dm = td +
∑ hi(ξ)

ξmi
yd−i = yd +

∑
ηi(ξ)yd−i

is a well defined element of C{ξ, y}. Since η1 = 0 and ηj(0) 6= 0 the polynomial q is not irreducible
and then, by induction there exists a nontrivial morphism ψ : C{ξ}[y]→ C{t} such that ψ(q) = 0,
ψ(ξ) = ts and we can take φ(x) = ψ(ξj) = tjs and φ(y) = ψ(ξmy).

Theorem II.4.8 (Weierstrass division theorem). Let p ∈ C{z1, . . . , zn, t}, p 6= 0, be a Weierstrass
polynomial of degree d ≥ 0 in t. Then for every f ∈ C{z1, . . . , zn, t} there exists a unique h ∈
C{z1, . . . , zn, t} such that f − hp ∈ C{z1, . . . , zn}[t] is a polynomial of degree < d in t.

Proof. For the proof we refer to [32], [33], [38], [56], [40], [76].

We note that an equivalent statement for the division theorem is the following:

Corollary II.4.9. If p ∈ C{z1, . . . , zn, t}, p 6= 0, is a Weierstrass polynomial of degree d ≥ 0 in t,
then C{z1, . . . , zn, t}/(p) is a free C{z1, . . . , zn}-module with basis 1, t, . . . , td−1.

Proof. Clear.

Theorem II.4.10 (Newton-Puiseux). Let f ∈ C{x, y} be a power series of positive multiplicity.
Then there exists a nontrivial morphism of analytic algebras φ : C{x, y} → C{t} such that φ(f) = 0.
Moreover, if f is irreducible then kerφ = (f).

In the above statement nontrivial means that φ(x) 6= 0 or φ(y) 6= 0.

Proof. After a linear change of coordinates we can assume f(0, y) a non zero power series of mul-
tiplicity d > 0; by preparation theorem there exists an invertible power series e such that p = ef
is a Weierstrass polynomial of degree d in y. According to Lemma II.4.7 there exists a homomor-
phism φ : C{x}[y] → C{t} such that φ(p) = 0 and 0 6= φ(x) ∈ (t). Therefore φ(p(0, y)) ∈ (t)
and, being p a Weierstrass polynomial we have φ(y) ∈ (t) and then φ extends to a local morphism
φ : C{x, y} → C{t}.

Assume now f irreducible, up to a possible change of coordinates and multiplication for an
invertible element we may assume that f ∈ C{x}[y] is an irreducible Weierstrass polynomial of
degree d > 0. Let φ : C{x, y} → C{t} be a nontrivial morphism such that φ(f) = 0, then φ(x) 6= 0
(otherwise φ(y)d = φ(f) = 0) and therefore ker(φ) ∩ C{x} = 0 Let g ∈ ker(φ), by division theorem
there exists r ∈ C{x}[y] such that g = hf + r and then r ∈ ker(φ).

Let R(f, r) ∈ C{x} be the resultant of the elimination of y on the polynomials f, r. By general
properties of the resultatnt we have R(f, r) ∈ (f, r) ⊂ ker(φ) and then R(f, r) ∈ ker(φ)∩C{x} = 0;
since C{x} is a unique factorization domain, this implies that f divides r.

We recall that, if A is a commutative ring and p, q ∈ A[x] with p monic polynomial, then the
resultant R(p, q) is equal to the determinant of the morphism of free A-modules

multiplication by q :
A[x]
(p)
→ A[x]

(p)
.

Lemma II.4.11. Let A be an integral domain and 0 6= p ⊂ A[t] a prime ideal such that p∩A = 0.
Denote by K the fraction field of A and by pe ⊂ K[x] the ideal generated by p. Then:

1. pe is a prime ideal of the euclidean ring K[x].

2. pe ∩A[x] = p.

3. There exists q ∈ p such that for every monic polynomial p 6∈ p we have R(p, q) 6= 0.
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Proof. [1] We have pe =
{ p
a

∣∣∣ p ∈ p, a ∈ A− {0}
}

. If
p1

a1

p2

a2
∈ pe with pi ∈ A[x] and ai ∈ A, then

there exists a ∈ A − {0} such that ap1p2 ∈ p. Since p ∩ A = 0 it must be p1 ∈ p or p2 ∈ p. This
shows that pe is prime.
[2] If q ∈ pe ∩ A[x], then there exists a ∈ A, a 6= 0 such that aq ∈ p and, since p ∩ A = 0 we have
q ∈ p.
[3] Let q ∈ p− {0} be of minimal degree. Since K[t] is an Euclidean ring, pe = qK[t] and, since pe

is prime, q is irreducible in K[t]. If p ∈ A[t] \ p is a monic polynomial then p 6∈ pe = qK[t] and then
R(p, q) 6= 0.

Theorem II.4.12. Let A be a unitary ring, p ⊂ A[t] a prime ideal and denote q = A∩p. If p 6= q[t]
(e.g. if p is proper and contains a monic polynomial) then there exists q ∈ p such that for every
monic polynomial p 6∈ p we have R(p, q) 6∈ q. If moreover A is a unique factorization domain we
can choose q irreducible.

Proof. The ideal q is prime and q[t] ⊂ p, therefore the image of p in (A/q)[t] = A[t]/q[t] is still a
prime ideal satisfying the hypothesis of Lemma II.4.11. It is therefore sufficient to take q as any
lifting of the element described in Lemma II.4.11 and use the functorial properties of the resultant.

If A is UFD and q is not irreducible we can write q = hg with g ∈ p irreducible; using the
bilinearity relations of resultant R(p, f) = R(p, h)R(p, g) we get R(p, g) 6∈ q.

The division theorem allows to extend the definition of the resultant to power series. In fact
if p ∈ C{z1, . . . , zn}[t] is a Weierstrass polynomial in t of degree d, for every f ∈ C{z1, . . . , zn, t}
we can define the resultant R(p, f) ∈ C{z1, . . . , zn} as the determinant of the morphism of free
C{z1, . . . , zn}-module

f :
C{z1, . . . , zn, t}

(p)
→ C{z1, . . . , zn, t}

(p)

induced by the multiplication with f . It is clear that R(p, f) = R(p, r) whenever f − r ∈ (p).

Lemma II.4.13. Let p ∈ C{z1, . . . , zn, t} be a Weierstrass polynomial of positive degree in t and
V ⊂ C{z1, . . . , zn, t} a C-vector subspace. Then R(p, f) = 0 for every f ∈ V if and only if there
exists a Weierstrass polynomial q of positive degree such that:

1. q divides p in C{z1, . . . , zn}[t]

2. V ⊂ qC{z1, . . . , zn, t}

Proof. One implication is clear, in fact if p = qr then the multiplication by q in not injective in
C{z1, . . . , zn, t}/(p); therefore R(p, q) = 0 and by Binet’s theorem R(p, f) = 0 for every f ∈ (q).
For the converse let p = p1p2 . . . ps be the irreducible decomposition of p in the UFD C{z1, . . . , zn}[t].
If R(p, f) = 0 and r = f − hp ∈ C{z1, . . . , zn}[t] is the remainder of the division then R(p, r) = 0
and then there exists a factor pi dividing r and therefore also dividing f . In particular, setting
Vi = V ∩ (pi), we have V = ∪iVi and therefore V = Vi for at least one index i and we can take
q = pi.

Theorem II.4.14. Let p ⊂ C{z1, . . . , zn} be a prime ideal and h 6∈ p. Then there exists a morphism
of analytic algebras φ : C{z1, . . . , zn} → C{t} such that φ(p) = 0 and φ(h) 6= 0.

Proof. We first consider the easy cases n = 1 and p = 0. If p = 0 then, after a possible change of
coordinates, we may assume h(0, . . . , 0, t) 6= 0 and therefore we can take φ(zi) = 0 for i = 1, . . . , n−1
and φ(zn) = t. If n = 1 the only prime nontrivial ideal is (z1) and therefore the trivial morphism
φ : C{z1} → C ⊂ C{t} satisfies the statement of the theorem.

Assume then n > 1, p 6= 0 and fix a nonzero element g ∈ p. After a possible linear change
of coordinates and multiplication by invertible elements we may assume both h and g Weierstrass
polynomials in the variable zn. Denoting

r = p ∩ C{z1, . . . , zn−1}[zn], q = p ∩ C{z1, . . . , zn−1} = r ∩ C{z1, . . . , zn−1},

according to Theorem II.4.12, there exists f̂ ∈ r such that R(h, f̂) 6∈ q. On the other hand,
since g ∈ p, we have R(g, f) ∈ q for every f ∈ p. By induction on n there exists a morphism
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ψ̃ : C{z1, . . . , zn−1} → C{x} such that ψ̃(q) = 0 and ψ̃(R(h, f̂)) 6= 0. Denoting by ψ : C{z1, . . . , zn} →
C{x, zn} the natural extension of ψ̃ we have R(ψ(h), ψ(f̂)) 6= 0 and R(ψ(g), ψ(f)) = 0 for every
f ∈ p. Applying Lemma II.4.13 to the Weierstrass polynomial ψ(g) and the vector space V = ψ(p)
we prove the existence of an irreducible factor p of ψ(g) such that ψ(p) ⊂ pC{x, zn}. In particular
p divides ψ(f̂), therefore R(ψ(h), p) 6= 0 and ψ(h) 6∈ pC{x, zn}.

By Newton-Puiseux’ theorem there exists η : C{x, zn} → C{t} such that η(p) = 0 and η(ψ(h)) 6=
0. It is therefore sufficient to take φ as the composition of ψ and η.

Proof of Theorem II.4.1. If h 6∈
√
I then there exists (cf. [3]) a prime ideal p such that I ⊂ p and

h 6∈ p.

II.5 Curvilinear obstructions and lower dimension bounds
of analytic algebras

As an application of Theorem II.4.1 we give some bounds for the dimension of an analytic algebra;
this bounds will be very useful in deformation and moduli theory. The first bound (Lemma II.5.3)
is completely standard and the proof is reproduced here for completeness; the second bound (Theo-
rem II.5.4, communicated to the author by H. Flenner) finds application in the “T 1-lifting” approach
to deformation problems.

We need the following two results of commutative algebra.

Lemma II.5.1. Let (A,m) be a local Noetherian ring and J ⊂ I ⊂ A two ideals. If J + mI = I
then J = I.

Proof. This a special case of Nakayama’s lemma [3], [76].

Lemma II.5.2. Let (A,m) be a local Noetherian ring and f ∈ m, then dimA/(f) ≥ dimA− 1.
Moreover, if f is nilpotent then dimA/(f) = dimA, while if f is not a zerodivisor then dimA/(f) =
dimA− 1.

Proof. [3].

Lemma II.5.3. Let R be an analytic algebra with maximal ideal m, then dimR ≤ dimC
m

m2
and

equality holds if and only if R is smooth.

Proof. Let n = dimC
m

m2
and f1, . . . , fn ∈ m inducing a basis of

m

m2
. If J = (f1, . . . , fn) by assump-

tion J + m2 = m and then by Lemma II.5.1 J = m, R/J = C and 0 = dimR/J ≥ dimR− n.
According to Lemma II.1.3 we can writeR = C{z1, . . . , zn}/I for some ideal contained in (z1, . . . , zn)2.
Since C{z1, . . . , zn} is an integral domain, according to Lemma II.5.2 dimR = n if and only if
I = 0.

Theorem II.5.4. Let R = P/I be an analytic algebra, where P = C{z1, . . . , zn} and I ⊂ P is a
proper ideal. Denoting by m = (z1, . . . , zn) the maximal ideal of P and by J ⊂ I the ideal

J =
{
f ∈ I

∣∣∣∣ ∂f∂zi ∈ I, ∀ i = 1, . . . , n
}

we have dimR ≥ n− dimC
I

J + mI
.

Proof. (taken from [19]) We first introduce the curvilinear obstruction map

γI : MorAn(P,C{t})→ HomC

(
I

J + mI
,C
)
.

Given φ : P → C{t}, if φ(I) = 0 we define γI(φ) = 0; while if φ(I) 6= 0 and s is the biggest integer
such that φ(I) ⊂ (ts) then we define, for every f ∈ I, γI(φ)f as the coefficient of ts in the power
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series expansion of φ(f) = f(φ(z1), . . . , φ(zn)). It is clear that γI(φ)(mI) = 0, while if φ(I) ⊂ (ts)
and f ∈ J we have

dφ(f)
dt

=
n∑
i=1

∂f

∂zi
(φ(z1), . . . , φ(zn))

dφ(zi)
dt

∈ (ts)

and therefore φ(f) ∈ (ts+1) (this is the point where the characteristic of the field plays an essential
role). The vectors in the image of γI are called curvilinear obstructions and we will prove the
theorem by showing that there exist n− dimR linearly independent curvilinear obstructions.

The ideal I is finitely generated, say I = (f1, . . . , fd), according to Nakayama’s lemma we
can assume f1, . . . , fd a basis of I/mI. By repeated application of Theorem II.4.1 (and possibly
reordering the fi’s) we can assume that there exists an h ≤ d such that the following holds:

1. fi /∈
√

(f1, . . . , fi−1) for i ≤ h;

2. for every i ≤ h there exists a morphism of analytic algebras φi : P → C{t} such that
φi(fi) 6= 0, φi(fj) = 0 if j < i and the multiplicity of φi(fj)) is bigger than or equal to the
multiplicity of φi(fi)) for every j > i.

3. I ⊂
√

(f1, . . . , fh).

Condition 3) implies that dimR = dimP/(f1, . . . , fh) ≥ n − h, hence it is enough to prove that

γI(φ1), . . . , γI(φh) are linearly independent in HomC

(
I

J + mI
,C
)

and this follows immediately

from the fact that the matrix aij = γI(φi)fj , i, j = 1, . . . , h, has rank h, being triangular with
nonzero elements on the diagonal.

Example II.5.5. Here it is an example where the dimension bound of Theorem II.5.4 is better than
the standard one. Let I ⊂ C{x, y} be the ideal generated by the polynomial f = x5 +y5 +x3y3 and
by its partial derivatives fx = 5x4 + 3x2y3, fy = 5y4 + 3x3y2. Clearly f ∈ J = {g ∈ I | gx, gy ∈ I}
and, in order to prove that J+mI 6= mI it is sufficient to prove that f 6∈ mI. Assume f−cf ∈ (fx, fy)
for some c ∈ m, then since 1 − c is invertible we have f ∈ (fx, fy), say f = afx + bfy. Looking at
the homogeneous components of degree ≤ 5 we get

a ∈ x

5
+ m2, b ∈ y

5
+ m2

and then
f − x

5
fx −

y

5
fy = −1

5
x3y3 ∈ m2(fx, fy)

which is not possible.

II.6 Artin’s theorem on the solution of analytic equations

All the algebraic results of this chapter that make sense also for the ring of formal power series
C[[z1, . . . , zn]] and their quotients, remain true: in particular the Weierstrass preparation and divi-
sion theorem holds with the same statement [68]. In many cases, especially in deformation theory,
we seek for solutions of systems of analytic equations but we are able to solve these equation only
formally; in this situation a great help comes from the following theorem, proved by M. Artin in
1968.

Theorem II.6.1 (Artin [1]). Let n,m,N, c be non negative integers and let

fi(x, y) = fi(x1, . . . , xn, y1, . . . , yN ) ∈ C{x1, . . . , xn, y1, . . . , yN}, i = 1, . . . ,m.

be convergent power series. Assume that there exist N formal power series yi(x) ∈ C[[x1, . . . , xn]],
i = 1, . . . , N , without constant terms such that fi(x, y(x)) = 0 for every i = 1, . . . ,m. Then there
exists N convergent power series yi(x) ∈ C{x1, . . . , xn} such that fi(x, y(x)) = 0 for every i and
yi(x) ≡ yi(x) (mod mc), where m is the maximal ideal of C[[x1, . . . , xn]].
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Here we will prove Artin’s theorem under the additional assumption that the fi’s are polyno-
mials: the proof of the general case uses the same ideas but it is technically more difficult. More
precisely we give a complete proof of the following theorem.

Theorem II.6.2. Let n,m,N, c be non negative integers and let

fi(x, y) = fi(x1, . . . , xn, y1, . . . , yN ) ∈ C[x1, . . . , xn, y1, . . . , yN ], i = 1, . . . ,m.

be m polynomials. Assume that there exists N formal power series yi(x) ∈ C[[x1, . . . , xn]], i =
1, . . . , N , such that fi(x, y(x)) = 0 for every i = 1, . . . ,m. Then there exist N convergent power
series yi(x) ∈ C{x1, . . . , xn} such that fi(x, y(x)) = 0 for every i and yi(x) ≡ yi(x) (mod mc),
where m is the maximal ideal of C[[x1, . . . , xn]].

We work by induction on n, being the theorem trivially true for n = 0; so we assume n > 0 and
the theorem true for n− 1. The proof of inductive step is a consequence of Weierstrass preparation
and implicit function theorems.

Lemma II.6.3. Let g, f1, . . . , fm ∈ C[x1, . . . , xn, y1, . . . , yN ] and c a positive integer. Assume that
there exist formal power series yi(x) ∈ C[[x1, . . . , xn]], i = 1, . . . , N , such that

1. g(x, y(x)) 6= 0,

2. g(x, y(x)) divides fi(x, y(x)) in the ring C[[x1, . . . , xn]] for every i = 1, . . . ,m.

Then there exist N convergent power series yi(x) ∈ C{x1, . . . , xn} such that yi(x) ≡ yi(x)
(mod mc) and:

1. g(x, y(x)) 6= 0,

2. g(x, y(x)) divides fi(x, y(x)) in the ring C{x1, . . . , xn} for every i = 1, . . . ,m.

Proof. Let’s denote by r the multiplicity of g(x, y(x)); it is not restrictive to assume c > r. Up to
a linear change of the coordinates xi we have, by Weierstrass preparation theorem

g(x, y(x)) = (xrn + a1(x)xr−1
n + · · ·+ ar(x))e(x),

where e(x) is invertible and every ai(x) is a formal power series in x1, . . . , xn−1.
By Weierstrass division theorem we have

yi(x) = (xrn + a1(x)xr−1
n + · · ·+ ar(x))ui(x) +

r−1∑
j=0

yij(x)xjn

where the yij(x)’s are formal power series in x1, . . . , xn−1. Now, it follows easily from Taylor formula
that we may replace the power series yi(x) with any power series of the form

yi(x) + hi(xrn + a1(x)xr−1
n + · · ·+ ar(x)), hi ∈ mc−r,

and the assumption of the lemma remains satisfied. In particular we may choose the hi’s in such a
way that every ui(x) is a polynomial. Let’s introduce new variables Ai, Yij and set

yi = (xrn +A1x
r−1
n + · · ·+Ar)ui(x) +

r−1∑
j=0

Yijx
j
n .

We obtain a new set of polynomials

G(x,A, Y ) = g(x, y), Fi(x,A, Y ) = fi(x, y),

and by Euclidean division with respect to the variable xn in the ring C[xi, Aj , Yij ] we have:

1. G(x,A, Y ) = (xrn +A1x
r−1
n + · · ·+Ar)Q+

∑r−1
k=0Gkx

k
n

2. Fi(x,A, Y ) = (xrn +A1x
r−1
n + · · ·+Ar)Ri +

∑r−1
k=0 Fikx

k
n.
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Since G(x, ai(x), yij(x)) = g(x, y(x)), the unicity of remainder in Weierstrass division theorem
implies Q(0) 6= 0 and Gk(x, ai(x), yij(x)) = 0 for every k. Since (xrn + a1(x)xr−1

n + · · · + ar(x))
divides fi(x, y(x)), we also have Fhk(x, ai(x), yij(x)) = 0 for every h, k.

By the inductive assumption we can find ai(x), yij(x) ∈ C{x1, . . . , xn−1}, arbitrarily near to
ai(x), yij(x) in the m-adic topology and such that

Gk(x, ai(x), yij(x)) = Fhk(x, ai(x), yij(x)) = 0, ∀ h, k .

Therefore

1. g(x, y(x)) = G(x, a(x), yij(x)) = (xrn + a1(x)xr−1
n + · · ·+ ar(x))Q

2. fi(x, y(x)) = Fi(x, a(x), yij(x)) = (xrn + a1(x)xr−1
n + · · ·+ ar(x))Ri

and then g(x, y(x)) divides fi(x, y(x)) for every i.

Lemma II.6.4. The Theorem II.6.2 holds under the following additional assumption:

1. m ≤ N ,

2. if δ(x, y) = det
(
∂fi
∂yj

)
i,j=1,...,m

, then δ(x, y(x)) 6= 0.

Proof. According to Lemma II.6.3, there exist convergent power series ui(x) ∈ C{x1, . . . , xn},
i = 1, . . . , N , such that ui(x) ≡ yi(x) (mod mc) and

1. δ(x, u(x)) 6= 0,

2. δ2(x, u(x)) divides fi(x, y(x)) for every i = 1, . . . ,m,

3. fi(x, u(x)) ∈ mc+r for every i = 1, . . . ,m, where r is the multiplicity of δ(x, u(x)).

Let’s write fi(x, u(x)) = δ2(x, u(x))Fi(x), Fi(x) ∈ C{x1, . . . , xn}, and denote by Mij(x, y) the

coefficients of the adjoint matrix of
(
∂fi
∂yj

)
i,j=1,...,m

. We have the Laplace identities:

∑
j

∂fi
∂yj

Mjk =

{
0 for i 6= k ,

δ for i = k .

We are able to prove that there exist v1(x), . . . , vm(x) ∈ C{x1, . . . , xn} such that the convergent
power series

yj(x) = uj(x) + δ(x, u(x))
∑
k

Mjk(x, u(x))vk(x), j = 1, . . . ,m ,

yj(x) = uj(x) i = m+ 1, . . . , N ,

satisfy the requirement of Theorem II.6.2. For every index i, by Taylor formula, we have:

fi(x, y(x)) = fi(x, u(x)) + δ(x, u(x))
m∑
j=1

∂fi
∂yj

(x, u(x))
∑
k

Mjk(x, u(x))vk(x) + δ2(x, u(x))Qi

fi(x, y(x)) = δ2(x, u(x))(Fi(x) + vi(x) +Qi)

where every Qi is a polynomial in vi containing only monomials of degree ≥ 2. By implicit function
theorem II.1.2 we may solve the system of m equations

Fi(x) + vi(x) +Qi(x, v) = 0, i = 1, . . . ,m,

in the ring C{x1, . . . , xn}. Moreover, since Fi(x) ∈ mc−r we also have vi(x) ∈ mc−r and then
yi(x) ≡ ui(x) (mod mc).
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Proof of Theorem II.6.2. The power series yi(x) give a morphism of rings

φ : C[x1, . . . , xn, y1, . . . , yN ]→ C[[x1, . . . , xn]], yi 7→ yi(x),

whose kernel P contains the polynomials fi. Possibly enlarging the set of equations it is not
restrictive to assume that the polynomials fi generate P . Let X = V (P ) ⊂ Cn+N the affine irredible
variety defined by P and denote by r = n+N−dimX its codimension. Since P ∩C[x1, . . . , xn] = 0,
the projection X → Cn, (x, y) 7→ x, is a domonan morphism of algebraic varieties.

According to Bertini’s theorem, for e generic point p ∈ X, the Zariski tangent space TpX has
codimension r and the projection TpX → Cn is surjective. Up to a permutation of indices we may
assume that TpX is the annihilator ot the r differentials df1, . . . , dfr. Then the matrix(

∂fi
∂yj

)
i=1,...,r;j=1,...,N

has rank r and, up to permutaion of indices, we may assume that the determinant

δ(x, y) = det
(
∂fi
∂yj

)
i,j=1,...,r

does not vanish in p. In particular δ(x, y) 6∈ P and then δ(x, y(x)) 6= 0.
According to Lemma II.6.4 there exist convergent power series y1(x), . . . , yN (x) such that yi(x) ≡

yi(x) (mod mc) for every i and

fj(x, y(x)) = 0 j = 1, . . . , r .

Let Y = V (f1, . . . , fr) ⊂ Cn+N be the zero locus of f1, . . . , fr; clearly X ⊂ Y and, since X,Y
have the same dimension in p we have that X is an irreducible component of Y and then there
exists a polynomial h(x, y) 6∈ P such that Y ⊂ X ∪ V (h).

Since h(x, y(x)) 6= 0, possibly increasing the integer c, we have h(x, y(x)) 6= 0. Let Q be the
kernel of the morphism of rings

C[x1, . . . , xn, y1, . . . , yN ]→ C{x1, . . . , xn}, yi 7→ yi(x);

we want to prove that P ⊂ Q. We have already proved that f1, . . . , fr ∈ Q, h 6∈ Q, and therefore
V (Q) ⊂ Y and V (Q) 6⊂ V (h). Since V (Q) is irreducible we have V (Q) ⊂ X = V (P ) and then
P ⊂ Q.

II.7 Exercises

Exercise II.7.1. Prove that the ring of entire holomorphic functions f : C → C is an integral
domain but it is not factorial (Hint: consider the sine function sin(z)).

Exercise II.7.2 (Cartan’s Lemma, [10]). Let R be an analytic algebra with maximal ideal m and
G a finite group of automorphisms of R.

Prove that there exists an integer n, an injective homomorphism of groups G→ GL(Cn) and a
G-isomorphism of analytic algebras R ∼= OCn,0/I for some G-stable ideal I ⊂ OCn,0. (Hint: there
exists a direct sum decomposition m = V ⊕m2 such that gV ⊂ V for every g ∈ G.)

Exercise II.7.3. Prove that f, g ∈ C{x, y} have a common factor of positive multiplicity if and
only if the C-vector space C{x, y}/(f, g) is infinite dimensional.

Exercise II.7.4. If f : (X,x)→ (Y, y) is a morphism of analytic singularities define the schematic
fibre (f−1(y), x) as the subgerm of (X,x) defined by equations f∗(g) = 0, where g varies on a set
of geberators of the maximal ideal of OY,y. Prove that the dimension of a singularity (X,x) is
the minimum integer d such that there exists a morphism f ∈ MorGer((X,x), (Cd, 0)) such that
(f−1(0), x) is a fat point.
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Exercise II.7.5 (Rückert’s nullstellensatz). Let I, J ⊂ C{z1, . . . , zn} be proper ideals. Prove that

MorAn

(
C{z1, . . . , zn}

I
,C{t}

)
= MorAn

(
C{z1, . . . , zn}

J
,C{t}

)
⇐⇒

√
I =
√
J,

where the left equality is intended as equality of subsets of MorAn(C{z1, . . . , zn},C{t}).

Exercise II.7.6. Prove that for every analytic algebra R with maximal ideal m there exist natural
isomorphisms

HomC

( m

m2
,C
)

= DerC(R,C) = MorAn

(
R,

C[t]
(t2)

)
.

Exercise II.7.7. In the notation of Theorem II.5.4 prove:

1. I2 ⊂ J .

2. I = J + mI if and only if I = 0.

3. If I ⊂ m2 then

HomC

(
I

J + mI
,C
)

= Ext1
R(ΩR,C),

where ΩR is the R-module of separated differentials.

4. For every short exact sequence 0 → E → F → G → 0 of R-modules of finite length (i.e.
annihilated by some power of m) it is defined a map

ob : DerC(R,G)→ HomR

(
I

J
,E

)
with the property that ob(φ) = 0 if and only if φ lifts to a derivation R → F . Moreover, if

mRE = 0 then HomR

(
I

J
,E

)
= HomC

(
I

J + mI
, E

)
.

Exercise II.7.8. Use Theorem II.6.1 to prove:

1. Every irreducible convergent power series f ∈ C{z1, . . . , zn} is also irreducible in C[[z1, . . . , zn]].

2. C{z1, . . . , zn} is integrally closed in C[[z1, . . . , zn]].



Chapter III

Flatness and infinitesimal
deformations

III.1 Flatness and relations

In this section A ∈ Art is a fixed local artinian K -algebra with residue field K .

Lemma III.1.1. Let M be an A-module, if M ⊗A K = 0 then M = 0.

Proof. If M is finitely generated this is Nakayama’s lemma. In the general case consider a filtration
of ideals 0 = I0 ⊂ I1 ⊂ · · · ⊂ In = A such that Ii+1/Ii = K for every i. Applying the right exact
functor ⊗AM to the exact sequences of A-modules

0−→K =
Ii+1

Ii
−→A

Ii
−→ A

Ii+1
−→0

we get by induction that M ⊗A (A/Ii) = 0 for every i.

The following is a special case of the local flatness criterion [85, Thm. 22.3]

Theorem III.1.2. For an A-module M the following conditions are equivalent:

1. M is free.

2. M is flat.

3. TorA1 (M,K ) = 0.

Proof. The only nontrivial assertion is 3) ⇒ 1). Assume TorA1 (M,K ) = 0 and let F be a free
module such that F ⊗A K = M ⊗A K . Since M →M ⊗A K is surjective there exists a morphism
α : F →M such that its reduction α : F ⊗A K →M ⊗A K is an isomorphism. Denoting by K the
kernel of α and by C its cokernel we have C⊗AK = 0 and then C = 0; K⊗AK = TorA1 (M,K ) = 0
and then K = 0.

Corollary III.1.3. Let h : P → L be a morphism of flat A-modules, A ∈ Art. If h : P ⊗A K →
L⊗A K is injective (resp.: surjective) then also h is injective (resp.: surjective).

Proof. Same proof of Theorem III.1.2.

Corollary III.1.4. Let 0 → M → N → P → 0 be an exact sequence of A-modules with N flat.
Then:

1. M ⊗A K → N ⊗A K injective ⇒ P flat.

2. P flat ⇒M flat and M ⊗A K → N ⊗A K injective.

Proof. Take the associated long TorA∗ (−,K ) exact sequence and apply III.1.2 and IV.1.

30
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Corollary III.1.5. Let
P

f−→Q g−→R h−→M−→0 (III.1)

be a complex of A-modules such that:

1. P,Q,R are flat.

2. Q
g−→R h−→M−→0 is exact.

3. P ⊗A K f−→Q⊗A K g−→R⊗A K h−→M ⊗A K−→0 is exact.

Then M is flat and the sequence (III.1) is exact.

Proof. Denote by H = kerh = Im g and g = φη, where φ : H → R is the inclusion and η : Q→ H;
by assumption we have an exact diagram

P ⊗A K
f // Q⊗A K

g //

η

��

R⊗A K h // M ⊗A K // 0

H ⊗A K

φ

33

.. 0

which allows to prove, after an easy diagram chase, that φ is injective. According to Corollary III.1.4
H and M are flat modules. Denoting L = ker g we have, since H is flat, that also L is flat and
L⊗AK → Q⊗AK injective. This implies that P ⊗AK → L⊗AK is surjective. By Corollary IV.1
P → L is surjective.

Corollary III.1.6. Let n > 0 and

0−→I−→P0
d1−→P1−→· · ·

dn−→Pn,

a complex of A-modules with P0, . . . , Pn flat. Assume that

0−→I ⊗A K−→P0 ⊗A K d1−→P1 ⊗A K−→· · · dn−→Pn ⊗A K

is exact; then I, coker(dn) are flat modules and the natural morphism I → ker(P0⊗AK → P1⊗AK )
is surjective.

Proof. Induction on n and Corollary III.1.5.

III.2 Deformations of analytic algebras

Let R be a fixed analytic algebra.

Definition III.2.1. A deformation of R over an analytic algebra A is the data of a flat morphism
of analytic algebras f : A→ S and an isomorphism S ⊗A C φ−→R.

Two deformations A
f−→S → S ⊗A C φ−→R and A

g−→T → T ⊗A C ψ−→R are equivalent if there
exists an isomorphism h : S → T making the following diagram commutative

A
f //

g
��>

>>
>>

>>
> S

h

��

// S ⊗A C
φ

##G
GGGGGGGG

h⊗Id
��

T // T ⊗A C
ψ // R
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Definition III.2.2. An infinitesimal deformation is a deformation over a local local artinian
C-algebra A. A first order deformation is a deformation over the C-algebra A = C[ε]/(ε2).

Example III.2.3. Given an analytic algebra R and A ∈ Art, a deformation of R over A is called
trivial if it is isomorphic to S = R⊗CA, with f : A→ S, f(a) = 1⊗a and φ : R⊗CA⊗AC = R→ R
equal to the identity.

Lemma III.2.4. Every infinitesimal deformation of C{z1, . . . , zn} is trivial.

Proof. Let f : A → S and S ⊗A C φ−→C{z1, . . . , zn} be an infinitesimal deformation. Then the

composite map S → S⊗A C φ−→C{z1, . . . , zn} is surjective and we may choose s1, . . . , sn ∈ mS such
that φ(si ⊗ 1) = zi. Then we have a commutative diagram

A //

f
%%KKKKKKKKKKKK A{z1, . . . , zn}

h

�� ((QQQQQQQQQQQQ

S
φ // C{z1, . . . , zn}

and since S is flat over A and h ⊗ Id : A{z1, . . . , zn} ⊗A C → S ⊗A C is an isomorphism, also h is
an isomorphism.

III.3 Infinitesimal deformations of complex manifolds

Let X be a complex manifold of dimension n and A a local artinian C-algebra.

Definition III.3.1. A deformation of X over A is the data of a flat morphism of complex spaces
f : XA → Spec(A) and a closed embedding i : X → XA inducing an isomorphism i : X '−→f−1(0),
where 0 = Spec(C) is the closed point of Spec(A).

Two deformations X i−→XA
f−→Spec(A) and X

j−→X̃A
g−→Spec(A) are isomorphic if there exists

an isomorphism of complex spaces h : XA → X̃A such that f = gh and j = hi. The set of
isomorphism classes of deformations of X over a local artinian C-algebra will be denoted DefX(A).

Since A is local artinian, the complex space XA is supported on X and then for a deformation
X → X → Spec(A) we have that OX is a sheaf of flat A-algebras such that OX ⊗A C = OX .
By Lemma III.2.4 for every x ∈ X the stalk OX ,x is isomorphic to A{z1, . . . , zn} and then, by
Theorem II.3.3 the germ (X , x) is isomorphic to (X × Spec(A), x). In particular the sheaf OX is
locally isomorphic to OX ⊗C A.

Conversely every sheaf of A-algebras on X locally isomorphic to OX ⊗C A gives a deformation
of X over Spec(A). Thus we have the following useful description of infinitesimal deformations of
a complex manifold X.

Lemma III.3.2. For a complex manifold X and a local artinian C-algebra we have

DefX(A) =
sheaves of A-algebras on X locally isomorphic to OX ⊗C A

isomorphisms of sheaves of A-algebras

Recall that a complex manifold is called rigid if H1(X,TX) = 0 (Definition I.4.6); for instance,
every Stein manifold is rigid.

Proposition III.3.3. Every first order deformation of a rigid complex manifold is trivial.

Proof. Let X → X be a deformation of a complex manifold X over C[ε], ε2 = 0, given by a sheaf
OX of flat C[ε]-algebras. Applying the functor OX ⊗C[ε] − to the short exact sequence

0→ C ε−→C[ε]→ C→ 0

we get an exact sequence of sheaves

0→ OX
ε−→OX

π−→OX → 0.
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Since OX is locally isomorphic to OX [ε] the sheaf Ω1
X ⊗OX OX (see next Remark III.3.4) is locally

isomorphic to Ω1
X ⊕OXdε and then we have a commutative diagram witn exact rows

0 // OX
ε // OX

d

��

// OX //

d

��

0

0 // OX
dε // Ω1

X ⊗OX OX // Ω1
X

// 0

If X is rigid, then Ext1(Ω1
X ,OX) = H1(X,TX) = 0, the second row is a trivial extension and

therefore there exists

h ∈ HomOX (Ω1
X ⊗OX OX ,OX) = HomOX (Ω1

X ,OX) = DerC(OX ,OX)

such that h(dε) = 1. The map

φ : OX → OX ⊕ εOX , φ(u) = π(u) + εh(u),

is an isomorphism of sheaves of C[ε]-algebras.

Remark III.3.4. Every complex space X carries the sheaf Ω1
X of Kähler differentials which is a

coherent OX -module. If Y ⊂ X is an open embedding, then Ω1
Y = (Ω1

X)|Y and, for the above local
model (V,OV ) we have

Ω1
V =

Ω1
U

(dg1, . . . , dgm)
⊗OV =

Ω1
U

(dg1, . . . , dgm) + IΩ1
U

.

For every morphism f : X → Y of complex spaces we have an exact sequence

f∗Ω1
Y → Ω1

X → Ω1
X/Y → 0,

where Ω1
X/Y is the space of relatice differentials. Similarly for every coherent ideal sheaf J ⊂ OX ,

if Z ⊂ X is the support of OZ = OX/J , then the pair (Z,OZ) is a complex space and we have an
exact sequence of sheaves

J
J 2

d−→ Ω1
X ⊗OZ −→ Ω1

Z −→ 0.



Chapter IV

Functors of Artin rings

In this chapter we collect some definitions and main properties of deformation functors.
In the first section, we introduce the notions of functor of Artin rings, of deformation functor

and of the associated tangent and obstruction spaces.
The main references for this chapter are [18], [98] and [103].

IV.1 Deformation functors

Let K be a field, Set the category of sets in a fixed universe and by {∗} a fixed set of cardinality 1.
Let Art = ArtK be the category of local Artinian K -algebras with residue field K (A/mA = K );
the morphisms in Art are local morphism.

We shall say that a morphism α : B → A in Art is a small surjection if α is surjective and its
kernel is annihilated by the maximal ideal mB . The artinian property implies that every surjective
morphism in Art can be decomposed in a finite sequence of small surjections and then a functor F
is smooth if and only if F (B)→ F (A) is surjective for every small surjection B → A.

A small extension is a small surjection together a framing of its kernel. More precisely a small
extension e in Art is an exact sequence of abelian groups

e : 0−→M−→B α−→A−→0,

such that α is a morphism in the category Art and M is an ideal of B annihilated by the maximal
ideal mB . In particular M is a finite dimensional vector space over B/mB = K . A small extension
as above is called principal if M = K .

Definition IV.1.1. A functor of Artin rings is a covariant functor F : Art → Set such that
F (K ) = {∗}.

The functors of Artin rings are the objects of a category whose morphisms are the natural
transformations of functors. For simplicity of notation, if φ : F → G is a natural transformation,
we denote by φ : F (A)→ G(A) the corresponding morphism of sets, for every A ∈ Art.

Example IV.1.2. The trivial functor ∗ is the functor defined by ∗(A) = {∗}, for every A ∈ Art.

Example IV.1.3. Let V be a K -vector space. Then, F,G : Art→ Set, defined by

F (A) = V ⊗mA, G(A) = HomK (V, V ⊗mA)

are functors of Artin rings. Notice that G(A) is the kernel of the morphism

HomA(V ⊗A, V ⊗A) = HomK (V, V ⊗A)→ HomK (V, V ⊗K ) = HomK (V, V )

and then G(A) is the set of A-linear endomorphism of V ⊗A that are trivial modulus mA.

Example IV.1.4. Let R be a local complete K -algebra with residue field K . The functor

hR : Art→ Set, hR(A) = HomK−alg(R,A),

is a functor of Artin rings.

34
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The category Art is closed under fiber products, i.e., every pair of morphisms C → A, B → A
may be extended to a commutative diagram

B ×A C −→ Cy y
B −→ A,

(IV.1)

such that the natural map

hR(B ×A C)→ hR(B)×hR(A) hR(C)

is bijective, for every R.

Definition IV.1.5. Let F : Art→ Set be a functor of Artin rings; for every fiber product

B ×A C −→ Cy y
B

β−→ A

in Art, consider the induced map

η : F (B ×A C)→ F (B)×F (A) F (C).

The functor F is homogeneous if η is bijective whenever β is surjective [96, Definition 2.5].
The functor F is a deformation functor if:

1. η is surjective, whenever β is surjective;

2. η is bijective, whenever A = K .

The name deformation functor comes from the fact that almost all functors arising in defor-
mation theory satisfy the conditions of Definition IV.1.5. Every prorepresentable functor is a
homogeneous deformation functor.

Remark IV.1.6. Our definition of deformation functors involves conditions that are slightly more
restrictive than the classical Schlessinger conditions H1, H2 of [98] and the semi-homogeneity con-
dition of [96]. The main motivations of this change are:

1. Functors of Artin rings satisfying Schlessinger condition H1, H2 and H3 do not necessarily
have a “good”obstruction theory (see [18, Example 6.8]).

2. The definition of deformation functor extends naturally in the framework of derived deforma-
tion theory and extended moduli spaces [78].

IV.2 Smooth and prorepresentable functors

Definition IV.2.1. (cf. [98]) A functor F : Art → Set is prorepresentable if it is isomorphic to
hR, for some local complete K -algebra R with residue field K . F is representable if it is isomorphic
to hR, for some R ∈ Art.

The formal smoothness of Spec(R) is equivalent to the property that A→ B surjective implies
hR(A)→ hR(B) surjective. This motivate the following definition.

Definition IV.2.2. A natural transformation φ : F → G of functors of Artin rings is called smooth
if, for every surjective morphism A → B in Art, the map F (A) → G(A) ×G(B) F (B) is also
surjective. A functor of Artin rings F is called smooth if F (A) → F (B) is surjective, for every
surjective morphism A→ B in Art, i.e., the natural transformation F → ∗ is smooth.

Remark IV.2.3. If φ : F → G is a smooth natural transformation, then φ : F (A)→ G(A) is surjective
for every A (take B = K ).
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Exercise IV.2.4. 1. If F → G and G → H are smooth, then the composition F → H is
smooth.

2. If u : F → G and v : G→ H are natural transformations of functors such that u is surjective
and vu is smooth. Then, v is smooth.

3. If F → G and H → G are natural transformations of functor such that F → G is smooth,
then F ×G H → H is smooth.

Lemma IV.2.5. Let R be a local complete noetherian K -algebra with residue field K .The following
conditions are equivalent:

1. R is isomorphic to a power series ring K [[x1, . . . , xn]].

2. The functor hR is smooth.

3. For every s ≥ 2 the morphism

hR

(
K [t]

(ts+1)

)
→ hR

(
K [t]
(t2)

)
is surjective.

Proof. The only nontrivial implication is [3 ⇒ 1]. Let n be the embedding dimension of R, then
we can write R = K [[x1, . . . , xn]]/I for some ideal I ⊂ (x1, . . . , xn)2; we want to prove that I = 0.
Assume therefore I 6= 0 and denote by s ≥ 2 the greatest integer such that I ⊂ (x1, . . . , xn)s: we
claim that

hR

(
K [t]

(ts+1)

)
→ hR

(
K [t]
(t2)

)
is not surjective. Choosing f ∈ I − (x1, . . . , xn)s+1, after a possible generic linear change of coordi-
nates of the form xi 7→ xi+aix1, with a2, . . . , ak ∈ K , we may assume that f contains the monomial
xs1 with a nonzero coefficient, say f = cxs1 + . . .; let α : R→ K [t]/(t2) be the morphism defined by
α(x1) = t, α(xi) = 0 for i > 1. Assume that there exists α̃ : R→ K [t]/(ts+1) that lifts α and denote
by β : K [[x1, . . . , xn]]→ K [t]/(ts+1) the composition of α̃ with the projection K [[x1, . . . , xn]]→ R.
Then β(x1)− t, β(x2), . . . , β(xn) ∈ (t2) and therefore β(f) ≡ cts 6≡ 0 (mod ts+1).

Definition IV.2.6. Given a functor of Artin rings F : Art → Set and a group functor of Artin
rings G : Art→ Grp, by a G-action on F we shall mean a natural transformation G×F → F such
that

G(A)× F (A)→ F (A)

is a G(A)-action on F (A) in the usual sense for every A ∈ Art. Then one can clearly define in the
obvious way the quotient functor F/G.

Proposition IV.2.7. In the situation of Definition IV.2.6, if F and G are deformation functors
and G is smooth, then F/G is a deformation functor and the natural projection F → F/G is smooth.

Proof. Easy exercise.

Later we will give lots of examples where F and G are homogeneous and F/G is not homoge-
neous. Moreover it is possible to prove that over a field of characteristic 0 every group deformation
functor is smooth.

IV.3 Examples of deformation functors

Automorphisms functor

In this section every tensor product is intended over K , i.e ⊗ = ⊗K . Let S α−→R be a morphism of
commutative unitary K -algebras, for every A ∈ Art, we have natural morphisms S ⊗ A α−→R ⊗ A
and R⊗A p−→R, p(x⊗ a) = xa, where a ∈ K is the class of a in the residue field of A.
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Lemma IV.3.1. Given A ∈ Art and a commutative diagram of morphisms of K -algebras

S ⊗A α //

α

��

R⊗A
p

��
R⊗A

f
::ttttttttt p // R

we have that f is an isomorphism and f(R⊗ J) ⊂ R⊗ J for every ideal J ⊂ A.

Proof. f is a morphism of A-algebras, in particular for every ideal J ⊂ A, f(R⊗J) ⊂ Jf(R⊗A) ⊂
R⊗J . In particular, if B = A/J , then f induces a morphism of B-algebras f : R⊗B → R⊗B. We
claim that, if mAJ = 0, then f is the identity on R⊗ J ; in fact for every x ∈ R, f(x⊗ 1)− x⊗ 1 ∈
ker p = R⊗mA and then if j ∈ J , x ∈ R.

f(x⊗ j) = jf(x⊗ 1) = x⊗ j + j(f(x⊗ 1)− x⊗ 1) = x⊗ j.

Now we prove the lemma by induction on n = dimK A, being f the identity for n = 1. Let

0−→J−→A−→B−→0

be a small extension with J 6= 0. Then we have a commutative diagram with exact rows

0 −→ R⊗ J −→ R⊗A −→ R⊗B −→ 0yId yf yf
0 −→ R⊗ J −→ R⊗A −→ R⊗B −→ 0

By induction f is an isomorphism and by snake lemma also f is an isomorphism.

Definition IV.3.2. For every A ∈ Art let AutR/S(A) be the set of commutative diagrams of
graded K -algebra morphisms

S ⊗A //

��

R⊗A

��
R⊗A

f
::ttttttttt
// R

According to Lemma IV.3.1, AutR/S is a functor from the category Art to the category of groups
Grp. Here we consider AutR/S as a functor of Artin rings (just forgetting the group structure).

Let DerS(R,R) be the space of S-derivations R → R of. If A ∈ Art and J ⊂ mA is an ideal
then, since dimK J <∞ there exist natural isomorphisms

DerS(R,R)⊗ J = DerS(R,R⊗ J) = DerS⊗A(R⊗A,R⊗ J),

where a given derivation d =
∑
i di ⊗ ji ∈ DerS(R,R)⊗ J corresponds to the S ⊗A-derivation

d : R⊗A→ R⊗ J ⊂ R⊗A, d(x⊗ a) =
∑
i

di(x)⊗ jia.

For every d ∈ DerS⊗A(R ⊗ A,R ⊗ A), denote dn = d ◦ . . . ◦ d the iterated composition of d with
itself n times. The generalized Leibniz rule gives

dn(uv) =
n∑
i=0

(
n

i

)
di(u)dn−1(v), u, v ∈ R⊗A.

In particular, note that, if d ∈ DerS(R,R)⊗mA, then d is a nilpotent endomorphism of R⊗A and

ed =
∑
n≥0

dn

n!

is a morphism of K -algebras belonging to AutR/S(A).
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Proposition IV.3.3. For every A ∈ ArtK the exponential

exp: DerS(R,R)⊗mA → AutR/S(A)

is a bijection.

Proof. This is obvious if A = K ; by induction on the dimension of A we may assume that there
exists a nontrivial small extension

0−→J−→A−→B−→0

such that exp: DerS(R,R)⊗mB → AutR/S(B) is bijective. We first note that if d ∈ DerS(R,R)⊗
mA, h ∈ DerS(R,R)⊗ J then dihj = hjdi = 0 whenever j > 0, j + i ≥ 2 and then ed+h = ed + h;
this easily implies that exp is injective.
Conversely take a f ∈ AutR/S(A); by the inductive assumption there exists d ∈ DerS(R,R) ⊗ mA

such that f = ed ∈ AutR/S(B); denote h = f − ed : R ⊗ A → R ⊗ J . Since h(ab) = f(a)f(b) −
ed(a)ed(b) = h(a)f(b) + ed(a)h(b) = h(a)b + ah(b) we have that h ∈ DerS(R,R) ⊗ J and then
f = ed+h.

The same argument works also if S → R is a morphism of sheaves of K -algebras over a topo-
logical space and DerS(R,R), AutR/S(A) are respectively the vector space of S-derivations of of R
and the S ⊗A-algebra automorphisms of R⊗A lifting the identity on R.

Infinitesimal deformations of projective varieties

Let X be a projective variety over K . An infinitesimal deformation of X over Spec(A) is a com-
mutative diagram

X
i //

��

XA

π

��
Spec(K ) a // Spec(A),

where π is a proper and flat morphism, a ∈ Spec(A) is the closed point, i is a closed embedding
and X ∼= XA ×Spec(A) Spec(K ). If A = K [ε] we call it a first order deformation of X.

Remark IV.3.4. Let XA be an infinitesimal deformation of X. By definition, it can be interpreted
as a morphism of sheaves of algebras OA → OX , such that OA is flat over A and OA ⊗A K→ OX
is an isomorphism.

Given another deformation X ′A of X over Spec(A), we say that XA and X ′A are isomorphic if
there exists an isomorphism φ : XA → X ′A over Spec(A), that induces the identity on X, that is,
the following diagram is commutative

X

i′

$$I
IIIIIIIII

i

zzuuuuuuuuuu

XA
φ //

π
$$H

HHHHHHHH X ′A

π′zzvvvvvvvvv

Spec(A).

An infinitesimal deformation of X over Spec(A) is called trivial if it is isomorphic to the in-
finitesimal product deformation, i.e., to the deformation

X
i //

��

X × Spec(A)

��
Spec(K ) a // Spec(A).
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X is called rigid if every infinitesimal deformation of X over Spec(A) (for each A ∈ Art) is
trivial.

For every deformation XA of X over Spec(A) and every morphism A→ B in Art (Spec(B)→
Spec(A)), there exists an associated deformation of X over Spec(B), called pull-back deformation,
induced by a base change:

X //

��

XA ×Spec(A) Spec(B)

��
Spec(K ) // Spec(B).

Definition IV.3.5. The infinitesimal deformation functor DefX of X is defined as follows:

DefX : Art→ Set,

A 7−→ DefX(A) =

 isomorphism classes of
infinitesimal deformations

of X over Spec(A)

 .

Proposition IV.3.6. DefX is a deformation functor, i.e., it satisfies the conditions of Defini-
tion IV.1.5

Proof. See [98, Section 3].

Infinitesimal deformations of locally free sheaves

Let X be a projective scheme and E a locally free sheaf of OX -modules on X. An infinitesimal
deformation of E over Spec(A) is a locally free sheaves of OX ⊗ A-modules EA on X × Spec(A),
together with a morphism πA : EA → E , such that πA : EA ⊗A K → E is an isomorphism.

Given another deformation E ′A of E over Spec(A), we say that EA and E ′A are isomorphic if there
exists an isomorphism of shaeves of OX ⊗ A-modules φ : EA → E ′A over Spec(A), that commutes
with the morphisms πA : EA ⊗A K → E and π′A : E ′A ⊗A K → E , i.e., πA ◦ φ = πA.

For every deformation EA of E over Spec(A) and every morphism A → B in Art (Spec(B) →
Spec(A)), there exists an associated deformation of E over Spec(B), called pull-back deformation,
induced by a base change:

p∗EA //

��

EA

��
X × Spec(B)

p // X × Spec(A).

Definition IV.3.7. The infinitesimal deformation functor DefE of EA is defined as follows:

DefE : Art→ Set,

A 7−→ DefE(A) =

 isomorphism classes of
infinitesimal deformations

of E over Spec(A)

 .

Proposition IV.3.8. DefE is a deformation functor, i.e., it satisfies the conditions of Defini-
tion IV.1.5.

Proof. See [98, Section 3].

Remark IV.3.9. Given a projective scheme X, we have defined a deformation fo a locally free sheaf
E over Spec(A), as a sheaf EA on X × Spec(A), i.e., we are considering the trivial deformations of
X. More generally, we can define infinitesimal deformations of the pair (X, E) whenever we allow
deformations of X too.
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Infinitesimal deformations of maps

Definition IV.3.10. Let f : X → Y be a holomorphic map and A ∈ Art. An infinitesimal
deformation of f over Spec(A) is a commutative diagram of complex spaces

XA
F //

π
  B

BB
BB

BB
B YA

µ
~~}}

}}
}}

}}

S,

where S = Spec(A), (XA, π, S) and (YA, µ, S) are infinitesimal deformations of X and Y , respec-
tively (Definition IV.3.5), F is a holomorphic map that restricted to the fibers over the closed point
of S coincides with f .

If A = K [ε] we have a first order deformation of f .

Definition IV.3.11. Let

XA
F //

π
  A

AA
AA

AA
A YA

µ
��~~

~~
~~

~~
and X ′A

F ′ //

π′   A
AA

AA
AA

A
Y ′A

µ′��~~
~~

~~
~

S S

be two infinitesimal deformations of f . They are equivalent if there exist bi-holomorphic maps
φ : XA → X ′A and ψ : YA → Y ′A (that are equivalence of infinitesimal deformations of X and Y ,
respectively) such that the following diagram is commutative:

XA
F //

φ

��

YA

ψ

��
X ′A

F ′ // Y ′A.

Definition IV.3.12. The functor of infinitesimal deformations of a holomorphic map f : X → Y
is

Def(f) : Art→ Set,

A 7−→ Def(f)(A) =

 isomorphism classes of
infinitesimal deformations of

f over Spec(A)

 .

Proposition IV.3.13. Def(f) is a deformation functor, since it satisfies the conditions of Defini-
tion IV.1.5.

Proof. It follows from the fact that the functors DefX and DefY of infinitesimal deformations of X
and Y are deformation functors.

IV.4 Tangent space

Definition IV.4.1. Let F : Art→ Set be a deformation functor. The set

T 1F = F

(
K [t]
(t2)

)
is called the tangent space of F .

Proposition IV.4.2. The tangent space of a deformation functor has a natural structure of vector
space over K . For every natural transformation of deformation functors F → G, the induced map
T 1F → T 1G is linear.
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Proof. (See [98, Lemma 2.10]) Since F (K ) is just one point, by Condition 2. of Definition IV.1.5,
there exists a bijection F

(
K [t]
(t2) ×K

K [t]
(t2)

)
∼= F

(
K [t]
(t2)

)
× F

(
K [t]
(t2)

)
.

Consider the map

+ :
K [t]
(t2)

×K
K [t]
(t2)

→ K [t]
(t2)

,

(a+ bt, a+ b′t) 7−→ a+ (b+ b′)t.

Then using the previous bijection, the map + induces the addition on F
(

K [t]
(t2)

)
:

F

(
K [t]
(t2)

)
× F

(
K [t]
(t2)

)
∼=→ F

(
K [t]
(t2)

×K
K [t]
(t2)

)
F (+)→ F

(
K [t]
(t2)

)
.

Analogously, for the multiplication by a scalar k ∈ K we consider the map:

k :
K [t]
(t2)

→ K [t]
(t2)

,

a+ bt 7−→ a+ (kb)t.

It is an easy exercise to prove that the axioms of vector space are satisfied. The linearity of the
map T 1F → T 1G induced by a natural transformation of deformation functors F → G follows by
the definition of the K -vector space structure on T 1F and T 1G.

It is notationally convenient to reserve the letter ε to denote elements of A ∈ Art annihilated
by the maximal ideal mA, and in particular of square zero.

Example IV.4.3. The tangent space of the functor hR, defined in Example IV.1.4, is

T 1 hR = HomK−alg(R,K [ε]) = HomK

(
mR

m2
R

,K
)
.

Therefore T 1 hR is isomorphic to the Zariski tangent space of Spec(R) at its closed point.

Definition IV.4.4. Given a functor F and R a local complete K -algebra, R is said to be an hull
for F if we are given a morphism hR → F which is smooth and bijective on tangent spaces.

Remark IV.4.5. (Exercise) An hull, if it exists, is unique up to non-canonical isomorphism.

The notion of hull is a weaker version of prorepresentability and it is related to the notion of
semiuniversal deformation. The majority of deformation functors arising in concrete cases are not
proprepresentable but they admit an hull as it shown in the following theorem.

Theorem IV.4.6 (Schlessinger, [98]). Let F be a deformation functor with finite dimensional
vector space. Then, there exists a local complete noetherian K -algebra R with residue field K and a
smooth natural transformation hR → F inducing an isomorphism on tangent spaces T 1 hR = T 1F .
Moreover R is unique up to non-canonical isomorphism.

Proof. We will prove later as a consequence of a more general statement (the factorization theorem).

Lemma IV.4.7. Let η : F → G be a natural tranformation of deformation functors.

1. If G is homogeneous and η : T 1F → T 1G is injective, then η : F (A) → G(A) is injective for
every A and F is homogeneous.

2. If F is smooth and η : T 1F → T 1G is surjective, then G is a smooth functor and η is a smooth
morphism.
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Proof. Every small principal extension

0→ K α−→B β−→A→ 0,

there exists an isomorphism

B ×K K [ε]→ B ×A B, (b, b+ kε) 7→ (b, b+ kα(ε))

and then, for every deformation functor G a surjective map

θ : G(B)× T 1G = G(B ×K K [ε])→ G(B)×G(A) G(B)

commuting with the projection on the first factor and such that θ(x, 0) = (x, x). If G is homoge-
neous, then θ is bijective.

Assume now G homogeneous and η : T 1F → T 1G injective. We will prove by induction on the
length of B ∈ Art that η : F (B)→ G(B) is injective. Let x, y ∈ F (B) such that η(x) = η(y) ∈ G(B)
and let

0→ K α−→B β−→A→ 0

be a principal small extension. By induction β(x) = β(y) ∈ F (A) and then there exists v ∈ T 1F
such that θ(x, v) = (x, y). Thus θ(η(x), η(v)) = (η(x), η(y)) and, since G is homogeneous this
implies η(v) = 0 and then v = 0, x = y. This proves that η is always injective the homogeneity of
F is trivial.

Assume now F smooth and η : T 1F → T 1G surjective. We need to prove that for every principal
small extension as above, the map

(β, η) : F (B)→ F (A)×G(A) G(B)

is surjective. Let (x, y) ∈ F (A) ×G(A) G(B), since F is smooth there exists z ∈ F (B) such that
β(z) = x; denoting w = η(z) we have (w, y) ∈ G(B) ×G(A) G(B) and then there exists v ∈ T 1G
such that θ(w, v) = (w, y). Now η : T 1F → T 1G is surjective and then v = η(u) and θ(z, u) = (z, r)
with β(r) = β(z) = x and η(r) = y.

IV.5 Obstructions

In the set-up of functors of Artin rings, with the term obstructions we intend obstructions for a
deformation functor to be smooth.

Definition IV.5.1. Let F be a functor of Artin rings. An obstruction theory (V, ve) for F is the
data of a K -vector space V and for every small extension in Art

e : 0−→M−→B−→A−→0

of an obstruction map ve : F (A)→ V ⊗M satisfying the following properties:

1. If A = K then ve(F (K )) = 0.

2. (base change) For every commutative diagram

e1 : 0 −→ M1 −→ B1 −→ A1 −→ 0yαM yαB yαA
e2 : 0 −→ M2 −→ B2 −→ A2 −→ 0.

with e1, e2 small extensions and αA, αB morphisms in Art, we have

ve2(αA(a)) = (IdV ⊗ αM )(ve1(a)) for every a ∈ F (A1).

Remark IV.5.2. It has to be observed that, to give a morphism of sets ve : F (A) → V ⊗M is the
same that to give a map ve : F (A) ×M∨ → V such that ve(a,−) : M∨ → V is linear for every
a ∈ F (A).
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The name obstruction theory is motivated by the following result.

Lemma IV.5.3. Let (V, ve) be an obstruction theory for a functor of Artin rings F , let

e : 0−→M α−→B β−→A−→0

be a small extension and x ∈ F (A). If x lifts to F (B), i.e. if x ∈ β(F (B)), then ve(x) = 0.

Proof. Assume x = β(y) for some y ∈ F (B) and consider the morphism of small extension

e′ : 0 −→ M
(0,α)−→ B ×A B

p1−→ B −→ 0yId yp2

yβ
e : 0 −→ M

α−→ B
β−→ A −→ 0.

where p1 and p2 are the projections. By base change property ve(x) = ve′(y). Now consider the
morphism of small extensions

e′ : 0 −→ M
(0,α)−→ B ×A B

p1−→ B −→ 0yId yγ yπ
e′′ : 0 −→ M

(0,α)−→ K ⊕ α(M)
β−→ K −→ 0.

where π : B → K is the projection and γ(a, b) = (π(a), a − b). Again by base change property
ve′(y) = ve′′(π(y)) = 0.

Definition IV.5.4. An obstruction theory (V, ve) for F is called complete if the converse of
Lemma IV.5.3 holds; i.e., the lifting exists if and only if the obstruction vanishes.

Clearly, if F admits a complete obstruction theory then it admits infinitely ones; it is in fact
sufficient to embed V in a bigger vector space. One of the main interest (and problem) is to look
for the “smallest”complete obstruction theory.

Remark IV.5.5. Let e : 0−→M−→B−→A−→0 be a small extension and a ∈ F (A); the obstruction
ve(a) ∈ V ⊗M is uniquely determined by the values (IdV ⊗ f)ve(a) ∈ V , where f varies along a
basis of HomK (M,K ). On the other hand, by base change we have (IdV ⊗ f)ve(a) = vε(a), where
ε is the small extension

ε : 0−→K −→ B ⊕K
{(m,−f(m)) | m ∈M}

−→ A−→0.

This implies that every obstruction theory is uniquely determined by its behavior on principal small
extensions.

Definition IV.5.6. A morphism of obstruction theories (V, ve)→ (W,we) is a linear map θ : V →
W such that we = (θ ⊗ Id)ve, for every small extension e.
An obstruction theory (OF , obe) for F is called universal if, for every obstruction theory (V, ve),
there exists a unique morphism (OF , obe)→ (V, ve).

Theorem IV.5.7 ([18]). Let F be a deformation functor, then:

1. There exists the universal obstruction theory (OF , obe) for F , and such obstruction theory is
complete.

2. Every element of the universal obstruction target OF is of the form obe(a), for some principal
extension

e : 0−→K−→B−→A−→0

and some a ∈ F (A).

Proof. The proof is quite long and it is postponed to Section IV.6

It is clear that the universal obstruction theory (OF , obe) is unique up to isomorphism and
depends only by F and not by any additional data.
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Definition IV.5.8. The obstruction space of a deformation functor F is the universal obstruction
target OF .

Corollary IV.5.9. Let (V, ve) be a complete obstruction theory for a deformation functor F . Then,
the obstruction space OF is isomorphic to the vector subspace of V generated by all the obstructions
arising from principal extensions.

Proof. Denote by θ : OF → V the morphism of obstruction theories. Every principal obstruction is
contained in the image of θ and, since V is complete, the morphism θ is injective.

Remark IV.5.10. The majority of authors use Corollary IV.5.9 as a definition of obstruction space.

Example IV.5.11. Let R be a local complete K -algebra with residue field K and n = dimT 1 hR =
dim mR/m

2
R its embedding dimension. Then, we can write R = P/I, where P = K [[x1, . . . , xn]]

and I ⊂ m2
P . We claim that

T 2 hR := HomP (I,K ) = HomK (I/mP I,K )

is the obstruction space of hR. In fact, for every small extension

e : 0−→M−→B−→A−→0

and every α ∈ hR(A), we can lift α to a commutative diagram

0 −→ I −→ P −→ R −→ 0yoba(α)

yβ yα
0 −→ M −→ B −→ A −→ 0

with β a morphism of K -algebras. It is easy to verify that

obe(α) = β|I ∈ HomK (I/mP I,M) = T 2 hR⊗M

is well defined, it is a complete obstruction and that (T 2 hR, obe) is the universal obstruction theory
for the functor hR (see [18, Prop. 5.3]).

Let φ : F → G be a natural transformation of deformation functors. Then, (OG, obe ◦ φ) is an
obstruction theory for F ; therefore, there exists an unique linear map obφ : OF → OG which is
compatible with φ in the obvious sense.

Theorem IV.5.12 (Standard smoothness criterion). Let φ : F → G be a morphism of deformation
functors. The following conditions are equivalent:

1. φ is smooth.

2. T 1φ : T 1F → T 1G is surjective and obφ : OF → OG is bijective.

3. T 1φ : T 1F → T 1G is surjective and obφ : OF → OG is injective.

Proof. In order to avoid confusion we denote by obFe and obGe the obstruction maps for F and G
respectively.

[1 ⇒ 2] Every smooth morphism is in particular surjective; therefore, if φ is smooth then the
induced morphisms T 1F → T 1G, OF → OG are both surjective.
Assume that obφ(ξ) = 0 and write ξ = obFe (x), for some x ∈ F (A) and some small extension
e : 0−→K−→B−→A−→0. Since obGe (φ(x)) = 0, the element x lifts to a pair (x, y′) ∈ F (A) ×G(A)

G(B) and then the smoothness of φ implies that x lifts to F (B).
[3⇒ 1] We need to prove that for every small extension e : 0−→K−→B−→A−→0 the map

F (B)→ F (A)×G(A) G(B)

is surjective. Fix (x, y′) ∈ F (A) ×G(A) G(B) and let y ∈ G(A) be the common image of x and y′.
Then obGe (y) = 0 because y lifts to G(B), hence obFe (x) = 0 by injectivity of obφ. Therefore x lifts
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to some x′′ ∈ F (B). In general y′′ = φ(x′′) is not equal to y′. However, (y′′, y′) ∈ G(B)×G(A)G(B)
and therefore there exists v ∈ T 1G such that θ(y′′, v) = (y′′, y′) where

θ : G(B)× T 1G = G(B ×K K [ε])→ G(B)×G(A) G(B)

is induced by the isomorphism

B ×K K [ε]→ B ×A B, (b, b+ αε) 7→ (b, b+ αε).

By assumption T 1F → T 1G is surjective, v lifts to a w ∈ T 1F and setting θ(x′′, w) = (x′′, x′) we
have that x′ is a lifting of x which maps to y′, as required.

Remark IV.5.13. In most concrete cases, given a natural transformation F → G it is very difficult
to calculate the map OF → OG, while it is generally easy to describe complete obstruction theories
for F and G and a compatible morphism between them. In this situation, only the implication
[3⇒ 1] of the standard smoothness criterion holds.

Corollary IV.5.14. Let F be a deformation functor and hR → F a smooth natural transformation.
Then, the dimension of OF is equal to the minimum number of generators of an ideal I defining R
as a quotient of a power series ring, i.e., R = K [[x1, . . . , xn]]/I.

Proof. Apply Nakayama’s lemma to the K [[x1, . . . , xn]]-module I and use Example IV.5.11.

IV.6 Proof of Theorem IV.5.7

We need some care to avoid set theoretic difficulties. First of all, we work on a fixed universe.
For every n ≥ 0, choose a K -algebra On isomorphic to the power series ring K [[x1, . . . , xn]] and
consider the category Art whose objects are Artinian quotients of the On’s and morphisms are local
morphisms of K -algebras. Let Fvsp the category whose objects are {0,K ,K 2, . . .} and morphisms
are linear maps.

For a V ∈ Fvsp, we denote by V ∨ its K -dual. If A ∈ Art, we will denote by mA its maximal
ideal.

By ε and εi we will always mean indeterminates annihilated by the maximal ideal, and in
particular of square zero (e.g., the algebra K [ε] has dimension 2 and K [ε1, ε2] has dimension 3 as
a K -vector space).

Definition IV.6.1. A small extension e in Art is a short exact sequence

e : 0−→M−→B−→A−→0

where B → A is a morphism in Art, M ∈ Fvsp and the image of M → B is annihilated by the
maximal ideal of B. In the sequel of the paper, for every small extension e as above, we shall let
K(e) = M , S(e) = B, T (e) = A (the letters should be a reminder of kernel, source, target).

Definition IV.6.2. We denote by Smex the category whose objects are small extensions in Art.
A morphism of small extensions α : e1 → e2 is a commutative diagram

0 −→ M1 −→ B1 −→ A1 −→ 0yαM yαB yαA
0 −→ M2 −→ B2 −→ A2 −→ 0.

The category Smex is small, in the sense that the class of its objects is a set.
For A ∈ Art and M ∈ Fvsp let Ex(A,M) be the set isomorphism classes of small extensions

of A with kernel M . Denote by 0 ∈ Ex(A,M) the trivial extension

0 : 0−→M−→A⊕M−→A−→0

where the product in A⊕M is (a,m)(a′,m′) = (aa′, a0m
′ + a′0m), and a→ a0 is the quotient map

A→ K . A small extension is trivial if and only if it splits.
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If f : M → N is a morphism in Fvsp and π : C → A is a morphism in Art, we shall denote by

f∗ : Ex(A,M)→ Ex(A,N), π∗ : Ex(A,M)→ Ex(C,M)

the induced maps, defined as follows:
Given an extension e : 0→M → B → A→ 0 in Ex(A,M), define f∗e as the extension

0→ N → B ⊕N
{(m, f(m)) | m ∈M}

→ A→ 0.

Define π∗e as the extension
0→M → B ×A C → C → 0.

Exercise IV.6.3. In the above set-up prove that f∗π∗ = π∗f∗ : Ex(A,M)→ Ex(C,N).

Exercise IV.6.4. In the notation of Definition IV.6.2, prove that αM∗(e1) = α∗A(e2) ∈ Ex(M2, A1).

Given two small extension

e1 : 0−→M−→B−→A−→0,

e2 : 0−→N−→C−→A−→0,

with the same target, we define e1 ⊕ e2 ∈ Ex(A,M ×N) as

e1 ⊕ e2 : 0→M ×N → B ×A C → A→ 0.

We have a natural structure of vector space on Ex(M,A) where the sum is defined as

e1 + e2 = +∗(e1 ⊕ e2), where +: M ×M →M

and the scalar multiplication is induced by the corrsponding operation on M .
Let F be a deformation functor; for A ∈ Art, M ∈ Fvsp and a ∈ F (A) define

F (A,M, a) = {e ∈ Ex(A,M) | a lifts to F (S(e))}.

Lemma IV.6.5. Let F be a deformation functor, then:

1. For A ∈ Art and a ∈ F (A) we have

F (A,M, a)⊕ F (A,N, a) ⊂ F (A,M ⊕N, a)

for every M,N ∈ Fvsp.

2. For A ∈ Art, a ∈ F (A) and f : M → N

f∗F (A,M, a) ⊂ F (A,N, a).

3. For A ∈ Art, a ∈ F (A) and π : A→ B

π∗F (B,M, π(a)) = F (A,M, a).

In particular, F (A,M, a) is a vector subspace of Ex(A,M).

Proof. Immediate from the definition of deformation functors.

Lemma IV.6.6. Let F be a deformation functor, A ∈ Art, M ∈ Fvsp, e ∈ Ex(A,M) and
a ∈ F (A). Then

e ∈ F (A,M, a) if and only if f∗e ∈ F (A,K , a) for every f ∈M∨.
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Proof. Let e be the small extension

0−→M−→B π−→A−→0

and assume f∗e ∈ F (A,K , a) for every f ∈ M∨. We prove that a lifts to F (B) by induction on
dimK M ; If dimM = 1 there is nothing to prove.
Assume dimM > 1 and let f ∈ M∨ with proper kernel N ⊂ M . Consider the following small
extensions and morphisms:

0 −→ N −→ B
π′−→ A′ −→ 0yi ‖

yδ
0 −→ M −→ B

π−→ A −→ 0yf yπ′ ‖

0 −→ K −→ A′
δ−→ A −→ 0

where the bottom row is f∗(e); call e′ the top row. We have i∗e′ = δ∗e and then, for every h ∈M∨
we have δ∗h∗e = h∗δ

∗e = h∗i∗e
′.

By assumption a lifts to some a′ ∈ F (A′) and, since M∨ → N∨ is surjective, we may apply the
inductive assumption to the small extension e′ and then a′ lifts to F (B).

Lemma IV.6.7. Let F be a deformation functor, and let f, g : B → A be morphisms in Art.
Assume that b ∈ F (B) and f(b) = g(b) = a ∈ F (A). Then

f∗ = g∗ :
Ex(A,M)
F (A,M, a)

↪→ Ex(B,M)
F (B,M, b)

.

Proof. The injectivity is clear since f∗F (A,M, a) = g∗F (A,M, a) = F (B,M, b). Let

e : 0 i−→M → C
p−→A→ 0

be a small extension. We want to prove that f∗e− g∗e ∈ F (B,M, b).
Consider the small extension

∇ : 0−→M (i,0)=(0,−i)−−−−−−−−→ D =
C ×K C

{(m,m) | m ∈M}
(p,p)−−−→ A×K A−→0

and the morphism φ : B → A ×K A, φ(x) = (f(x), g(x)). Then f∗e − g∗e = φ∗∇ and then it is
sufficient to prove that ∇ ∈ F (A ×K A,M, φ(b)), i.e. that φ(b) lifts to D. Since F (A ×K A) →
F (A) × F (A) is bijective, we must have φ(b) = δ(a), where δ : A → A ×K A is the diagonal. It is
now sufficient to observe that δ lifts to a morphism A→ D.

Definition IV.6.8. Let F be a deformation functor. For every A ∈ Art and a ∈ F (A) denote by

H(A, a) =
Ex(A,K )
F (A,K , a)

.

Denote also by OF the subcategory of VectK with objects the H(A, a)’s, for A ∈ Art and a ∈ F (A),
and morphisms the injective linear maps f∗ : H(A, a) → H(B, b), where f : B → A is a morphism
in Art such that f(b) = a.

The category OF is filtrant. This means that [51, Def. 1.11.2]:

1. Given morphismsH(A, a)→ H(B, b) andH(A, a)→ H(C, c), there exist morphismsH(B, b)→
H(S, s) and H(C, c)→ H(S, s) such that the resulting diagram is commutative.

2. Given two morphisms f∗, g∗ : H(A, a)→ H(B, b) there exist a morphism H(B, b)→ H(C, c)
such that the composed morphisms H(A, a)→ H(C, c) coincide.
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Moreover, it is required that I is nonempty and connected.
The Lemma IV.6.7 says that 2) holds in the stronger sense that, given two objects, there is at most
one morphism between them. In view of this, 1) is equivalent to saying that, given any two objects,
there is a third to which they both map (the commutativity of the diagram is ensured by IV.6.7).
Given B,C in Art and elements b ∈ F (B), c ∈ F (C), take S = B ×K C; since F is a deformation
functor there exists s ∈ F (S) mapping to b ∈ F (B) and to c ∈ F (C).

Since OF is filtrant, the colimit construction interchanges with the forgetful functor VectK →
Set, i.e., the set

OF := colim OF =
⋃
OF

H(A, a)/ ∼,

where ∼ is the equivalence relation generated by v ∼ f∗v, is a vector space over K and the natural
maps H(A, a)→ OF are injective morphisms of vector spaces.
The space OF is the obstruction space of an obstruction theory (OF , obe), where for every small
extension

e : 0−→M−→B−→A−→0

we define obe : F (A)×M∨ → OF by obe(a, f) = θ(e), where θ is the composition map

θ : Ex(A,M)
f∗−→Ex(A,K )→ H(A, a) ↪→ OF .

It is straightforward to verify that (OF , obe) is an obstruction theory, while Lemma IV.6.6 tell us
that it is a complete obstruction.
Finally, the universal property of colimits gives the universality of (OF , obe).



Chapter V

Lie algebras

Let A be a commutative ring, by a nonassociative (= not necessarily associative) A-algebra we
mean a A-module R endowed with a A-bilinear map R × R → R. Keep in mind that, even if R is
not commutative, we have ar = ra for every a ∈ A and r ∈ R.

• A nonassociative algebra R is called unitary if there exist a “unity” 1 ∈ R such that 1r =
r1 = r for every r ∈ R.

• A left ideal (resp.: right ideal) of R is a submodule I ⊂ R such that RI ⊂ I (resp.: IR ⊂ I).
A submodule is called an ideal if it is both a left and right ideal.

• A morphism of A-modules d : R→ R is called an A-derivation if:

1. d(ar) = ad(r) for a ∈ A and r ∈ R;

2. d(rs) = d(r)s+ rd(s) for r, s ∈ R (Leibniz rule).

• An algebra R is associative if (ab)c = a(bc) for every a, b, c ∈ R. Unless otherwise specified,
we reserve the simple term algebra only to associative algebra.

V.1 Lie algebras

From now on K will be a fixed field of characteristic 6= 2.

Definition V.1.1. A vector space L over K , with an operation L×L→ L, denoted (x, y) 7→ [x, y]
and called the bracket of x and y, is called a Lie algebra if the following axioms are satisfied:

1. The bracket operation is bilinear.

2. [x, y] = −[y, x] for all x, y in L.

3. (Jacobi identity) [[x, y], z]] = [x, [y, z]]− [y, [x, z]] (x, y, z ∈ L).

A Lie algebra L is called abelian if [x, y] = 0 for every x, y ∈ L.

Notice that, since char K 6= 2, we have [x, x] = −[x, x] = 0 for every x ∈ L. A linear subspace
H ⊂ L is called a subalgebra if [x, y] ∈ H whenever x, y ∈ K; in particular, K is a Lie algebra in
its own right relative to the inherited operations. Note that any nonzero element x ∈ L defines a
one dimensional abelian subalgebra H = Kx.

Example V.1.2. The space EndK (V ) of all linear endomorphisms of a vector space V is a Lie
algebra with bracket [f, g] = fg−gf . If V is finite dimensional then the subspace sl(V ) ⊂ End(V ) of
endomorphisms with trace equal to 0 is a Lie subalgebra. For any n > 0 we denote sln(K ) = sl(K n)

Definition V.1.3. A morphism of Lie algebras f : L→M is a linear map commuting with brackets.
An isomorphims of Lie algebras is a morphism of Lie algebras which is also an isomorphims of vector
spaces.

49
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For every associative K -algebra R we denote by RL the associated Lie algebra, with bracket
equal to the commutator, [a, b] = ab − ba; the verification of the following properties is easy and
left as an exercise:

1. if I ⊂ R is an ideal then IL is a Lie ideal of RL.

2. if f : R→ R is a derivation, then also f : RL → RL is a derivation.

As expected not every Lie bracket is the commutator of an associative product.

Proposition V.1.4. Let K be a field of characteristic 6= 2. Then does not exist any associative
product in sl2(K ) such that [x, y] = xy − yx.

Proof. The canonical basis of the Lie algebra sl2(K ) is given by the matrices

A =
(

0 1
0 0

)
, B =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
,

and we have
[A,B] = H, [H,A] = 2A, [H,B] = −2B.

Assume that there exists an associative product, then

AB −BA = H, HA−AH = 2A, HB −BH = −2B.

Writing
H2 = γ1A+ γ2B + γH

we have
0 = [H2, H] = γ1[A,H] + γ2[B,H]

and therefore γ1 = γ2 = 0, H2 = γH. Possibly acting with the Lie automorphism

A 7→ B, B 7→ A, H 7→ −H,

it is not restrictive to assume γ 6= −1.
Since [AH,H] = [A,H]H = −2AH, writing AH = xA+ yB + zH for some x, y, z ∈ K we have

0 = [AH,H] + 2AH = x[A,H] + y[B,H] + 2xA+ 2yB + 2zH = 4yB + 2zH

giving y = z = 0 and AH = xA. Moreover 2A2 = A[H,A] = [AH,A] = [xA,A] = 0 and then
A2 = 0.

Since
0 = A(H2)− (AH)H = γAH − xAH = (γx− x2)A

we have either x = 0 or x = γ. In both cases x 6= −1 and then AH + HA = (2x + 2)A 6= 0. This
gives a contradiction since

−AH = A(AB −H) = ABA = (BA+H)A = HA.

Example V.1.5. Let R be a nonassociative algebra over K . Then the vector space

DerK (R,R) = {d ∈ HomK (R,R) | d(rs) = (dr)s+ r(ds), ∀ r, s ∈ R}

of K -derivations of R is a Lie subalgebra of EndK (V ) = HomK (R,R).

Example V.1.6. Let L be a Lie algebra over a field K and A a commutative and associative
K -algebra. Then the tensor product L ⊗K A is a Lie algebra with bracket equal to the bilinear
extension of

[u⊗ a, v ⊗ b] = [u, v]⊗ ab.
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A representation of a Lie algebra L on a vector space V is a morphism of Lie algebras
φ : L→ End(V ).

Example V.1.7. The adjoint representation of a Lie algebra L is the homomorphism

ad : L→ End(L), adx(y) = [x, y].

It is clear that ad is a linear transformation. To see that it preserves the bracket, we calculate:

[adx, ad y](z) = adx(ad y(z))− ad y(adx(z)) = adx([y, z])− ad y([x, z]) =

= [x, [y, z]]− [y, [x, z]] = [[x, y], z] = ad [x, y](z).

It is useful to recall the notion of universal enveloping algebra: for proofs and more details
we refer to [43, 50]. For every Lie algebra L, there exists an associative algebra U(L) together a Lie
embedding L ⊂ U(L) with the following universal property: for every associative algebra R and
every Lie morphism f : L→ R there exists a unique morphism of associative algebras F : U(L)→ R
extending f .

V.2 Nilpotent Lie algebras

For a Lie algebra H we denote [a, b, c] = [a, [b, c]] and more generally

[a1, . . . , an] = [a1, [a2, . . . , an]] = [a1, [a2, [a3, . . . , [an−1, an] . . .] .

Definition V.2.1. The descending central series H [n] of a Lie algebra H is defined as

H [n] = Span{[a1, . . . , an]}, a1, . . . , an ∈ H, n ≥ 1.

Clearly H [1] = H and H [n] = [H,H [n−1]], where we have used the notation that

[U, V ] = Span{[u, v] | u ∈ U, v ∈ V }.

Lemma V.2.2. In the notation above we have.

1. H [n+1] ⊆ H [n] for every n > 0;

2. H [n] is a Lie ideal of H for every n;

3. [H [n], H [m]] ⊂ H [n+m] for every n,m.

Proof. All the above item are trivially true for n = 1: assume then n > 1 and proceed by induction
on n. We have H [n+1] = [H,H [n]] ⊂ [H,H [n−1]] = H [n]. In particular for every n we have
[H,H [n]] ⊂ H [n] and then H [n] is a Lie ideal.

Assume now already proved that [H [a], H [m]] ⊂ H [a+m] for every a < n. The vector space
[H [n], H [m]] is generated by the vectors

[[x, y], z], x ∈ I, y ∈ H [n−1], z ∈ H [m].

By Jacobi identity

[[x, y], z] = [x, [y, z]]− [y, [x, z]] ∈ [H, [H [n−1], H [m]]] + [H [n−1], [H,H [m]]]

and by induction
[[x, y], z] ∈ [H,H [n+m−1]] + [H [n−1], H [m+1]] ⊂ H [n+m].

Definition V.2.3. A Lie algebra H is called nilpotent if H [n] = 0 for n >> 0.

Example V.2.4. If m is the maximal ideal of a local Artinian ring, then L ⊗ m is nilpotent for
every Lie algebra L; moreover it is a Lie subalgebra of the nilpotent associative algebra U(L)⊗m.
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Given two elements a, b in a nilpotent Lie algebra L over a field of characteristic 0, we define a
sequence of elements Zn = Zn(a, b) ∈ L by the recursive equation

Z0 = b, Zr+1 =
1

r + 1

∑
m≥0

Bm
m!

∑
i1+···+im=r

[Zi1 , Zi2 , . . . , Zim , a] ,

where B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, . . . are the Bernoulli numbers, i.e. the rational
numbers defined by the generating function∑

n≥0

Bn
n!
tn =

t

et − 1
.

Definition V.2.5. For a nilpotent Lie algebra L over a field of characteristic 0 the map

L× L •−→L, a • b =
∑
n≥0

Zn(a, b),

is called Baker-Campbell-Hausdorff (BCH) product.

It is easy to check that the first terms of BCH product are

a • b = a+ b+
1
2

[a, b] +
1
12

[a, [a, b]] +
1
12

[b, [a, b]] + · · ·

It is plain that • commutes with morphisms of Lie algebras and that a • b− a− b belongs in the
Lie ideal generated by [a, b]. The geometric meaning of the BCH product will be described in next
section.

V.3 Exponential and logarithm

From now on, K will be a field of characteristic 0. Let R be a unitary associative K -algebra and
I ⊂ R a nilpotent ideal. We may define the exponential

e : I → 1 + I ⊂ R, ea =
∑
n≥0

an

n!
,

and the logarithm

log : 1 + I → I, log(1 + a) =
∞∑
n=1

(−1)n−1 a
n

n
.

Lemma V.3.1. Exponential and logarithm are one the inverse of the other, i.e. for every a, b ∈ I
we have

log(ea) = a, elog(1+b) = 1 + b.

Proof. Using the morphism of associative algebras

Q[[t]]→ R, p(t) 7→ p(a)

and the embedding Q[[t]] ⊂ R[[t]] the proof is reduced to well known facts of calculus.

Proposition V.3.2. In the notation above:

1. for every a, b ∈ R and n ≥ 0

(ad a)nb =
n∑
i=0

(−1)i
(
n

i

)
an−ibai =

n∑
i=0

(
n

i

)
an−ib(−a)i.
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2. If a is nilpotent in R then also ad a is nilpotent in End(R) and therefore it is well defined the
invertible operator

ead a =
∑
n≥0

(ad a)n

n!
∈ End(R).

3. For every a ∈ I and b ∈ R

ead ab :=
∑
n≥0

(ad a)n

n!
b = eabe−a.

4. For every a ∈ I and b ∈ R we have ab = ba if and only if eab = bea.

5. For every a, b ∈ I we have eab = bea if and only if eaeb = ebea.

6. Given a, b ∈ I such that ab = ba, then

ea+b = eaeb = ebea, log((1 + a)(1 + b)) = log(1 + a) + log(1 + b).

Proof. [1] We have
(ad a)nb = a(ad a)n−1(b)− (ad a)n−1(b)a

By induction

(ad a)nb =
n−1∑
i=0

(−1)i
(
n− 1
i

)
an−ibai −

n−1∑
j=0

(−1)j
(
n− 1
i

)
an−1−jbaj+1.

Setting j = i− 1 on the second summand we get

(ad a)nb =
n−1∑
i=0

(−1)i
(
n− 1
i

)
an−ibai +

n∑
i=1

(−1)i
(
n− 1
i− 1

)
an−ibai =

=
n∑
i=0

(−1)i
((

n− 1
i

)
+
(
n− 1
i− 1

))
an−ibai =

n∑
i=0

(−1)i
(
n

i

)
an−ibai.

[2] If an = 0 then (ad a)2n = 0.
[3] Using item 1 we get

ead ab :=
∑
n≥0

(ad a)n

n!
b =

∑
n≥0

n∑
i=0

1
n!

(
n

i

)
an−ib(−a)i

Setting j = n− i we get

ead ab :=
∑
i,j≥0

1
i!j!

ajb(−a)i = eabe−a.

[4] We have eab = bea if and only if eabe−a − b = 0 and by the above formula

eabe−a − b = ead ab− b =
ead a − 1

ad a
([a, b]).

[5] Setting x = eb we have by item 4 applied twice

eaeb = ebea ⇐⇒ xea = eax ⇐⇒ ax = xa ⇐⇒ aeb = eba ⇐⇒ ab = ba.

[6] Since ab = ba we have for every n ≥ 0

(a+ b)n =
n∑
i=0

(
n

i

)
aibn−i,
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ea+b =
∑
n≥0

(a+ b)n

n!
=
∑
n≥0

n∑
i=0

1
n!

(
n

i

)
aibn−i =

∑
n≥0

n∑
i=0

1
i!(n− i)!

aibn−i.

Setting j = n− i we get

ea+b =
∑
i,j≥0

1
i!j!

aibj = eaeb.

Setting x = log(1 + a), y = log(1 + b) we have exey = eyex: therefore xy = yx and

log((1 + a)(1 + b)) = log(exey) = log(ex+y) = x+ y = log(1 + a) + y = log(1 + b).

Notice that for every a ∈ I the operator

ead a − 1
ad a

=
∑
n≥0

(ad a)n

(n+ 1)!
∈ End(R)

is invertible and its inverse is
ad a

ead a − 1
=
∑
n≥0

Bn
n!

(ad a)n .

Let t be an indeterminate and denote by R[t] the algebra of polinomials in the central variable
t: more explicitely R[t] = ⊕n≥0Rt

n and (ati)(btj) = abti+j for a, b ∈ R and i, j ≥ 0.
Denote by d : R[t]→ R[t], d(a) = a′, the derivation operator. Multiplication on the left give an

injective morphism of algebras

φ : R[t]→ EndK (R[t]), φ(a)b = ab

and Leibniz formula can be written as

φ(a′) = [d, φ(a)], a ∈ R[t].

Given a ∈ I[t] we have φ(ea) = eφ(a) and

φ((ea)′) = deφ(a) − eφ(a)d

By the above proposition

−φ((ea)′e−a) = eφ(a)de−φ(a) − d =
eadφ(a) − 1

adφ(a)
([φ(a), d]) = −e

adφ(a) − 1
adφ(a)

(φ(a′)),

and then, since φ is injective

(ea)′e−a =
ead a − 1

ad a
(a′).

Now, let a, b ∈ I and define
Z = log(etaeb) ∈ I[t].

We have Z = Z0 + tZ1 + · · ·+ tnZn + · · · , with Z0 = b and Zn ∈ In. By derivation formula we have

(eZ)′e−Z =
eadZ − 1

adZ
(Z ′),

(eZ)′e−Z = (etaeb)′e−be−ta = (eta)′e−ta = a.

Therefore Z is the solution of the Cauchy problem

Z ′ =
∑
n≥0

Bn
n!

(adZ)n(a), Z(0) = Z0 = b.

The coefficients Zn can be computed recursively

Zr+1 =
1

r + 1

∑
m≥0

Bm
m!

∑
i1+···+im=r

(adZi1)(adZi2) · · · (adZim)a

and, since eaeb = eZ(1) we have the following result.
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Theorem V.3.3. Let I be a nilpotent ideal of an associative algebra, then for every a, b ∈ I we
have

eaeb = ea•b,

where • is the BCH product.

Since (eaeb)ec = ea(ebec) we obtain immediately that the product I × I •−→I is associative. The
same argument proves that, if L is a Lie subalgebra of a nilpotent ideal of a unitary associative
algebra R then ea•b = eaeb and • : L × L → L is associative. Moreover if L → M is a surjective
morphism of nilpotent Lie algebras and • is associative in L, then it is also associative in M .

We will prove later, using free Lie algebras, that every nilpotent Lie algebra is a quotient
of a Lie algebra contained in a nilpotent associative algebra. This implies that • is always
associative.

Definition V.3.4. For a nilpotent Lie algebra L we denote by exp(L) = {ea | a ∈ L} the set of
formal exponents of elements of L. It is a group with product

exp(L)× exp(L)→ exp(L), eaeb = ea•b,

with unit e0 and inverse (ea)−1 = e−a.

We have the functorial properties:

1. If f : L→M is a morphism of nilpotent Lie algebras, then the map

f : exp(L)→ exp(M), f(ea) = ef(a),

is a homomorphism of groups.

2. Let V be a vector space and f : L → End(V ) a Lie algebra morphism. If the image of L is
contained in a nilpotent ideal, then the maps

exp(L)× V → V, (ea, v) 7→ ef(a)v,

exp(L)× End(V )→ End(V ), (ea, g) 7→ ef(a)ge−f(a) = ead f (g),

are right actions.

V.4 (Co)Simplicial and Semi(co)simplicial objects

Let ∆ be the category of finite ordinals: the objects are objects are [0] = {0}, [1] = {0, 1},
[2] = {0, 1, 2} ecc. and morphisms are the non decreasing maps.

Finally ∆mon is the category with the same objects as above and whose morphisms are order-
preserving injective maps among them.

Every morphism in ∆mon, different from the identity, is a finite composition of face morphisms:

∂k : [i− 1]→ [i], ∂k(p) =

{
p if p < k

p+ 1 if k ≤ p
, k = 0, . . . , i.

Equivalently ∂k is the unique strictly monotone map whose image misses k. The relations about
compositions of them are generated by

∂l∂k = ∂k+1∂l , for every l ≤ k.

Definition V.4.1 ([17, 113]). Let C be a category:

1. A cosimplicial object in C is a covariant functor A∆ : ∆→ C.

2. A semicosimplicial object in C is a covariant functor A∆ : ∆mon → C.

3. A simplicial object in C is a contravariant functor A∆ : ∆→ C.
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4. A semisimplicial object in C is a contravariant functor A∆ : ∆mon → C.

Notice that a semicosimplicial object A∆ is a diagram in C:

A0
// // A1

////// A2

//////// · · · ,

where each Ai is in C, and, for each i > 0, there are i+ 1 morphisms

∂k : Ai−1 → Ai, k = 0, . . . , i,

such that ∂l∂k = ∂k+1∂l, for any l ≤ k.

Example V.4.2. Let K be a field. Define the standard n-simplex over K as the affine space

∆n = {(t0, . . . , tn) ∈ K n+1 | t0 + t1 + · · ·+ tn = 1}.

The vertices of ∆n are the points

e0 = (1, 0, . . . , 0), e1 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

Then the family {∆n}, n ≥ 0, is a cosimplicial affine space, where for every monotone map
f : [n] → [m] we set f : ∆n → ∆m as the affine map such that f(ei) = ef(i). Equivalently
f(t0, . . . , tn) =

∑
tief(i) = (u0, . . . , um), where

ui =
∑

{j|f(j)=i}

tj (we intend that
∑
∅

tj = 0).

In particular, for m = n+ 1 we have

∂k(t0, . . . , tn) = (t0, . . . , tk−1, 0, tk, . . . , tn),

and this explain why ∂k is called face map.

Given a semicosimplicial abelian group

V ∆ : V0
//// V1

////// V2

//////// · · · ,

the map
δ : Vi → Vi+1, δ =

∑
i

(−1)i∂i

satisfies δ2 = 0.

Definition V.4.3. The normal complex of a semicosimplicial abelian group V ∆ is the complex

N(V ∆) : V0
δ−→V1

δ−→V2 → · · ·

Example V.4.4. Let L be a sheaf of abelian groups on a topological space X, and U = {Ui} an
open covering of X; it is naturally defined the semicosimplicial abelian group of Čech alternating
cochains:

L(U) :
∏
i L(Ui) // //

∏
i<j L(Uij)

//////
∏
i<j<k L(Uijk)

//////// · · · ,

where the coface maps ∂h :
∏

i0<···<ik−1

L(Ui0···ik−1)→
∏

i0<···<ik

L(Ui0···ik) are given by

∂h(x)i0...ik = xi0... bih...ik |Ui0···ik , for h = 0, . . . , k.

Thus N(L(U)) is the Čech complex of L in the covering U .
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V.5 Maurer-Cartan and deformation functors of semicosim-
plicial Lie algebras

Consider a semicosimplicial Lie algebra

g∆ : g0
//// g1

////// g2

//////// · · · ,

Denoting by αi = ∂i : g0 → g1, βj = ∂j : g1 → g2 and γk = ∂k : g2 → g3 the face morphims we
have:

β1α0 = β0α0, β2α0 = β0α1, β2α1 = β1α1, (V.1)

γ0β0 = γ1β0, γ0β1 = γ2β0, γ0β2 = γ3β0, γ1β1 = γ2β1, γ1β2 = γ3β1, γ2β2 = γ3β2.

Define the Maurer-Cartan functor

MCg∆ : Art→ Set,

MCg∆(A) = {ex ∈ exp(g1 ⊗mA) | eβ0(x)e−β1(x)eβ2(x) = 1},

or equivalently, using the BCH product •,

MCg∆(A) = {x ∈ g1 ⊗mA | (β0(x)) • (−β1(x)) • (β2(x)) = 0}.

Lemma V.5.1. The action

exp(g0 ⊗mA)× exp(g1 ⊗mA)→ exp(g1 ⊗mA), (ea, ex) 7→ eα1(a)exe−α0(a)

preserves Maurer-Cartan elements.

Proof. Let ex ∈ MCg∆(A), ea ∈ exp(g0 ⊗mA) and denote ey = eα1(a)exe−α0(a). Then

eβ0(y) = eβ0α1(a)eβ0(x)e−β0α0(a),

e−β1(y) = eβ1α0(a)e−β0(x)e−β1α1(a),

eβ2(y) = eβ2α1(a)eβ2(x)e−β2α0(a),

and the proof follows from equations (V.1).

Moreover, we can define the quotient functor

Defg∆ : Art→ Set, Defg∆(A) =
MCg∆(A)

exp(g0 ⊗mA)

Proposition V.5.2. The projectioon MCg∆ → Defg∆ is a smooth morphism of deformation func-
tors.

Proof. Immediate consequence of Proposition IV.2.7.

Notice that if g2 is abelian, then

eβ0(x)e−β1(x)eβ2(x) = eβ0(x)−β1(x)+β2(x)

and therefore MCg∆ is a smooth functor, since

MCg∆(A) = Z1(N(g∆))⊗mA.

Finally every morphism of semicosimplicial Lie algebras induce a natural transfor-
mation of associated MC and Def functors.

Let’s now compute tangent and obstruction space of MCg∆ and Defg∆ .
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T 1MCg∆ = MCg∆(K [ε]) = {x ∈ g1 ⊗K ε | eβ0(x)e−β1(x)eβ2(x) = 1} =

{x ∈ g1 ⊗ ε | β0(x)− β1(x) + β2(x) = 0} = ker(δ) = Z1(N(g∆)).

Next

Defg∆(K [ε]) =
MCg∆(K [ε])
exp(g0 ⊗K ε)

=

=
Z1(N(g∆))

{−α1(a) + α0(a) | a ∈ g0}
= H1(N(g∆)).

Next goal is to determine a complete obstruction theory for MCg∆ ; by Lemma ??, this will be
also an obstruction theory for Defg∆ .

Let 0→ J → A→ B → 0 be a small extension and let x ∈ g1⊗mA be any lifting of an element
y ∈ MCg∆(B), then

eβ0(x)e−β1(x)eβ2(x) = er, where r ∈ g2 ⊗ J.
Since J is annihilated by maximal ideals, the element er belongs to the center of the group exp(g2⊗
mA) and then we have

er = eβ0(x)e−β1(x)eβ2(x) = eβ2(x)eβ0(x)e−β1(x) = e−β1(x)eβ2(x)eβ0(x).

Lemma V.5.3. In the notation above r is a cocycle in N(g∆), i.e.
∑
k(−1)kγk(r) = 0.

Proof. Notice that
γi(er)γj(er) = eγi(r)+γj(r) = γj(er)γi(er)

for every i, j. It is therefore sufficient to prove that

γ0(er)γ2(er) = γ1(er)γ3(er).

We have
γk(er) = eγkβ0(x)e−γkβ1(x)eγkβ2(x), k = 0, 1, 2, 3,

and then
(γ1(er))−1γ0(er) = e−γ1β2(x)eγ1β1(x)e−γ0β1(x)eγ0β2(x),

γ2(er)(γ3(er))−1 = eγ2β0(x)e−γ2β1(x)eγ3β1(x)e−γ3β0(x) = e−γ3β0(x)eγ2β0(x)e−γ2β1(x)eγ3β1(x),

(γ1(er))−1γ0(er)γ2(er)(γ3(er))−1 =

= e−γ1β2(x)eγ1β1(x)e−γ0β1(x)eγ0β2(x)e−γ3β0(x)eγ2β0(x)e−γ2β1(x)eγ3β1(x)

= e−γ1β2(x)eγ1β1(x)e−γ0β1(x)eγ2β0(x)e−γ2β1(x)eγ3β1(x)

= e−γ1β2(x)eγ1β1(x)e−γ2β1(x)eγ3β1(x)

= e−γ1β2(x)eγ3β1(x) = 1.

Therefore, the element r defines a cohomology class [r] ∈ H2(N(g∆)) ⊗ J depending only by
the class of y in g1 ⊗mB . In fact, any other lifting is equal to x+ u, with u ∈ g1 ⊗ J . Every eβj(u)

belongs to the center of exp(g2 ⊗mA) and so

eβ0(x+u)e−β1(x+u)eβ2(x+u) = eβ0(x)e−β1(x)eβ2(x)eβ0(u)−β1(u)+β2(u) = er+δ(u).

The same argument proves that [r] ∈ H2(N(g∆))⊗ J is a complete obstruction.

Corollary V.5.4. Notation as above, if H2(N(g∆)) = 0 then Defg∆ is smooth.

Corollary V.5.5. Let f : g∆ → h∆ be a morphism of semicosimplicial Lie algebras. If:

1. f : H1(N(g∆))→ H1(N(h∆)) is surjective,

2. f : H2(N(g∆))→ H2(N(h∆)) is injective,

then the morphism f : Defg∆ → Defh∆ is smooth.

Proof. Apply standard smoothness criterion.
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V.6 An example: deformations of manifolds

Let U = {Ui} be an affine open cover of a smooth variety X, defined over an algebraically closed
field of characteristic 0; denote by ΘX the tangent sheaf of X. Then, we can define the Čech
semicosimplicial Lie algebra ΘX(U) as the semicosimplicial Lie algebra

ΘX(U) :
∏
i ΘX(Ui) ////

∏
i<j ΘX(Uij)

// ////
∏
i<j<k ΘX(Uijk)

//////// · · · ,

Since every infinitesimal deformation of a smooth affine scheme is trivial [?, Lemma II.1.3], every
infinitesimal deformation XA of X over Spec(A) is obtained by gluing the trivial deformations
Ui × Spec(A) along the double intersections Uij , and therefore it is determined by the sequence
{θij}i<j of automorphisms of sheaves of A-algebras

O(Uij)

O(Uij)⊗A
θij

'
//

88rrrrrrrrrr
O(Uij)⊗A

ffLLLLLLLLLL

A

88qqqqqqqqqqqq

ffMMMMMMMMMMMM

satisfying the cocycle condition

θjkθ
−1
ik θij = IdO(Uijk)⊗A, ∀ i < j < k ∈ I. (V.2)

Since we are in characteristic zero, we can take the logarithms and write θij = edij , where dij ∈
ΘX(Uij)⊗mA. Therefore, the Equation (V.2) is equivalent to

edjke−dikedij = 1 ∈ exp(ΘX(Uijk)⊗mA), ∀ i < j < k ∈ I.

Next, let X ′A be another deformation of X over Spec(A), defined by the cocycle θ′ij . To give
an isomorphism of deformations X ′A ' XA is the same to give, for every i, an automorphism αi of
O(Ui) ⊗ A such that θij = αi

−1θ′ij
−1
αj , for every i < j. Taking again logarithms, we can write

αi = eai , with ai ∈ ΘX(Ui)⊗mA, and so e−aied
′
ijeaj = edij .

Theorem V.6.1. Let U be an affine open cover of a smooth algebraic variety X defined over
an algebraically closed field of characteristic 0. Denoting by DefX the functor of infinitesimal
deformations of X, there exist isomorphisms of functors

DefX ∼= DefΘX(U)

where ΘX(U) is the semicosimplicial Lie algebra defined above.

Proof. By definition,

MCΘX(U)(A) = {{xij} ∈
∏
i<j

ΘX(Uij)⊗mA | exjke−xikexij = 1 ∀ i < j < k},

for each A ∈ Art. Moreover, given x = {xij} and y = {yij} ∈
∏
i<j ΘX(Uij)⊗mA, we have x ∼ y

if and only if there exists a = {ai} ∈
∏
i ΘX(Ui)⊗mA such that e−ajexijeai = eyij for all i < j.

In particular this proves that if H2(ΘX) = 0 then X has unobstructed deformations.

V.7 Rooted trees

Definition V.7.1. A directed graph is the data of two sets X0, X1 and two maps

∂0, ∂1 : X1 → X0.

Elements of X0 will be called vertices, elements of X1 are called edges. If ∂1(v) = b we will say that
v is an incoming edge of b.
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Thus a directed graph is a particular type of semisimplicial set and can be described graphically
by taking a point for every vertex and an arrow for every edge:

v •
b

•
a

∂0(v) = a, ∂1(v) = b.

Definition V.7.2. A directed path from of length n from a vertex a to a vertex b is a sequence of
edges (v1, . . . , vn) such that

∂0(v1) = a, ∂1(vn) = b, and ∂1(vi) = ∂0(vi+1) for 1 ≤ i < n.

Definition V.7.3. A directed graph is called a rooted tree is there exists a vertex, called root,
with the property that for every vertex a there exists a unique directed path from a to the root.

A rooted tree is called planar if for every vertex a it is given a total ordering in the set of
incoming edges of a.

Given two vertices u, v in a rooted tree we shall write u → v if the vertex v belongs to the
directed path from u to the root. A leaf is a vertex without incoming edges: equivalently, a vertex
u is a leaf if the relation v → u implies u = v. A vertex is called internal if it is not a leaf; notice
that, if a rooted tree has at least two vertices, then the root is an internal vertex.

root

internal

leaf leaf

internal

leaf leaf leaf

Every finite planar rooted tree can be described graphically in the plane with the root at the top
and the leaves at the bottom (i.e., every directed path moves upward), and with the total ordering
on incoming edges from the leftmost to the rightmost.

Definition V.7.4. A planar rooted tree Γ is a binary tree if every internal vertex has exactly two
incoming edges. We use the notation

B =
⋃
n>0

Bn

where Bn is the set of planar binary rooted trees with n leaves.

Let R be a nonassociative algebra and Γ ∈ B a planar rooted binary tree. Labelling the leaves
of Γ with elements of R, we can associate in a natural way the product element in R obtained by
performing the product of R at every internal vertex in the order arising from the planar structure
of the directed tree. For example:

•

•

a b

•

c a  (ab)(ca) ∈ R

More formally, if L(Γ) is the set of leaves of a planar rooted tree Γ, for every labelling f : L(Γ)→
R we obtain an element ZΓ(f) ∈ R.
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•

a b

r

,

•

c d grafting−−−−−−→

•

•

a b

d

Figure V.1: Grafting the root r in the leaf c

V.8 A tree summation formula for the BCH product

If S is a subset of a nonassociatve algebra R, then the elements ZΓ(f), with Γ ∈ B and f : L(Γ)→ S,
are a set of generators of the subalgebra generated by S. If R is either symmetric or skewsymmetric
(e.g. R is a Lie algebra), then we may reduce the set of generators by a suitable choice of the
labelling. Keeping in mind our main application (the BCH product), a possible way of doing that
is the following, see e.g. [48].

Definition V.8.1. A rightmost branch of a planar rooted tree Γ ∈ T is a maximal connected
subgraph Ω ⊂ Γ, with the property that every edge of Ω is a rightmost edge of Γ. A rightmost
branch is called non trivial if it has at least two vertices.

Definition V.8.2. A local rightmost leaf is a leaf lying on a non trivial rightmost branch. Given
an internal vertex v, we call m(v) the leaf lying on the rightmost branch containing v. We also
denote by d(v) the lenght of the unique directed path from m(v) to v.

Definition V.8.3. A subroot is the vertex of a non trivial rightmost branch which is nearest to
the root. The set of subroots of a finite planar rooted tree Γ will be denoted by R(Γ).

Therefore, we have the natural bijections

{ subroots } ∼= { non trivial rightmost branches } ∼= { local rightmost leaves }.

Example V.8.4. In the planar rooted tree

•

•

◦ ⊗

◦

◦ ◦ ⊗

the rightmost branches are dashed, subroots are denoted by • and local rightmost leaves by ⊗.

Using the notion of subroot, we can define a partial order � on the set of leaves L(Γ).

Definition V.8.5. Given two leaves l1 and l2 in a planar rooted tree Γ ∈ T , we say l1 � l2 if
l1 = l2 or there exists a subroot v ∈ R(Γ) such that l2 = m(v) and l1 → v.

Definition V.8.6. For every partially ordered set (A,≤), we denote

Bn(A) = {(Γ, f) |Γ ∈ Bn, f : (L(Γ),�)→ (A,≤), f monotone}, B(A) =
⋃
n>0

Bn(A).

Example V.8.7. The 9 elements of B3(y ≤ x) are
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•

•

y y

y

•

•

y y

x

•

•

y x

x

•

•

x x

x

•

y ◦

y y

•

y ◦

y x

•

y ◦

x x

•

x ◦

y x

•

x ◦

x x

Definition V.8.8. Given (Γ, f) ∈ B(A), let us define

b(Γ,f) :=
∏

v∈R(Γ)

bd(v)

t(v)
,

where: ∑
n≥0

bnt
n =

t

et − 1
, bn =

Bn
n!

and for every subroot v ∈ R(Γ), we have

t(v) = number of leaves u ∈ L(Γ) such that u→ v and f(u) = f(m(v)).

Theorem V.8.9. Let L be a nilpotent Lie algebra as above; then, for every positive integer k and
every x1, . . . , xk ∈ L, we have

xk • xk−1 • · · · • x1 =
∑

(Γ,f)∈B (x1≤x2≤···≤xk)

b(Γ,f)ZΓ(f), (V.3)

x1 • x2 • · · · • xk =
+∞∑
n=1

(−1)n−1
∑

(Γ,f)∈Bn (x1≤x2≤···≤xk)

b(Γ,f)ZΓ(f). (V.4)

In particular, for x, y ∈ L, we have

x • y =
∑

(Γ,f)∈B(y≤x)

b(Γ,f)ZΓ(f). (V.5)

Proof. Let us first prove Formula (V.5). Let C′ (y ≤ x) ⊂ B (y ≤ x) be the subset of trees having
every local rightmost leaf labelled with x and denote by C (y ≤ x) = C′ (y ≤ x) ∪ B1(y).

Since the bracket is skewsymmetric, we have that ZΓ(f) = 0, for every (Γ, f) /∈ C (y ≤ x);
therefore, ∑

(Γ,f)∈B(y≤x)

b(Γ,f)ZΓ(f) =
∑

(Γ,f)∈C(y≤x)

b(Γ,f)ZΓ(f).

Recall that
x • y =

∑
r≥0

Zr,

where

Z0 = y, Zr+1 =
1

r + 1

∑
m≥0

bm
∑

i1+···+im=r

(adZi1)(adZi2) · · · (adZim)x, for r ≥ 0.
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For every r > 0, let Cr ⊂ C(y ≤ x) be the subset of trees with exactly r leaves labelled with x; we
prove that, for every r ≥ 0, we have

Zr =
∑

(Γ,f)∈Cr

b(Γ,f)ZΓ(f). (V.6)

This is clear for r = 0; for r = 1, we have

Z1 =
∑
m≥0

bm(adZ0)mx =
∑
m≥0

bm(ad y)mx,

whereas C1 = {Ωm}, m ≥ 0, and Ωm is the unique posetted tree in C1 with m+ 1 leaves. Therefore,
the coefficient b(Ωm) is exactly bm and so

Z1 =
∑

(Γ,f)∈C1

b(Γ,f)ZΓ(f).

Moreover, every element of Cr+1 is obtained in a unique way starting from a tree Ωm and grafting,
at each of the m leaves labelled with y, the roots of elements of Ci1 , . . . , Cim , with i1 + · · ·+ im = r.
Therefore, the proof of (V.6) follows easily by induction on r.

Next, since • is associative, we have

x1 • x2 • · · · • xk = −((−xk) • · · · • (−x1)),

and Formula (V.4) follows immediately from (V.3). Finally, setting y = xk−1 • · · · • x1, we have
that every posetted tree of B (x1 ≤ x2 ≤ · · · ≤ xk) can be described in a unique way as a posetted
tree in C (y ≤ xk), where at every leaf labelled with y is grafted the root of a posetted tree of
B (x1 ≤ x2 ≤ · · · ≤ xk−1). In view of the associativity relation

xk • xk−1 • · · · • x1 = xk • y,

we obtain that (V.3) is a consequence of xk • y =
∑

(Γ,f)∈C(y≤xk)

b(Γ,f)ZΓ(f).

V.9 Exercises

Exercise V.9.1 (Differential operators, [36, 14, 27]). Let A be a unitary commutative K -algebra.
Consider A as a subalgebra of HomK (A,A), where every a ∈ A is identified with the operator

a : A→ A, a(b) = ab.

1. Prove that
Diff0(A) := {f ∈ HomK (A,A) | [f, a] = 0 ∀a ∈ A} = A.

2. For n > 0 define recursively

Diffn(A) := {f ∈ HomK (A,A) | [f, a] ∈ Diffn−1(A) ∀a ∈ A}

and prove that for every f ∈ Diffn(A), g ∈ Diffm(A) we have

fg ∈ Diffn+m(A), [f, g] ∈ Diffn+m−1(A).

In particular Diff0(A),Diff1(A) and Diff(A) :=
⋃
n Diffn(A) are Lie subalgebras of HomK (A,A).

3. (Higher Koszul brackets, [64]) For every f ∈ HomK (A,A) and every n > 0 define

Φnf : An → A, Φnf (a1, . . . , an) = (−1)n[a1, a2, . . . , an, f ](1).

Prove that f is K multilinear symmetric and Φnf = 0 if and only if f ∈ Diffn−1(A).
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4. For A = K [t], prove that every f ∈ Diffn(A) is uniquely determined by f(1), f(t), . . . , f(tn)
(Hint: compute Φmf (t, t, . . . , t) for m > n). Deduce that there exist p0, . . . , pn ∈ K [t] such
that

f = p0 + p1
d

dt
+ · · ·+ pn

dn

dtn
.

5. For A = C[t2, t3] ⊂ C[t] show that the map

Diff1(A)⊗Diff1(A)→ Diff2(A), f ⊗ g → fg

is not surjective.

Exercise V.9.2. Use the associativity of the BCH product for proving the relations

bn(1 + n(−1)n) = −
n−1∑
i=1

(−1)ibibn−i, Bn(1 + n(−1)n) = −
n−1∑
i=1

(−1)i
(
n

i

)
BiBn−i.

among Bernoulli numbers. Then prove the same relations in a more elementary way.
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Georges Thone, Liège, (1950) 15-27.

[10] H. Cartan: Quotient d’un espace analytique par un groupe d’automorphismes. Algebraic ge-
ometry and topology: A symposium in honour of S. Lefschetz. Princeton Math. Series 12
(1957) 90-102. 28

[11] H. Cartan: Elementary theory of analytic functions of one or several complex variables.
Addison-Wesley (1963)

[12] F. Catanese: Moduli of algebraic surfaces. Theory of moduli (Montecatini Terme, 1985), 1-83,
Lecture Notes in Math. 1337, Springer (1988).

[13] H. Clemens: Geometry of formal Kuranishi theory. Adv. Math. 198 (2005), no. 1, 311-365. 5

[14] S.C. Coutinho: A primer of algebraic D-modules. Cambridge Univ. Press (1995). 63

[15] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan: Real homotopy theory of Kähler manifolds.
Invent. Math. 29 (1975) 245-274.
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