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LECTURE 1

Smooth families of compact complex manifolds

In this chapter we introduce the notion of a family f: X — B of compact complex
manifolds as a proper holomorphic submersion of complex manifolds. Easy examples (1.4,
1.6) will show that in general the fibres X; := f~!(¢) are not biholomorphic each other.
Using integration of vector fields we prove that the family is locally trivial if and only if
a certain morphism IS of sheaves over B is trivial, while the restriction of IS at a point
b € B is a linear map KS: T, p — HY(X, Tx,), called the Kodaira-Spencer map, which can
interpreted as the first derivative at the point b of the map

B — {isomorphism classes of complex manifolds}, t+— Xj.

Then, according to Kodaira, Nirenberg and Spencer we define a deformation of a complex
manifolds X as the data of a family X — B, of a base point 0 € B and of an isomorphism
X ~ Xgy. The isomorphism class of a deformation involves only the structure of f in a
neighbourhood of Xj.

In the last section we state, without proof, the principal pioneer theorems about deforma-
tions proved using hard analysis by Kodaira, Nirenberg and Spencer in the period 1956-58.

1. Dictionary

For every complex manifold M we denote by:

e Oy (U) the C-algebra of holomorphic functions f: U — C defined on an open
subset U C M.

o O the trivial complex line bundle C x M — M.

e T the holomorphic tangent bundle to M. The fibre of T); at a point x € M, i.e.
the complex tangent space at x, is denoted by T’ as.

If z € M is a point we denote by O, the C-algebra of germs of holomorphic functions

at a point x € M; a choice of local holomorphic coordinates z1, ..., z,, zi(z) = 0, gives an
isomorphism Opr . = C{z1,..., 2z, }, being C{z1, ..., 2, } the C-algebra of convergent power
series.

In order to avoid a too heavy notation we sometimes omit the subscript M, when the
underlying complex manifold is clear from the context.

DEFINITION I.1. A smooth family of compact complex manifolds is a proper holomorphic
map f: M — B such that:

(1) M, B are nonempty complex manifolds and B is connected.
(2) The differential of f, fi: Tpnm — Ty, p is surjective at every point p € M.

Two families f: M — B, g: N — B over the same base are isomorphic if there exists a
holomorphic isomorphism N — M commuting with f and g.

From now on, when there is no risk of confusion, we shall simply say smooth family instead
of smooth family of compact complex manifolds.

Note that if f: M — B is a smooth family then f is open, closed and surjective. If
V C B is an open subset then f: f~'(V) — V is a smooth family; more generally for every
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2 I. SMOOTH FAMILIES OF COMPACT COMPLEX MANIFOLDS

holomorphic map of connected complex manifolds C' — B, the pull-back M xp C — C'is
a smooth family.
For every b € B we denote M, = f~1(b): M, is a regular submanifold of M.

DEFINITION [.2. A smooth family f: M — B is called trivial if it is isomorphic to the
product M, x B — B for some (and hence all) b € B. It is called locally trivial if there
exists an open covering B = UU, such that every restriction f: f~1(U,) — Uy, is trivial.

LEMMA 1.3. Let f: M — B be a smooth family, b € B. The normal bundle Ny, ;nr of My
in M s trivial.

Proor. Let E = T; g x My — M be the trivial bundle with fibre T}, 5. The differential
fe: Ter — Ty, © € My induces a surjective morphism of vector bundles (T)a, — E
whose kernel is exactly Ty, .
By definition NMb/M = (TM)|Mb/TMb and then NM,,/M =Ty p X My. O

By a classical result (Ehresmann’s theorem, [37, Thm. 2.4]), if f: M — B is a family,
then for every b € B there exists an open neighbourhood b € U C B and a diffeomorphism
¢: f~Y(U) — My x U making the following diagram commutative

My

¢

f_l(U) My x U
U

being i: My — M the inclusion. In particular the diffeomorphism type of the fibre M, is
independent from b. Later on (Theorem IV.30) we will prove a result that implies Ehres-
mann’s theorem.

The following examples of families show that, in general, if a,b € B, a # b, then M, is
not biholomorphic to M.

ExAMPLE 1.4, Consider B = C — {0, 1},
M = {([zo, 21, 2], A) € P* x B|zjzg = z1(z1 — 20) (21 — Amo) },

and f: M — B the projection. Then f is a family and the fibre M) is a smooth plane
cubic with j-invariant

(N =A+1)

A2(A—1)2

(Recall that two elliptic curves are biholomorphic if and only if they have the same j-
invariant.)

J(My) = 2°

EXAMPLE L5. (Universal family of hypersurfaces)

For fixed integers n,d > 0, consider the projective space PV, N = < d;n ) — 1, with

.....

X ={ ([x],[a]) € P* x PV > gyt Tl =0
0+...+in=d

X is a smooth hypersurface of P* x PV, the differential of the projection X — PV is not
surjective at a point ([z], [a]) if and only if [z] is a singular point of X,,.

Let B = {[a] € PV | X, is smooth }, M = f~1(B): then B is open (exercise), f: M — B
is a family and every smooth hypersurface of degree d of P" is isomorphic to a fibre of f.
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ExAMPLE 1.6. (Hopf surfaces)
Let A € GL(2,C) be a matrix with eigenvalues of norm > 1 and let (A) ~ Z C GL(2,C)
be the subgroup generated by A. The action of (A) on X = C? — {0} is free and properly
discontinuous: in fact a linear change of coordinates C': C2 — C? changes the action of
(A) into the action of (C71AC) and therefore it is not restrictive to assume A is a lower
triangular matrix.
Therefore the quotient Sy = X/(A) is a compact complex manifold called Hopf surface:
the holomorphic map X — S, is the universal cover and then for every point x € Sy
there exists a natural isomorphism 71(S4,x) ~ (A). We have already seen that if A, B
are conjugated matrix then S, is biholomorphic to Sp. Conversely if f: S4 — Sp is a
biholomorphism then f lifts to a biholomorphism g: X — X such that gA = B¥g; since f
induces an isomorphism of fundamental groups k& = +1.
By Hartogs’ theorem g extends to a biholomorphism g: C?2 — C? such that g(0) = 0; since
for every x # 0 HILI%O A"(x) = 400 and 11113010 B™"(z) = 0 it must be gA = Bg. Taking the
differential at 0 of gA = Bg we get that A is conjugated to B.

EXERCISE L.7. If A = *™7[ € GL(2,C), T = a +ib, b < 0, then the Hopf surface S, is
the total space of a holomorphic G-principal bundle S4 — P!, where G = C/(Z+7Z). A

ExaMPLE 1.8. (Complete family of Hopf surfaces)
Denote B = {(a,b,c) € C3||a| > 1, |c| > 1}, X = Bx (C?>—{0}) and let Z ~ G C Aut(X)
be the subgroup generated by

(a,b, e, z1,22) — (a,b,c,az1,bz1 + cz2)

The action of G on X is free and properly discontinuous, let M = X/G be its quotient
and f: M — B the projection on the first coordinates: f is a family whose fibres are
Hopf surfaces. Every Hopf surface is isomorphic to a fibre of f, this motivate the adjective
“complete”.

In particular all the Hopf surfaces are diffeomorphic to S x S3 (to see this look at the fibre
over (2,0,2)).

NoTATION 1.9. For every pair of pointed manifolds (M, z), (N, y) we denote by Morger ((M, ), (N, y)
the set of germs of holomorphic maps f: (M, x) — (N, y). Every element of Morger((M, ), (N,y))
is an equivalence class of pairs (U, f), where x € U C M is an open neighbourhood of z,
f: U — N is a holomorphic map such that f(z) =y and (U, f) ~ (V, g) if and only if there
exists an open subset z € W C U NV such that fiyr = gpw-
The category Ger®™ of germs of complex manifolds is the category whose object are the
pointed complex manifold (M, z) and the morphisms are the Morger ((M, ), (IV,y)) defined
above. A germ of complex manifold is nothing else that an object of GerS™.

In Lecture III we will consider Ger®™ as a full subcategory of the category of analytic
singularities Ger.

EXERCISE 1.10. Ger®™ is equivalent to its full subcategory whose objects are (C",0),
n € N. A

Roughly speaking a deformation is a “framed germ” of family; more precisely

DEFINITION I.11. Let (B,bo) be a pointed manifold, a deformation MOLML(B,I)O)
of a compact complex manifold My over (B, by) is a pair of holomorphic maps

My—>M-L.B

such that:
(1) fi(Mo) = by.
(2) There exists an open neighbourhood by € U C B such that f: f~Y(U) — U is a
proper smooth family.
(3) i: Mg — f~Y(bo) is an isomorphism of complex manifolds.
M is called the total space of the deformation and (B, by) the base germ space.
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DEFINITION 1.12. Two deformations of My over the same base
Mo—M-Lo(B,bo),  My—-N-25(B, bo)

are isomorphic if there exists an open neighbourhood by € U C B, and a commutative
diagram of holomorphic maps

My 1)
i |
9~ 1(U) U

with the diagonal arrow a holomorphic isomorphism.

For every pointed complex manifold (B, by) we denote by Def s, (B, by) the set of isomor-
phism classes of deformations of My with base (B, bg). It is clear from the definition that
if bp € U C B is open, then Def s, (B, by) = Def s, (U, bo).

EXERCISE 1.13. There exists an action of the group Aut(Mj) of holomorphic isomorphisms
of My on the set Def s, (B, bp): if g € Aut(Mp) and & : MOLML(B, bp) is a deformation
we define

€9 My M- (B, b).
Prove that £9 = ¢ if and only if g: f~1(bg) — f~'(by) can be extended to an isomorphism
G: f7YV) — f~YV), by € V open neighbourhood, such that f§ = f. A

If ¢ MOLML(B, bp) is a deformation and g: (C,co) — (B, bg) is a holomorphic map
of pointed complex manifolds then

g & MOMM X B Cﬂ(C, o)

is a deformation with base point ¢g. It is clear that the isomorphism class of ¢g*¢ depends
only by the class of g in Morger((C, o), (B, bo)).
Therefore every g € Morger((C, co), (B, bp)) induces a well defined pull-back morphism

g": Defpr, (B, bo) — Def py, (C co).

2. Dolbeault cohomology

If M is a complex manifold and E is a holomorphic vector bundle on M, we denote:

EV the dual bundle of E.

I'(U, E) the space of holomorphic sections s: U — E on an open subset U C M.
Qj, = T}, the holomorphic cotangent bundle of M.

OF, = NPT}, the bundle of holomorphic differential p-forms.

For every open subset U C M we denote by I'(U, AYf) the C-vector space of differential

(p, q)-forms on U. If z1,..., z, are local holomorphic coordinates, then ¢ € I'(U, AY/) is
written locally as ¢ = > ¢r jdzr A dzy, where I = (iy,...,ip), J = (j1,...,Jq), dz1 =
dziy N ... Ndz,, dzy = dzj; N ... Ndz;, and the ¢; ; are C°° functions.
Similarly, if E — M is a holomorphic vector bundle we denote by I'(U, AP4(E)) the space
of differential (p, ¢)-forms on U with value in F; locally, if e1, ..., e, is a local frame for FE,
an element of I'(U, AP(E)) is written as Y ;_, ¢;e;, with ¢; € I'(U, AP9). Note that there
exist natural isomorphisms I'(U, AP9(E)) ~ I'(U, A%(Q}, ® E)).

We begin recalling the well known

LEMMA 1.14 (Dolbeault’s lemma). Let
A% ={(z1,...,2n) € C"||z1]| < R,...,|2n] < R}
be a polydisk of radius R < +oo (A%, = C") and let ¢ € I'(A}, AP9), g > 0, such that
0¢ = 0. Then there exists ¢ € T'(A%, API7Y) such that 0y = ¢.

ProoF. [37, Thm. 3.3|, [26, pag. 25]. O
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If E is a holomorphic vector bundle, the 0 operator extends naturally to the Dolbeault oper-
ator 3: T'(U, AP4(E)) — (U, AP9T1(E)) by the rule 93", pie;) = >..(0¢i)e;. If by, ...k,
is another local frame of E then there exists a matrix (a;;) of holomorphic functions such
that h; = zj a;je; and then

0 (Z ¢ihi> =0 Z¢iaij€j = 25(@%)6;‘ = Z@@)azjeg‘ = Z(5¢i)hi~
7 ,J @]

3 K3

It is obvious that 52 =0.

DEFINITION 1.15. The Dolbeault’s cohomology of E, Hg’*(U, E) is the cohomology of the
complex

0—T(U, AP (E) -2 (U, AP (E)-2 . 2w, ari(E) -2 ..

Note that Hg’O(U7 E)=T(U,9%, ® E) is the space of holomorphic sections.
The Dolbeault cohomology has several functorial properties; the most relevant are:

(1) Every holomorphic morphism of holomorphic vector bundles E — F' induces a
morphism of complexes T'(U, AP*(E)) — T'(U, AP*(F)) and then morphisms of
cohomology groups Hg’*(U, E)— Hg’*(U7 F).

(2) The wedge product

T(U, A4(E)) @ T (U, A™ (F)) =T (U, A7 (B @ F)),

(Z ¢iei> ® (Z T/ijj) =Y iNpie@e;.

commutes with Dolbeault differentials and then induces a cup product
U: H2'(U, B) @ Hy*(U, F) — He ™™™ (U, E@ F).

(3) The composition of the wedge product with the trace map E ® EY — Oy gives
bilinear morphisms of cohomology groups

U: H2U(U, B) x Hy*(U, EY) — HE™ (U, On).

THEOREM 1.16. If M is a compact complex manifold of dimension n and E — M is a
holomorphic vector bundle then for every p,q > 0:

(1) dimg¢ Hg’q(M, E) < 0.
(2) (Serre’s duality) The bilinear map T'(M, AP4(E)) x T'(M, A" P"~4(EY)) — C,

@) [ oo
M
induces a perfect pairing Hg’q(M, E) x Hg_p’"_q(M7 EY) — C and then an iso-
morphism Hg’q(M, E)V ~ Hgfp’nfq(M, EY).
PRrOOF. [37]. O

From now on we denote for simplicity H4(M, E) = Hg’q(M, E), h?(M,E) = dim¢c H1(M, E),
HY(M,QP(E)) = Hg’q(M, E).

DEFINITION 1.17. If M is a complex manifold of dimension 7, the holomorphic line bundle

Ky = N'Ty; = Q7 is called the canonical bundle of M.

Since QF, = Kp® (2}, 7)Y, an equivalent statement of the Serre’s duality is HP(M, E)Y ~
H"P(M, Ky ® EV) for every holomorphic vector bundle E and every p =0, ..., n.

The Hodge numbers of a fixed compact complex manifold M are by definition

WP = dime H2(M, O) = dime H(M, 7).
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The Betti numbers of M are the dimensions of the spaces of the De Rham cohomology of
M, ie.
d-closed p-forms

by = dim¢ HY(M,C), HY(M,C) = d-exact p-forms

EXERCISE 1.18. Let p > 0 be a fixed integer and, for every 0 < ¢ < p, denote by
F, C Hg (M,C) the subspace of cohomology classes represented by a d-closed form
n € @< ['(M, AP7""). Prove that there exist injective linear morphisms F,/F, 1 —
HZ~"9(M, O). Deduce that b, < 37 hP~41. A

EXERCISE 1.19. Let f: C® — C be a holomorphic function and assume that X = f~1(0)
is a regular smooth submanifold; denote i: X — C" the embedding.
Let ¢ € T'(C", AP9), ¢ > 0, be a differential form such that d¢ = 0 in an open neighbour-
hood of X. Prove that i*¢ is J-exact in X. (Hint: prove that there exists 1) € I'(C", AP9)
such that ¢ = d(f).) A

EXERCISE 1.20. Let h: C" — C be holomorphic and let U = {z € C" | h(z) # 0}. Prove
that H4(U,Opy) = 0 for every ¢ > 0. (Hint: consider the open disk A = {t € C||¢t| < 1}
and the holomorphic maps ¢: U x A — C"*1, (2,t) — (z,(1 +t)h~1(2)), f: C**! — C,
f(z,u) = h(2)u—1; ¢ is a biholomorphism onto the open set {(z,u) € C"*!| |uh(z) — 1| <
1}; use Exercise 1.19.) A

EXERCISE 1.21. Prove that the following facts are equivalent:

(1) For every holomorphic function f: C — C there exists a holomorphic function
h: C — C such that f(z) = h(z+ 1) — h(2) for every z.
(2) HY(C—{0},0¢) =0.
(Hint: Denote p: C — C— {0} the universal covering p(z) = €>™*. Given f, use a partition
of unity to find a C* function g such that f(z) = g(z + 1) — g(2); then Jg is the pull back
of a d-closed form on C — {0}.) A

3. Cech cohomology

Let E be a holomorphic vector bundle on a complex manifold M. Let U = {U,}, a € T,
M = U,U, be an open covering. For every k > 0 let C*(U, E) be the set of skewsym-
metric sequences {fag.ai...an}s @0y---;ar € I, where fooar,.an: Uy N ... N Uy — E
is a holomorphic section. skewsymmetric means that for every permutation o € j,1,

f“a(O)’aa(l):-~~7aa(k) = (=1)? fao,a1,....ax-

The Cech differential d: C*(U, E) — C*T1 (U, E) is defined as
k1

(A agairr = (1) Fagroioais -

=0
Since d? = 0 (exercise) we may define cocycles Z*(U, E) = kerd C C’k (U, E), coboundaries
B¥U,E) =Tmd c Z*(U, F) and cohomology groups H*(U, E) = Z*(U, E)/B*(U, E).

PROPOSITION 1.22. For every holomorphic vector bundle E and every locally finite cover-
ingU = {U,}, a € I, there exists a natural morphism of C-vector spaces 0: H*(U, E) —
HY* (M, E).

PrOOF. Let t,: M — C, a € T, be a partition of unity subordinate to the covering

{Ua}: supp(t )CUa,Z te =1, Z@t =0.
Given f € C*(U, F) and a € T we consider

3" JucrricnDte Ao At € T(Usy A% (E)),

Cl,.-5Ck

Ztma ) € (M, A**(E)).
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Since every fac,,...c, is holomorphic, it is clear that O¢q = 0 and then

=Y MaNGa(f) = D feprcnObeg M- AOe,.

CQy---3Ck

We claim that ¢ is a morphism of complexes; in fact

Zt Z dfaq), ,ck CO /\atk:

€0s--+5Ck

Zta ZZatQ/\ Z facomicnOteg Ao N, Ao A Dte, | =

a =0 ¢ €O+ sCisesCh
=" t.00(f) = 6(f).

Setting 6 as the morphism induced by ¢ in cohomology, we need to prove that 6 is inde-
pendent from the choice of the partition of unity. We first note that, if df = 0 then, over
U, NUy, we have

¢a(f) - (bb(f) = ch,...,ck (fa,cl,...,ck - fb,cl,...,ck)gtq AT 8tck
= ch . ,Ch Z'IL'C:I(_1)i_1f(l,b,61,...,éi,“.,ckgtq VANAN atck

k i—
= Zi:l(il)l 1 2617._.7% fa,b,q 77777 éh,,_,ck@tcl VANIRAVAN 8tck

k ——
=D 0t A D faperiicnOtey Ao A, AL A D,
i=1 ¢ ClyeesCisernsCh

= 0.

Let v, be another partition of 1, 7, = t, — v,, and denote, for f € Z*(U, E),
Z facrcnOVey A oo A OV,

C1,--+5Ck

Z faetrenOtey Ao e NOte, | ANvg;0ve, Ao ADug,, j=1,....k.
Cl;e-45Ck

The same argument as above shows that q;a = gz~5b and wj = wg for every a, b, j. Therefore all

the 1% come from a global section ¢/ € I'(M, A%*~1(E)); moreover ¢ — ¢ = Zj(—l)j_lgwj

and then ¢, ¢ determine the same cohomology class. O

EXERCISE 1.23. In the same situation of Proposition 1.22 define, for every k > 0, Dk(u, E)
as the set of sequences { foy.a1,....a }» G0, - - -, Ak € L, where fo,01. ar: UggN...NUg, — Eis
a holomorphic section. Denote by i: C*(U, E) — D*(U, F) the natural inclusion. The same
definition of the Cech differential gives a differential d: D*(U, E) — D**1(U, E) making i
a morphism of complexes. Moreover, it is possible to prove (see e.g. [73, p. 214]) that ¢
induce isomorphisms between cohomology groups. Prove:

(1) Given two holomorphic vector bundles E, F' consider the linear maps
Dk(ua E)® Dp_k(u7F)i’Dp(u7E ®F), (fu g)aop..,ap = fag,.ar ® Yag,....ap

Prove that U is associative and d(fUg) = df Ug+(—1)* fUdg, where f € D*(U, E).
(2) The antisymmetrizer p: D’“(U E) — C*U, E),

(pf)ao,...,an = n T 1 ' Z faa(o) ..... A5 (n)? (S En—l—h

is a morphism of complexes and then induce a morphism p: H*(D*(U, E)) —
H*U, E) such that pi = Id (Hint: the readers who are frightened by combinatorics
may use linearity and compatibility with restriction to open subsets N C M of
d, p to reduce the verification of dp(f) = pd(f) in the case i = {Uy},a=1,...,m
finite cover and fq, . 4, # 0 only if a; = 7).
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(3) The same definition of ¢ given in the proof of 1.22 gives a morphism of complexes
¢p: D*(U,E) — T'(M, A%*(E)) which is equal to the composition of ¢ and p. In
particular ¢ induces 6: H*(D*(U, E)) — H*(M, E) such that p = 6.

(4) Prove that, if dg = 0 then ¢pgr(f U g) = ¢r(f) A ¢r(g). (Hint: write 0 =
Zb tbdgb,ak,...,ap )

(5) If E, F are holomorphic vector bundles on M then there exists a functorial cup
product

U: H*(U,E) @ HY (U, F) — HT (U, ER® F)
commuting with # and the wedge product in Dolbeault cohomology.

A

THEOREM 1.24 (Leray). Let U = {U,} be a locally finite covering of a complex manifold
M, E a holomorphic vector bundle on M : if Hg_q(Ua0 N...NUsy, E) =0 for every q <k
and ag, ... ,aq, then 0: HMU,E) — Hg(M, E) is an isomorphism.

PROOF. The complete proof requires sheaf theory and spectral sequences; here we prove
“by hand” only the cases k = 0, 1: this will be sufficient for our applications.
For k& = 0 the theorem is trivial, in fact Hg(M7 E) and H°(U, E) are both isomorphic to the
space of holomorphic sections of ¥ over M. Consider thus the case k = 1; by assumption
H%(Ua7 E) =0 for every a.
Let ¢ € T'(M, A% (E)) be a d-closed form, then for every a there exists ¥, € I'(U,, A**(E))
such that 0y, = ¢. The section fap = Ya — Yp: Uy N Up — E is holomorphic and then
f={fup} € CHU, E); since fop — fep + fea = 0 for every a,b,c we have f € Z1(U, E);
define o(¢) € HY(U,E) as the cohomology class of f. It is easy to see that o(¢) is
independent from the choice of the sections 1),; we want to prove that ¢ = #~!. Let ¢, be
a fixed partition of unity.
Let f € ZY(U, E), then 0(f) = [¢], ¢ = >} fasOtp; we can choose ¥, = >, fapty and then

U(¢)a7c = Z(fa,b - fc,b)tb = fa,c: = o0 = Id.

b

Conversely, if ¢, = 01, then 0o ([¢]) is the cohomology class of
Y (Wa— )ty =0D tals— 0 Uity =0—0 Yyt
b b b b

0

REMARK 1.25. The theory of Stein manifolds (see e.g. [28]) says that the hypotheses
of Theorem [.24 are satisfied for every k& whenever every U, is biholomorphic to an open
convex subset of C”.

EXAMPLE 1.26. Let T — P! be the holomorphic tangent bundle, zy,2; homogeneous
coordinates on P!, U; = {x; # 0}. Since the tangent bundle of U; = C is trivial, by
Dolbeault’s lemma, H!(U;,T) = 0 and by Leray’s theorem H‘(P!,T) = H({Uy, U1}, T),
1=0,1.

Consider the affine coordinates s = x1/xg, t = x¢/x1, then the holomorphic sections of T’
over Up, Uy and Uy = Uy N Uy are given respectively by convergent power series

+oo ) +oo ») +oo iy
L 4 ot
E a;$s R E bt E | E c S 95"
=0 =0 1=—00
: _1 0 20 : L
Since, over Up 1, t = s~ and i —s 95 the Cech differential is given by
s

+00 Za +00 Za +00 Za Za
d(;ais &s’;bit (,%) :;ais g—{— Z bo_;s %,
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and then H'({Uy,U1},T) = 0 and

0 0 0 0 0 0
H° 7y ={(<, < 48 (22,22,
({UOaUl}v ) <<687 815) ) <3887 81&) ) <5 88’ 8t)>

EXAMPLE 1.27. If X = P! x C}? then H'(X,Tx) = 0. If C C P! is an affine open subset
with affine coordinate s, then H°(X,Tx) is the free O(C")-module generated by

o9 0 9 a0
oty " ot, 0s’ Os’ Os’

The proof is essentially the same (replacing the constant terms a;, b;, ¢; with holomorphic
functions over C") of Example 1.26.

4. The Kodaira-Spencer map

NoTATION 1.28. Given a holomorphic map f: X — Y of complex manifolds and com-
plexified vector fields n € I'(X, A*%(Tx)), v € T(Y, A*°(Ty)) we write v = f.n if for every
r € X we have fin(z) = v(f(x)), where fi: Ty x — T,y is the differential of f.

Let f: M — B be a fixed smooth family of compact complex manifolds, dim B = n,
dim M = m + n; for every b € B we let My, = f~1(b).

DEFINITION 1.29. A holomorphic coordinate chart (21,...,2m,t1,...,tn): U «— C™",
U C M open, is called admissible if f(U) is contained in a coordinate chart (v1,...,v,): V <
C*, V. Cc B,such that t; =v; 0 f foreveryt=1,...,n

Since the differential of f has everywhere maximal rank, by the implicit function theorem,
M admits a locally finite covering of admissible coordinate charts.

LEMMA 1.30. Let f: M — B be a smooth family of compact complex manifolds. For every
v € T(B, A% (Tg)) there exists n € T'(M, A*(Ty)) such that fin =~

PROOF. Let M = UU, be a locally finite covering of admissible charts; on every U,
there exists 1, € I'(U,, A%°(T)) such that fin, = v
It is then sufficient to take n = ) pafa, being pq: Us, — C a partition of unity subordinate
to the covering {U,}. O

Let Ty C Ty be the holomorphic vector subbundle of tangent vectors v such that f.v = 0.
0

If z29,...,2m,t1, ..., tn is an admissible system of local coordinates then — — isa

0z " Oz,
local frame of T. Note that the restriction of Tt to My is equal to Ty, .

For every open subset V' C B let I'(V, Ts) be the space of holomorphic vector fields on V.
For every v € T'(V,Tg) take n € T(f~1(V), A*°(Ty)) such that fam = In an admissible
system of local coordinates z;,t; we have n = > . n;(z, t + Z% f, with ~;(t)

0
holomorphic, 9n = Y, Oni(z,t) =— o7

Obviously 97 is O-closed and then we can define the Kodaira-Spencer map

KS(V)y: T(V.Tp) — H'(f7H(V),Ty),  KS(V)4(7) = [9n].

and then dn € T(f~Y(V ),Ao’l(Tf)).

LEMMA L31. The map ICS(V)s is a well-defined homomorphism of O(V')-modules.

PROOF. If 7] € F( L(V), A%Tyy)), fui = 7, then n—7 € (f~1(V), A% (T})) and
[0n] = [on) € H' (f~H(V),Ty). _
If g € O(V) then fi(f*g)n = gv, 9(f*g)n = (f*g9)0n. O
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If Vi € V3 C B then the Kodaira-Spencer maps KS(V;)s: I'(V;, TB) — Hl( L(V;), Ty),
i = 1,2, commute with the restriction maps I'(Va, Tg) — I'(V4,Tg), H (f~'(Va),Ty) —
H'(f~Y(V1),Ty). Therefore we get a well defined Op p-linear map

]CSf GB,b — (le*Tf)b;

where O and (R'f.Ty), are by definition the direct limits, over the set of open neigh-
bourhood V of b, of I'(V, T) and H(f~1(V), Ty) respectively.

If b € B, then there exists a linear map KSy: T, p — H'(My, Tyy,) such that for every
open subset b € V C B there exists a commutative diagram

rv, 1) 20 (v, 1Y)

! &

Tip L H'(My,Ta)
where the vertical arrows are the natural restriction maps.
In fact, if V' is a polydisk then T}, p is the quotient of the complex vector space I'(V, Tg) by
the subspace I = {v € I'(V,Tg) | v(b) = 0}; by O(V)-linearity I is contained in the kernel
of roICS(V)y.

The Kodaira-Spencer map has at least two geometric interpretations: obstruction to the
holomorphic lifting of vector fields and first-order variation of complex structures (this is
a concrete feature of the general philosophy that deformations are a derived construction
of automorphisms).

PropoSITION 1.32. Let f: M — B be a family of compact complex manifolds and v €
L(V,Tg), then KS(V)¢(v) = 0 if and only if there exists n € T'(f~*(V),Tan) such that
fen =1y

PROOF. One implication is trivial; conversely let n € T'(f~'(V), A>°(Tar)) such that
f«m = ~. If [On] = 0 then there exists 7 € I'(f~1(V), A*°(T})) such that d(n — 1) = 0,
n—1el(f~V),Ty) and fu(n—17) =1. O

To compute the Kodaira-Spencer map in terms of Cech cocycles we assume that V is
a polydisk with coordinates ti,...,t, and we fix a locally finite covering U = {U,} of
admissible holomorphic coordinates z{,..., zy t{,...,t2: Uy — C, t¢ = f*t;.

On U, N U, we have the transition functions

a
m?

b_ b L
z = g;.(2%,1%), i=1,...,m

th =19, i=1,...,n

Consider a fixed integer h = 1,...,n and n € T'(f~1(V), A% (Ty)) such that f.n = 9

oty
in local coordinates we have
8 b 0
m= Zm oz ”_Zm =) T’ oL
Since, for every a 0 e I'(U,, A%(T})) and 0 ( n — 9\ an, KS(V) 9 €
) JOT VO T g @ ! o ) — " I\ ot

HYU,T ') is represented by the cocycle

FormuLAa 1.33.

9 9 0 o 0 992, 0
ks (22 —=(p_ 2\ (2 \_9 _9 _ w0
Vs (8th>b,a (17 at?) <” mg) oty oty = Ot 92

The above formula allows to prove easily the invariance of the Kodaira-Spencer maps under
base change; more precisely if f: M — B is a smooth family, ¢: C — B a holomorphic
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map, ¢, f the pullbacks of ¢ and f,

ceC,b= f(c).
THEOREM 1.34. In the above notation, via the natural isomorphism My = f_l(c), we have
KS; =KSh.: Tec — HY(My, Tay,).

PROOF. It is not restrictive to assume B C C}, C C C$ polydisks, ¢ = {u; = 0} and
b= {ti = 0}, ti = ¢Z(u)
If 22,t%: U, — C, 2%,t": U, — C are admissible local coordinate sets with transition
functions zg’ = gza(z“,t‘l), then 2%, u®: U, xg C — C, 2°.t*: U, xg C — C are admissible
with transition functions z? = gfya(za, o(u®)).
Therefore

o 99, 0 090, 8¢, O 0
KS ~ _— frg na _— = h,a J - = KS *
f <8uh> —~ Quf 920 L= Ot Jul 920 ! <¢ 8uh>
b,a i h 7 i, 7 h i b,a

0

It is clear that the Kodaira-Spencer map KSs: Ty, g — H' (Mo, T, ) is defined for every

isomorphism class of deformation My — ML(B, bo): The map K£S;: Opyp, — (le*Tf)bO
is defined up to isomorphisms of the Opp, module (R JsTf)vo-

DEFINITION 1.35. Consider a deformation € : Mo——M—2-(B,by), fi(Mo) = bo, with
Kodaira-Spencer map KS¢: Ty, g — H' (Mo, Ty,)- € is called:

(1) Versal if KS¢ is surjective and for every germ of complex manifold (C,co) the
morphism

MorGer((Cy CO)? (B7 bO)) - DefMo (07 CO)7 g g*g

is surjective.

(2) Semiuniversal if it is versal and KS¢ is bijective.

(3) Universal if KS¢ is bijective and for every pointed complex manifolds (C,cg) the
morphism

MorGer((Cy CO)? (B7b0)) - DefMO(C7 CO)7 g — g*g
is bijective.
Versal deformations are also called complete; semiuniversal deformations are also called
miniversal or Kuranishi deformations.

Note that if £ is semiuniversal, gi,g2 € Morger((C,co), (B,bo)) and gi{ = ¢3¢ then,
according to Theorem 1.34, dg1 = dg>: T¢.y.c — Ty, B-

EXERCISE 1.36. A universal deformation & : My—M i>(B ,bp) induces a representation
(i.e. a homomorphism of groups)
p: Aut(My) — Autger((B, b)),  p(g)"¢=¢7, g € Aut(Mo).

Every other universal deformation over the germ (B, by) gives a conjugate representation.

A
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5. Rigid varieties

DEFINITION 1.37. A deformation My — M — (B, by) is called trivial if it is isomorphic to

Tdx{bo}

MO MO X B—>(B bg)

LEMMA L.38. Let f: M — A’} be a smooth family of compact complex manifolds, t1,...,t,
coordinates in the polydisk A%. If there exist holomorphic vector fields x1,...,xn on M

such that foxp = aa then there exists 0 < r < R such that f: f~'(A") — A" is the trivial

family.
PRrOOF. For every r < R, h < n denote
AP ={(z1,. . 2) €C |21 <7y |zn| <7y 2ng1 =0,..., 2, =0} C AR

We prove by induction on h that there exists R > 7, > 0 such that the restriction of the
family f over Af}h is trivial. Taking rg = R the statement is obvious for A = 0. Assume
that the family is trivial over Af}h, h < n; shrinking A% if necessary it is not restrictive to
assume R = ry, and the family trivial over A’]‘%.
The integration of the vector field 5,11 gives an open neighbourhood M x{0} C U € M xC
and a holomorphic map H: U — M with the following properties (see e.g. [8, Ch. VII]):

(1) For every z € M, {z} x CNU = {x} x A(z) with A(x) a disk.

(2) For every z € M the map H, = H(x,—): A(x) — M is the solution of the Cauchy

problem

(1) = X (Ha (1)

H,(0) ==z

In particular if H(z,t) is defined then f(H(z,t)) = f(z) + (0,...,t,...,0) (¢ in
the (h + 1)-th coordinate).
(3) f V.C M is open and V x A C U then for every t € A the map H(—,t): V — M
is an open embedding.
Since f is proper there exists 7 < R such that f~'(A”) x A, C U; then the holomorphic
map H: f~1(AP) x A, — (A1) is a biholomorphism (exercise) giving a trivialization

of the family over AP*1, O
EXAMPLE 1.39. Lemma 1.38 is generally false if f is not proper (cf. the exercise in Lecture

1 of [43]).

Consider for instance an irreducible polynomial F' € C[zy,...,Zy,t]; denote by f: CI x

C¢ — C,; the projection on the second factor and

V- {(x,t) Plat)= Xy =0 iz 1n}

6.%
Assume that f(V) is a finite set of points and set B = C — f(V), X = {(z,t) € C" x
B|F(z,t) = 0}. Then X is a regular hypersurface, the restriction f: X — B is surjective

and its differential is surjective everywhere.
X is closed in the affine variety C" x B, by Hilbert’s Nullstellensatz there exist regular
functions ¢1,..., g, € O(C" x B) such that

g: _Zgzaxl = (HlOd F)

On the open subset U = {g # 0} the algebraic vector field

_igi<8F8 OF 0 )_a "~ g; OF 0

8.%& B Ea% - & B 1 EE@LI@

0
is tangent to X and lifts 5

In general the fibres of f: X — B are not biholomorphic: consider for example the case
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F(z,y,\) = y* —z(z — 1)(x — A). Then B =C —{0,1} and f: X — B is the restriction
to the affine subspace xg # 0 of the family M — B of Example 1.4.

The fibre Xy = f~1()\) is M, — {point}, where M, is an elliptic curve with j-invariant
J) = 2802 — X+ 1)3A72(\ — 1)2. If X, is biholomorphic to X; then, by Riemann’s
extension theorem, also M, is biholomorphic to M}, and then j(a) = j(b).

EXERCISE 1.40. Find a holomorphic vector field y lifting aa)\ and tangent to {F = 0} C
C? x C, where F(z,y,\) = y*> —2(x — 1)(z — \) (Hint: use the Euclidean algorithm to find

F F
a,b € C[z] such that aya— +b— =1+ 2aF). A
oy Oz

THEOREM 1.41. A deformation My — ML(B, bo) of a compact manifold is trivial if and
only if KS¢: ©pp, — (R fTy)p, is trivial.

PROOF. One implication is clear; conversely assume KS; = 0, it is not restrictive to
assume B a polydisk with coordinates ¢1,...,t, and f a smooth family. After a possible

shrinking of B we have KS(B); <§t> =0 for every i = 1,...,n. According to 1.32 there
Z 9

exist holomorphic vector fields &; such that f.& = TR by 1.38 the family is trivial over a
smaller polydisk A C B. ' O

Note that if a smooth family f: M — B is locally trivial, then for every b € B the
Kodaira-Spencer map KSy: Ty, p — H Y(My, Ty,) is trivial for every b € B.

THEOREM 1.42. (Semicontinuity and base change)
Let E — M be a holomorphic vector bundle on the total space of a smooth family f: M —
B. Then, for every i > 0:

(1) b hi(My, E) is upper semicontinuous.

(2) Ifb— hi(My, E) is constant, then for every b € B there exists an open neighbour-
hood b € U and elements e1,...,e, € H'(f~Y(U), E) such that:
(a) HY(f~Y(U),E) is the free O(U)-module generated by e1, ..., ey.
(b) e1,...,er induce a basis of H (M., E) for every c € U.

(3) If b hi=Y(My, E) and b+ hiTY(M,, E) are constant then also b+ h'(My, E)
18 constant.

PROOF. [4, Ch. 3, Thm. 4.12], [41, I, Thm. 2.2], [37]. O

COROLLARY 1.43. Let X be a compact complex manifold. If H' (X, Tx) = 0 then every
deformation of X is trivial.

DEFINITION 1.44. A compact complex manifold X is called rigid if H'(X,Tx) = 0.

COROLLARY 1.45. Let f: M — B a smooth family of compact complex manifolds. If
b— hl(Mb,TMb) is constant and KSy = 0 at every point b € B then the family is locally
trivial.

PROOF. (cf. Example 1.49) Easy consequence of Theorems 1.41 and 1.42. O

ExAMPLE 1.46. Consider the following family of Hopf surfaces f: M — C, M = X/G
where X = B x (C? — {0}) and G ~ Z is generated by (b, 21, 22) +— (b, 221, b%21 + 223).
The fibre M, is the Hopf surface Sy, where A(b) = ( 1922 (2) > and then M is not
biholomorphic to M, for every b # 0.

This family is isomorphic to N x¢ B, where B — C is the map b — b? and N is the quotient
of C x (C%—{0}) by the group generated by (s, 21, 22) — (8,221, 821 +222). By base-change
property, the Kodaira-Spencer map KSy: Ty g — H' (Mo, Ty, ) is trivial.

On the other hand the family is trivial over B — {0}, in fact the map

(B —{0}) x (C* = {0}) — (B —{0}) x (C* = {0}), (b, 21,22) > (b, %21, 22)
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induces to the quotient an isomorphism (B — {0}) x My ~ (M — f~1(0)). Therefore the

Kodaira-Spencer map KSy: T}, p — H'(M,, Tw,) is trivial for every b.

According to the base-change theorem the dimension of H'(M;, Thy,) cannot be constant:

in fact it is proved in [41] that (Mo, Thy,) = 4 and h'(My, Ty, ) = 2 for b # 0.
EXAMPLE 1.47. Let M C C, x P2 x P! be the subset defined by the equations

Ugxr1 = U1 (ZEQ — bl’o), Ugr2 = U113,

f: M — C the projection onto the first factor and f*: M* = (M — f~1(0)) — (C — {0})
its restriction.
Assume already proved that f is a family (this will be done in the next chapter); we want
to prove that:

(1) f*is a trivial family.
(2) f is not locally trivial at b = 0.

PROOF OF 1. After the linear change of coordinates xo — bxg — g the equations of
M* C C — {0} x P x P! become

UpT1 = U0, UpT2 = UIT3
and there exists an isomorphism of families C — {0} x P! x PL — M*, given by
(b, [to, t1], [uo, wa]) = (b, [tour, touo, t1ur, tru], [uo, uil).

g

PROOF OF 2. Let Y ~ P! ¢ M, be the subvariety of equation b = 21 = 9 = 23 = 0.
Assume f locally trivial, then there exist an open neighbourhood 0 € U C C and a
commutative diagram of holomorphic maps

Y xU -1
[
U 4ocC

where i is the inclusion, j is injective and extends the identity Y x {0} — Y C M,.
Possibly shrinking U it is not restrictive to assume that the image of j is contained in the
open subset Vo = {z¢ # 0}. For b # 0 the holomorphic map §: Vo N M}, — C3,

Tr1 X9 I3

5(ba [.’EO, T, T2, 333], [u07 U]_]) - <7 Ty > 9

To To To
is injective; therefore for b € U, b # 0, the holomorphic map 6j(—,b): Y ~ P! — C3 is
injective. This contradicts the maximum principle of holomorphic functions. U

ExAMPLE 1.48. In the notation of Example 1.47, the deformation My — ML((C, 0) is
not universal: in order to see this it is sufficient to prove that M is isomorphic to the
deformation g* M, where g: (C,0) — (C,0) is the holomorphic map g(b) = b + b?.

The equation of g*M is

upr1 = uy(z2 — (b + b*)zo), UpT2 = UIT3,
and the isomorphism of deformations ¢g*M — M is given by
(ba [$07 T1,T2, 333], [U(), Ul]) — (bv [(]— + b)an T1,T2, 1:3]7 [u()a Ul])

EXAMPLE 1.49. Applying the base change C — C, b +— b?, to the family M — C of
Example 1.47 we get a family with trivial KS at every point of the base but not locally
trivial at 0.

We will prove in I1.5 that H'(Mj, Thy,) = 0 for b # 0 and H* (Mo, Tay,) = C.
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6. Historical survey, 1

The deformation theory of complex manifolds began in the years 1957-1960 by a series of
papers of Kodaira-Spencer [39], [40], [41] and Kodaira-Nirenberg-Spencer [38].

The main results of these papers were the completeness and existence theorem for versal
deformations.

THEOREM L.50. (Completeness theorem, [40])
A deformation & over a smooth germ (B,0) of a compact complex manifold My is versal if
and only if the Kodaira-Spencer map KS¢: Ty p — HY (Mo, Ty,) is surjective.

Note that if a deformation My— M i>(B ,0) is versal then we can take a linear subspace
0 € ¢ C B making the Kodaira-Spencer map Ty c — H'(My, Ty,) bijective; by complete-
ness theorem My — M xp C — (C,0) is semiuniversal.

In general, a compact complex manifold does not have a versal deformation over a smooth
germ. The problem of determining when such a deformation exists is one of the most
difficult in deformation theory.

A partial answer is given by

THEOREM L.51. (Existence theorem, [38])
Let My be a compact complex manifold. If H*(My, Th,) = 0 then My admits a semiuni-
versal deformation over a smooth base.

The condition H?(My, Tyy,) = 0 is sufficient but it is quite far from being necessary. The
“majority” of manifolds having a versal deformation over a smooth germ has the above
cohomology group different from 0.

The next problem is to determine when a semiuniversal deformation is universal: a suffi-
cient (and almost necessary) condition is given by the following theorem.

THEOREM 1.52. ([67], [79]) Let & : My— M —(B,0) be a semiuniversal deformation of
a compact complex manifold M. If b — hO(My, Thy,) is constant (e.g. if HO(Mo, Tas,) = 0)
then & is universal.

REMARK 1.53. If a compact complex manifold M has finite holomorphic automorphisms
then HY(M, Tys) = 0, while the converse is generally false (take as an example the Fermat
quartic surface in P3, cf. [71]).

ExaMpPLE 1.54. Let M — B be a smooth family of compact complex tori of dimension n,
then Ty, = ©% Oy, and then h°(My, Ty, ) = n for every b.

EXAMPLE 1.55. If Ky, is ample then, by a theorem of Matsumura [55], H%(Mo, Ty, ) = 0.

EXERCISE 1.56. The deformation MO—>ML>(C, where f is the family of Example 1.47,
is not universal. A






LECTURE II

Deformations of Segre-Hirzebruch surfaces

In this chapter we compute the Kodaira-Spencer map of some particular deformations and,
using the completeness theorem 1.50, we give a concrete description of the semiuniversal
deformations of the Segre-Hirzebruch surfaces Fy, (Theorem II.28).

As a by-product we get examples of deformation-unstable submanifolds (Definition I11.29).
A sufficient condition for stability of submanifolds is the well known Kodaira stability
theorem (Thm. 11.30) which is stated without proof in the last section.

1. Segre-Hirzebruch surfaces

We consider the following description of the Segre-Hirzebruch surface Fy, ¢ > 0.

Fy = (C* - {0}) x (C* - {0})/ ~,
where the equivalence relation ~ is given by the (C*)?-action
(lo, I1,to, t1) = (Mo, Aly, M puto, pty), A pe Cr

The projection F, — P, [lo, l1,t0,t1] = [lo,l1] is well defined and it is a P'-bundle (cf.
Example 11.13).
Note that Fy = P! x P1; F, is covered by four affine planes C2 ~ U; ; = {I;t; # 0}. In this
affine covering we define local coordinates according to the following table

l1 tllq I to
U z=2, s=20 Upp: 2=2, §=—2
0,0 lov to 0,1 l(), tllg
I b , tulf I lo to
W=, =— DW= —, =
1,0 YT b n Y tylf

We also denote
Vo ={lo #0} = U0 U Upp, Vi={li#0}=U1pUU,.

We shall call z,s principal affine coordinates and Uy principal affine subset. Since the
changes of coordinates are holomorphic, the above affine covering gives a structure of com-
plex manifold of dimension 2 on Fy.

EXERCISE II.1. If we consider the analogous construction of F, with R instead of C we
get Fy=torus for ¢ even and Fy=Klein bottle for ¢ odd. A

DEFINITION I1.2. For ¢ > 0 we set 0o, = {t; = 0}. Clearly o4, is isomorphic to P*.
ProrosiTiON I1.3. Fy is not homeomorphic to F;.

PRrOOF. Topologically Fo = S? x S? and therefore Ho(Fg,Z) = Z[S? x {p}| ®Z[{p} x S?],
where p € S? and [V] € Hy denotes the homology class of a closed subvariety V C S? x S2

MARCO MANETTI: Deformations of complex manifolds version June 28, 2011
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of real dimension 2.
The matrix of the intersection form ¢: Ho x Hy — Hy = 7Z is

0 1
10
and therefore g(a,a) is even for every a € Hy(Fy,Z).
Consider the following subvarieties of Fy:
o = {tg = 0}, o = {tg = lot1}.

o and o’ intersect transversely at the point ty = Iy = 0 and therefore their intersection
product is equal to ¢([o],[0']) = £1. On the other hand the continuous map

T (Fl — Uoo) X [0, 1] — (Fl — O'OO), T((lo,ll,to,tl),a) = (lo,ll,ato,tl)

shows that o is a deformation retract of (F; — 04). Since r1: ¢/ — o is an isomorphism
we have [0] = [0'] € Ha(Fy — 000, Z) and then a fortiori (o] = [¢'] € Ha(F1,Z). Therefore
q([o],[o]) = £1 is not even and Fy cannot be homeomorphic to Fy. O

It is easy to find projective embeddings of the surfaces F;

ExAaMPLE I1.4. The Segre-Hirzebruch surface I, is isomorphic to the subvariety X C
Pit! x P! of equation

’U/(](Zﬁl, I2,. .. 7'%'(1) = U1($2,$3, s 7xq+1)a

where zp, ..., 2441 and ug, u; are homogeneous coordinates in P41 and P! respectively.
An isomorphism F, — X is given by:

ug =1lg, ui =101, x9=ty, x;= tllé_lltlﬁ_l_i, t1=1,...q+ 1.

Denote by T" — I, the holomorphic tangent bundle, in order to compute the spaces
HY(F,,T) and H*(F,,T) we first notice that the open subsets Vp,V; are isomorphic to
C x P'. Explicit isomorphisms are given by

l
Vo — C, x P!, (lo, 11, to, t1) — (z = i, [to,t1]> ,

l
‘/1 - Cw X ]P)lv (l()albt(]atl) = <'UJ = i) [t0>t1]> .

According to Example 1.27 H(V;,T) =0, i = 0,1, and then H°(F,,T) and H'(F,,T) are
isomorphic, respectively, to the kernel and the cokernel of the Cech differential

H'(Vo, T) @ HO(Vi, T)-SHO (Vo N VA, T),  d(x,m) = X — -

In the affine coordinates (z, s), (w,y) we have that:

o o 0 0
0 : 3 2
(1) H°(Vp,T) is the free O(C,)-module generated by 65’ 857 88%’ s 658.
(2) H°(V4,T) is the free O(C,)-module generated by 9w’ 3y y—ay, yza—y.

(3) H°(VonV4,T) is the free O(C, — {0})-module generated by %, %, s%, 32%.

The change of coordinates is given by

z=w ! w=z"1
s =y tw? y=s1z749
and then

0 9 1 0
27 —1,,—q¢—1 — _ 27 -
ow - Con TW W gy T TP g, Ty,
0 9 0
_— = — q — — q827
a7 g ds
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i 0 0 =
d Zz (a e + (bi + s + d;s?) ) Zw (az ﬁz+%y+5zy)ay> =

i>0
; 0 0 0 50
—Zz <alaz+blas+q 75 +d;s 6s>

i>0
0 0 0 0 0
—i _ q L —q
+E z ( <z % qz:sa)—i-ﬂzsza —i—’yza + d;z 85)

>0

An easy computation gives the following

LEmmA I1.5.
- 0 0 0 0
“laigs +big-+a d;s® H°
Zz <aaz+ oy T Cisg T dis’ o ) e H(VonW,T)
1€Z
belongs to the image of the Cech differential if and only if b_1 =b_g = ... = b_g+1=0. In
particular the vector fields
hg e H'(VonWy, T), h=1,...,q—1
represent a basis of H'(F,, T) and then h'(F,, T) = max(0,q — 1).
EXERCISE 11.6. Prove that h%(F,, T') = max(6,q + 5). A

THEOREM 11.7. If a # b then F, is not biholomorphic to Fy.

PROOF. Assume a > b. If @ > 2 then the dimension of H!(F,,T,) is bigger than the
dimension of H(Fy, TF,). If a =1, b =0 we apply Proposition I1.3. O

We will show in I1.24 that F, is diffeomorphic to Fy if and only if a — b is even.

2. Decomposable bundles on projective spaces

For n > 0, a € Z we define
Opn(a) = (C"! - 0) x C/C*,
where the action of the multiplicative group C* = C — 0 is
Moy ooy lnyt) = (Mo, ooy Ay A%), AeCh.

The projection Opn(a) — P, [lo,...,ln,t] — [lo,...,ln], is a holomorphic line bundle.
Notice that Oprn = Opn(0) — P is the trivial vector bundle of rank 1.

The obvious projection maps give a commutative diagram

(C™ - 0)x C — Opa(a)

! J»

(Cn-‘rl _ 0) N Pn

inducing an isomorphism between (C"*! — 0) x C and the fibred product of p and 7; in
particular for every open subset U C P" the space H'(U, Opn(a)) is naturally isomorphic
to the space of holomorphic maps f: 7~ 1(U) — C such that f(Az) = A\?f(x) for every
zer Y U), e C~.

If U = P" then, by Hartogs’ theorem, every holomorphic map f: 7~!(U) — C can be
extended to a function f: C"*! — C. Considering the power series expansion of f we get a
natural isomorphism between H°(P", Opn(a)) and the space of homogeneous polynomials
of degree a in the homogeneous coordinates Iy, ..., l,.

EXERCISE I1.8. Prove that h°(P", Opn(a)) = (”+“)_ A

n
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EXERCISE I1.9. Under the isomorphism oo, = P! we have Ny /p, = Opi(—0q). AN

On the open set U; = {l; # 0} the section ¢ € H°(U;, Opn(a)) is nowhere 0 and then
gives a trivialization of Opn(a) over U;. The multiplication maps
H°(Us, Opn(a)) © H°(Us, Opn (b)) — H°(Us, Opn(a+b)),  f@g+ fg,
give natural isomorphisms of line bundles
Op(a) @ Opn (b) = Opn(a +b), Hom(Opn(a), Opn (b)) = Opn (b — a)
(In particular Opn(a)¥ = Opn(—a).)
DEeFINITION I1.10. A holomorphic vector bundle F — P" is called decomposable if it is

isomorphic to a direct sum of line bundles of the form Opn(a).
Equivalently a vector bundle is decomposable if it is isomorphic to

(C"*l —0) x C"/C* — (C"M! —0)/C* = P7,
where the action is A(lo, ..., ln,t1,. .. tr) = (Mo, .oy Alpy A%, .., A8,
LeMMA I1.11. Two decomposable bundles of rank r, E = &]_;Opn(a;), F = ®]_1Opn(b;),

a1 < ag,y...,< ap, by < bo,...,< b, are isomorphic if and only if a; = b; for every
1=1,...,7.

PRrooOF. Immediate from the formula

ho(]P)n, (@iOPn (az)) ® Opn (S)) = Z ho(]Pm, Opn (Cli + S)) = Z <ai +; " n) )

{i ‘ aH—sZO}
U

ExampLE I1.12. If n > 2 not every holomorphic vector bundle is decomposable. Consider
for example the surjective morphism

¢ Diy Opn(l)e; — Opn(2), Z fie; — Z fili.

We leave it as an exercise to show that the kernel of ¢ is not decomposable (Hint: first
prove that ker ¢ is generated by the global sections lie; — [je;).

For every holomorphic vector bundle £ — X on a complex manifold X we denote by
P(E) — X the projective bundle whose fibre over x € X is P(E), = P(E;). If E — X is
trivial over an open subset U C X then also P(F) is trivial over U; this proves that P(E)
is a complex manifold and the projection P(E) — X is proper.

ExampLE I1.13. For every a,b € Z, P(Opi(a) ® Op1 (b)) = Flq_y)-
To see this it is not restrictive to assume a > b; we have

P(Op1(a) ® Op1 (b)) = (C* — 0) x (C* —0)/C* x C*,

where the action is (X, 7)(lo, 11, to, t1) = (Mo, A1, \*ntg, \nt1). Setting = APy we recover
the definition of F,_p.
More generally if £ — X is a vector bundle and L — X is a line bundle then P(F ® L) =
P(E).
ExAMPLE I1.14. The tangent bundle Tp: is isomorphic to Op1(2). Let Iy, be homoge-
l
neous coordinates on P'; s = l—l, t= l—o are coordinates on Uy = {lp # 0}, Uy = {l; # 0} re-
0 1
d 0
spectively. The sections of Tp1 over an open set U correspond to pairs ( fo(s)a—, f (t)at),
s
fi € O(UNU;), such that fi(t) = —t2fo(t™1).

The isomorphism ¢: Op1(2) — Tp1 is given by qS(lgl%*a) = <52_“g, _tagt>’
s
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THEOREM II.15 (Euler exact sequence). On the projective space P" there exists an ezxact
sequence of vector bundles

2l
0—)0]}»11 _i?)l @1 OOP”( )gl i} jj]pn—)O7

L.
where on the affine open subset I, # 0, with coordinates s; = l—l, i#h,
h

0 0
0 0 o ) = _ . ;
¢<lz> :Siaisj i,j #h ¢(lzalh> 2818]85- i7h

Il i#h J

0 0 0 0
¢(zh>: j#h ¢<zh):— 87—

81]‘ aSj 8lh ; %‘)sj

0
PROOF. The surjectivity of ¢ is clear. Assume ¢ (Z sa;jl; i ) = 0, looking at the
J
quadratic terms in the set I, # 0 we get a;, = 0 for every ¢ # h. In the open set [y # 0 we

have
¢ (Z ai;l z ) Z CL”SZ Z aOOSz - =

Z
2

and then the matrix a;; is a multiple of the 1dent1ty. O

REMARK II.16. It is possible to prove that the map ¢ in the Euler exact sequence is
surjective at the level of global sections, this gives an isomorphism

HO(P™ Tpn) = gl(n+1,C)fc14 = pgl(n + 1,C) = TrgPGL(n + 1,C).

Moreover it is possible to prove that every biholomorphism of P” is a projectivity and the
integration of holomorphic vector fields corresponds to the exponential map in the complex
Lie group PGL(n + 1,C).

EXERCISE 11.17. Use the Euler exact sequence and the surjectivity of ¢ on global sections
to prove that for every n > 2 the tangent bundle of P™ is not decomposable. A

COROLLARY II.18. The canonical bundle of P is Kpn = Opn(—n — 1).

PrOOF. From the Euler exact sequence we have
N'Ten @ Opn = N1 (@] Opn (1)) = Opn(n + 1)
and then Kpn = (N\"Tpn)Y = Opn(—n — 1). O

-1
EXERCISE I1.19. Prove that A" (P", Opn(—a)) = (a ) A
n

LEMMA I1.20. Let E — P! be a holomorphic vector bundle of rank r. If:

(1) H°(P!, E(s)) = 0 for s << 0, and
(2) There exists a constant ¢ € N such that h°(PL, E(s)) > rs — ¢ for s >> 0.

Then E is decomposable.

PRrROOF. Using the assumptions 1 and 2 we may construct recursively a sequence a1, ..., a, €
Z and sections o; € HY(P!, E(a;)) such that:

(1) apsq is the minimum integer s such that the map
h
o oi: @HO (P, Opi (s — a;)) — HO(P, E(s))
i=1

is not surjective.
(2) apy1 does not belong to the image of

h
@i @HOP', Opi (apy1 — ai)) — HO(P', Eany1)).
i=1
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Notice that a1 < a9 < ... < a,.
We prove now by induction on h that the morphism of vector bundles

@z 1G ¢ @OPl( a;) = B

is injective on every fibre; this implies that & it @B;_; Opi(—a;) — E is an isomor-
phism.

For h = 0 it is trivial. Assume @®?_,; injective on fibres and let p € P!. Choose homoge-
neous coordinates ly, I; such that p = {l; = 0} and set s = 11/lj.

Assume that there exist ¢y, ..., c;, € Csuch that ap11(p) = 3 ei(lg"™ “ ;) (p) € E(ant1)p-
If e1,..., e is a local frame for E at p we have locally

ap41—a4 ap 1
Qpi1 — E cily ‘o E fi(s)lg"t

with f;(s) holomorphic functions such that fj( ) =0.
Therefore f;(s)/s is still holomorphic and Iy * (ap 11— ¢ilg"™ ™ “a;) € HO(PY, E(api1—1)),
in contradiction with the minimality of az.1. O

THEOREM I1.21. Let 0— F—F—G—0 be an exact sequence of holomorphic vector
bundles on P'.

(1) If F,G are decomposable then also E is decomposable.
(2) If E = ®Op1(—a;) then min(a;) is the minimum integer s such that H°(P, F(s)) —
HO(PL,G(s)) is not injective.

PROOF. The kernel of HY(P!, F(s)) — H°(P!,G(s)) is exactly H(P!, E(s)).
If F =& 0p(b;), G =& Op(c) then for s >> 0 h°(PL, F(s)) = r(s + 1) + Y b;,
RO(PL,G(s)) = p(s + 1) + Y. ¢; and then the rank of E is  — p and h%(P!, E(s)) > (r —
p)(s+1)+> b;—>_ ¢;. According to Lemma II.20, the vector bundle E is decomposable. [J

We also state, without proof, the following

THEOREM I1.22. (1) Ewvery holomorphic line bundle on P" is decomposable.
(2) (Serre) Let E be a holomorphic vector bundle on P", then:
(a) HO(P", E(s)) = 0 for s << 0.
(b) E(s) is generated by global sections and HP(P™, E(s)) =0 for p >0, s >> 0.
(3) (Bott vanishing theorem) For every 0 < p < n:

C ifp=¢q, a=0
HP(P",Q(a)) =

0 otherwise
Moreover HO(P",Q4(a)) = H™(P", Q" 9(—a))" = 0 whenever a < q.
PROOF. [37] O

3. Semiuniversal families of Segre-Hirzebruch surfaces

Let ¢ > 0 be a fixed integer, define M C (Cf_1 x P x PZ! as the set of points of
homogeneous coordinates (t2,. .., %4, [lo, l1], [To, . . ., Tq+1]) satisfying the vectorial equation

(1) lo(z1,22,...,2q) = li(x2 — tazo, ..., Tq — tqTo, Tgs1)-
We denote by f: M — CI= ! p: M — CI~1 x ]P’l1 the projections.

LEMMA 11.23. There exists a holomorphic vector bundle of rank 2, E — C47! x IP’ll such
that the map p: M — CI71 x P} is a smooth family isomorphic to P(E) — CI71 x P1.
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PROOF. Let m: CI7! x IP’Z1 — ]P’l1 be the projection; define F as the kernel of the mor-
phism of vector bundles over CI~1 x IP’ll

g+1 4 4
P Opr — P Op:1(1),
1=0 =1

x0 lox1 — I (22 — taxo)
1 loxa — 11 (3 — t3o)
A(tg,...,tq,[lg,ll]) : = .
xq_H loxq — llxq+1

We first note that A is surjective on every fibre, in fact for fixed o, ...,t4,lo, 1 € C, A(t;,1;)

is represented by the matrix

toly o =11 ... O 0
tsly O lo ... 0 0
0 0 0 ... 1ly —h

Since either [y # 0 or 1 # 0 the above matrix has maximal rank.

By definition we have that M is the set of points of = € P(@gi&ﬂ*(?]pl) such that A(z) =0

and then M = P(F). O
For every k > 0 denote by T, C (Cg_l the subset of points of coordinates (t2,...,t,) such

that there exists a nonzero (¢ + 2)-uple of homogeneous polynomials of degree k

(zo(lo, 1), - - -, 2g+1(lo, 1))

which satisfy identically (¢ being fixed) the Equation 1. Note that ¢ € T} if and only if
there exists a nontrivial morphism Opi(—k) — E; and then t € T}, if and only if —k < —a.
Therefore t € Ty, — Ty, if and only if a = k.

LEMMA I1.24. In the notation above:

(1) Ty = {0}.

(2) Ty C Tkg1-

(3) If 2k +1 > q then T, = CZ 1.

(4) If 2k < q and t € Tk — Tk,1 then Mt = Fq72k-

PRrOOF. 1 and 2 are trivial.

Denoting by Si C C[ly, 1] the space of homogeneous polynomials of degree k, dimc S, =
k+1; interpreting Equation 1 as a linear map (depending on the parameter t) Ay(t): Sg+2
Sii1, we have that t € T}, if and only if ker A (t) # 0.
Since (q + 2)(k + 1) > q(k + 2) whenever 2k > g — 2, item 3 follows immediately.
Let E; be the restriction of the vector bundle E to {t} x P!, E; is the kernel of the
surjective morphism A(t): @gié Op1 — ®_,0p1(1). According to Theorem IL.21, E; is
decomposable. Since A? E; = Op1(—q) we have E; = Opi (—a) & Op1 (a—¢q) with —a < a—gq
and Mt = P(Et) = }quga.

—

0

LeMMA I1.25. In the notation above (ta,...,t,) € Ty if and only if there exists a nonzero
triple (zo,x1,xq4+1) € BCls] of polynomials of degree < k such that

q
Tg+1 = qul + X (Z ti8q+ll> .

i=2
PROOF. Setting s = lo/l; we have by definition that (t2,...,¢;) € T} if and only if
there exists a nontrivial sequence o, ...,z441 € Cls] of polynomials of degree < k such
that x;41 = sz +tij120 for every i = 1,...,¢q (t44+1 = 0 by convention). Clearly this set of
equation is equivalent to z;11 = stz + xo 23:1 thsi_j.
Given xg,x1,x4+1 as in the statement, we can define recursively x; = 5_1($2-+1 — tiy1%0)
and the sequence xy,...,z4—1 satisfies the defining equation of 7}. O
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COROLLARY 11.26. (t2,...,ty) € T}, if and only if the (¢ —k—1) x (k+1) matriz By(t);; =
(tg—k—ivj) has rank < k.

PRrROOF. If 2k +1 < g then T}, = C?', ¢ — k — 1 < k and the result is trivial: thus
it is not restrictive to assume k + 1 < ¢ — k — 1 and then rankBy(¢) < k if and only if
ker By (t) # 0.

We note that if g, 21,2441 satisfy the equation xg11 = s%z1 + 2o(> 1L, t;s9t1=%) then
x1, Zg+1 are uniquely determined by xg; conversely a polynomial z((s) of degree < k can be
extended to a solution of the equation if and only if all the coefficients of s**1, s*+2 . s9~1
in the polynomial zq( ;1:2 tisq“*i) vanish. Writing xog = ag +a1s + ... + ars®, this last

condition is equivalent to (ag,...,ax) € ker By(t). d
: o q—k—-1 :

Therefore T}, is defined by the vanishing of the b1 minors of Bg(t), each one

of which is a homogeneous polynomial of degree k + 1 in t2,...,t,. In particular T}, is an

algebraic cone.

As an immediate consequence of Corollary 11.26 we have that for ¢ > 2, 0 < 2k < ¢, the
subset {tj1+1 # 0,12 = tpys = ... =ty = 0} is contained in Ty — Tj_;. In particular Fy is
diffeomorphic to F,_of for every k < ¢/2.

ProposITION 11.27. If 2k < q then T} is an irreducible affine variety of dimension 2k.
PROOF. Denote
Zy, = {([v],t) € P* x CI™ v € CF*! — 0, By(t)v = 0}

and by p: Z; — T} the projection on the second factor. p is surjective and if tx11 = 1,
t; = 0 for i # k+1, then By(t) has rank k and p~'(¢) is one point. Therefore it is sufficient
to prove that Zj is an irreducible variety of dimension 2k.

Let m: Z; — P¥ be the projection. We have ([ag, ... ,ax], (t2,...,t,)) € Z if and only if
foreveryi=1,...,g—k—1

k q
0= Z liv14505 = Ztlal—i—la
§=0 1=2

where a; = 0 for [ < 0, [ > k and then the fibre over [ay, ..., a] is the kernel of the matrix
Aij = (aj—i—1)i=1,...,q—k—1,7=2,...,q. Since at least one q; is # 0 the rank of A;;
is exactly ¢ — k — 1 and then the fibre is a vector subspace of dimension k. By a general
result in algebraic geometry [72],[51] Z is an irreducible variety of dimension 2k. O

THEOREM I1.28. In the above notation the Kodaira-Spencer map KSy: Ty ca—1 — H' (Mo, Thr,)
is bijective for every q > 1 and therefore, by completeness theorem 1.50, deformation
F, — M — (C971,0) is semiuniversal.

Proor. We have seen that My = F,. Let V5, Vi C F,; be the open subset defined in
Section 1. Denote M; C M the open subset {l; # 0}, i =0, 1.
We have an isomorphism ¢g: CI~! x Vo — Mpy, commuting with the projections onto CI~1,
given in the affine coordinates (z, s) by:

q—h
lo=1, L=z xo=1, z,=21"s— Zth+jzj = z(xp41 — the1m0), h > 0.
j=1
Similarly there exists an isomorphism ¢1: CI~! x Vi — Mj,
h

lo=w, lLh=1 x=vy, xp= wh thjwh_j = wxp_1 + thxg, h>0.
=2
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In the intersection My N M; we have:

1

Z=w
Tg+1 4
g = q+ — yflwq + E tjwq+1*].
Zo

j=2
According to Formula 1.33, for every h =2,...,¢q
_ -1 q 4. q+l—j
KS, < 0 > _ ow=to Oy w43y twl J)i _ Zh,q,lfl

o)~ oty 9: ot s s’

4. Historical survey, I1

One of the most famous theorems in deformation theory (at least in algebraic geometry)
is the stability theorem of submanifolds proved by Kodaira in 1963.

DErINITION I1.29. Let Y be a closed submanifold of a compact complex manifold X.
Y is called stable if for every deformation X ——X i>(B,0) there exists a deformation

YL))L(B ,0) and a commutative diagram of holomorphic maps

y -y
i'xl/lg
x—L.p

The same argument used in Example 1.46 shows that oo, C F, is not stable for every
q > 2, while oo, C [F; is stable because F; is rigid.

THEOREM I1.30. (Kodaira stability theorem for submanifolds, [36])
Let Y be a closed submanifold of a compact complexr manifold X. If H'(Y, Ny/X) =0 then
Y is stable.

Just to check Theorem I1.30 in a concrete case, note that h! (o, Ny /r,) = max(0,q—1).

Theorem I1.30 has been generalized to arbitrary holomorphic maps of compact complex
manifolds in a series of papers by Horikawa [30].

DEerINITION I1.31. Let av: Y — X be a holomorphic map of compact complex manifolds.
A deformation of a over a germ (B,0) is a commutative diagram of holomorphic maps

y .y L, B

N

x L x L B
where YLO)L(B, 0) and X x —.(B,0) are deformations of Y and X respectively.

DEFINITION II1.32. In the notation of I1.31, the map « is called:

(1) Stable if every deformation of X can be extended to a deformation of a.
(2) Costable if every deformation of ¥ can be extended to a deformation of c.

Consider two locally finite coverings U = {U,}, V = {V,}, a € Z,Y = UU,, X = UV,
such that U,, V, are biholomorphic to polydisks and a(U,) C V, for every a (U, is allowed
to be the empty set).
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Given a € 7 and local coordinate systems (z1,...,2m): Uy — C™, (u1,...,up): V, — C"
we have linear morphisms of vector spaces

@ T T) = MU' Tx), o (Sooge ) =Sia'la)
i - 0 _ Aauj‘ 0
Oy . F(Ua,TY) — F(Ua, (0% 1—7_)()7 Oy <ZZ hl82i> = ZZ,] hz aZi au]

Define H*(a) as the cohomology of the complex
0—COU, Ty) 250 U, Ty) & COU, o T )2 . ..
where d;(f,g) = (df,dg + (—1)*cw f), being d the usual Cech differential.

Similarly define H*(a*) as the cohomology of the complex
0—CO(V, Ty)-2C (V, Ty) @ CO(U, o Tx )2 . ..
where d;(f,g) = (df,dg + (—1)'a* f).
TuEOREM I1.33 (Horikawa). The groups H¥(a..) and HF(a*) do not depend on the choice
of the coverings U,V. Moreover:
(1) If () = 0 then « is stable.
(2) If H2(a*) = 0 then « is costable.
EXERCISE 11.34. Give a Dolbeault-type definition of the groups H¥ (o), HF(a*). A

EXERCISE 11.35. If a: Y — X is a regular embedding then H*(cw,) = H* (Y, Ny, x).
(Hint: take U, = V,NY, and local systems of coordinates uy, . .., u, such that Y = {u,+1 =
. = u, = 0}. Then prove that the projection maps C**'(U,Ty) ® C*(U,a*Tx) —
cku, Ny/x) give a quasiisomorphism of complexes. VAN

The following (non trivial) exercise is reserved to experts in algebraic geometry:

EXERCISE 11.36. Let a: Y — Alb(Y) be the Albanese map of a complex projective man-
ifold Y. If X = (YY) is a curve then a: Y — X is costable. A



LECTURE II1
Analytic singularities

Historically, a major step in deformation theory has been the introduction of deformations
of complex manifolds over (possibly non reduced) analytic singularities.
This chapter is a short introductory course on analytic algebras and analytic singularities;
moreover we give an elementary proof of the Nullstellenstaz for the ring C{z1,...,z,} of
convergent complex power series.
Quite important in deformation theory are the smoothness criterion II1.7 and the two
dimension bounds I11.40 and III.41.

1. Analytic algebras

Let C{z1,...,2,} be the ring of convergent power series with complex coefficient. Every
f € C{z1,...,z,} defines a holomorphic function in a nonempty open neighbourhood U of
0 € C"; for notational simplicity we still denote by f: U — C this function.

If f is a holomorphic function in a neighbourhood of 0 and f(0) # 0 then 1/f is holo-
morphic in a (possibly smaller) neighbourhood of 0. This implies that f is invertible in
C{z1,...,2n} if and only if f(0) # 0 and therefore C{z1,...,z,} is a local ring with maxi-
mal ideal m = {f | f(0) = 0}. The ideal m is generated by z1, ..., z,.

DEFINITION IIL.1. The multiplicity of a power series f € C{z1,...,z,} is defined as
p(f) =sup{s e N| f e m*} € NU {+00}.
The valuation v(S) of a nonempty subset S C C{z1,...,2,} is
v(S) =sup{s e N| S Ccm®} =inf{u(f)| f €S} e NU{+oo}.

We note that v(S) = +o0 if and only if S = {0} and p(f) is the smallest integer d such
that the power series expansion of f contains a nontrivial homogeneous part of degree d.
The local ring C{z1, ..., z,} has the following important properties:

C{z1,...,2n} is Noetherian ([28, I.B.9], [24]).

C{z1,...,2n} is a unique factorization domain ([28, I1.B.7], [24]).

C{z1,...,2n} is a Henselian ring ([51], [23], [24]).

C{z1,...,2n} is a regular local ring of dimension n (see e.g. [3], [24], [56] for the
basics about dimension theory of local Noetherian ring).

We recall, for the reader’s convenience, that the dimension of a local Noetherian ring A
with maximal ideal m is the minimum integer d such that there exist fi,..., fg € m with
the property \/(f1,. .., fs) = m. In particular dim A = 0 if and only if /0 = m, i.e. if and
only if m is nilpotent.

We also recall that a morphism of local rings f: (4, m) — (B, n) is called local if f(m) C n.

DEFINITION III1.2. A local C-algebra is called an analytic algebra if it is isomorphic to
C{z1,...,2n}/I, for some n > 0 and some ideal I C (z1,...,2y).
We denote by An the category with objects the analytic algebras and morphisms the local
morphisms of C-algebras.
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Every analytic algebra is a local Noetherian ring. Every local Artinian C-algebra with
residue field C is an analytic algebra.

The ring C{z1,...,2,} is, in some sense, a free object in the category An as explained in
the following lemma

LEMMA II1.3. Let (R, m) be an analytic algebra. Then the map
MOTAH(C{Zl, v 7Zn})R) —mX...xm, f = (f(Zl), v 7f(zn))
n factors
1s bijective.
PROOF. We first note that, by the lemma of Artin-Rees ([3, 10.19]), N,m"™ = 0 and

then every local homomorphism f: C{z1,...,2,} — R is uniquely determined by its fac-
torizations

fs: C{z1,...,2n}/(21,...,2n)° — R/m°.

Since C{z1,...,2n}/(21,...,2,)% is a C-algebra generated by z1, ..., z,, every fs is uniquely
determined by f(z;); this proves the injectivity.

For the surjectivity it is not restrictive to assume R = C{u1, ..., un }; given ¢ = (¢1, ..., dn),
¢; € m, let U be an open subset 0 € U C C]' where the ¢; = ¢;(u1,...,u,) are conver-
gent power series. The map ¢ = (¢1,...,¢,): U — C™ is holomorphic, ¢(0) = 0 and
¢*(2i) = ¢i- O

Another important and useful tool is the following
THEOREM III.4 (Riickert’s nullstellensatz). Let I, J C C{z1,...,2,} be proper ideals, then
Moran(C{z1, -+, 20} /1, C{t}) = Moran(C{z1, .-, 20}/7,C{t}) = VI=+1,
where the left equality is intended as equality of subsets of Moran(C{z1,...,z,}, C{t})
A proof of Theorem I11.4 will be given in Section 4.

LEMMA IIL5. Every analytic algebra is isomorphic to C{z1,...,2x}/1 for some k > 0 and
some ideal I C (z1,...,21)°.

PROOF. Let A = C{z1,...,2,}/I be an analytic algebra such that I is not contained

0
in (21,...,2,)% then there exists u € I and an index i such that 8—u(0) # 0. Up to
.

7
permutation of indices we may suppose ¢ = n and then, by inverse function theorem
Z1,...,2n—1,u 18 a system of local holomorphic coordinates. Therefore A is isomorphic to
C{z1,...,2n—1}/I¢, where I¢ is the kernel of the surjective morphism

C{z1,...yzn-1} = C{z1, ..., 2n—1,u}/I = A.
The conclusion follows by induction on n. O

DEeFINITION II1.6. An analytic algebra is called smooth if it is isomorphic to the power
series algebra C{z1,...,z;} for some k& > 0.

PROPOSITION II1.7. Let R = C{z1,...,2x}/1, I C (z1,...,2)%, be an analytic algebra.
The following conditions are equivalent:
(1) I =0.
(2) R is smooth.
(3) for every surjective morphism of analytic algebras B — A, the morphism
Moran(R, B) — Moran(R, A)

18 surjective.
(4) for every m > 2 the morphism

Moran (R, C{t}/(tn)) — Moran(R, C{t}/(tQ))

18 surjective.
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PROOF. [1 = 2] and [3 = 4] are trivial, while [2 = 3] is an immediate consequence of
the Lemma III.3.
To prove [4 = 1], assume I # 0 and let s = v(I) > 2 be the valuation of I, i.e. the
greatest integer s such that I C (z1,...,2)% we claim that Moran (R, C[t]/(#*T1)) —
Moran (R, C[t]/(t?)) is not surjective.
Choosing f € I — (21,...,2)*"!, after a possible generic linear change of coordinates of
the form z; — z; + a;21, a2, ...,a; € C, we may assume that f contains the monomial z{
with a nonzero coefficient, say f = cz{+...; let a: R — C[t]/(t?) be the morphism defined
by a(z1) =t, a(z;) =0 for ¢ > 1.
Assume that there exists 8: R — C[t]/(t**!) that lifts a, then 3(21) —t, 3(22),. .., B(zx) €
(t?) and therefore B(f) = ct* (mod t511). O

LEMMA II1.8. For every analytic algebra R with maximal ideal m there exist natural iso-
morphisms
Home (m/2, C) = Derc (R, C) = Moran (R, C[t]/2)).

PROOF. Exercise. O

EXERCISE II1.9. The ring of entire holomorphic functions f: C — C is an integral domain
but it is not factorial (Hint: consider the sine function sin(z)).
For every connected open subset U C C", the ring O(U) is integrally closed in its field of
fractions (Hint: Riemann extension theorem). A

2. Analytic singularities and fat points

Let M be a complex manifold, as in Lecture I we denote by Oy, the ring of germs of
holomorphic functions at a point € M. The elements of Oy, are the equivalence classes
of pairs (U, g), where U is open, z € U C M, g: U — C is holomorphic and (U, g) ~ (V, h)
if there exists an open subset W, x € W C U NV such that gy = hy.

By definition of holomorphic function and the identity principle we have that Ocn o is iso-
morphic to the ring of convergent power series C{z1,..., z,}.

Let f: M — N be a holomorphic map of complex manifolds, for every open subset V. C N
we have a homomorphism of C-algebras
f*r(‘/aON)—)F(f_l(V)?OM)a f*g:gof
If £ € M then the limit above maps f*, for V' varying over all the open neighbourhood of
y = f(x), gives a local homomorphism of local C-algebras f*: Oy, — Opr .
It is clear that f*: Ony — O, depends only on the behavior of f in a neighbourhood of
x and then depends only on the class of f in the space Morger((M, x), (N,y)).

A choice of local holomorphic coordinates z1, ..., z, on M such that z;(z) = 0, gives an in-
vertible morphism in Morger((M, x), (C",0)) and then an isomorphism Ops , = C{z1, ..., 2z, }.

EXERCISE II1.10. Given f,g € Morger((M,x),(N,y)), prove that f = g if and only if
f*=g*. A
DEeFINITION III.11. An analytic singularity is a triple (M, x,I) where M is a complex
manifold, z € M is a point and I C Oy, is a proper ideal.
The germ morphisms Morger((M, z,I), (N,y, J)) are the equivalence classes of morphisms
f € Morger((M, ), (N,y)) such that f*(J) C I and f ~ gifand only if f* = g*: On,/J —
Owm /1.
We denote by Ger the category of analytic singularities (also called germs of complex
spaces).

LEMMA II1.12. The contravariant functor Ger — An,

Ob(Ger) — Ob(An), (M,2,1) — On o /1;
MorGer((vaaI)7 (N7y7 '])) - MorAn (Oyga (QJI\/[@) 9 f — f*7
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is an equivalence of categories. Its “inverse” An — Ger (cf. [49, 1.4]) is called Spec
(sometimes Specan ).

PRrOOF. Since C{z1,..., z,}/I is isomorphic to Ocn /I the above functor is surjective
on isomorphism classes.
We only need to prove that Morger ((M, z, 1), (N,y,J)) — Moran(Ony/J, On,/I) is sur-
jective, being injective by definition of Morger. To see this it is not restrictive to assume
(M, z) = (T, 0), (N,y) = (C2,0).
Let g*: C{z1,...,2n}/J — C{u1,...,um}/I be a local homomorphism and choose, for
every ¢ = 1,...,n, a convergent power series f; € C{uq,...,un} such that f; = ¢g*(2;)
(mod I). Note that f;(0) = 0.
If U is an open set, 0 € U C C™, such that f; are convergent in U, then we may de-
fine a holomorphic map f = (fi1,...,fn): U — C™. By construction f*(z;) = ¢*(z;) €
C{u1,...,unm}/r and then by Lemma IIL.3 f* = g*. O

DEFINITION II1.13. Given an analytic singularity (X, z) = (M, z,I), the analytic algebra
Ox .,z := Opm /1 is called the algebra of germs of analytic functions of (X, x).
The dimension of (X, z) is by definition the dimension of the analytic algebra Ox ;.

DEeFINITION I11.14. A fat point is an analytic singularity of dimension 0.

LEMMA II1.15. Let X = (M, z,I) be an analytic singularity; the following conditions are
equivalent.

(1) The mazimal ideal of Ox , is nilpotent.

(2) X is a fat point.

(3) The ideal I contains a power of the mazimal ideal of Opy 4.

(4) If V is open, x € V. .C M, and fi,...,fn: V. — C are holomorphic functions
generating the ideal I, then there exists an open neighbourhood U C 'V of x such
that

Un{fi=...=fr=0}={z}.
(5) Moran(Ox .z, C{t}) contains only the trivial morphism f +— f(0) € C C C{t}.

PROOF. [1 & 2 & 3] are trivial.

[3 = 4] It is not restrictive to assume that V is contained in a coordinate chart; let
Z1y.+.,2n: V. — C be holomorphic coordinates with z;(x) = 0 for every i. If 3 holds then
there exists s > 0 such that z] € I and then there exists an open subset x € U C V and
holomorphic functions a;;: U — C such that 27 = 3 a;; f;. Therefore UNV N{fi =...=
fh=0cUn{z=...=2 =0} ={z}.

[4 = 5] Let ¢: (C,0) — (M,z) be a germ of holomorphic map such that ¢*(I) = 0. If
¢ is defined in an open subset W C C and ¢(W) C U then ¢*(I) = 0 implies ¢p(W) C

UN{f1 =...= frn =0} and therefore Morger((C,0,0), (M, z, I)) contains only the constant
morphism.
[5 = 1] is a consequence of Theorem II1.4 (with J = myy ). O

EXERCISE II1.16. If f € Morger((M,z,I),(N,y,J)) we define the schematic fibre f~!(y)
as the singularity (M,z, I + f*my,).
Prove that the dimension of a singularity (M, z, I') is the minimum integer d such that there
exists a morphism f € Morger((M, z, I), (C%,0,0)) such that f~(0) is a fat point. A

DEFINITION IIL.17. The Zariski tangent space T x of an analytic singularity (X, x) is the
C-vector space Derc(Ox 4, C).

Note that every morphism of singularities (X,z) — (Y,y) induces a linear morphism of
Zariski tangent spaces T, x — T y.

ExXERCISE II1.18. (Cartan’s Lemma)
Let (R, m) be an analytic algebra and G C Aut(R) a finite group of automorphisms. Denote
n = dimg m/mZ.
Prove that there exists an injective homomorphism of groups G — GL(C") and a G-
isomorphism of analytic algebras R ~ Ocn /I for some G-stable ideal I C Ocn . (Hint:
there exists a direct sum decomposition m = V@m? such that gV C V forevery g € G.) A
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3. The resultant

Let A be a commutative unitary ring and p € A[t] a monic polynomial of degree d. It is
easy to see that A[t]/(p) is a free A-module of rank d with basis 1,¢,..., 9L
For every f € A[t] we denote by R(p, f) € A the determinant of the multiplication map

fAlt]/(p) — Alt]/(p).

DEFINITION II1.19. In the notation above, the element R(p, f) is called the resultant of p
and f.

If : A — B is a morphism of unitary rings then we can extend it to a morphism ¢: A[t] —
Blt], ¢(t) = t, and it is clear from the definition that R(¢(p), #(f)) = ¢(R(p, f)).
By Binet’s theorem R(p, fg) = R(p, f)R(p,9)-

LEMMA II1.20. In the notation above there ezist a, 5 € A[t] with dega < deg f, deg 3 <
degp such that R(p, f) = Bf — ap. In particular R(p, f) belongs to the ideal generated by
p and f.

PRrROOF. For every i,j =0,...,d — 1 there exist h; € Aft] and ¢;; € A such that
. d_l .
tf=hip+Y ct/,  degh; <degf.
§=0
By definition R(p, f) = det(c;;); if (C¥) is the adjoint matrix of (c;;) we have, by Laplace
formula, for every j =0,...,d —1

> CY%cij = bo;R(p, f)

and then
d—1

R(p, f) =Y CUu(t'f — hip) = Bf — ap.
i=0
O
LEMMA II1.21. In the notation above, if A is an integral domain and p, f have a common

factor of positive degree then R(p, f) = 0. The converse hold if A is a unique factorization
domain.

PROOF. Since A injects into its fraction field, the multiplication f: A[t]/(p) — A[t]/(p)
is injective if and only if R(p, f) # 0.
If p = gr with degr < degp, then the multiplication ¢: A[t]/(p) — A[t]/(p) is not injective
and then its determinant is trivial. If ¢ also divides f then, by the theorem of Binet also
R(p, f) = 0.
Assume now that A is a unique factorization domain and R(p, f) = 0. There exists ¢ & (p)
such that fq € (p); by Gauss’ lemma A[t] is a UFD and then there exists a irreducible
factor p; of p dividing f. Since p is a monic polynomial the degree of p; is positive. O

LEMMA II1.22. Let A be an integral domain and 0 # p C A[t] a prime ideal such that
pNA=0. Denote by K the fraction field of A and by p¢ C K|z| the ideal generated by p.
Then:

(1) p® is a prime ideal.
(2) p° 1 Afa] = p.
(3) There exists f € p such that for every monic polynomial p & p we have R(p, f) # 0.
PROOF. [1] We have p¢ = {Q ‘ peEp,acA— {O}} it 2LP2
a al az
a; € A; then there exists a € A — {0} such that ap;ps € p. Since pN A = 0 it must be
p1 € p or po € p. This shows that p® is prime.
[2] If ¢ € p¢ N Alzx], then there exists a € A, a # 0 such that ag € p and therefore ¢ € p.
[3] Let f € p — {0} be of minimal degree, since K[t] is an Euclidean ring, p¢ = fK][t]
and, since p€ is prime, f is irreducible in K[t]. If p € A[t] \ p is a monic polynomial then
p & p¢ = fK|[t] and then, according to Lemma II1.21, R(p, f) # 0. O

€ p° with p; € Alz],
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THEOREM II1.23. Let A be a unitary ring, p C Alt] a prime ideal, ¢ = AN p.
If p # q[t] (e.g. if p is proper and contains a monic polynomial) then there exists f € p
such that for every monic polynomial p € p we have R(p, f) & q.
If moreover A is a unique factorization domain we can choose f irreducible.

PROOF. q is prime and q[t] C p, therefore the image of p in (A/q)[t] = A[t]/qt] is still
a prime ideal satisfying the hypothesis of Lemma II1.22.
It is therefore sufficient to take f as any lifting of the element described in Lemma II1.22
and use the functorial properties of the resultant. If A is UFD and f is not irreducible
we can write f = hg with g € p irreducible; but R(p, f) = R(p,h)R(p,g) and then also

R(p,g) € qa. O

EXERCISE I11.24. If p,q € A[t] are monic polynomials of degrees d,l > 0 then for every
f € A[t] we have R(pq, f) = R(p, f)R(q, f). (Hint: write the matrix of the multiplication
f: Alt]/(pq) — A[t]/(pq) in the basis 1,t,...,t% 1 p tp,... .t 1p.) AN

4. Rickert’s Nullstellensatz

The aim of this section is to prove the following theorem, also called Curve selection
lemma, which is easily seen to be equivalent to Theorem III1.4. The proof given here is a
particular case of the one sketched in [51].

THEOREM II1.25. Let p C C{z1,...,2,} be a proper prime ideal and h & p. Then there
exists a homomorphism of local C-algebras ¢: C{z1,...,zn} — C{t} such that ¢p(p) = 0

and ¢(h) # 0.

COROLLARY II1.26. Let I C C{z1,...,2,} be a proper ideal and h ¢ /1. Then there
exists a homomorphism of local C-algebras ¢: C{z1,...,2z,} — C{t} such that ¢(I) = 0

and ¢(h) # 0.
ProoF. If h & /T there exists (cf. [3]) a prime ideal p such that I C p and h ¢ p. O

Before proving Theorem II1.25 we need a series of results that are of independent interest.
We recall the following

DEFINITION II1.27. A power series p € C{z1, ..., z,,t} is called a Weierstrass polynomial
in ¢ of degree d > 0 if

d-1
p=t"+> pilz,..., )t pi(0) =0.
i=0

In particular if p(z1, . . ., 2, t) is a Weierstrass polynomial in ¢ of degree d then p(0,...,0,t) =
td.
THEOREM II1.28 (Preparation theorem). Let f € C{z1,...,zn,t} be a power series such

that f(0,...,0,t) # 0. Then there exists a unique e € C{z1,...,zn,t} such that e(0) # 0
and ef is a Weierstrass polynomial in t.

PROOF. For the proof we refer to [23], [24], [26], [37], [28], [51]. We note that the
condition that the power series u(t) = f(0,...,0,t) is not trivial is also necessary and that
the degree of ef in t is equal to the multiplicity at 0 of u. O

COROLLARY II1.29. Let f € C{z1,...,2,} be a power series of multiplicity d. Then, after
a possible generic linear change of coordinates there exists e € C{z1,...,2z,} such that
e(0) # 0 and ef is a Weierstrass polynomial of degree d in z.

PROOF. After a generic change of coordinates of the form z; — z; + a;z,, a; € C, the
series f(0,...,0, z,) has multiplicity d. O

LEMMA I11.30. Let f,g € C{x1,...,z,}[t] be polynomials in t with g in Weierstrass’ form.
if f =hg for some h € C{x1,...,xn,t} then h € C{z1,...,z,}[t].
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We note that if g is not a Weierstrass polynomial then the above result is false; consider
for instance the case n =0, f = 3,9 =t + t2.

PROOF. Write g = t5+ Y g;(2)t57%, g;(0) =0, f = >1_o fi(x)t"™" h =3, hi(z)t", we
need to prove that h; = 0 for every ¢ > r — s.
Assume the contrary and choose an index j > r — s such that the multiplicity of h; takes
the minimum among all the multiplicities of the power series h;, i > r — s.
From the equality 0 = h; + > ;. gihj+: we get a contradiction. O

LEMMA II1.31. Let f € C{x1,...,z,}[t] be an irreducible monic polynomial of degree d.
Then the polynomial fo(t) = f(0,...,0,t) € C[t] has a root of multiplicity d.

PROOF. Let ¢ € C be aroot of fy(t). If the multiplicity of ¢ is I < d then the multiplicity
of the power series fy(t +¢) € C{t} is exactly [ and therefore f(z1,...,zn,t+¢) is divided
in C{z1,...,z,}[t] by a Welerstrass polynomial of degree . O

LEMMA II1.32. Let p € C{z}[y] be a monic polynomial of positive degree d in y. Then
there exists a homomorphism ¢: C{z}[y] — C{t} such that ¢(p) =0 and 0 # ¢(x) € (t).

PROOF. If d = 1 then p(z,y) = y — p1(x) and we can consider the morphism ¢ given
by ¢(x) = t, ¢(y) = pi1(t). By induction we can assume the theorem true for monic
polynomials of degree < d.

If p is reducible we have done, otherwise, writing p = y® 4 p1(2)y?~! + ... + pg(x), after
the coordinate change z — x, y — y — p1(x)/d we can assume p; = 0.
For every ¢ > 2 denote by u(p;) = o; > 0 the multiplicity of p; (we set a; = 400 if p; = 0).

o Q;
Let j > 2 be a fixed index such that —% < — for every i. Setting m = aj, we want to
j i

prove that the monic polynomial p(¢7,y) is not irreducible.

In fact p(¢7,y) =y + Yin0 hi(€)y™ ", where hy(€) = gi(€7).
For every i the multiplicity of h; is ja; > im and then

. hz . .
() = p(E €M E I = et 30 Byt S gy

is a well defined element of C{¢,y}. Since 7 = 0 and 7;(0) # 0 the polynomial ¢ is not
irreducible and then, by induction there exists a nontrivial morphism : C{¢}[y] — C{t}

such that 1(g) = 0, 0 # ¥(€) € (t) and we can take ¢(z) = ¥(&7) and ¢(y) = Y (™y). O

THEOREM II1.33 (Division theorem). Let p € C{z1,...,zn,t}, p # 0, be a Weierstrass
polynomial of degree d > 0 in t. Then for every f € C{z1,...,zn,t} there exist a unique
h e C{z,...,2n,t} such that f —hp € C{z1,...,zn}[t] is a polynomial of degree < d in t.

PRrROOF. For the proof we refer to [23], [24], [26], [37], [28], [51]. O

We note that an equivalent statement for the division theorem is the following:

COROLLARY II1.34. If p € C{z1,...,2n,t}, p # 0, is a Weierstrass polynomial of degree
d>0int, then C{z1,...,2n,t}/(p) is a free C{z1, ..., z,}-module with basis 1,t,...,t97 1.

PRrOOF. Clear. O

THEOREM II1.35 (Newton-Puiseux). Let f € C{x,y} be a power series of positive multi-
plicity. Then there exists a nontrivial local homomorphism ¢: C{z,y} — C{t} such that

o(f) =0.
Moreover if f is irreducible then ker ¢ = (f).

In the above statement nontrivial means that ¢(z) # 0 or ¢(y) # 0.

PROOF. After a linear change of coordinates we can assume f(0,y) a non zero power
series of multiplicity d > 0; by Preparation theorem there exists an invertible power series
e such that p = ef is a Weierstrass polynomial of degree d in y.

According to Lemma I11.32 there exists a homomorphism ¢: C{z}[y] — C{t} such that
o(p) = 0 and 0 # ¢(x) € (t). Therefore ¢(p(0,y)) € (t) and, being p a Weierstrass
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polynomial we have ¢(y) € (t) and then ¢ extends to a local morphism ¢: C{x,y} — C{t}.
Assume now f irreducible, up to a possible change of coordinates and multiplication for an
invertible element we may assume that f € C{z}[y] is an irreducible Weierstrass polynomial
of degree d > 0.

Let ¢: C{z,y} — C{t} be a nontrivial morphism such that ¢(f) = 0, then ¢(x) # 0
(otherwise ¢(y)? = #(f) = 0) and therefore the restricted morphism ¢: C{z} — C{t} is
injective.

Let g € ker(¢), by division theorem there exists r € C{x}[y] such that g = hf +r and then
r € ker(¢), R(f,r) € ker(¢) N C{z} = 0. This implies that f divides r. O

The division theorem allows to extend the definition of the resultant to power series. In
fact if p € C{z1,...,2,}[t] is a Weierstrass polynomial in t of degree d, for every f €
C{z1,...,2n,t} we can define the resultant R(p, f) € C{z1,...,2,} as the determinant of
the morphism of free C{zy,..., z, }-module

CC{z1,. ., 2, t) _ C{z1,...,2n,t}
' (p) (p)

induced by the multiplication with f.
It is clear that R(p, f) = R(p,r) whenever f —r € (p).

f

LEMMA II1.36. Let p € C{z1,...,2n,t} be a Weierstrass polynomial of positive degree in
t and V. C C{z1,...,2zn,t} a C-vector subspace.
Then R(p, f) = 0 for every f € V if and only if there exists a Weierstrass polynomial q of
positive degree such that:
(1) q divides p in C{z1,...,2n}[t]
(2) V C qC{zl, - ,Zn,t}

PROOF. One implication is clear, in fact if p = ¢r then the multiplication by ¢ in not
injective in C{z1,...,2zn,t}/(p); therefore R(p,q) = 0 and by Binet’s theorem R(p, f) =0
for every f € (q).

For the converse let p = pips...ps be the irreducible decomposition of p in the UFD
C{z1,...,zn}[t]. U R(p,f) =0and r = f —hp € C{z1,..., 2z, }[t] is the rest of the division
then R(p,r) = 0 and by Lemma III1.21 there exists a factor p; dividing r and therefore also
dividing f.

In particular, setting V; = V N (p;), we have V' = U;V; and therefore V' = V; for at least
one index 7 and we can take g = p;. O

Proor oF III.25. We first consider the easy cases n = 1 and p = 0. If p = O then,
after a possible change of coordinates, we may assume h(0,...,0,t) # 0 and therefore we
can take ¢(z;)) =0fori=1,...,n—1 and ¢(z,) = t.

If n = 1 the only prime nontrivial ideal is (21) and therefore the trivial morphism ¢: C{z;} —
C C C{t} satisfies the statement of the theorem.

Assume then n > 1, p # 0 and fix a nonzero element g € p. After a possible linear
change of coordinates and multiplication by invertible elements we may assume both h and
g Weierstrass polynomials in the variable z,. Denoting

t=pNC{z1,...,2n-1}2n], q=pNC{z1,...,2n—1} =tNC{z1,...,2n-1},

according to Theorem II1.23, there exists f € t such that R(h, f) ¢ q. On the other hand,
by Lemma II1.20, R(g, f) € q for every f € p.

By induction on n there exists a morphism ¢: C{z1, ..., 2,1} — C{z} such that ¢)(q) = 0
and ¢ (R(h, f')) # 0. Denoting by ¢: C{z1,...,2,} — C{x,z,} the natural extension of v

we have R(¢¥(h),v(f)) # 0 and R(1(g),¥(f)) = 0 for every f € p. Applying Lemma I11.36
to the Weierstrass polynomial 1(g) and the vector space V' = 1)(p) we prove the existence

of an irreducible factor p of 1(g) such that (p) C pC{x, 2,,}.

In particular p divides ¥(f), therefore R(1(h),p) # 0 and 1 (h) & pC{x, z,, }.
By Newton-Puiseux’ theorem there exists n: C{z, z,} — C{t} such that n(p) = 0 and
n((h)) # 0. It is therefore sufficient to take ¢ as the composition of ¢ and 7. O
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EXERCISE 111.37. Prove that f,g € C{z,y} have a common factor of positive multiplicity
if and only if the C-vector space C{x,y}/(f,g) is infinite dimensional. A

5. Dimension bounds

As an application of Theorem II1.25 we give some bounds for the dimension of an analytic
algebra; this bounds will be very useful in deformation and moduli theory. The first bound
(Lemma II1.40) is completely standard and the proof is reproduced here for completeness;
the second bound (Theorem I11.41, communicated to the author by H. Flenner) finds ap-
plication in the “T"'-lifting” approach to deformation problems.

We need the following two results of commutative algebra.

LEMMA II1.38. Let (A,m) be a local Noetherian ring and J C I C A two ideals. If
J+ml =1 then J=1.

PRrOOF. This a special case of Nakayama’s lemma [3], [51]. O

LEMMA II1.39. Let (A,m) be a local Noetherian ring and f € m, then dim A/(f) >
dimA —1.
Moreover, if f is nilpotent then dim A/(f) = dim A, while if f is not a zerodivisor then
dim A/(f) =dim A — 1.

ProOF. [3]. O
LEMMA II1.40. Let R be an analytic algebra with mazimal ideal m, then dim R < dim¢ %
and equality holds if and only if R is smooth.

PrOOF. Let n = dim¢ % and f1,..., fn € minducing a basis Of%. ItJ="(f1, - fn)

by assumption J+m? = m and then by Lemma I11.38 J =m, R/J = C and 0 = dim R/J >
dim R — n.

According to Lemma IIL.5 we can write R = C{z1,...,2,}/I for some ideal contained
in (z1,...,2n)% Since C{z1,...,2,} is an integral domain, according to Lemma III.39
dim R = n if and only if I = 0. O

THEOREM II1.41. Let R = P/I be an analytic algebra, where P = C{z1,...,2,}, n >0 is
a fized integer, and I C P is a proper ideal.
Denoting by m = (21,...,2,) the mazimal ideal of P and by J C P the ideal

J—{fEI’afEI,W—l,...,n}
8zi

we have dim R > n — dim¢ Toml

PROOF. (taken from [14]) We first introduce the curvilinear obstruction map

1
I MOrAn(P,C{t}) — Homc (J—I—mI’<C> :

Given ¢: P — C{t}, if (1) = 0 we define y7(¢) = 0; if ¢(I) # 0 and s is the biggest integer
such that ¢(I) C (t°) we define, for every f € I, v7(¢)f as the coefficient of t* in the power

series expansion of ¢(f).
It is clear that y7(¢)(mI) = 0, while if ¢(I) C (¢°) and f € J we have ¢(f) = f(o(21), ..., P(2n)),

do(f) _ = Of o) o o
dt_; (D(21), ..., 0(zn)) € (t°)

02 dt

and therefore ¢(f) € (t°T1) (this is the point where the characteristic of the field plays an
essential role).

The ideal I is finitely generated, say I = (f1,..., f4), according to Nakayama’s lemma we
can assume fq,..., fq a basis of I/mlI.

By repeated application of Corollary I11.26 (and possibly reordering the f;’s) we can assume
that there exists an h < d such that the following holds:
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(1) fi ¢ V/(froeoos fima) fori < hy

(2) for every i < h there exists a morphism of analytic algebras ¢; : P — C{t} such
that ¢;(fi) # 0, ¢i(f;) = 0 if j < i and the multiplicity of ¢;(f;)) is bigger than
or equal to the multiplicity of ¢;(f;)) for every j > i.

3) I C/(f1,-, fn):

Condition 3) implies that dim R = dim P/(f1,..., fn) > n — h, hence it is enough to prove
I

that vy7(é1),...,71(¢n) are linearly independent in Homg¢ J+mI7C> and this follows

immediately from the fact that the matrix a;; = vr(¢)f;, 4,5 = 1,..., h, has rank h, being

triangular with nonzero elements on the diagonal. O

EXERCISE I11.42. In the notation of Theorem II1.41 prove that I?> C .J. Prove moreover
that I = J + m/ if and only if I = 0. A

EXERCISE I11.43. Let I C C{z,y} be the ideal generated by the polynomial f = x° +1° +
2z3y3 and by its partial derivatives f, = 5z* + 3223, fy = 5y* + 323y, Prove that J is
not contained in m/, compute the dimension of the analytic algebra C{z,y}/I and of the

vector spaces Trml ml A
EXERCISE 111.44. (easy, but for experts) In the notation of I11.41, if I C m? then
H C) = ExtL(Qg, C).
one (51 ) =Bk @
(Qp is the R-module of separated differentials) A

EXERCISE II1.45. In the notation of Theorem III.41, prove that for every short exact
sequence 0 — F — F — G — 0 of R-modules of finite length (i.e. annihilated by some
power of the maximal ideal) it is defined a map

1
ob: Derc(R,G) — Homp (J’E>

with the property that ob(¢) = 0 if and only if ¢ lifts to a derivation R — F.
I I
M if E =0 then H —F|=H E). A
oreover, if mp en Homp (J’ ) omg (J—I—m[’ >

REMARK II1.46. (T-lifting for prorepresentable functors.)
For every morphism of analytic algebras f: R — A and every A-module of finite length M
there exists a bijection between Derc (R, M) and the liftings of f to morphisms R — A® M.

C) is the subspace of

In the notation of Theorem II1.41, if I C m?, then Hom¢ ,
J+ml

1
Homc¢ <mI’ (C> of obstructions (see [13, Section 5]) of the functor hg arising from all the
small extensions of the form 0 - C — A ® M(Id—’p>)A ® N — 0, where p: M — N is a
morphism of A-modules and A@® M — A, A® N — A are the trivial extensions.

6. Historical survey, 111

According to [24], the preparation theorem was proved by Weierstrass in 1860, while di-
vision theorem was proved by Stickelberger in 1887.
The factoriality of C{z1,...,2,} was proved by E. Lasker in a, long time ignored, paper
published in 1905. The same result was rediscovered by W. Riickert (a student of W. Krull)
together the Noetherianity in 1931. In the same paper of Riickert it is implicitly contained
the Nullstellensatz. The ideas of Riickert’s proof are essentially the same used in the proof
given in [28]. The proof given here is different.
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All the algebraic results of this chapter that make sense also for the ring of formal power
series C[[z1,...,2y]] and their quotients, remain true. In many cases, especially in defor-
mation theory, we seek for solutions of systems of analytic equations but we are able to
solve these equation only formally; in this situation a great help comes from the following
theorem, proved by M. Artin in 1968.

THEOREM I11.47. Consider two arbitrary morphisms of analytic algebras f: S — R,

g: S — C{z1,...,2,} and a positive integer s > 0. The inclusion C{z1,...,2,} C
C{z1,..., ,
Cllz1,---,2n]] and the projection C{z1,...,zn} — ({legzs} give structures of S-
Zlye++3”n
C e
algebras also on C[[z1,. .., z,)] and M
(215 0y 2n)°

Assume it is given a morphism of analytic S-algebras

o R C{z1,...,2n} _ C[[zl,...,zn]]'
(2150 y2n)° (215 .., 2n)8
If ¢ lifts to a S-algebra morphism R — C[[z1,...,2,]] then ¢ lifts also to a S-algebra
morphism R — C{z1,...,2,}.

Beware. Theorem II1.47 does not imply that every lifting R — C[[z1, ..., 2,]] is “conver-
gent”.

ProOF. This is an equivalent statement of the main theorem of [1]. We leave as as an
exercise to the reader to proof of the equivalence of the two statements. O

EXERCISE I11.48. Use Theorem II1.47 to prove:

(1) Every irreducible convergent power series f € C{z1,...,z,} is also irreducible in
Cllz1y - -+, 2nl]-
(2) C{z1,...,2,} is integrally closed in C[[z1, ..., z]].

A

REMARK II1.49. It is possible to give also an elementary proof of item 2 of Exercise 111.48
(e.g. [51]), while I don’t know any proof of item 1 which does not involve Artin’s theorem.






LECTURE IV

Infinitesimal deformations of complex manifolds

In this chapter we pass from the classical language of deformation theory to the formalism
of differential graded objects. After a brief introduction of dg-vector spaces and dg-algebras,
we associate to every deformation Xy — {X;}er — (7,0) its algebraic data (Definition
IV.27), which is a pair of morphisms of sheaves of dg-algebras on X. This algebraic data
encodes the Kodaira-Spencer map and also all the “Taylor coefficients” of ¢ — X;.

We introduce the notion of infinitesimal deformation as an infinitesimal variation of in-
tegrable complex structures; this definition will be more useful for our purposes. The
infinitesimal Newlander-Nirenberg theorem, i.e. the equivalence of this definition with the
more standard definition involving flatness, although not difficult to prove, would require
a considerable amount of preliminaries in commutative and homological algebra and it is
not given in this notes.

In Section 7 we state without proof the Kuranishi’s theorem of existence of semiuniversal
deformations of compact complex manifolds. In order to keep this notes short and selfcon-
tained, we avoid the use of complex analytic spaces and we state only the ”infinitesimal”
version of Kuranishi’s theorem. This is not a great gap for us since we are mainly interested
in infinitesimal deformations. The interested reader can find sufficient material to filling
this gap in the papers [59], [60] and references therein.

From now on we assume that the reader is familiar with the notion of sheaf, sheaf of
algebras, ideal and quotient sheaves, morphisms of sheaves.
If F is a sheaf on a topological space Y we denote by F,, y € Y, the stalk at the point y.
If G is another sheaf on Y we denote by Hom(F,G) the sheaf of morphisms from F to G
and by Hom(F,G) = I'(Y, Hom(F,G)).

For every complex manifold X we denote by A%? the sheaf of differential forms of type
(p,q) and AY" = @, AR The sheaf of holomorphic functions on X is denoted by Ox;
Q% (resp.: Qy) is the sheaf of holomorphic (resp.: antiholomorphic) differential forms. By
definition Q% = ker(9: A*0 — A*1), Oy = ker(9: A% — A'*); note that ¢ € Q% if and
only if ¢ € ﬁ}

If E — X is a holomorphic vector bundle we denote by Ox (FE) the sheaf of holomorphic
sections of F.

1. Differential graded vector spaces

This section is purely algebraic and every vector space is considered over a fixed field K;
unless otherwise specified, by the symbol ® we mean the tensor product ®x over the field
K.

NoTATION IV.1. We denote by G the category of Z-graded K -vector space. The objects
of G are the K-vector spaces V endowed with a Z-graded direct sum decomposition V =
®iczV;i. The elements of V; are called homogeneous of degree i. The morphisms in G are
the degree-preserving linear maps.

IV = ®nezVin € G we write deg(a; V) =i € Z if a € Vj; if there is no possibility of
confusion about V' we simply denote @ = deg(a; V).

MARCO MANETTI: Deformations of complex manifolds version June 28, 2011
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Given two graded vector spaces V,WW € G we denote by Homg (V, W) the vector space
of K-linear maps f: V — W such that f(V;) € Wj4, for every i € Z. Observe that
Hom]% (V,W) = Homg(V, W) is the space of morphisms in the category G.

The tensor product, ®: G x G — G, and the graded Hom, Hom*: G x G — G, are
defined in the following way: given V., W € G we set

VW= @(V@W)i, where (V® W)Z = EBV] &® Wi_j,
i€z jez
Hom™(V, W) = @Homg (V, W).
We denote by "
(,) :Hom*(V,IW) x V — W, (f,v)y = f(v)
the natural pairing.

DEerINITION IV.2. If VW € G, the twisting map T: V W — W ® V is the linear map
defined by the rule T(v®@w) = (—1)"“w®w, for every pair of homogeneous elements v € V,
wewWw.

Unless otherwise specified we shall use the Koszul signs convention. This means that
we choose as natural isomorphism between V@ W and W ® V the twisting map 7" and
we make every commutation rule compatible with 7. More informally, to “get the signs
right”, whenever an “object of degree d passes on the other side of an object of degree h,
a sign (—1)% must be inserted”.

As an example, the natural map (,) : V x Hom*(V, W) — W must be defined as (v, f) =

(—1)?51"(1}) for homogeneous f,v. Similarly, if f,g € Hom*(V, W), their tensor product
f®g € Hom*(V®V, W ®@W) must be defined on bihomogeneous tensors as (f®g)(u®v) =

(=1)9%f(u) ® g(v).

NoTATION IV.3. We denote by DG the category of Z-graded differential K -vector spaces
(also called complexes of vector spaces). The objects of DG are the pairs (V,d) where
V = @V, is an object of G and d: V — V is a linear map, called differential such that
d(V;) C Viy1 and d? = dod = 0. The morphisms in DG are the degree-preserving linear
maps commuting with the differentials.

For simplicity we will often consider G as the full subcategory of DG whose objects are
the complexes (V,0) with trivial differential.

If (V,d),(W,0) € DG then also (V@ W,d® Id+1d® ) € DG; according to Koszul signs
convention, since § € Homk (W, W), we have (Id ® §)(v ® w) = (—1)"v ® §(w).
There exists also a natural differential p on Hom*(V, W) given by the formula

6<f7 U> = <pf7 U> + (_1)f<f7 dU>
Given (V,d) in DG we denote as usual by Z (V) = kerd the space of cycles, by B(V) =
d(V') the space of boundaries and by H(V) = Z(V)/B(V) the homology of V. Note that
Z,B and H are all functors from DG to G.

A morphism in DG is called a quasiisomorphism if it induces an isomorphism in homology.
A differential graded vector space (V,d) is called acyclic if H(V) = 0.

DEFINITION IV.4. Two morphisms f,g € Homg (V, W) are said to be homotopic if their
difference f — g is a boundary in the complex Hom*(V, W).

EXERCISE IV.5. Let V, W be differential graded vector spaces, then:

(1) Hompg (V, W) = Z°(Hom*(V, W)).

(2) If f € B'(Hom*(V,W)) C Hompg(V, W) then the induced morphism f: H(V) —
H(W) is trivial.

(3) If f,g € Hompg(V,W) are homotopic then they induce the same morphism in
homology.

(4) V is acyclic if and only if the identity Id: V' — V is homotopic to 0. (Hint: if
C C V is a complement of Z(V), i.e. V.=Z(V)® C, then V is acyclic if and only
if d: C; — Z(V)i41 is an isomorphism for every i.)
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A

The fiber product of two morphisms B LD and C-"-D in the category DG is defined
as the complex

CxpB=@®C xpB), (CxpB)y=1{(c,b)€Cpx Bn|h(c)=f(b)}

with differential d(c, b) = (dc, db).

A commutative diagram in DG

A—B

p lf
c—"l-pD

is called cartesian if the induced morphism A — C' xp B is an isomorphism; it is an easy
exercise in homological algebra to prove that if f is a surjective (resp.: injective) quasi-
isomorphism, then ¢ is a surjective (resp.: injective) quasiisomorphism. (Hint: if f is a
surjective quasiisomorphism then ker f = ker g is acyclic.)

For every integer n € Z let’s choose a formal symbol 1[n] of degree —n and denote by K [n]

the graded vector space generated by 1[n]. In other terms, the homogeneous components
of K[n] € G C DG are

| K ifi+n=0
K [n)i _{ 0 otherwise

For every pair of integers n,m € Z there exists a canonical linear isomorphism S)* €
Homp ™ (K [n], K [m]); it is described by the property S;*(1[n]) = 1[m].

Given n € Z, the shift functor [n]: DG — DG is defined by setting V[n| = K[n] ® V,
V € DG, fln] = IdK[n} ® f, f € Morpg.
More informally, the complex V' [n] is the complex V' with degrees shifted by n, i.e. Vin|; =
Vitn, and differential multiplied by (—1)". The shift functors preserve the subcategory G
and commute with the homology functor H. If v € V we also write v[n| = 1[n] @ v € V[n].

EXERCISE IV.6. There exist natural isomorphisms
Homg (V, W) = Homg(V[—n|, W) = Homg (V, W[n|).
A

ExAMPLE IV.7. Among the interesting objects in DG there are the acyclic complexes
Qn] = K[n] ® Q, where Q = (29 ® Q1,d), Qo =K, Q; = K[-1] and d: Q9 — € is the
canonical linear isomorphism d(1[0]) = 1[—1]. The projection p: @ — Qy = K and the
inclusion 2; —  are morphisms in DG.

EXERCISE IV.8. Let V, W be differential graded vector spaces, then:

(1) In the notation of Example IV.7, two morphisms of complexes f,g: V — W are
homotopic if and only if there exists h € Hompg(V,Q2 ® W) such that f — g =

(p® Idyy) o h.
(2) If f,g: V — W are homotopic then f® h is homotopic to g ® h for every h: V' —
w’.

(3) (Kiinneth) If V' is acyclic then V ® U is acyclic for every U € DG.
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2. Review of terminology about algebras

Let R be a commutative ring, by a nonassociative (= not necessarily associative) R-algebra
we mean a R-module M endowed with a R-bilinear map M x M — M.
The nonassociative algebra M is called unitary if there exist a “unity” 1 € M such that
1m = ml = m for every m € M.
A left ideal (resp.: right ideal) of M is a submodule I C M such that MI C I (resp.:
IM C I). A submodule is called an ideal if it is both a left and right ideal.
A homomorphism of R-modules d: M — M is called a derivation if satisfies the Leibnitz
rule d(ab) = d(a)b + ad(b). A derivation d is called a differential if d> = do d = 0.
A R-algebra is associative if (ab)c = a(bc) for every a,b,c € M. Unless otherwise specified,
we reserve the simple term algebra only to associative algebra (almost all the algebras con-
sidered in these notes are either associative or Lie).
If M is unitary, a left inverse of m € M is an element a € M such that am = 1. A right
inverse of m is an element b € M such that mb = 1.
If M is unitary and associative, an element m is called invertible if has left and right in-
verses. It is easy to see that if m is invertible then every left inverse of m is equal to every

right inverse, in particular there exists a unique m~!' € M such that mm ™' = m~tm = 1.

EXERCISE IV.9. Let g be a Riemannian metric on an open connected subset U C R™ and
let ¢: U — R be a differentiable function (called potential).
Denote by R = C*°(U,R) and by M the (free of rank n) R-module of vector fields on U.

If x1,...,2, is a system of linear coordinates on R™ denote by:
0
(1) 0; = . €M, ¢ijr, = 0;0;010 € R.
1

(2) gij = 9(9:,0;) € R and g¥ the coefficients of the inverse matrix of g;;.

(3) 0ix0; = Z bii19™ Ok
Kl

Prove that the R-linear extension M x M — M of the product * is independent from
the choice of the linear coordinates and write down the (differential) equation that ¢ must
satisfy in order to have the product * associative. This equation is called WDVV (Witten-
Dijkgraaf-Verlinde-Verlinde) equation and it is very important in mathematics since 1990.

A

3. dg-algebras and dg-modules

DEFINITION IV.10. A graded (associative, Z-commutative) algebra is a graded vector
space A = ®A; € G endowed with a product A; x A; — A, ; satisfying the properties:
(1) a(bc) = (ab)c.
(2) a(b+c) =ab+ ac, (a+ b)c = ac+ be.
(3) (Koszul sign convention) ab = (—1)@%bq for a, b homogeneous.
The algebra A is unitary if there exists 1 € Ag such that la = al = a for every a € A.

Let A be a graded algebra, then Ag is a commutative K-algebra in the usual sense; con-
versely every commutative K -algebra can be considered as a graded algebra concentrated
in degree 0. If I C A is a homogeneous left (resp.: right) ideal then I is also a right (resp.:
left) ideal and the quotient A/I has a natural structure of graded algebra.

ExAMPLE IV.11. The exterior algebra A = /\*V of a K-vector space V, endowed with
wedge product, is a graded algebra with 4; = \'V.

ExAaMPLE IV.12. (Polynomial algebras.) Given a set {z;}, i € I, of homogeneous inde-
terminates of integral degree T; € Z we can consider the graded algebra K[{z;}]. As a
K -vector space K [{z;}] is generated by monomials in the indeterminates x; subjected to
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the relations z;z; = (—1)% iz z;.
In some cases, in order to avoid confusion about terminology, for a monomial mf‘ll e a:f;” it
is defined:
e The internal degree ), T, ou.
e The external degree ), ay,.
In a similar way it is defined A[{x;}] for every graded algebra A.

EXERCISE 1V.13. Let A be a graded algebra: if every a # 0 is invertible then A = Ay and
therefore A is a field.
Give an example of graded algebra where every homogeneous a # 0 is invertible but
A #£ Ap. A

DEFINITION IV.14. A dg-algebra (differential graded algebra) is the data of a graded
algebra A and a K-linear map s: A — A, called differential, with the properties:
(1) s(Ap) C Apy1, s2=0.
(2) (graded Leibnitz rule) s(ab) = s(a)b+ (—1)%as(b).
A morphism of dg-algebras is a morphism of graded algebras commuting with differentials;
the category of dg-algebras is denoted by DGA..

ExaMPLE IV.15. Let U be an open subset of a complex variety and denote by A; =
Pptq=iL' (U, ART). Then T'(U, AY") = ©A; admits infinitely many structures of differential
graded algebras where the differential of each one of is a linear combination a9+b0, a,b € C.

EXERCISE IV.16. Let (A, s) be a unitary dg-algebra; prove:
(1) 1€ Z(A).
(2) Z(A) is a graded subalgebra of A and B(A) is a homogeneous ideal of Z(A). In
particular 1 € B(A) if and only if H(A) = 0.
A

A differential ideal of a dg-algebra (A, s) is a homogeneous ideal I of A such that s(I) C I;
there exists an obvious bijection between differential ideals and kernels of morphisms of dg-
algebras.

On a polynomial algebra K [{z;}] a differential s is uniquely determined by the values

s(z;).

EXAMPLE IV.17. Let t,dt be indeterminates of degrees ¢ = 0, dt = 1; on the polynomial
algebra K [t,dt] = K[t] ® K [t]dt there exists an obvious differential d such that d(t) = dt,
d(dt) = 0. Since K has characteristic 0, we have H (K [t,dt]) = K. More generally if (A, s)
is a dg-algebra then A[t,dt] is a dg-algebra with differential s(a ® p(t)) = s(a) @ p(t) +
(—1)7a® p (Ddt, s(a® qt)dt) = s(a) @ g(t)dt.

DEFINITION IV.18. A morphism of dg-algebras B — A is called a quasiisomorphism if
the induced morphism H(B) — H(A) is an isomorphism.

Given a morphism of dg-algebras B — A the space Der'’;(A, A) of B-derivations of degree
n is by definition

Derf(A, A) = {¢ € Homg (4, 4) | §(ab) =(a)b + (=1)""ag(b), $(B)=0}.
We also consider the graded vector space
Derp(A, A) = @ Der'z(A, A) € G.
nez
There exist a natural differential d and a natural bracket [—, —] on Der; (A, A) defined as
d: Dery(A, A) — Der'ytH (A, A),  dop=dap — (—1)"¢da
and _
[f.9]=fg— (=1)/ 9.

EXERCISE IV.19. Verify that, if f € Derly(A4,A) and g € Der%(A, A) then [f,g] €

Derly™(A, A) and d[f, g] = [df,g] + (~1)?[, dg]. A
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Let (A, s) be a fixed dg-algebra, by an A-dg-module we mean a differential graded vector
space (M, s) together two associative distributive multiplication maps A x M — M, M x
A — M with the properties:
(1) AZMJ C Mi+j7 MlAJ,E Mi—l—j'
(2) (Koszul) am = (—1)*"ma, for homogeneous a € A, m € M.
(3) (Leibnitz) s(am) = s(a)m + (—1)%s(m).

If A = Ay we recover the usual notion of complex of A-modules.

EXAMPLE IV.20. For every morphism of dg-algebras B — A the space Derfj(A, A)
@®pDerl; (A, A) has a natural structure of A-dg-module, with left multiplication (af)(b)

a(f(b))-
If M is an A-dg-module then M[n] = K [n] ®g M has a natural structure of A-dg-module
with multiplication maps
(e®@m)a = e ® ma, ale@m) = (—1)""e ® am, e€Kin],me M, ac A

The tensor product N® 4 M is defined as the quotient of N®g M by the graded submodules
generated by all the elements na @ m —n ® am.
Given two A-dg-modules (M, dys), (N, dy) we denote by

Hom’i (M, N) = { f € Homg (M,N) | f(ma) = f(m)a, m € M,a € A}
Hom’ (M, N) = @ Hom" (M, N).

The graded vector space Hom¥ (M, N) has "Whatural structure of A-dg-module with left

multiplication (af)(m) = af(m) and differential
d: Hom's (M, N) — Hom'y (M, N),  df = [d, f] = dw o f — (~1)"f o dar.

Note that f € Hom% (M, N) is a morphism of A-dg-modules if and only if df = 0. A
homotopy between two morphism of dg-modules f,g: M — N isah € Homzl(M, N) such
that f — g = dh = dyh + hdy;. Homotopically equivalent morphisms induce the same
morphism in homology.

Morphisms of A-dg-modules f: L — M, h: N — P induce, by composition, morphisms
f*: Hom% (M, N) — Hom% (L, N), hy: Hom’ (M, N) — Hom’ (M, P);

LEMMA IV.21. In the above notation if f is homotopic to g and h is homotopic to | then
f* is homotopic to g* and l, is homotopic to h..

PrROOF. Let p € HomZI(L, M) be a homotopy between f and g, It is a straightforward
verification to see that the composition with p is a homotopy between f* and g*. Similarly
we prove that h, is homotopic to I,. O

LEMMA IV.22. (Base change) Let A — B be a morphism of unitary dg-algebras, M an
A-dg-module, N a B-dg-modules. Then there exists a natural isomorphism of B-dg-modules

Hom’% (M, N) ~ Homp(M ®4 B, N).
ProOF. Consider the natural maps:
L
Hom% (M, N) ——= Homjz(M ®4 B,N) ,
R
Lf(m®b) = f(m)b,  Rg(m)=g(me1).
We left as exercise the easy verification that L, R are isomorphisms of B-dg-modules and
R=1L"" O
Given a morphism of dg-algebras B — A and an A-dg-module M we set:
Ders(A, M) = {¢ € Homy (4, M) | ¢(ab) =d(a)b + (—1)"ad(b), ¢(B)=0}
Derp (A, M) = @ Der'z(A, M).
As in the case of Hom*, there exists a strlitfure of A-dg-module on Derp(A, M) with
product (a¢)(b) = a¢(b) and differential

d: Der’y (A, M) — Der'y™ (A, M), d¢ = [d,¢] = dud — (—1)"dda.
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Given ¢ € Der's(A, M) and f € Hom'{ (M, N) their composition f¢ belongs to Der’y™ (A, N).

4. Kodaira-Spencer’s maps in dg-land

In this section, we define on the central fibre of a deformation a sheaf of differential graded
algebras B which contains (well hidden) the “Taylor coefficients” of the variation of the
complex structures given by the deformation (the first derivative being the Kodaira-Spencer
map).

LEMMA IV.23. Let U be a differential manifold (not necessarily compact), A C C" a
polydisk with coordinates t1,...,t, and f(z,t) € C°(U x A,C).
Then there exist fi,..., fn, f1,---, fa € C°(U x A,C) such that

of of

fil,0) = 7 o1,

= (z,0), fi(x,0) = =(x,0) and

Flat) = f(2,0)+ 3 tifi(x,t) + Y Lifs(x,1).

PROOF. The first 2 equalities follow from the third. Writing ¢; = u; +1iv;, t; = uj —iv;,
with u;,v; real coordinates on C" = R?" we have

1
) = 1(2.0.0) + [ (o susopds =

f(z,0,0) +Zu]/ u, xsusvds—i—Zvj/ —fxsusv)ds

Rearranging in the coordinates t;, ¢; we get the proof. O
Let X be a fixed complex manifold; denote by De’r%;{ (Agé*, Ag{k) - %m(Ag{k, Ag{k) the
sheaf of ﬁ}—derivations of the sheaf of graded algebras Ag;*; we have the following
PropoSITION 1V.24. In the notation above there exists a natural isomorphism of sheaves
0: AL (Tx)—> Dery (A, AY).
In local holomorphic coordinates z1, ..., Zm,
0: AY (Ix) — Derl. (A", AY) € Derg(AY", AY)

is given by 0 <¢§Z> (fdz;) = ¢ A %dfl.

The Dolbeault differential in Ag{k (Tx) corresponds, via the isomorphism 0, to the restriction
to Der%} (.Agé*, Agé*) of the adjoint operator

[0, -]: Derp(AY, AY) — Derg (AY, AYY).

PROOF. The morphism 6 is injective and well defined. Let U C X be an open polydisk
with coordinates z1,...,z,. Take & € T'(U, Der%* (AO’*,Ag(’—*)) and denote ¢; = £(z;) €

(U, Ag&p). We want to prove that £ =0 <ZZ gbZaa)
Zi

Since, over U, Ag{k is generated by Ag&o and ﬁ}, it is sufficient to prove that for every
open subset V' C U every point x € V and every C*°-function f € I'(V, Ag&o) the equality

§(f) (@) = Z@ ,( ) holds.

If zi(x) =x; € (C then by Lemma IV.23 we can write

f(Zl,...,Zm):f<aj'1,..., +Z fz 21,..., )—l—Z(Z—Ti)fg(zl,...,zm)
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for suitable C'°° functions f;, f;; therefore

Zg fl Z1,..-, T Z¢lazz )

In particular, for £, € I'(U, Derﬁ* (.AO’*,Agé*)), we have & = 7 if and only if £(z;) = n(z;)
X

fori =1,...,m. Since dQy C QY the adjoint operator [d, —] preserves Der%} (Agg*, Ag{k),
moreover
0 (80 2 = @0)3; = A6oy) — (17 (6 ) @z) = (2.0 (6
0z = Yo " 0z K 0z %
and then 00 = [0, —]6. O

According to Proposition IV.24, the standard bracket on Der%* (Agé*,Ag{k) induces a
X

bracket on the sheaf .Agé* (T'x) given in local coordinates by

9 9 _(;0a0 o0
[fa 9y, ch] _< 0202 Yoz 04 >Cr1Ad”

Note that for f,¢g € I'(U, A)é (T'x)), [f,g] is the usual bracket on vector fields on a differ-
entiable manifolds.

Let B C C" be an open subset, 0 € B, and let MOLML(B,O) be a deformation of a
compact complex manifold My; let ¢1,...,t, be a set of holomorphic coordinates on B.
It is not restrictive to assume My C M and ¢ the inclusion map.

DEerINTTION TV.25. In the notation above, denote by Iy C .AX; the graded ideal sheaf
generated by #;, dt;, dt;. Denote by B}, the quotient sheaf Ay, /Ip.!

If z1,...,2m,t1,...,t, are admissible (Defn. 1.29) local holomorphic coordinates on an
admissible chart W ¢ M, W ~ (W N My) x A, 0 € A C B polydisk, then every ¢ €
[(W, B};) has a representative in T'(W, A};") of the form

z) + Ztifﬁi(%t% ¢o(z) € T(W N Mo, Aypp), b € T(W, Ayp).

By a recursive use of Lemma IV.23 we have that, for every s > 0, ¢ is represented by

> tHorz)+ > Her(z1).

[I]<s |I|=s

The ideal sheaf I}/ is preserved by the differential operators d, 9,9 and therefore we have
the corresponding induced operators on the sheaf of graded algebras B;’[*. Denoting by
Bg}[* C B}/ the image of A?\’; we have that B?\}; is a sheaf of dg-algebras with respect to
the differential 0.

LEMMA IV.26. In the notation above, let U,V C M be open subsets; if U N Mo =V N My
then T(U, By ) = T(V,By,) and therefore By, is a sheaf of dg-algebras over M.

PROOF. It is not restrictive to assume V' C U, then U = V U (U — Mp) and by the
sheaf properties it is sufficient to show that I'(U — My, By;) = T(V — My, By;) = 0. More
generally if U C M is open and U N My = () then I'(U, By;) = 0; in fact there exists an
open covering U = UU; such that ¢; is invertible in Us.

If W C My is open we define I'(W, By;) = I'(U, B};"), where U is any open subset of M
such that U N My = W. ]

The pull-back i*: Ay, — A*J\Z) factors to a surjective morphism i*: B}, — A’;\Z) of sheaves
of differential graded algebras over Mj. B
Note also that the image in B}k\’j of the sheaf of antiholomorphic differential forms QL is

1t is also possible to define B as the quotient of A by the ideal generated by &;, dt;, dt; and the C'*
functions on B with vanishing Taylor series at 0: the results of this chapter will remain essentially unchanged
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naturally isomorphic to the sheaf ﬁ*MO. In fact if z1,..., 2m,t1,...,t, are local admissible
coordinates at a point p € My and ¢ € ﬁ?\/l then

)= Z¢j17,,,7jq(z)dzj1 A NdZ, (mod %;, dt;), Ojy,.ja = 0.
Therefore to every deformation M M i>(B ,0) we can associate an injective morphism

of sheaves of dg-algebras on Mjy:

04 -LoBY C B

DEFINITION IV.27. The algebraic data of a deformation MOLML(B, 0) is the pair of
morphisms of sheaves of dg-algebras on Mjy:
QDB AL

We note that f injective, * surjective and i* f the natural inclusion. Moreover f and ¢*
commute with both differentials 9, 0.

If MOLN (B, 0) is an isomorphic deformation then there exists an isomorphism of
sheaves of dg-algebras B); — By which makes commutative the diagram

Similarly if (C,0) — (B, 0) is a germ of holomorphic map, then the pull-back of differential
forms induces a commutative diagram

=k * %
QMO BM

e

*,% *,%
BMXBC AMO

Before going further in the theory, we will show that the Kodaira-Spencer map of a

deformation My—— M i>(B,O) of a compact connected manifold My can be recovered
from its algebraic data 57\40 LB}"W* Z—>A7V[>;

LEMMA IV.28. In the notation above, consider Ag)\’jg as a sheaf of Bg/’[*—modules with the
structure induced by i* and denote for every j > 0.

i 0, 0,%
Derjﬁ* (Byr s A,
. j 0,% 0,% 1y °
i Derjﬁ* (A Anr)
Then there exists a natural linear isomorphism
To.p = ker(I'(My, Tyy) — T'(Mo, T;), h+ 4h — hdp).

Ti, =

Proor. We consider Tp g as the C-vector space of C-derivations Opg — C. Let
ﬁ € I'(Mo, Derg. (BR’;, A(J)\Z))) be such that 9 4h — hdp € i* Der%* (A(])\’j;, A(J)\Z)); in particular
Oh(t;) = 0 for every 4, the function h(t;) is holomorphic and then constant. Moreover,
h(t;) = 0 for every i if and only if h(ker:*) = 0 if and only if h € ¢* Der%* (A?\’j;, A(J)\’j;).
This gives a linear injective morphism
ker(I(Mo, 73y) — T'(Mo, Tay)) — To,p-
To prove the surjectivity, consider a derivation : Op g — C and let My = UU,, a € T, be a

locally finite covering with every U, open polydisk with coordinate systems z¢, ..., zp : U, —
C. Let ty,...,t, be coordinates on B.
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Over Uy, every ¢ € B?\}[* can be written as ¢o(z) + > tidi(z) + > tit; ..., with ¢; € A(])\Z)
Setting hq(¢) = >, 0(t;)¢; we see immediately that h, is a ﬁ;}a—derivation lifting . Taking
a partition of unity p, subordinate to the covering {U,}, we can take h = )" pahq- O

Let h € I'(Mo, Derz. (Bg’;, A(])\ZJ)) be such that ¢ = d4h—hdg € i Derf (AMD,A(])\Z)) and
let 6: Op o — C be the corresponding derivation, 6(¢;) = h( )
According to the isomorphism (Proposition IV.24) Derf (A% Mo A?\Z)) = A(])\’jo (Tnr,) we have
¥ € T'(Mo, A" (Twy)).- o o

: : * ¥ 5k 3 3 3 ¥ 7*

Moreoxﬁar, being ¢ exact in the complex Derf,. By, A Mo)’ it is closed in Der%* (A Moo A Mo)’
1 is a d-closed form of T'(My, A% (Th,)) and the cohomology class [¢p] € HY (Mo, Thy,) is
depends only on the class of h in T'(My, 7, ]\04) It is now easy to prove the following

PROPOSITION IV.29. In the above notation, [p] = [0h — hd] = KS(9).

PROOF. (sketch) Let n € T'(M, A(]]\}[O(TM)) be a complexified vector field such that
(f+n)(0) = 8. We may interpret 1 as a €2,,-derivation of degree 0 7: .AO ’ AM, passing
to the quotient we get a ﬁj\/lo—derivation h: Bg/’j* — A(]]\’j;. The coﬁndition (f«n)(0) = 6 means
that h lifts § and therefore v corresponds to the restriction of 9 to the fibre M. g

5. Transversely holomorphic trivializations

DEFINITION IV.30. A transversely holomorphic trivialization of a deformation My—— M i>(B ,0)
is a diffeomorphism ¢: My x A — f~1(A) such that:
(1) A C B is an open neighbourhood of the base point 0 € B
(2) ¢(z,0) =i(x) and f¢ is the projection on the second factor.
(3) For every z € My, ¢: {x} x A — M is a holomorphic function.

THEOREM IV.31. Every deformation of a compact complex manifold admits a transversely
holomorphic trivialization.

PrOOF. (cf. also [10], [78]) Let f: M — B be a deformation of Mjy; it is not restrictive
to assume B C C" a polydisk with coordinates t1, ... ,tn and 0 € B the base point of the
deformation. We identify My with the central fibre f~1(0).

After a possible shrinking of B there exist a finite open covering M = UW,, a = 1,.

and holomorphic projections p,: W, — U, = W, N My such that (pg, f): W, — U X B
is a biholomorphism for every a and U, is a local chart with coordinates z{': U, — C,
t=1,....,m

Let pg: My — [O, 1] be a C*° partition of unity subordinate to the covering {U,} and
denote V, = p;1(]0,1]); we note that {V} is a covering of My and V, C U,. After a
possible shrinking of B we may assume p, '(V,) closed in M.

For every subset C' C {1,...,r} and every x € My we denote

He=| (\Wo—Uwa'(Va) | x [ (N Va—|JVa | €M x M,

acC agC acC agC

Co={alzeV,}, H=|JHc.
C

Clearly (z,x) € H¢, and then H is an open subset of M x My containing the graph G of
the inclusion My — M. Since the projection pr: M x My — M is open and M is compact,
after a possible shrinking of B we may assume pr(H) = M.
Moreover if (y,z) € H and z € V, then (y,z) € H¢ for some C containing a and therefore
y € W,.
For every a consider the C*° function qa' HnN (M x U,) — C™,

Zpb L(po(y)) — 2 (x)).
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By the properties of H, g, is well defined and separately holomorphic in the variable y. If
(y,z) € HN (M x (U, NU,)) then

qe(y, ) = gj: (2)qa(y, )

and then
I'={(y,z) € H|qq(y,z) =0 whenever z € U, }
is a well defined closed subset of H. B
If y € V, € My and =z is sufficiently near to y then x € (ﬂbecy Up — Upge Vo) and, for every
be Cy,

b azb a _.a a _.a
(@) + 52 (@) ("(y) — 2°(2)) +o([|2°(y) — 2*(@)]))-

(y) =2
Therefore
da(y, z) = 2%(y) — 2%(z) + o(|[2"(y) — 2" (@)]]).

In particular the map x — ¢,(y, ) is a local diffeomorphism at = = y.

Denote K C H the open subset of points (y, ) such that, if y € p;1(V,) then u — g4 (y, u)
has maximal rank at © = x; note that K contains G.

Let T'g be the connected component of I' N K that contains G; I'g is a C'*°-subvariety of K
and the projection pr: I'y — M is a local diffeomorphism. Possibly shrinking B we may
assume that pr: I'go — M is a diffeomorphism.

By implicit function theorem I’y is the graph of a C* projection v: M — M.

After a possible shrinking of B, the map (v, f): M — My x B is a diffeomorphism, take
o=t

To prove that, for every x € My, the map ¢ — ¢(z, t) is holomorphic we note that f: ¢({z}x
B) — B is bijective and therefore ¢(z, —) = f~!pr: {z} x B — ¢({z} x B).

The map f~': B — ¢({x} x B) is holomorphic if and only if ¢({z} x B) = v (z) is
a holomorphic subvariety and this is true because for = fixed every map y — q4(y,x) is

holomorphic. O
Let z1,..., 2m,t1, ..., t, be an admissible system of local coordinates at a point p € My C
M. z1,...,2Zm,t1,...,t, is also a system of local coordinates over My x B.

In these systems, a transversely holomorphic trivialization ¢: My x B — M is written as

(Z)(Z,t) = (¢1(Z7t)7 .. '7¢m(z7t)7t17 s 7tn)7

where every ¢;, being holomorphic in #1,...,t,, can be written as
$i(zt) =2+ Y tois(z),  I=(ir,....in), ois€C™
I>0

In a neighbourhood of p,
Sz =dz+ Y 1Y (8‘?’71 dz; + 09i.1 dzj> . (mod Inyxp),

0z; 0z;
>0 j=1 J J

¢ dz; = dz, (mod IpyxB)-

LeEMMA TV.32. Fvery transversely holomorphic trivialization ¢: My x B — M induces
isomorphisms of sheaves of graded algebras over My

s, g%,k *, % % . 120,% 0,%
" By — BMOXB7 " By — BngB

making commutative the diagrams

Qyy — Bi Qyy — By
7 N
BXZ)XB*)A*J\Z) B?\Z;XB*)A(J)\ZJ

Beware: It is not true in general that, for p > 0, ¢*(BP?) C BP.
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PRrROOF. For every open subset U C M, the pull-back
¢*: F(Uv A}(\}I*) - F(‘bil(U)?A)]k\Z)xB)

is an isomorphism preserving the ideals Ij; and Ip;xp. Since U N My = ¢~ 1(U) N My,
the pull-back ¢* induces to the quotient an isomorphism of sheaves of graded algebras

k% k, ok
¢*: Byp — By
From the above formulas follows that (b*(Bﬁf_p ) C @QSPB?\}I]Z;% and ¢* is the identity on
Q*MO. This shows that ¢* (Bg/’[*) = B?\Z)X p and proves the commutativity of the diagram;

The 0 operator on A}‘w’* factors to B?\’; and therefore induces operators

7. RO* 0,%+1 T, %9 —1. 130,% 0,%+1
d: By, — By, Oy = " 0(¢™) - BMMB BMoxB
If z1,...,2zm, t1,...,t, are admissible local coordinates at p € My, we have

m
(¢")'dzi = dz + Y aijdz; +bidz;,  (mod Iy),

j=1

where a;j, b;; are C*° functions vanishing on My and
(¢*) " tdz = dz, (mod Ipy).

Thus we get immediately that d4(dz;) = 0. Let’s now f be a C* function in a neighbour-
hood of p € U C My x B and let 7: A*M’* — A?\}[* be the projection. By definition 5¢f is
the class in ngx g of

¢*7d(¢") ' f = "7 (¢") N df = Z ) ldzi +Za*¢ﬂ ¢*)dz

and then
_ _ of
8¢f =0f + szﬂ@%d%
ij v

If 1p: My x B — M is another transversely holomorphic trivialization and 6 = ¢* (*) 1
then ad, = 9(9¢9_1.

6. Infinitesimal deformations

Let Mo—i>M i>(B ,0) be a deformation of a compact complex manifold and J C Opg a
proper ideal such that VI = mp o; after a possible shrinking of B we can assume that:
(1) B C C™ is a polydisk with coordinates t1,...,t, and J is generated by a finite
number of holomorphic functions on B.
(2) f: M — B is a family admitting a transversely holomorphic trivialization ¢: My X

B— M.
Denote by (X,0) the fat point (B,0,J) and by Oxo = Opg/J its associated analytic
algebra. If m} ; C J then the holomorphic functions th, I = (i1,...,in), |I| < s, generate

Ox o as a C-vector space.

Denote by Ips,; C A}, the graded ideal sheaf generated by Ij; and J, BL* ;=AIwg =
By /(J), Onm.g = On/(J). The same argument used in Lemma IV.26 shows that 87\};]
and Oy, are sheaves over My. In the same manner we define BZZJX B.J

LEMMA IV.33. Let U C My be an open subset, then there exist isomorphisms
I'(U,OnyxB,s) =T(U, O ®@c Ox o, (U, B}k\jng’J) =I'(U, A}‘\Z)) ®c Ox -

The same holds for M instead of Mgy x B provided that U is contained in an admissible
coordinate chart.
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PROOF. We have seen that every ¢ € I'(U, By, 5 ;) is represented by a form >inl<s tlor,

with ¢; € T'(U, A% ). Writing every ¢/ as a linear combination of the elements of a fixed
basis of Ox o and rearranging the terms we get the desired result. The same argument
applies to O xB,s and, if U is sufficiently small, to BX}[* 7 O, O

COROLLARY IV.34. Oy 5 = ker(é: Bng - B?\’f,ﬂ'
PRrROOF. If U C My is a sufficiently small open subset, we have I'(U, By} ;) = I'(U, A*M’;’;))@(c

Ox,0 and then
ker (5: (v, B?\}[(?J) — I'(U, Bg/’[{J)) =

— ker (5 L T(U, A%D) @ Ox o — T(U, AN ) © ox,o) = T(U,O1r.y).
O

The transversely holomorphic trivialization ¢ gives a commutative diagram of morphisms
of sheaves of graded algebras

oFf 0,%
Qg ® Ox0 —= By

LA

0,%
Mo

— s A

0,%
BMQXB,J

with ¢* an isomorphism. The operator 95 = ¢*9(¢*)~! is a Ox g-derivation of degree 1
such that gi = 1[04, 0p] = 0 and then 1y = dy — 0: Bg/’;ngJ — B?\};;g’J is a ﬁ}k\/lo ® Ox 0-
derivation.

According to Lemma I'V.33 we have ng;xB,J = A(])\};; ®0Ox ; moreover, if go = 1, g1(t), .. ., gr (%)
is a basis of Ox o with g; € mx ¢ for i > 0, then we can write gy = Y, g:(t)n;, with every n;
a ﬁ}k%—derivation of degree 1 of A?\Z). By Proposition 1V.24 74 € I'(Mj, AYH(Tyy)) @ mx o

In local holomorphic coordinates z1, ..., z, we have 5¢(d27) =0 and
— — « af
Dpf =0f + > gilt) ik (2) 5 dZk
i,k J

for every C'*° function f. The b; . are C°° functions on M.

A different choice of transversely holomorphic trivialization ©: My x B — M gives a
conjugate operator 9, = 09,07, where 6 = ¢*(¢*) 71,

This discussion leads naturally to the definition of deformations of a compact complex
manifolds over a fat points.

DEFINITION IV.35. A deformation of My over a fat point (X, 0) is a section

n € [(Mo, A% (Tag,)) ® mx o = Derf- (
Mo

0,% 0,%
AM()?AMO) @mxo
sEch thft the operator 0 +1n € Deré)xyo (.A(])\;;:J ® Ox,o,A% ® Oxp) is a differential, i.e.
[0+mn,0+n]=0.
Two deformations 7, p € I'(Mo, A%} (Thy,)) @ mx o are isomorphic if and only if there exists
an automorphism of sheaves of graded algebras 6: A(]]\Z) ® Ox,0 — A(]]\Z) ® Ox,p commuting
with the projection .Agj; ® Ox,0 — .AS)\};; and leaving point fixed the subsheaf Q*MO ® Ox,0
such that @ + pu = 60(d +n)o~ L.

According to IV.24 the adjoint operator [0, —] corresponds to the Dolbeault differential in

the complex A%*(Tyy,) and therefore (9+n)? = 0 if and only if n € T'(My, A% (Th,))@mx o
satisfies the Maurer-Cartan equation

— 1
877 + 5[77777] =0€ F(M()’AOQ(TMO)) & mx.o-
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We denote with both Defjz,(X,0) and Defyg, (Ox,) the set of isomorphism classes of
deformations of My over (X,0). By an infinitesimal deformation we mean a deformation
over a fat point; by a first order deformation we mean a deformation over a fat point (X, 0)
such that mx g # 0 and mg(’o =0.

The Proposition 1V.29 allows to extend naturally the definition of the Kodaira-Spencer
map KS: Ty x — H (Mo, Th,) to every infinitesimal deformation over (X, 0).

Consider in fact 0 € Derc(Ox o, C) = Tp x, then

0, 0,
h=1d®:é: AA/;E)®(9X’0HAMZ
is a ﬁ}kwo—derivation lifting 4. Since

(Oh —1(d +n))(f © 1) = h(=n(f))
we may define KS(0) as the cohomology class of the derivation

sy = At e h(=n(f),
which corresponds, via the isomorphism of Proposition 1V.24, to

(Id ® 5)(_77) € F(M()a AO,I(TMo))a

where Id ® &: T'(My, A% (Thy,)) ® mx . According to the Maurer-Cartan equation 9n =
—1[n.n] € T(My, A%*(Thy,)) ® m%  and then

I((Id®6)(—n)) = (Id® §)(—dn) = 0.

A morphism of fat points (Y,0) — (X,0) is the same of a morphism of local C-algebras
a: Ox — Oyp; It is natural to set Id ® a(n) € T'(My, A»(Tw,)) ® myo as the pull-back
of the deformation 7. It is immediate to see that the Kodaira-Spencer map of Id ® a(n) is
the composition of the Kodaira-Spencer map of n and the differential a:: Ty,9 — T'x .

7. Historical survey, IV

The importance of infinitesimal deformations increased considerably after the proof (in

the period 1965-1975) of several ineffective existence results of semiuniversal deformations
of manifolds, of maps etc.., over singular bases.
The archetype of these results is the well known theorem of Kuranishi (1965) [45], asserting
the existence of the semiuniversal deformation of a compact complex manifold over a base
which is an analytic singularity. An essentially equivalent formulation of Kuranishi theorem
is the following

THEOREM IV.36. Let My be a compact complex manifold with n = h*(Mo, Thy,), 7 =
h%(Mo, Thr,)-

Then there exist a polydisk A C C", a section n € T'(M, A" (TY)), being M = My x A and
f: M — A the projection, and g = (q1,...,¢): A — C" a holomorphic map such that:

9a:
(1) ¢(0) =0 and a—gz(O) =0 for every i, j, being t1,...,t, holomorphic coordinates on
J
A.

(2) 1 vanishes on My and it is holomorphic in ty, ..., t,; this means that it is possible
to write

U:Ztlnb I= (7;17"'>Z.n)> ni GF(Mf)?AO’l(TMO))-
(3) n satisfies the Maurer-Cartan equation to modulus qi, ... ,qs, i.e.

o+ %[nm] €Y al'(M, A%*(Ty)).

(4) Given a fat point (X,0) the natural map

n: Moran(Oao/(q1,---,4s), Ox,0) — Defg (X, 0), o a(n)
is surjective for every (X,0) and bijective whenever Ox o = C[t]/(t2).
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It is now clear that the study of infinitesimal deformations can be used to deduce the
structure of the holomorphic map ¢ and the existence of the semiuniversal deformation
over a smooth base. For example we have the following

COROLLARY IV.37. Let My be a compact complex manifolds such that for every n >
2 the natural map Def g, (C[t]/(t")) — Defpr, (C[t]/(t?)) is surjective. Then My has a
semiuniversal deformation Mo—s M—(H*(My, Th,),0).

PROOF. (sketch) In the notation of Theorem IV.36 we have (qi,...,qs) C mio and
then, according to Proposition I11.7, g1 = ... = ¢; = 0. In particular 7 satisfies the Maurer-
Cartan equation and by the Newlander-Nirenberg’s theorem (cf. [9, 1.4], [78]) the small
variation of almost complex structure [9, 2.1, 2.5], [78]

—n: A}\}[O — A(J]\}[l, —y: TJ(\)/}l — Tj/}o
is integrable and gives a complex structure on M with structure sheaf Oyr, = ker(0 +
. 40,0 0,1
no: Ay, — Ayr).
The projection map (M, Ony) — A is a family with bijective Kodaira-Spencer map, by
completeness theorem 1.50 it is a semiuniversal deformation. O

It is useful to remind here the following result proved by Malgrange [50]

THEOREM IV.38. Let q1,...,qm: (C™",0) — C be germs of holomorphic functions and
f:(C",0) — C a germ of C* function. If 0f =0, (mod qi,...,qm) then there exists a
germ of holomorphic function g: (C",0) — C such that f =g, (mod qi,...,Gm)-






LECTURE V

Differential graded Lie algebras (DGLA)

The classical formalism (Grothendieck-Mumford-Schlessinger) of infinitesimal deformation
theory is described by the procedure (see e.g [2], [66])

Deformation problem ~»  Deformation functor/groupoid

The above picture is rather easy and suffices for many applications; unfortunately in this
way we forget information which can be useful.

It has been suggested by several people (Deligne, Drinfeld, Quillen, Kontsevich [43],
Schlessinger-Stasheff [68, 69], Goldman-Millson [20, 21] and many others) that a possible
and useful way to preserve information is to consider a factorization

Deformation problem ~» DGLA ~» Deformation functor/groupoid

where by DG LA we mean a differential graded Lie algebra depending from the data of the
deformation problem and the construction

DGLA ~~ Deformation functor, L ~~ Defp,

is a well defined, functorial procedure explained in this Lecture.

More precisely, we introduce (as in [44]) the deformation functor associated to a differen-
tial graded Lie algebra and we prove in particular (Corollary V.52) that quasiisomorphic
differential graded Lie algebras give isomorphic deformation functors: this is done in the
framework of Schlessinger’s theory and extended deformation functors.

We refer to [20] for a similar construction which associate to every DGLA a deformation
groupoid.

Some additional comments on this procedure will be done in Section 9; for the moment
we only point out that, for most deformation problems, the correct DG LA is only defined
up to quasiisomorphism and then the results of this Lecture are the necessary background
for the whole theory.

In this chapter K will be a fixed field of characteristic 0. We assume that the reader is
familiar with basic concepts about Lie algebras and their representations [31], [33]; unless
otherwise stated we allow the Lie algebras to be infinite dimensional.

1. Exponential and logarithm

For every associative K -algebra R we denote by R, the associated Lie algebra with bracket
[a,b] = ad(a)b = ab — ba; the linear operator ad(a) € End(R) is called the adjoint of a, the
morphism ad: Ry, — End(R) is a morphism of Lie algebras. If I C R is an ideal then I is
also a Lie ideal of Ry,

EXERCISE V.1. Let R be an associative K -algebra, a,b € R, prove:

(1) §
ad(a)"b =Y (~1)’ (?) a" bl

=0

MARCO MANETTI: Deformations of complex manifolds version June 28, 2011
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(2) If a is nilpotent in R then also ad(a) is nilpotent in End(R) and

ead(a)p . — Z mb = e%e™ .

n!
n>0

Let V be a fixed K-vector space and denote

= {Zvn vy € ®”V} ~ H@"V
n=0 n=0

With the natural notion of sum and Cauchy product P(V') becomes an associative K-
algebra; the vector subspace

I3

Un € ®”V} C P(V)

is an ideal, m(V)* = {>_7° v,} for every s and P(V) is complete for the m(V')-adic

topology: this means that a series z:rl is convergent whenever z; € m(V)* for every i.

In particular, it is well defined the exponential

e:m(V) = E(V):=1+m(V _{1+Zvn|vne®V}CP ,e—zn'

and and the logarithm

o0

n
log: E(V) —»m(V),  log(l+a)=> (1"
n
n=1
We note that E(V') is a multiplicative subgroup of the set of invertible elements of P(V)
(being Y7 ;2" the inverse of 1 —z, x € m(V)). It is well known that exponential and log-
arithm are one the inverse of the other Moreover if [x,y] = zy — yz = 0 then *T¥ = e%e¥

and log((1 +z)(1+y)) = log(1 + ) +log(1 + y).

Every linear morphism of K-vector spaces fi: V — W induces a natural, homogeneous
and continuous homomorphism of K -algebras f: P(V) — P(W). It is clear that f(m(V)) C
m(W), f: E(V) — E(W) is a group homomorphism and f commutes with the exponential
and the logarithm.

Consider for instance the three homomorphisms

A,p,q: PV)— P(VaV)
induced respectively by the diagonal A;(v) = (v, v), by p1(v) = (v,0) and by ¢1(v) = (0, v).
We define
V) ={z e P(V)|A(z) = p() +q(@)},  L(V) = {z € P(V)| A(x) = p(x)q(x)}.
It is immediate to observe that V C I(V) C m(V) and 1 € L(V) C E(V).

THEOREM V.2. In the above notation we have:
(1) lA(V) is a Lie subalgebra of P(V)r,.
(2) L(V) is a multiplicative subgroup of E(V).
(3) Let fi:' V. — W be a linear map and f: P(V) — P(W) the induced algebra

homomorphism. Then f(1(V)) C (W) and f(E(V)) C L(W).
(4) The exponential gives a bijection between (V') and L( ).

ProOF. We first note that for every n > 0 and every pair of vector spaces U, W we
have a canonical isomorphism

Q'(Us W)= é(@"v@ Q" 'W)
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and therefore
x

PUaw)= ] Ue W
i,j=0
In particular for every z € P(U)@ K Cc PU e W), ye K @ P(W) C P(U ® W) we have
xy = yz. In our case, i.e. when U = W = V this implies that p(x)q(y) = ¢q(y)p(z) for
every z,y € P(V).
Let xz,y € [(V) then

If z,y € L(V) then
Alyz™") = Al)A(z) ! = p(y)g(z)q(x) " 'p(z) " = plyz~g(yz™")

and therefore yz—! € L(V).
If g: PVa®V)— P(WaW) is the algebra homomorphism induced by f1® f1: VoV —
W @ W it is clear that Af = gA, pf = gp and qf = gq. This implies immediately item 3.

~

If x € (V) then the equalities
A(e”) = e2®) = epl@)ta(@) — op(@)a(®) — p(®)g(e®)

prove that e(f(V)) C L/(17) Similarly if y € E(V) then

A(log(y)) = log(A(y)) = log(p(y)a(y)) = log(p(y)) + log(q(y)) = p(log(y)) + q(log(y))
and therefore log(L(V)) C A(V) O

COROLLARY V.3. For every vector space V the binary operation

«: [(V) x (V) — 1(V), x xy = log(e®e?)

induces a group structure on the Lie algebra (V).

Moreover for every linear map f1: V. — W the induced morphism of Lie algebras f: (V) —
(W) is also a homomorphism of groups.

PRrROOF. Clear. O

In the next sections we will give an explicit formula for the product * which involves only
the bracket of the Lie algebra I(V').

2. Free Lie algebras and the Baker-Campbell-Hausdorff formula

Let V be a vector space over K, we denote by

TWV)= PR"V, TWV)=pRQ "'V cT(V).
The tensor product induce onnZOT(V) a structure of 2ulnitad associative algebra, the natu-
ral embedding 7(V) C P(V) is a morphism of unitary algebras and T'(V') is the ideal
T(V)nm(V).
The algebra T'(V) is called tensor algebra generated by V and W is called the reduced
tensor algebra generated by V.

LEMMA V.4. Let V be a K -vector space and 1: V = @'V — T (V) the natural inclusion.
For every associative K -algebra R and every linear map f: V — R there exists a unique
homomorphism of K -algebras ¢: T(V) — R such that f = ¢u.

PrOOF. Clear. O

DEFINITION V.5. Let V be a K-vector space; the free Lie algebra generated by V is the

smallest Lie subalgebra (V') C T'(V'); which contains V.
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Equivalently I(V) is the intersection of all the Lie subalgebras of T'(V'), containing V.
For every integer n > 0 we denote by I(V),, C @"V the linear subspace generated by all
the elements

[v1, [V, [ - [Un—1,vn]].]], n>0, vy,...,u, €V.
By definition {(V),, = [V,{(V)n—1] and therefore @,~ol(V), C (V). On the other hand
the Jacobi identity [[x,y], z] = [, [y, 2]] — [y, [z, 2]] implies that

LV )ns LV )] € [V, WV )1, AV )l ] 4 LV )1, [V LV )]

and therefore, by induction on n, [[(V)n, {(V)m] C UV )ntm.
As a consequence @,0l(V), is a Lie subalgebra of I(V) and then @®,<ol(V), = I(V),
(V) =1(V)NR"V.

Every morphism of vector spaces V' — W induce a morphism of algebras T'(V) — T'(W)
which restricts to a morphism of Lie algebras (V) — [(W).

The name free Lie algebra of (V') is motivated by the following universal property:
Let V' be a vector space, H a Lie algebra and f: V — H a linear map. Then there exists a
unique homomorphism of Lie algebras ¢: (V) — H which extends f.
We will prove this property in Theorem V.6.

Let H be a Lie algebra with bracket [,] and o;: V' — H a linear map.
Define recursively, for every n > 2, the linear map

on: Q"V — H, on( ®...0v,) = [o1(v1),0n-1(v2 @ ... @ vy)].

For example, if V' = H and o0 is the identity then o, (v1®. . .®@uvy,) = [v1, [v2, [. . ., [Vn—1, Vn]].]]-

THEOREM V.6 (Dynkyn-Sprecht-Wever). In the notation above, the linear map

[e.9]

U:Z%:Z(V)HH

n=1
is the unique homomorphism of Lie algebras extending o1.

PrOOF. The adjoint representation 6: V' — End(H), 0(v)x = [01(v), x] extends to a
unique morphism of associative algebras 6: T(V) — End(H) by the composition rule

0(v1 ®...0vs)x = 6(v1)0(v2) ...0(vs)x.
We note that, if vy,...,v,,w1,...,wy, € V then
Ontm(V1 @ ... QU QW1 ® ... W) =0(V1 @ ... Up)om (w1 @ ... R wy).

Since every element of [(V') is a linear combination of homogeneous elements it is sufficient
to prove, by induction on n > 1, the following properties

Ap: Ifm <n, x € (V) and y € [(V),, then o(zy — yx) = [o(x), o (y)]-
Bn: Ifm <n,ye€l(V), and h € H then 0(y)h = [o(y), h].

The initial step n = 1 is straightforward, assume therefore n > 2.
[An—1 + Bn—1 = B,] We can consider only the case m = n. The element y is a linear
combination of elements of the form ab — ba, a € V, b € I(V),—1 and, using B,_1 we get

0(y)h = [o(a),8(b)h] — O(b)[o(a), h] = [o(a), [0(b), h]] — [o(b), [o(a), h].
Using A,,_1 we get therefore
0(y)h = [lo(a), o (b)], h] = [o(y), h].
[B,, = A,)]

Onim(@y — yx) = 0(x)on(y) — 0(y)om(z) = [o(x), on(y)] = [0(y), om(2)]
= nlo(z),0(y)] —mlo(y),o(x)] = (n+ m)o(z),o(y)].

Since [(V') is generated by V as a Lie algebra, the unicity of o follows. O
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COROLLARY V.7. For every vector space V the linear map

1
o: T(V)—=1(V), o1 ®...Quv,) = E[vl’ [va, [+, [Vn—1,vn]].]]
1S a projection.

PROOF. The identity on [(V) is the unique Lie homomorphism extending the natural
inclusion V' — [(V). O

The linear map o defined in Corollary V.7 extends naturally to a projector o: P(V) —
P(V). We have the following theorem

THEOREM V.8 (Friedrichs). In the notation above

~

IV)={z e P(V)|o(z) =2} and I(V)=TV)NIV).

PROOF. The two equalities are equivalent, we will prove the second. We have already

~

seen that T'(V) and [(V) are Lie subalgebras of P(V)r containing V' and then [(V) C
T(V)ni(V).
Define the linear map

$: T(V)=T(Veal), d(z) = Ax) — p(x) — q(x).

By definition 7'(V) N I(V') = ker § and we need to prove that if §(x) = 0 for some homoge-
neous x then x € [(V). For later computation we point out that, under the identification
T(VeV)=T(V)®T(V), for every monomial [[, z; with z; € ker ¢ we have

5(Hx,-) :H(xi®1+1®xi)—(Hxi)®1—1®(Hxi).

)

In particular if € T'(V) then §(x) is the natural projection of A(x) onto the subspace
D RVeRV.
i,j>1

Let {y; | € Z } be a fixed homogeneous basis of (V). We can find a total ordering on the
set Z such that if y; € I(V )y, yj € [(V)m and n < m then i < j. For every index h € Z we
denote by J;, C T'(V) the ideal generated by y% and the y;’s for every ¢ > h, then Jj is a
homogeneous ideal and yp & Jp.
A standard monomial is a monomial of the form y = vy;,yi, ... ys, with i1 < ... <ip. The
external degree of the above standard monomial y is by definition the positive integer h.
Since vy = y;¥i + Y, anyn, an € K, the standard monomials generate T'(V) as a vector
space and the standard monomials of external degree 1 are a basis of [(V).

CrLaMm V.9. For every n > 0 the following hold:

(1) The image under ¢ of the standard monomials of external degree h with 2 < h <n
are linearly independent.
(2) The standard monomials of external degree < n are linearly independent.

PRrROOF OF CLAIM. Since the standard monomials of external degree 1 are linearly in-

dependent and contained in the kernel of ¢ it is immediate to see the implication [1 = 2].
We prove [1] by induction on n, being the statement true for n = 1.
Consider a nontrivial, finite linear combination [.c. of standard monomials of external de-
gree > 2 and < n. There exists an index h € 7 such that we can write l.c. = 2+ 1" | yzwi,
where z, w; are linear combination of standard monomials in y;, j > h and at least one of the
w; is non trivial. If we consider the composition ¢ of §: T(V) - T(VaV)=T(V)T(V)
with the projection T'(V) @ T(V) — T(V)/J, @ T(V') we have

n n
p(l.c) = iyn @yy twi = yn ® Y iy wi.
i=1 =1

Since Y1, iyf;lwi is a nontrivial linear combination of standard monomials of external
degrees < n — 1, by inductive assumption, it is different from 0 on T'(V'). U
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From the claim follows immediately that the kernel of § is generated by the standard

monomials of degree 1 and therefore ker 6 = (V). O

EXERCISE V.10. Let x1,...,xy,y be linearly independent vectors in a vector space V.
Prove that the n! vectors

Ont1(T7(1) - Tr)Y)s T € L,

are linearly independent in the free Lie algebra (V).
(Hint: Let W be a vector space with basis e, ..., e, and consider the subalgebra A C
End(W) generated by the endomorphisms ¢1,...,¢n, ¢i(ej) = d;e;-1. Take a suitable
morphisms of Lie algebras [(V) — A® W.) A

o~

Our main use of the projection o: P(V) — [(V) consists in the proof of the an explicit

~ ~

description of the product *: [(V)) x (V) — (V).

~

THEOREM V.11 (Baker-Campbell-Hausdorff formula). For every a,b € [(V) we have

(Z(pi + qz’))

=1
pilgr! ... pnlan!

ad(a)Prad(b)® ... ad(b)i1b.

@*bzzﬂz

n
n>0 p1+q1>0

Pntgn>0

~

In particular a x b — a — b belongs to the Lie ideal of (V') generated by [a,b].

PROOF. Use the formula of the statement to define momentarily a binary operator e
on [(V); we want to prove that e = x.
Consider first the case a,b € V, in this situation

n

—1)n—-1 Phd
axb=oclog(e’) =0 ZL Z a4 =
n

1!
n>0 p+¢>0 p-q:
(_1)n71 aP1pdr . gPrpin
=0 Z Z 11 o1
>0 p1tqr>0 AR Pniqn
Pn+qn>0

—1)n—1 o (aP1H8 | gPrpin
_y BV Ll ) S a0

104! 1.1
n>0 P1tq1>0 p1:q1 Pn-dn i1

Pntqn>0

The elimination of the operators o,, gives

(Z(pi + Qi)>

i=1

ol e ad(a)Prad(b)® ... ad(b)i~1b.

_1n71
axp=3 EV

n
n>0 p1+q1>0

Pntgn>0

~

Choose a vector space H and a surjective linear map H — [(V), its composition with the

~

inclusion {(V)) € m(V) C P(V) extends to a continuous morphism of associative algebras

~

q: P(H) — P(V); since {(V) is a Lie subalgebra of P(V') we have ¢({(H),) C (V) for
every n and then g(I(H)) C (V). Being q: {(H) — 1(V) a morphism of Lie algebras, we
have that ¢ commutes with e.

On the other hand ¢ also commutes with exponential and logarithms and therefore ¢ com-

mutes with the product *. Since x = e: H x H — [(H) the proof is done. O
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The first terms of the Baker-Campbell-Hausdorff formula are:

1 1 1
a*b—a+b+§[a7b]+E[a7[aabﬂ_E[bv[bﬂa“—i_'”

3. Nilpotent Lie algebras

We recall that every Lie algebra L has a universal enveloping algebra U characterized by
the properties [31, 17.2], [33, Ch. V]:
(1) U is an associative algebra and there exists an injective morphism of Lie algebras
i: L - Up.
(2) For every associative algebra R and every morphism f: L — Ry, of Lie algebras
there exists a unique morphism of associative algebras g: U — R such that f = gi.

A concrete exhibition of the universal enveloping algebra is given by U = T'(L)/I, where
I is the ideal generated by all the elements a ® b — b ® a — [a,b], a,b € L. The only non
trivial condition to check is the injectivity of the natural map L — U. This is usually
proved using the well known Poincaré-Birkhoff-Witt’s theorem [33, Ch. V].

EXERCISE V.12. Prove that, for every vector space V, T'(V') is the universal enveloping
algebra of [(V). A

DEFINITION V.13. The lower central series of a Lie algebra L is defined recursively by
L'=1L, " =[L, L.
A Lie algebra L is called nilpotent if L™ = 0 for n >> 0.

It is clear that if L is a nilpotent Lie algebra then the adjoint operator ad(a) = [a, —]: L —

L is nilpotent for every a € L. According to Engel’s theorem [31, 3.2] the converse is true
if L is finite dimensional.

ExAMPLE V.14. It is immediate from the construction that the lower central series of the
free Lie algebra I[(V) Cc T(V) is (V)" = @PIV);, =1(V)Nn PR'V.

If V is a nilpotent Lie algebra, then ‘E%g Baker—Campbéﬁ?Hausdorﬁ' formula defines a
product V x V-5V,

(Z(pz' + qz’))

i=1

pl'Ql' . p 'q ' ad(a)plad(b)ql . ad(a)pnad(b)qn_lb‘

aep=y U5

n>0 p1+q1>0

Pntgn>0

It is clear from the definition that the product * commutes with every morphism of
nilpotent Lie algebra. The identity on V induce a morphism of Lie algebras w: [(V) — V
such that 7(I(V),,) = 0 for n >> 0; this implies that 7 can be extended to a morphism of
Lie algebras : T(V) — V.

ProprosiTION V.15. The Baker-Campbell-Hausdorff product x induces a group structure
on every nilpotent Lie algebras V.

~

PROOF. The morphism of Lie algebras 7: [(V) — V is surjective and commutes with
*. U

It is customary to denote by exp(V) the group (V,x). Equivalently it is possible to
define exp(V') as the set of formal symbols e¥, v € V, endowed with the group structure
evew — ev*w‘

EXAMPLE V.16. Assume that V C M = M(n,n,K) is the Lie subalgebra of strictly upper
triangular matrices. Since the product of n matrices of V' is always equal to 0, the inclusion
V — M extends to a morphism of associative algebras ¢: P(V) — M and the morphism

¢: exp(V) —» GL(n,K),  ¢e?)=>" il' € GL(n,K).
i=0
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is a homomorphism of groups.
The above example can be generalized in the following way

ExaMpPLE V.17. Let R be an associative unitary K-algebra, R* C R the multiplicative
group of invertible elements and N C R a nilpotent subalgebra (i.e. N™ =0 for n >> 0).
Let V be a nilpotent Lie algebra and £: V — N C R a representation. This means that
£:V — Np is a morphism of Lie algebras.

Denoting by 2: V<—U the universal enveloping algebra, we have a commutative diagram

w) - v 5 N

I

TW) - v % R

where 7, £ are morphisms of Lie algebras and 7,9 homomorphisms of algebras. Since the
image of the composition ¢ = 1 is contained in the nilpotent subalgebra N the above
diagram extends to

—_

() — P(V)

| |
£
Vv — R
with ¢ homomorphism of associative algebras. If f € N it makes sense its exponential
ef € R. For every v € V we have e(") = ¢(e?) and for every z,y € V
@) = g(e®)p(e¥) = p(e%eY) = p(e™*Y) = (@),

The same assertion can be stated by saying that the exponential map e5: (V, ) = exp(V) —
R* is a homomorphism of groups.

4. Differential graded Lie algebras

DEFINITION V.18. A differential graded Lie algebra (DGLA ) (L,[,],d) is the data of a
Z-graded vector space L = @;cz L’ together a bilinear bracket [,]: L x L — L and a linear
map d € Hom!(L, L) satisfying the following condition:

(1) [, ] is homogeneous skewsymmetric: this means [L¢, L] Cc L7 and [a,b] +
(—1)%[b, a] = 0 for every a,b homogeneous.
(2) Every triple of homogeneous elements a, b, ¢ satisfies the (graded) Jacobi identity

[a, [b, ) = [[a, 8], €] + (~1)*[b, [a, c]].

(3) d(L%) C L**!, dod = 0 and d[a, b] = [da,b] + (—1)%[a,db]. The map d is called the
differential of L.

EXERCISE V.19. Let L = ®L! be a DGLA and a € L*:
(1) If 7 is even then [a,a] = 0.
1
(2) If i is odd then |a, [a,b]] = 5[[@, al, b] for every b € L and |[[a,a],a] = 0.
A

ExXAMPLE V.20. If L = ®L’ is a DGLA then L° is a Lie algebra in the usual sense.
Conversely, every Lie algebra can be considered as a DGLA concentrated in degree 0.

EXAMPLE V.21. Let (A,d4), A = ®A;, be a dg-algebra over K and (L,dr), L = ®L', a
DGLA.
Then L ®g A has a natural structure of DGLA by setting:

(Log A" = @(L' @k An_s),
dx®a) =dpr®@a+ (-1)"z®@daa, [z®a,y@b=(=1)"[z,y] @ ab.
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ExaMpPLE V.22. Let E be a holomorphic vector bundle on a complex manifold M. We
may define a DGLA L = ©LP, LP = I'(M, A%P(énd(E))) with the Dolbeault differential
and the natural bracket. More precisely if e, g are local holomorphic sections of End(E)
and ¢, differential forms we define d(¢e) = (0¢)e, [pe,g] = ¢ A le, g].

ExAMPLE V.23. Let (F*,d) be a sheaf of dg-algebras on a topological space; the space
Der*(F*, F*) is a DGLA with bracket [f, g] = fg — (—1)/9gf and differential §(f) = [d, f].

DEFINITION V.24. We shall say that a DGLA L is adg-nilpotent if for every ¢ the image of
the adjoint action ad : L° — End(L?) is contained in a nilpotent (associative) subalgebra.
EXERCISE V.25.
1) Every nilpotent DGLA (i.e. a DGLA whose descending central series is definitively
trivial) is adp-nilpotent.
2) If L is adg-nilpotent then LY is a nilpotent Lie algebra.
3) The converses of 1) and 2) are generally false. A

DEFINITION V.26. A linear map f: L — L is called a derivation of degree n if f(L?) C L**"
and satisfies the graded Leibnitz rule f([a,b]) = [f(a),b] + (=1)"%[a, f(b)].

We note that the Jacobi identity is equivalent to the assertion that, if @ € L* then
ad(a): L — L, ad(a)(b) = [a, b], is a derivation of degree i. The differential d is a derivation
of degree 1.

By following the standard notation we denote by Z(L) = ker(d: L' — L‘*1), BY(L) =
Im(d: L*~! — L%, HY(L) = Z*(L)/B(L).

DEFINITION V.27. The Maurer-Cartan equation (also called the deformation equation) of
a DGLA L is

1
da+§[a,a]:0, ac L.

The solutions MC(L) C L' of the Maurer-Cartan equation are called the Maurer-Cartan
elements of the DGLA L.

There is an obvious notion of morphisms of DGLAs; we denote by DGLA the category
of differential graded Lie algebras.

Every morphism of DGLAs induces a morphism between cohomology groups. It is moreover
clear that morphisms of DGLAs preserve the solutions of the Maurer-Cartan equation.

A quasiisomorphism of DGLAS is a morphism inducing isomorphisms in cohomology. T'wo
DGLA’s are quasiisomorphic if they are equivalent under the equivalence relation generated
by quasiisomorphisms.

The cohomology of a DGLA is itself a differential graded Lie algebra with the induced
bracket and zero differential:

DEeFINITION V.28. A DGLA L is called Formal if it is quasiisomorphic to its cohomology
DGLA H*(L).

EXERCISE V.29. Let D: L — L be a derivation, then the kernel of D is a graded Lie
subalgebra. A

ExAMPLE V.30. Let (L,d) be a DGLA and denote Deri(L,L) the space of derivations
f: L — L of degree i. The space Der*(L,L) = @;Der'(L,L) is a DGLA with bracket

[f.9] = fg — (~1)79gf and differential 5(f) = [d, f].

For a better understanding of some of next topics it is useful to consider the following
functorial construction. Given a DGLA (L, [, ], d) we can construct a new DGLA (L, [,]', d’)
by setting (L')" = L for every i # 1, (L')! = L' ® Kd (here d is considered as a formal
symbol of degree 1) with the bracket and the differential

[a+vd, b+ wd)' = [a,b] + vd(b) + (—=1)*wd(a), d'(a+vd) = [d,a +vd] = d(a).

The natural inclusion L C L’ is a morphism of DGLA; for a better understanding of the
Maurer-Cartan equation it is convenient to consider the affine embedding ¢: L' — (L/)!,
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#(a) = a + d. For an element a € L' we have
1
d(a) + §[a,a] =0 <= [¢(a),é(a) =0.

Let’s now introduce the notion of gauge action on the Maurer-Cartan elements of an adp-
nilpotent DGLA. Note that [L°, L' @K d] C L'; in particular if L is ado-nilpotent then also
L' is ady-nilpotent.

Given an ady-nilpotent DGLA N, the exponential of the adjoint action gives homomor-
phisms of groups

exp(N°) = (N° %) — GL(N?), €% et i €7
where * is the product given by the Baker-Campbell-Hausdorff formula. .
These homomorphisms induce actions of the group exp(N°) onto the vector spaces N°
given by
1
e = et} = Z mad(a)"(b).
n>0

LEMMA V.31. In the above notation, if W is a linear subspace of N* and [N°, N*] c W
then the exponential adjoint action preserves the affine subspaces v+ W, v € Nj.

PRrROOF. Let a € N, v € N, w € W, then

v tw)=v+ Y %ad(a)”_l([a, D+ %ad(a)”(w).

n>1"" n>0

O

LEMMA V.32. In the above notation the exponential adjoint action preserves the quadratic
cone Z ={v € N'|[v,v] = 0}.
For everyv € Z and u € N~! the element exp([u,v]) belongs to the stabilizer of v.

PROOF. By Jacobi identity 2[v,[a,v]] = —2[v,[v,d]] = [a,[v,v]] for every a € NY,
ve N
Let a € N° be a fixed element, for every u € N! define the polynomial function F,: K —
N? by
Fu(t) _ e—ad(ta) [ead(ta)u’ ead(ta)u]_

For every s,t e K, if v = e(sa)q, then

Fu(t+s) = " UF, (1), 8@? (0) = —la, [v, v]] + 2[v, [a,v]] = 0

aFu . ad(fsa) 8FU
o )=y
Since the field K has characteristic 0 every function F}, is constant, proving the invariance
of Z.

If u € N~! and v € Z, then by Jacobi identity [[u,v],v] = ad([u,v])v = 0 and then
exp([u, v])v = v. O

(0) = 0.

If L is an adgp-nilpotent DGLA then V.31 and V.32 can be applied to N = L. Via the
affine embedding ¢: L' — (L')!, the exponential of the adjoint action on L’ induces the
so called Gauge action of exp(L®) over the set of solution of the Maurer-Cartan equation,
given explicitly by

eapla)(w) = 67 (o)) = 3 L ad(a)" (w) — 3 - ad(a)" (da)

n>0 " n>1
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REMARK V.33. If w is a solution of the Maurer-Cartan equation and v € L~! then
[w,u] + du = [w + d,u] € L° belongs to the stabilizer of w under the gauge action.
For every a € L°, w € L', the polynomial v(t) = exp(ta)(w) € L' ® K [t] is the solution of
the “Cauchy problem”

D0 — 0,7(0)] - da

7(0) = w

5. Functors of Artin rings

5-A. Basic definitions. We denote by:

e Set the category of sets in a fixed universe; we also make the choice of a fixed set
{0} € Set of cardinality 1.

e Grp the category of groups.

e Artg the category of local Artinian K-algebras with residue field K (with as
morphisms the local homomorphisms). If A € Artg, we will denote by my its
maximal ideal.

A small extension e in Artg is an exact sequence of abelian groups
e: 0—M--B2 A0

such that B—~A is a morphism in Artg and kerp = i(M) is annihilated by the maximal
ideal of B (that is, as a B-module it is a K-vector space).

Given a surjective morphism B — A in Artg with kernel J, there exists a sequence of
small extensions

O—)TTI%J/m%-i-lJ—)B/m%+1j—>B/m%J—>O, n > 0.

Since, by Nakayama’s lemma, there exists ng € N such that m'yJ = 0 for every n > ng we
get that every surjective morphism is Artg is the composition of a finite number of small
extensions.

DEFINITION V.34. A Functor of Artin rings is a covariant functor F': Artg — Set such
that FI(K) ~ {0}.

ExAMPLE V.35. If V is a K-vector space we may interpret V' as a functor of Artin rings
V: Artg — Set, V(A) =V ®@g my. If V=0 we get the trivial functor 0: Artg — Set.

The functors of Artin rings are the object of a new category whose morphisms are the
natural transformation of functors. A natural transformation n: F' — G is an isomorphism
if and only if n(A): F(A) — G(A) is bijective for every A € Artx.

DEFINITION V.36. Let F,G: Artg — Set be two functors of Artin rings and n: F — G
a natural transformation; 7 is called smooth if for every small extension

0—M—B-24—0
the map
(n,p): F(B) = G(B) xga) F(A)
is surjective.
A functor of Artin rings F is called smooth if the morphism F' — 0 is smooth.

EXERCISE V.37. F': Artg — Set is smooth if and only if for every surjective morphism
B — Ais Artg, the map F(B) — F(A) is also surjective.
If V is a vector space then V' is smooth as a functor of Artin rings (cf. Example V.35). A

EXERCISE V.38. Let R be an analytic algebra and let hr: Artc — Set be the functor of
Artin rings defined by hr(A) = Moran(R, A).
Prove that hp is smooth if and only if R is smooth. A
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EXAMPLE V.39. Let My be a compact complex manifold and define for every A € Artc
DefMO (A) = DefMO (OX70) = DefMO (X, 0)

where (X,0) = Spec(A) is a fat point such that Ox o = A; since it is always possible to
write A as a quotient of C{z1,...,z,} for some n > 0, such a fat point (X, 0) always exists.
According to III1.12 the isomorphism class of (X,0) depends only on A.

Every morphism Ox g — Oy, in Artc is induced by a unique morphism (Y,0) — (X,0).
The pull-back of infinitesimal deformations gives a morphism Def s, (X,0) — Defy, (Y, 0).
Therefore Defj, : Artc — Set is a functor of Artin rings.

DEFINITION V.40. The tangent space to a functor of Artin rings F': Artx — Set is by
definition

wzF<%§):HK@KQ 2 = 0.

EXERCISE V.41. Prove that, for every analytic algebra R there exists a natural isomor-
phism t5,,, = Derc(R,C) (see Exercise V.38). A

5-B. Automorphisms functor. In this section every tensor product is intended over
K,ie® = ®g. Let S—>R be a morphism of graded K -algebras, for every A € Artg we
have natural morphisms S ® A-5R ® A and R Qg A-25R, p(z ® a) = za, where a € K
is the class of a in the residue field of A.

LEMMA V.42. Given A € Artg and a commutative diagram of morphisms of graded
K -algebras

SRA—">R®A
o
o p
p
R A R
we have that f is an isomorphism and f(R® J) C R® J for every ideal J C A.

PROOF. f is a morphism of graded A-algebras, in particular for every ideal J C A,
f(ReJ)C Jf(R® A) C R® J. In particular, if B = A/J, then f induces a morphism of
graded B-algebras f: R® B — R® B.

We claim that if msJ = 0 then f is the identity on R ® J; in fact for every x € R,
flz®l)—ax®1 ckerp=R®myu and then if j € J, z € R.

flea®j)=jfzel)=2j+j(fz®]l)—201) =]
Now we prove the lemma by induction on n = dimg A, being f the identity for n = 1. Let
0—J—A—B—0
be a small extension with J # 0. Then we have a commutative diagram with exact rows
0 — R®J — R®A — R®B — 0
LA A
0 — R®J — R®A — R®B — 0

By induction f is an isomorphism and by snake lemma also f is an isomorphism. 0

DEFINITION V.43. For every A € Artg let Autyp,s(A) be the set of commutative diagrams
of graded K-algebra morphisms

SRA—R®A

,

R® A R
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According to Lemma V.42 Autg/g is a functor from the category Artg to the category
of groups Grp. Here we consider Autg/g as a functor of Artin rings (just forgetting the
group structure).

Let Derd(R, R) be the space of S-derivations R — R of degree 0. If A € Artg and
J C my is an ideal then, since dimg J < oo there exist natural isomorphisms

Der%(R,R) ® J = Der%(R, R® J) = Derg 4(R® A, R® J),
where d =), d; ® j; € Der(R, R) ® J corresponds to the S ® A-derivation

d:R®A—R®JCR®A, dz®ad=) d(z)® ja.

For every d € Der%®A(R ® A, R® A) denote d" = do...od the iterated composition of d
with itself n times. The generalized Leibnitz rule gives

n

" (o) =3 (?) di(w)d" ' (v),  u,v€R® A

1=0

Note in particular that if d € Der%(R, R)®m4 then d is a nilpotent endomorphism of R® A

and
dn
=D i

n>0

is a morphism of K-algebras belonging to Autg,g(A).
PROPOSITION V.44. For every A € Artg the exponential
exp: Derd(R, R) @ my — Autp/s(A)

1$ a bijection.

PROOF. This is obvious if A = K; by induction on the dimension of A we may assume
that there exists a nontrivial small extension

0—J—A—B—0

such that exp: Derg(R, R) ® mp — Autg/g(B) is bijective.

We first note that if d € Der%(R, R) ® ma, h € Der%(R,R) ® J then d’'h/ = hid" = 0
whenever j > 0, j 44 > 2 and then e = e? + h; this easily implies that exp is injective.
Conversely take a f € Autp/s(A); by the inductive assumption there exists d € Der%(R, R)®
my4 such that f = ed € Autg/g(B); denote h = f — e R A — R® J. Since
h(ab) = f(a)f(b) — e¥(a)e?(b) = h(a)f(b) + e?(a)h(b) = h(a)b + ah(b) we have that
h € Derd(R, R) ® J and then f = ed*", O

The same argument works also if S — R is a morphism of sheaves of graded K-algebras
over a topological space and Derd(R, R), Aut r/s(A) are respectively the vector space of
S-derivations of degree 0 of R and the S ® A-algebra automorphisms of R ® A lifting the
identity on R.

ExXaAMPLE V.45. Let M be a complex manifold, R = AO’*, S = ﬁj\/l According to Propo-
sition V.24 Der(R, R) = T'(M, A%°(T);)) and then the exponential gives isomorphisms

exp: I'(M, AO’O(TM)) ®my — Autp/s(A).

Since exp is clearly functorial in A, interpreting the vector space I'(M, A%Y(Ty)) as a
functor ( Example V.35), we have an isomorphism of functors exp: I'(M, A%%(Ty)) —
AutR/S.
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5-C. The exponential functor. Let L be a Lie algebra over K, V' a K-vector space
and {: L — End(V) a representation of L.
For every A € Artg the morphism £ can be extended naturally to a morphism of Lie
algebras £: L ® A — Ends(V ® A). Taking the exponential we get a functorial map

exp(€): LOma — GLA(V @A), ewp(§)(z) =) =" %x
i=0

where GL 4 denotes the group of A-linear invertible morphisms.
Note that exp(&)(—z) = (exp(€)(z))~t. If £ is injective then also exp(€) is injective (easy
exercise).

THEOREM V.46. In the notation above the image of exp(§) is a subgroup. More precisely
for every a,b € L @ ma there exists c € L @ my such that e§@ef®) = ¢£©) gnd a +b — ¢
belong to the Lie ideal of L ® my generated by [a,b].

PRrOOF. This is an immediate consequence of the Campbell-Baker-Hausdorff formula.
O

In the above notation denote P = End(V) and let ad(§): L — End(P) be the adjoint
representation of &,
ad(§)(x)f = [§(z), f] = &(@)f — f&().
Then for every a € L@ my, f € Enda(V ® A) = P ® A we have (cf. Exercise V.1, [31,

2.3))
(9O f _ (@) po—t(a)

6. Deformation functors associated to a DGLA

Let L = ®L' be a DGLA over K, we can define the following three functors:

(1) The Gauge functor G : Artg — Grp, defined by G1(A) = exp(L° @ my). It is
immediate to see that G, is smooth.
(2) The Maurer-Cartan functor M Cp,: Artg — Set defined by

MCL(A) = MC(L®my) = {xeL1®mA dx—i—%[a:,x] :O}.

(3) The gauge action of the group exp(L? ® m4) on the set MC(L ®my) is functorial
in A and gives an action of the group functor Gy over MCr. We call Def; =
MC1, /Gy, the corresponding quotient. By definition Defy(A) = MCL(A)/GL(A)
for every A € Artxk.

The functor Defy, is called the deformation functor associated to the DGLA L.

The reader should make attention to the difference between the deformation functor Defy,
associated to a DGLA L and the functor of deformations of a DGLA L.

PROPOSITION V.47. Let L = L' be a DGLA. If [L}, L] n Z*(L) C B2*(L) (e.g. if
H?(L) =0) then MCy, and Defy, are smooth functors.

ProOOF. It is sufficient to prove that for every small extension
0—J—A"B—0

the map MC(L ® ma)——MC(L ® mp) is surjective.
Given y € L' ® mp such that dy + %[y,y] = 0 we first choose z € L' ® my such that
a(z) = y; we need to prove that there exists z € L' ® J such that # — 2 € MC(L @ m,).

1
Denote h = dx + i[x,x] € L? ® J; we have
1
dh = d’z + [dz,z] = [h,z] — 5[[1‘,55],1‘]

Since [L? ® J, L' ® m4] = 0 we have [h,z] = 0, by Jacobi identity [[x,z],z] = 0 and then
dh=0,he Z*(L)® J.
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On the other hand h € ([L', L'] + B%*(L)) ® my4, using the assumption of the Proposition
h € (B*(L)®m4) N L?® J and then there exist 2 € L' ® my4 such that dz = h.

Since Z1(L) ® ma — Z'(L) ® mp is surjective it is possible to take z € L' ® J: it is now
immediate to observe that © — z € MC(L ® my). O

EXERCISE V.48. Prove that if My, is smooth then [Z!, Z1] C B A

PROPOSITION V.49. If L ® my is abelian then Defr(A) = HY(L) @ ma. In particular
tDet; = Hl(L) R Ke, e =0.

PROOF. The Maurer-Cartan equation reduces to dz = 0 and then MC(A) = Z} (L) ®
my. fae LP®my and x € L' ® my we have

ad(a)”
exp(a)r =z + Z n —(i- )1)'([a,x] —da) =z —da
n>0 ’
d then Def;(A) = ———<=H (L . O
and then Def(A) 1105 ma) (L) @my
EXERCISE V.50. If [Z1, Z'] = 0 then MCL(A) = Z! @ my4 for every A. JAN

It is clear that every morphism «a: L — N of DGLA induces morphisms of functors
G — Gy, MCp — MCp. These morphisms are compatible with the gauge actions and
therefore induce a morphism between the deformation functors Def,, : Def;, — Def .

The following Theorem V.51 (together its Corollary V.52) is sometimes called the basic
theorem of deformation theory. For the clarity of exposition the (nontrivial) proof of V.51
is postponed at the end of Section 8.

THEOREM V.51. Let ¢: L — N be a morphism of differential graded Lie algebras and
denote by H'(¢): H'(L) — H'(N) the induced maps in cohomology.
(1) If HY(¢) is surjective and H?(¢) injective then the morphism Defy: Defy, — Defy
s smooth.
(2) If HO(¢) is surjective, H'(¢) is bijective and H?(¢) is injective then Defy: Defr, —
Defy is an isomorphism.

COROLLARY V.52. Let L — N be a quasiisomorphism of DGLA. Then the induced mor-
phism Defj, — Defy is an isomorphism.

EXERCISE V.53. Let L be a formal DGLA, then Def, is smooth if and only if the induced
bracket [, |: H' x H — H? is zero. A

EXAMPLE V.54. Let L = @®L' be a DGLA and choose a vector space decomposition
N'e BY(L) =L
Consider the DGLA N = ®N'® where N = 0 if i < 1 and N* = L% if 4 > 1 with the
differential and bracket induced by L. The natural inclusion N — L gives isomorphisms
HY(N) — H'(L) for every i > 1. In particular the morphism Defy — Def}, is smooth and
induce an isomorphism on tangent spaces tpefy = tpef; -

Beware. One of the most frequent wrong interpretations of Corollary V.52 asserts that if
L — N is a quasiisomorphism of nilpotent DGLA then M C(L)/exp(L°’) — MC(N)/exp(N?)
is a bijection. This is false in general: consider for instance L = 0 and N = ®N* with
Nt =Cfori=1,2, N' =0 for i # 1,2, d: N' — N? the identity and [a,b] = ab for
a,be N' =C.

Let Ths be the holomorphic tangent bundle of a complex manifold M. The Kodaira-
Spencer DGLA is defined as

KS(M)=a®KS(M)?,  KS(M)P =T(M, A (Ty))
with the Dolbeault differential and the bracket (cf. Proposition IV.24)
[pdZ,pdZ 5] = [¢,]dz; N dZ,
for ¢, € A%Y(Ty), I,J C {1,...,n} and 21, ..., z, local holomorphic coordinates.
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THEOREM V.55. Let L = KS(My) be the Kodaira-Spencer differential graded Lie algebra
of a compact complex manifold My. Then there exists an isomorphism of functors

DefMO = DefL.
ProOOF. Fix A € Artc, according to Propositions IV.24 and V.44 the exponential
exp: L@ m = (Mo, A% (Thg,)) ® ma — Aut . 5 (A)

is an isomorphism.
Therefore Def g, is the quotient of

— 1
MOy (A) = {n € DMy, A (Tagy)) @ ma | B+ o] = o} ,

by the equivalence relation ~, given by 1 ~ pu if and only if there exists a € L% ® m4 such
that _ _ _

D4 pu=e(@+n)e =@+
or, equivalently, if and only if ¢(p) = e*“®$(n), where ¢ is the affine embedding defined
above.
Keeping in mind the definition of the gauge action on the Maurer-Cartan elements we get
immediately that this equivalence relation on M Cp(A) is exactly the one induced by the
gauge action of exp(L° ® my). O

COROLLARY V.56. Let My be a compact complex manifold. If either H*(Moy, Thy,) = 0 or
its Kodaira-Spencer DGLA KS(Moy) is quasiisomorphic to an abelian DGLA, then Def
18 smooth.

7. Extended deformation functors (EDF)

We will always work over a fixed field K of characteristic 0. All vector spaces, linear maps,
algebras, tensor products etc. are understood of being over K, unless otherwise specified.
We denote by:

e NA the category of all differential Z-graded associative (graded)-commutative
nilpotent finite dimensional K -algebras.

e By NANDG we denote the full subcategory of A € N A with trivial multiplication,
ie. AZ=0.

In other words an object in NA is a finite dimensional complex A = $A; € DG endowed
with a structure of dg-algebra such that A" = AA...A = 0 for n >> 0. Note that if
A = Ay is concentrated in degree 0, then A € NA if and only if A is the maximal ideal of
a local artinian K -algebra with residue field K.

If Ae NA and I C A is a differential ideal, then also I € NA and the inclusion I — A is
a morphism of dg-algebras.

DEFINITION V.57. A small extension in NA is a short exact sequence in DG
0—IT—A-2B—0

such that a is a morphism in INA and [ is an ideal of A such that Al = 0; in addition it
is called acyclic if I is an acyclic complex, or equivalently if « is a quasiisomorphism.

EXERCISE V.58.

e Every surjective morphism A——B in the category NA is the composition of a
finite number of small extensions.

o If A-%5B is a surjective quasiisomorphism in NA and A; = 0 for every i > 0
then « is the composition of a finite number of acyclic small extensions. This is
generally false if A; # 0 for some ¢ > 0.

A
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DEFINITION V.59. A covariant functor F': NA — Set is called a predeformation functor
if the following conditions are satisfied:

(1) F(0) = 0 is the one-point set.
(2) For every pair of morphisms a: A — C, 3: B — C in NA consider the map
n: F(A Xc B) — F(A) XF(C’) F(B)

Then:

(a) n is surjective when « is surjective.

(b) n is bijective when « is surjective and C' € NA N DG is an acyclic complex.
(3) For every acyclic small extension

0—I—A—B—0
the induced map : F(A) — F(B) is surjective.

If we consider the above definition for a functor defined only for algebras concentrated in
degree 0, then condition 3 is empty, while conditions 1 and 2 are essentially the classical
Schlessinger’s conditions [67], [13], [52].

LEMMA V.60. For a covariant functor F: NA — Set with F(0) = 0 it is sufficient to
check condition 2b of definition V.59 when C' =0 and when B = 0 separately.

PRrROOF. Follows immediately from the equality
AxcB=(AXxB)xc0

where A-C, B LC’ are as in 2b of V.59 and the fibred product on the right comes from
the morphism A x B — C, (a,b) — a(a) — 5(b). O

DEFINITION V.61. A predeformation functor F': NA — Set is called a deformation func-
tor if F(I) = 0 for every acyclic complex I € NA N DG.

The predeformation functors (resp.: deformation functors) together their natural trans-
formations form a category which we denote by PreDef (resp.: Def).
LEMMA V.62. Let F': NA — Set be a deformation functor. Then:

(1) For every acyclic small extension
0—I—A—B—0

the induced map : F(A) — F(B) is bijective.
(2) For every pair of complexes I,J € NANDG and every pair of homotopic mor-
phisms f,g: I — J, we have F(f) = F(g): F(I) — F(J).

PROOF. We need to prove that for every acyclic small extension
0—I—ALB—0

the diagonal map F'(A) — F(A)x p(p)F(A) is surjective; in order to prove this it is sufficient
to prove that the diagonal map A — A xp A induces a surjective map F(A) — F(AxpA).
We have a canonical isomorphism 6: A x I — A xp A, 0(a,z) = (a,a + x) which sends
A x {0} onto the diagonal; since FI(A x I) = F(A) x F(I) = F(A) the proof of item 1 is
concluded.

For item 2, we can write [ = I°x I'', J = JOx J!, with d(I°) = d(J°) = 0 and I, J* acyclic.
Then the inclusion I°—=I and the projection J—-.J° induce bijections F(I%) = F(I),
F(J% = F(J). It is now sufficient to note that pfi = pgi: I° — J°. O

A standard argument in Schlessinger’s theory [67, 2.10] shows that for every predeforma-
tion functor F' and every A € NA N DG there exists a natural structure of vector space
on F(A), where the sum and the scalar multiplication are described by the maps

Ax ASHA = F(Ax A) =F(A) x F(A)—SF(A)
sekK, A-5A = FA)-SF(A)
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We left as an exercise to check that the vector space axioms are satisfied; if A — B is a
morphism in NA N DG then the commutativity of the diagrams

AxA oA A 2oA
[ A
BxB — B B —= B

shows that F(A) — F(B) is K-linear. Similarly if F' — G is a natural transformations of
predeformation functors, the map F(A) — G(A) is K-linear for every A € NA NDG.

In particular, for every predeformation functor F' and for every integer n the sets F'(2[n])
(see Example IV.7) and F(K|[n]) are vector spaces and the projection p: Q[n| — K|[n]
induce a linear map F(Q[n]) — F(K|n])

DEFINITION V.63. Let F' be a predeformation functor, the tangent space of F' is the graded
vector space TF[1], where

TF = @T"F, T"'F=TF]1]" = coker(F(Q[n])2=F(K[n]), necZ.

nez
A natural transformation F' — G of predeformation functors is called a quasiisomorphism
if induces an isomorphism on tangent spaces, i.e. if T F ~ T"(G for every n.

We note that if F' is a deformation functor then F(Q[n]) = 0 for every n and therefore
TF[1]" = T""'F = F(Ke), where € is an indeterminate of degree —n € Z such that 2 = 0.
In particular T'F = tpo, where FO: Artg — Set, FO(A) = F(my), is the truncation of F
in degree 0.

One of the most important examples of deformation functors is the deformation functor
associated to a differential graded Lie algebra.

Given a DGLA L and A € NA, the tensor product L ® A has a natural structure of

nilpotent DGLA with
(LA =PL @A,

JEZ _
dz®a)=dr®a+ (—1)*z®@da
[z ®a,y®b] = (~1)""[z,y] ® ab
Every morphism of DGLA, L — N and every morphism A — B in NA give a natural
commutative diagram of morphisms of differential graded Lie algebras

LA — N®A

L®B — N®B
The Maurer-Cartan functor MCr: NA — Set of a DGLA L is by definition

MCp(A)= MC(L® A) = {x € (L A)l

dx+%[$,:c] :0}.

LEMMA V.64. For every differential graded Lie algebra L, M C, is a predeformation func-
tor.

PROOF. It is evident that MCp(0) = 0 and for every pair of morphisms a: A — C,
G: B — C in NA we have

MCL(A Xc B) = MCL(A) XMCL(C) MCL(B)

Let 0—I—A-"+B——0 be an acyclic small extension and € MCr(B). Since «a is
surjective there exists y € (L ® A)! such that a(y) = z. Setting

1
h=dy+3lyy) €(L@I)
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we have

dh = %d[y,y] = [dy,y] = [h, y] - %[[y,y],y]-

By Jacobi identity [[y,y],y] = 0 and, since AI = 0 also [h,y] = 0; thus dh = 0 and, being
L® 1T acyclic by Kiinneth formula, there exists s € (L ® I)! such that ds = h. The element
y— s lifts z and satisfies the Maurer-Cartan equation. We have therefore proved that MCp,
is a predeformation functor. O

EXERCISE V.65. Prove that MC: DGLA — PreDef is a faithful functor and every
differential graded Lie algebra can be recovered, up to isomorphism, from its Maurer-
Cartan functor. AN

It is interesting to point out that, if A — B is a surjective quasiisomorphism in NA, then
in general M CL(A) — MCL(B) is not surjective. As an example take L a finite-dimensional
non-nilpotent complex Lie algebra, considered as a DGLA concentrated in degree 0 and fix
a € L such that ad(a): L — L has an eigenvalue A # 0. Up to multiplication of a by —A~*
we can assume A = —1. Let V' C L be the image of ad(a), the linear map Id+ad(a): V — V
is not surjective and then there exists b € L such that the equation = + [a,z] + [a,b] = 0
has no solution in L.

Let u,v,w be indeterminates of degree 1 and consider the dg-algebras

B = Cu ® Cu, B2=0,d=0
A=Cu® Cv® Cwe Cdw, uwv = yw = dw, vw =0

The projection A — B is a quasiisomorphism but the element a @ u + b ® v € MCp(B)
cannot lifted to MCp(A). In fact if there exists { =a®@u+bRv+rx@w € MCL(A) then

1
0 = dé + 5[6,€] = (@ + [a,2] + [a,b]) & duw
in contradiction with the previous choice of a, b.

For every DGLA L and every A € NA we define Def,(A) as the quotient of MC(L®A) by
the gauge action of the group ezp((L®A)?). The gauge action commutes with morphisms in
NA and with morphisms of differential graded Lie algebras; therefore the above definition
gives a functor Defr: NA — Set.

THEOREM V.66. For every DGLA L, Defr,: NA — Set is a deformation functor with
T'Def;, = H'(L).

Proor. If C € NANDG is a complex then L ® C' is an abelian DGLA and accord-
ing to Proposition V.49, MCr(C) = Z*(L ® C) and Defz(C) = H'(L ® C). In particular
TiDef, = HY(L®K [i —1]) = H'(L) and, by Kiinneth formula, Def,(C) = 0 if C is acyclic.

Since Defy, is the quotient of a predeformation functor, conditions 1 and 3 of V.59 are
trivially verified and then it is sufficient to verify condition 2.
Let a: A — C, f: B — C morphism in NA with « surjective. Assume there are given
a € MCL(A), b € MCp(B) such that a(a) and B(b) give the same element in Defr(C);
then there exists u € (L ® C)? such that 3(b) = e“a(a). Let v € (L ® A)? be a lifting of v,
changing if necessary a with its gauge equivalent element e”a, we may suppose a(a) = 3(b)
and then the pair (a,b) lifts to MCL(A x¢ B): this proves that the map

DefL(A X B) — DefL(A) XDefL(C) DefL(B)

is surjective.

If C = 0 then the gauge action exp((L ® (A x B))?) x MCL(A x B) — MCL(A x B) is
the direct product of the gauge actions exp((L ® A)°) x MCL(A) — MCL(A), exp((L ®
B)Y) x MCp(B) — MCp(B) and therefore Def (A x B) = Def,(A) x Defr(B).

Finally assume B = 0, C' acyclic complex and denote D = kera ~ A x¢ B. Let a,as €
MCL(D), u € (L ® A)° be such that ap = e“a;; we need to prove that there exists
v € (L ® D)? such that ay = e%ay.

Since a(a1) = a(az) = 0 and L ® C is an abelian DGLA we have 0 = "0 = 0 — do(u)
and then da(u) = 0. L ® C is acyclic and then there exists h € (L ® A)~! such that
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da(h) = —a(u) and u + dh € (L ® D)°. Setting w = [a1, h] + dh, then, according to
Remark V.33, e¥a; = a1 and e“e"a; = e’a; = ag, where v = u*xw is determined by Baker-
Campbell-Hausdorff formula. We claim that v € L® D: in fact v = uxw = u+w = u+dh
(mod [L® A, L ® A]) and since A2 C D we have v =uxw =u+dh =0 (mod L® D). O

LEMMA V.67. For every DGLA L, the projection m: M C, — Def, is a quasiisomorphism.
PROOF. Let i € Z be fixed; in the notation of V.63 we can write Qi — 1] = Ke @ Kde,
where €2 = ede = (de)? =0 and € = 1 — i, de = 2 —i. We have
MCL(Ke) = {ze € (L ®Ke)'|d(ze) =0} = Z(L) @ Ke
MCOL(Ke®Kde) = {ze + yde € (L@ Qi — 1)) |dze + (—1)"'zde + dyde = 0}
= {(—1)"dye + yde|y € L'}
Therefore the image of p: MCL(Ke ®Kde) — MCp(Ke) is exactly BY(L) ® Ke and then
MCL(Q[i — 1) ZMCL(K[i — 1)) —=Def (K [i — 1])—0

is exact. Ot

8. Obstruction theory and the inverse function theorem for deformation
functors

LEMMA V.68. Let F': NA — Set be a deformation functor; for every compler I € NA N
DG there exists a natural isomorphism

F(I)=@TF1)® H ;(I) = T Fe H ;(I) = H(TFI).
€L

i 1€EZ

PROOF. Let s: HE*(I) — Z.(I) be a liniar section of the natural projection, then the
composition of s with the natural embedding Z,(I) — I is unique up to homotopy and its
cokernel is an acyclic complex, therefore it gives a well defined isomorphism F(H,.(I)) —
F(I). This says that it is not restrictive to prove the lemma for complexes with zero
differential. Moreover since F' commutes with direct sum of complexes we can reduce to
consider the case when I = K*®[n] is a vector space concentrated in degree —n. Every
v € I gives a morphism TF[1]" = F(K[n])—=F(I) and we can define a natural map
TF1]"® I — F(I), z ® v+ v(z). It is easy to verify that this map is an isomorphism of
vector spaces. O

THEOREM V.69. Let 0—I——A-—"5B——0 be an ezact sequence of morphisms in NA
and let F': NA — Set be a deformation functor.

(1) If AT = 0 then there exist natural transitive actions of the abelian group F(I) on
the nonempty fibres of F(A) — F(B).

(2) If AI =0 then there exists a natural “obstruction map” F(B)O—b>F(I[1]) with the
property that ob(b) = 0 if and only if b belongs to the image of F(A) — F(B).
(3) If B is a complex, i.e. A?> C I, then there exist natural transitive actions of the
abelian group F(B[—1]) on the nonempty fibres of F(I) — F(A).
Here natural means in particular that commutes with natural transformation of functors.
PROOF. [1] There exists an isomorphism of dg-algebras
AxT—AxpA; (a,t) — (a,a+1)
and then there exists a natural surjective map
Vp: F(A) x F(I) = F(Ax 1) — F(A) xp) F(A)
The commutativity of the diagram
AxIxI — AxI (a,t,s) +— (a,t+s)

! L] !

AxI — A (a+t,s) — (a+t+s)
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implies in particular that the composition of ¥ with the projection in the second factor give
a natural transitive action of the abelian group F'(I) on the fibres of the map F(A) — F(B).

2] We introduce the mapping cone of ¢ as the dg-algebra C = A @ I[1] with the product
(a,m)(b,n) = (ab,0) (note that, as a graded algebra, C' is the trivial extension of A by
I[1]) and differential

do = ( dg‘ dfbm > CA@ I — Al @ I[2]

We left as exercise the easy verification that C € NA, the inclusion A — C and the

projections C' — I[1], C'— B are morphisms in NA.
The kernel of C' — B is isomorphic to I & I[1] with differential

( dr Id[[l] )
0 d[[l] '

Therefore 0— 1@ 1[1]—C'— B—0 is an acyclic small extension and then F'(C) = F'(B).
On the other hand A = C X;[;; 0 and then the map

F(A) = F(C) xpan) 0

is surjective. It is sufficient to define ob as the composition of the inverse of F'(C) — F(B)
with F(C) — F(I[1]).

3) The derived inverse mapping cone is the dg-algebra D = A @ B[—1] with product
(x,m)(xz,n) = (xy,0) and differential

da 0
dp = ( A dpp > :A®B[-1] — Al]® B

Here the projection D — A and the inclusions inclusion I — D, B[—1] — D are morphisms
in NA.

Since 0— B[—1]— D—A—0 is a small extension, by Item 1, there exist natural actions
of F(B[—1]) on the nonempty fibres of F(D) — F(A). The quotient of I — D is the acyclic
complex B®B[—1], and then, according to 2b of V.59, F\(I) — F(D) is an isomorphism. [

EXERCISE V.70. Prove that the stabilizers of the actions described in Theorem V.69 are
vector subspaces. A

Given two integers p < ¢ we denote by NA} the full subcategory of NA whose objects
are algebras A = @A; such that A; # 0 only if p <i <gq.

THEOREM V.71. Let 0: F' — G be a morphism of deformation functors. Assume that
0: TF[1]" — TGI[1]" is surjective for p — 1 < i < q and injective for p <i < q+ 1. Then:
(1) for every surjective morphism «: A — B in the category NAZ_1 the morphism
(a,0): F(A) — F(B) xg(p) G(A)

18 surjective.
(2) 0: F(A) — G(A) is surjective for every A € NAI .
(3) 0: F(A) — G(A) is a bijection for every A € NAJ.

PROOF. The proof uses the natural generalization to the differential graded case of
some standard techniques in Schlessinger’s theory, cf. [13].

We first note that, according to Lemma V.68, for every complex I € NAJ N DG we have
that 0: F(I) — G(I) is bijective, 6: F(I[l]) — G(I[1]) is injective and 6: F(I[-1]) —
G(I[—1]) is surjective.

Moreover, since F'(0) = G(0) = 0, we have F'(0) X9 G(A) = G(A) and then Item 2 is an
immediate consequence of Item 1.
STEP 1: For every small extension in NAgfl,

0—IT—A-2B—0
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and every b € F(B) we have either a=(b) = () or 8(a~1(b)) = a~1(0(b)).
In fact we have a commutative diagram

F(A) % F(B)

J7 l7
GA) = G(B)
and compatible transitive actions of the abelian groups F(I), G(I) on the fibres of the
horizontal maps. Since F'(I) — G(I) is surjective this proves Step 1.
STEP 2: Let
0—I—A-"B—0
be a small extension in NAY | and b € F(B). Then b lifts to F(A) if and only if 6(b) lifts
to G(A).
The only if part is trivial, let’s prove the if part. If 6(b) lifts to G(A) then ob(A(b)) = 0 in
G(I[1]); since the obstruction maps commute with natural transformation of functors and
F(I[1]) — G(I[1]) is injective, also ob(b) = 0 in F(I[1]) and then b lifts to F'(A).

STEP 3: For every surjective morphism 3: A — C' in the category NA?
(a,0): F(A) — F(C) xgc) G(A)

p—1, the morphism

is surjective.

Let J be the kernel of § and consider the sequence of homogeneous differential ideals
J=JygDJ1=AJyD Jo=AJy---. Since A is nilpotent we have J, # 0 and J, 11 = 0 for
some n > 0. Denoting by I = J,, and B = A/I we have a small extension

0—IT—A-2B—0

By induction on dimg A we can assume that the natural morphism F(B) — ( ) X
G(B) is surjective and therefore it is sufficient to prove that F'(A) — F(B) x¢p) G(A )
surjective.

Let a € G(A) be fixed element and let b € F(B) such that 6(b) = a(a). By Step 2 a~1(b)
is not empty and then by Step 1 a € §(F(A)).

STEP 4: For every surjective morphism f: A — B in the category NA] and every
a € F(A) we define
Sr(a, f) ={§ € F(A xp A)[§ — (a,a) € F(A) xpp) F(A) C F(A) x F(A)}.

By definition, if f is a small extension and I = ker f then Sg(a, f) is naturally isomorphic
to the stabilizer of a under the action of F(I) on the fibre f~'(f(a)). It is also clear that:

(1) G(SF(G“7 f)) - SG(H(G)a f)

(2) If a: B — C is a surjective morphism if NA, then Sg(a, f) = h=1(Sr(a,af)),
where h: F(AxpA) — F(Ax¢ A) is induced by the natural inclusions A xp A C
A Xco A.

STEP 5: For every surjective morphism f: A — B in NA] and every a € F(A) the map
0: Sp(a, f) — Sc(0(a), f) is surjective.

This is trivially true if B = 0, we prove the general assertion by induction on dimg B.
Let

0—I—B-C—0

be a small extension with I # 0, set g = af and denote by h: A xg A — [ the surjective
morphism in NAJ defined by h(a1,a2) = f(a1) — f(az); we have an exact sequence

0—Axp A—sA xo A T—0.
According to 2a of V.59 the maps
F(AxpA) —» F(Axc A nh™Y0);  Sg(a, f) — Sr(a,g) Nh™1(0)

are surjective.
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Let £ € Sq(6(a), f) and let € Sp(a,g) such that 6(n) = «(€). Since F(I) = G(I) we
have h(n) = 0 and then 7 lifts to some & € Sg(a, f). According to Theorem V.69 there
exist surjective maps commuting with 6

F(AxpA)x F(I[-1))-5F(A xg A) X p(axea) F(A xp A)

G(Axp A) x GUI[-1]))-5G(A xp A) Xgraxea) G(A xp A)
Since F(I[-1]) — G(I[—1]) is surjective there exists v € F'(I[—1]) such that o(6(&1),0(v)) =
(0(£1),€); defining ¢ € F(A xp A) by the formula o(&1,v) = (£1,€) we get 0(¢) = € and
then & € Sp(a, f).
STEP 6: For every A € NAJ the map 0: F(A) — G(A) is injective.
According to Lemma V.68 this is true if A? = 0; if A2 # 0 we can suppose by induction
that there exists a small extension

0—I-A-%B—0

with I # 0 and 0: F(B) — G(B) injective.

Let aj,as € F(A) be two elements such that 6(a1) = 6(az); by assumption f(a;) =
f(a2) and then there exists ¢ € F(I) such that 9p(ai,t) = (a1,a2). Since ¥ is a natural
transformation ¥¢(0(a1),0(t)) = (0(a1),0(az)) and then 6(t) € Sg(6(ar),a). By Step 5
there exists s € Sp(ai, ) such that 6(s) = 6(t) and by injectivity of 6: F(I) — G(I) we
get s =t and then a; = as.

As an immediate consequence we have:

COROLLARY V.72. A morphism of deformation functors 0: F' — G is an isomorphism if
and only if it is a quasiisomorphism.

PrRoOOF OF THEOREM V.51. We apply Theorem V.71 to the morphism of deformation
functors 6 = Defy: Def;, — Defy.
According to Theorem V.66, the first item of V.51 is exactly the first item of V.71 for p =
1,¢g = 0, while the second item of V.51 is exactly the third item of V.71 for p=¢=0. O

9. Historical survey, V

The material Sections 1, 2 and 3 is standard and well exposed in the literature about
Lie algebras; in Sections 4, 5 and 6 we follows the approach of [52], while the material of
Sections 7 and 8 comes from [53].

Some remarks on the introduction of this Lecture:

A) Given a deformation problem, in general it is not an easy task to find a factoriza-
tion as in the introduction and in some cases it is still unknown.

B) Even in the simplest examples, the governing DGLA is only defined up to (non canoni-
cal) quasiisomorphism and then the Theorem V.51 is a necessary background for the whole
theory.
For example, there are very good reasons to consider, for the study of deformations of
a compact complex manifold M, the DGLA L = @®L!, where L’ is the completion of
(M, A% (Ty)) is a suitable Sobolev’s norm. According to elliptic regularity the inclusion
KS(M) C L is a quasiisomorphism of DGLA.
In general a correct procedure gives, for every deformation problem P with associated
deformation functor Defp, a connected subcategory P C DGLA with the following prop-
erties:

(1) If L is an object of P then Def;, = Defp.

(2) Every morphism in P is a quasiisomorphism of DGLA.

(3) If Morp(L,N) # () then the induced isomorphism Def,,: Def;, — Defy is inde-

pendent from the choice of a € Morp(L, N).
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C) It may happen that two people, say Circino and Olibri, starting from the same deforma-
tion problem, get two non-quasiisomorphic DGLA governing the problem. This is possible
because the DGLA governs an extended (or derived) deformation problem. If Circino and
Olibri have in mind two different extensions of the problem then they get different DGLA.
D) Although the interpretation of deformation problems in terms of solutions of Maurer-
Cartan equation is very useful on its own, in many situation it is unavoidable to recognize
that the category of DGLA is too rigid for a “good” theory. The appropriate way of ex-
tending this category will be the introduction of L.-algebras; these new objects will be
described in Lecture IX.



LECTURE VI

Kahler manifolds

This chapter provides a basic introduction to Kéhler manifolds. We first study the local
theory, following essentially Weil’s book [80] and then, assuming harmonic and elliptic
theory, we give a proof of the Jd-lemma which is presented both in the classical version
(Theorem VI.37, Item 2) and in the “homological” version (Theorem VI.37, Item 1).

The material of this Lecture is widely present in the literature, with the possible exception
of the homological version of 90-lemma; I only tried to simplify the presentation and some
proofs. The main references are [80], [81] and [11]

1. Covectors on complex vector spaces

Given a complex vector space E of dimension n we denote by:
e EY = Homc(E,C) its dual.
e Fr = F ®g C, with the structure of C-vector space induced by the scalar multi-
plication a(v ® b) = v ® ab.
e F its complex conjugate.

The conjugate E is defined as the set of formal symbols 7, v € E with the vector space
structure given by

UV+W=7v+w, av = av.

The conjugation ~: E — E. v+ ¥ is a R-linear isomorphism.
There exists a list of natural isomorphisms (details left as exercise)

(1) (Ec)" = (EY)c = Homg(E, C)

(2) EV =E’ given by f(v) = f(v), f€ EV, v € E.

(3) E®FE — Ec, (v,w0)—v®1—iv®i+w®1+iw®i, being i a square root of
—1.
(4) BV @ BV — E¢ = Homg(E,C),  (f,9)(v) = f(v) +g(v).
Under these isomorphisms, the image of EV (resp.: Ev) inside E¢ is the subspace of f
such that f(iv) = if(v) (vesp.: f(iv) = —if(v)). Moreover EY = EL, E' = E*L.

For 0 < p,q <n we set A1 = AP EV @ \? E": this is called the space of (p, q)-covectors
of E. We also set AP = @a+b:pAa’b (the space of p-covectors) and A = @a,bA“’b. Denote
by Pup: A— A%t P,: A — AP the projections.

If z1,..., 2, is a basis of EV then z1,...,%, is a basis of E" and therefore

Zig Ao N2 NETA L NE, i< <y 1 <o < g

is a basis of AP?. Since E = EY @ E, we have N'EY = A.
The complex conjugation is defined in A and gives a R-linear isomorphism —: 4 — A. On
the above basis, the conjugation acts as

2y N N2y NZE N NZg = (D) ANz NT NN

Since A®b = A% we have P, (1) = Pya(n).

MARCO MANETTI: Deformations of complex manifolds version June 28, 2011
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DEFINITION VI.1. The operator C: A — A is defined by the formula
C = Z iaibPa,b.
a,b

Note that C(u) = C(a) (i.e. C is a real operator) and C* =37 (—1)PP,.

2. The exterior algebra of a Hermitian space

Let E be a complex vector space of dimension n. A Hermitian form on F is a R-bilinear
map h: E x E — C satisfying the conditions

(1) h(av,w) = ah(v,w), h(v,aw) = ah(v,w), a € C, v,w € E.
(2) h(w,v) = h(v,w), v,w € E.
Note that h(v,v) € R for every v. h is called positive definite if h(v,v) > 0 for every
v # 0.

DEFINITION VI.2. A Hermitian space is a pair (E, h) where h is a positive definite Her-
mitian form on E.

It is well known that a Hermitian form h on a finite dimensional vector space E is positive
definite if and only if it admits a unitary basis, i.e. a basis ej,...,e, of F such that
h(ei, Ej) = 5”

Every Hermitian space (E,h) induces canonical Hermitian structures on the associated
vector spaces. For example

h:ExE —C, h(v,w) = h(v,w)

and

n: NEx NE — C, RP(ui Ao AN vp,wr AL A wp) = det(h(vi, wy))
are Hermitian forms. If e1,..., e, is a unitary basis of F then ey, ... €, is a unitary basis
for h and e;; A...Ae;,, 11 <...<ip, is a unitary basis for hP.

Similarly, if (F, k) is another Hermitian space then we have natural Hermitian structures
on E® F and Homc(FE, F') given by

hk: E@ F — C, hk(v ® f,w @ g) = h(v,w)k(f,qg)

hVk: Home(E,F) = C,  hVk(f.9) =Y k(f(e:),g(es))
i=1

where e; is a unitary basis of E. It is an easy exercise (left to the reader) to prove that
hVk is well defined and positive definite.

In particular the complex dual EV is a Hermitian space and the dual basis of a unitary
basis for h is a unitary basis for h".

Let e1,...,e, be a basis of E, z1,..., 2, € EV its dual basis; then

h(v,w) = Z hijzi(v)zj(w)

where h;; = h(e;,e;). We have hj; = hT] and the basis is unitary if and only if h;; = d;;.
We then write h = Zij hijz; ® Zj; in doing this we also consider h as an element of
EVY@E' =(E®E).

Taking the real and the imaginary part of h we have h = p — iw, with p,w: F x F — R.
It is immediate to observe that p is symmetric, w is skewsymmetric and

p(iv,iw) = p(v,w), w(iv,iw) =w(v,w), pliv,w)=w(v,w).

Since z; AZj = 2z; ® Zj — Zj @ z;, we can write

1 — 1 .
W= 5(h— h) = 52]11]21 A7 € AV
ij
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Note that w is real, i.e. W = w, and the Hermitian form is positive definite if and only if
for every v # 0, h(v,v) = p(v,v) = w(v,iv) > 0. The basis ey,..., e, is unitary if and only

. 1 _
1fw:§Zzi/\zi.

i

Let now eq,...,e, be a ﬁ}ged unitary basis of a Hermitian space (E,h) with dual basis
21,...,%n and denote u; = %zj NZj; if z; = x; 4+ 1y; then u; = z; A y; and
An
W =uUAN... AUy, =1 AL N .. AN A Yn.
Since x1,Y1, - - -, Zn, Yn is a system of coordinates on F, considered as a real oriented vector

space of dimension 2n and the quadratic form p is written in this coordinates

n

p(v,0) = 3 (@) + 3i(v)?),

i=1
we get from the above formula that w"/n! € A*Homg(E,R) is the volume element
associated to the scalar product p on E. R
For notational simplicity, if A = {a1,...,a,} C {1,...,n} and a1 < a2 < ... < ap, we

denote |A| = p and
ZA=Zag N NZayy, ZA=Za; N NZg,, UA=Ugy Ao N\ Ug,.
For every decomposition of {1,...,n} = AU B UM U N into four disjoint subsets, we
denote
ZANZB Nupy € A‘A‘+|M|’|B|+|M|.

1
ZA,B,M,N = VIl
These elements give a basis of A which we call standard basis.
Note that ZAB.M,N = (—1>|A| ‘BIZB7A7M7N.
DEFINITION VI.3. The C-linear operator x: AP9 — A"~ 9"7P ig defined as

JJAB

*z24,B,M,N = sgn(A, B) ZA,B,N,M,

where sgn(A, B) = %1 is the sign compatible with the formulas

(2) ZA.B.M,N N*ZA B M.N = ZA,B,M,N N *¥ZA B M,N = U1 A ...\ Up.
(AI+]1BDA[+]B[+1) (p+q)(p+a+1)
—1 M
3)  Cl'szapun=(-1) 2 zapna = (1) 7 WMy gy
EXERCISE VI.4. Verify that Definition VI.3 is well posed. A

In particular

A+ B |Al+]B|+2[M]|

za N = (—1) zaBMN = (—1) ZA,B,M,N
and then
(C')?=1d, +*=C?=)> (-1)’P,
»
If we denote vol: C — A™™ the multiplication for the “volume element” w”\"/n!, then vol

is an isomorphism and we can consider the R-bilinear maps
(,): A%’ x A% - C, (v, w) = vol ' (v AFw) = vol (v A ¥T).
Clearly (, ) is C-linear on the first member and C-antilinear in the second; since
1 fA=AB=B M=M ,N=N'

(24,B,M,N s ZA" B/ M',N') =
0 otherwise

we have that (, ) is a positive definite Hermitian form with the z4 p p n's, |A|+ | M| = a,
|B| + |M| = b, a unitary basis; since * sends unitary basis into unitary basis we also get
that x: A%0 — A"~0"=¢ i5 an isometry.
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LEMMA VI.5. The Hermitian form (, ) is the Hermitian form associated to the Hermitian
space (E,h/2). In particular (, ) and % are independent from the choice of the unitary basis
€1,...,€En.

PRrOOF. The basis v/2e1,...,1/2¢e, is a unitary basis for 2/2 and then the standard
basis is a unitary basis for the associated Hermitian structures on A.

From the formula (v,w)w”™ = n!(v A ¥w) and from the fact that the wedge product is
nondegenerate follows that * depends only by w and (, ). O
Consider now, for every j = 1,...,n, the linear operators

Lj: AP — Ap+17q+1’ Li(n) = n Auj,

2
Mgt AP AP A () = <Z-em > ’

where - denotes the contraction on the right. More concretely, in the standard basis

ZA,B,MU{i},N—{i} ifieN
LizaB MmN =

0 otherwise

ZA,B,M—{i},NU{i} ifieM
Niza.m,N =

0 otherwise

It is therefore immediate to observe that L;x = %A; and xL; = A;*. Setting L = ). Lj,
A =", A; we have therefore

L(n)=nAw, A=x"1Lx=xLx1,
LEMMA VI.6. The operators L and A do not depend from the choice of the unitary basis.
PRrROOF. w and * do not depend. O

ProposiTioN VI.7. The following commuting relations hold:

2n

[L,C]=0, [AC]=0, [+C]=0, [AL=Y (n-p)P,
p=0
PROOF. Only the last is nontrivial, we have:
Lzp MmN = Z ZA,B,MU{i},N—{i}> Aza MmN = Z ZA,B,M—{i},NU{i}>
€N ieM

ALza B MmN = Z 2A,B,M,N + Z Z ZA,B,MU{i}—{5},NU{j}—{i}s

iEN JEM ieN
LAzaBmN = Z ZA,B,M,N + Z Z ZA,B,MU{i}—{5},NU{j} —{i}-
eM JEM ieN

Therefore we get
(AL = LA)za N = (IN| = IM)zaBmn = (n — |A] = |B| = 2[M|)za,B,m,N-
and then
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3. The Lefschetz decomposition

The aim of this section is to study the structure of A®* EV as a module over the algebra
® generated by the linear operators C~1x, L, A.
In the notation of the previous section, it is immediate to see that there exists a direct sum
decomposition of ®-modules A™* EY = @ V4 g, where V4 p is the subspace generated by
the 27~ 14I=1Bl clements 24,B,M,N, being A, B fixed.
It is also clear that every V4 p is isomorphic to one of the ®-modules V(h,7), h € N,
7 = *1, defined in the following way:

(1) V(h,7) is the C-vector space with basis uy;, M C {1,...,h}.
(2) The linear operators L, A and C~'x act on V(h,T) as
Lupy = ZuMU{i}’ Aupr = ZUM_{i}’ C_l*uM:TuMC,
igM ieM
where M€= {1,...,h} — M denotes the complement of M.

We have a direct sum decomposition

V(h,T) = b Va,
a=h (mod 2)

where V,, is the subspace generated by the uys with |[M€| — |[M| = a. An element of V, is
called homogeneous of weight «. Set P,: V(h,T) — V, the projection.
Note that L: Vo, — Vi_a, A: Vy — Vo and C71x: V,, — Vg,
We have already seen that
[A, L] :ZaPa, LC Y =C7txA, Cl '« L=AC"1x.
aEZ
A simple combinatorial argument shows that for every r > 0,

Lup = 7! E UN.
MCN,|N|=|M|+r

LEMMA VL.8. For every r > 1 we have
A, L] = Z rla—r+1)L"71P,.
(0%
PROOF. This has already done for » = 1, we prove the general statement for induction

on r. We have

AL = [AL"L+ LA L] =Y rla—r+ )L 'P,L+ > aPa.

«

Since P,L = LP,,2 we have

[A, L) = Z r(a—r+1)L"Pyio + Z aP, = Z(r(a —r—1)+a)L"P,.

« o

DEFINITION VI.9. A homogeneous vector v € V, is called primitive if Av = 0.

ProPOSITION VI.10. Let v € V,, be a primitive element, then:
(1) L9 =0 for every q > max(a+ 1,0). In particular if « < 0 then v = L% = 0.
(2) If a« >0, then for everyp >q >0
P
APTILPy = H r(a—r+1)L%;
r=q+1

in particular A“L% = a!?v.
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PRrROOF. We first note that for s, > 1
ASL"v = ASHA, L = r(a —r + DAL Lo,
and then for every p > ¢ >0

p
APTILPy = H r(a—r+1)L%.
r=q+1
If p>q > athen r(a —r + 1) # 0 for every r > ¢ and then L% = 0 if and only if
AP~1[Py = 0: taking p >> 0 we get the required vanishing. O

LEMMA VL.11. Let a >0, m = (h— «)/2 and v = Z‘M|:m apyupy € Vo, apy € C. If v is
primitive, then for every M
apr = (_1)m Z an.
NCMe,|N|=m

PRrROOF. For m = 0 the above equality becomes ap = ap and therefore we can assume
m > 0. Let M C {1,...,h} be a fixed subset of cardinality m, since

0=Av= > and ungy= D un) anu
|H|=m i€eH [N|=m—1 igN

we get for every N C {1,...,h} of cardinality m — 1 the equality
Ry : Z anu{i} = — Z aNU{i}-

ieM—N igMUN
For every 0 < r < m denote by

ST = Z ag.

|H|=m,|HNM|=r
Fixing an integer 1 < r < m and taking the sum of the equalities Ry, for all N such that
INNM|=r—1 we get
rSy=—(m-—r+1)S,_
and then

Sm—1 2Sm—9 m)!
ay = Sy = — = =...=(-1)"—=85=(-1)" an.
m m(m — 1) (=1) m!”? (=1) NCMCzle|m

LEmMMA VI.12. Ifv € V,,, a > 0, is primitive, then for every 0 <r < «
—1 ro._ m T! a—r
C * L v = T(—l) WL v,
where m = (h — «) /2.

ProOF. Consider first the case r = 0; writing v = > ayuy with |[N| =m, ay € C, we

have:
PO MRTED ST ST DRI DS

|N|=m NcM |N|=m MCN¢© |M|=m NCM¢©
|M|=m+a« |[M|=m |N|=m
Clxv=r Z apupfe.
|M|=m
The equality C~! x v = 7(a!) "' L% follows immediately from Lemma VI.11. If » > 1 then
-1 r re—1 T(_l)m rra
C "« L'v=AC *vzilALv.
a!

Using the formula of VI.10 we get

(=)™ jla—j+ 1)L "o =7(-1)™ @ i!r)!

j=oa—r+1

a—r

Cls L'y =

al
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THEOREM VI.13. (Lefschetz decomposition)
(1) Every v € V can be written in a unique way as
v = Z L v,
r>max(—a,0)

with every v, € Vot primitive.
(2) For a fized q > h there exist noncommutative polynomials G& ,(A, L) with rational
coefficients such that v, = G& (A, L)v for every v € V,.

PRrROOF. Assume first « > 0, we prove the existence of the decompositionv = >, <, L"v,
as above by induction on the minimum ¢ such that A% = 0. If ¢ = 1 then v is al-
ready primitive. If A9Tly = 0 then w = A% € Va+42¢ is primitive and then, setting
v =11 r(a+2g—r+1), we have v > 0 and

A <v — qu> —w— ALY = 0.
Y Y
This prove the existence when a > 0. If & < 0 then C~' x v € V_,, and we can write:
Clxv= ZLTUT, v = ZC’fl x L'vp, v € Vogiop.
r>0 r>0
According to Lemma VI.12
v = Z’YTL_OH_T'UT = Z /77”+OZLTU7”
r>0 r>—a
for suitable rational coefficients ~,.
The unicity of the decomposition and item 2 are proved at the same time. If
q
v = Z L™,
r=max(—a,0)
is a decomposition with every v, € Vaio, primitive, then LoT9y = L4y, and
1 1

vy — — a+2qLa+2qU - - a+2qLa+qv.
T (a+2¢)2 T (a+2¢)2
Therefore v, is uniquely determined by v and we can take G4 = (o + 2¢)!72A T2 Lota,
Since v—L9vy = (1—-LIGE 4)v = Zg;iﬂax(ia’o) L™v, we can proceed by decreasing induction
on gq. ]

COROLLARY VIL.14. v € V,,, a > 0, is primitive if and only if L*T'v = 0.

PROOF. Let v =3,~, L v, be the Lefschetz decomposition of v, then > _, L*"" 1o,
is the Lefschetz decomposition of L* 1y, Therefore L% v = 0 if and only if v =vy. [

It is clear that Theorem VI.13 and Corollary VI.14 hold also for every finite direct sum
of ®-modules of type V(h, 7).
For later use we reinterpret Lemma VI.12 for the ®-module A4: we have

A+ BDUA[+]B[+1)
A= @Vap,  Vap=V(n—|Al-|BL(-)" )
A,B

where the sum is taken over all pairs of disjoint subsets A, B of {1,...,n}. The space
Ao = @(Va,B)a is precisely the space @, A"~ ** of (n — a)-covectors. We then get the
following

LEemMmA VL5, Ifv € A is a primitive p-covector, p < n, then
(p+1) !
(—1)7”32+ T7|L"_p_’"v ifr<n-—p
O—I*LTU: (n—p—r)

0 ifr>n—p
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4. Kahler identities

Let M be a complex manifold of dimension n and denote by A** the sheaf of differential
forms on M. By definition A% is the sheaf of sections of the complex vector bundle
N Ty ® /\bmv. The operators Py, P, and C, defined on the fibres of the above bundles,
extend in the obvious way to operators in the sheaf A™*.

If d: A** — A** is the De Rham differential we denote:

e a:d—i—idc 5:d—idc
) 2 bl 2 )
d=cd°c™, d=0+0, d° =i(0—-9).

If n is a (p, ¢)-form then we can write dp = 1’ +n” with ' € APT19 5" € AP4F! and then

iP—a iP—a Y

C =1 gp—q.\ _ ! "o =11 /i . a
d”(n) = C7d(@" ) = ' + =g =+ a on=a, On=1".

Since 0 = d2 = 92+ 00 + 00 + 0~ we get 0 = 0% = 90 + 90 = 9 and then (d9)? =0,
dd® = 2i00 = —d®d.

Using the structure of graded Lie algebra on the space of C-linear operators of the sheaf
of graded algebras A** (with the total degree T = a+ b if v € A%?), the above relation can
be rewritten as

[d,d] = dd + dd = 2d*> = 0, [d%,d%] = [d,d°] = [0,0] = [9,0] = [0, 0] = 0.

Note finally that d and C' are real operators and then also d© is; moreover 07 = 9.
A Hermitian metric on M is a positive definite Hermitian form h on the tangent vector

bundle Ths. If z1,...,2, are local holomorphic coordinates then h;; = h <aa, ;) is
Zi Zj

a smooth function and the matrix (h;;) is Hermitian and positive definite. The local
expression of h is then h = Zij hijdz; ® dz; and the differential form

{ _
w = 5 Z hz-jdzi VAN de € F(M, ./41’1)
i
is globally definite and gives the imaginary part of —h; w is called the (real, (1,1)) associ-
ated form to h.

The choice of a Hermitian metric on M induces, for every open subset U C M, linear
operators
L: (U, A%") — D(U, A¢TL0+), Lv=vAw,
1 T(U, A%) — T(U, A"~0m=),
A:T(U, A% — DU, A0 A =71 = (C7h) 7L«
The commuting relations between them

[L,C]=[A,C] = [xC] =[L,**] =0, [AL=> r(n—p—r+1)P,
P
are still valid.
A differential form v is primitive if Av = 0; the existence of the polynomials G};_, .(A, L)
(cf. Theorem VI.13) gives the existence and unicity of Lefschetz decomposition for every
differential p-form

v = Z L"v,, Av, = 0.
r>max(p—n,0)
We set:
0 = — x dx, 8¢ = —xd% = Cc715C,
_isC . O
8*:—*5*:5 2@5 ’ 8:_*8*:54-2@5 ‘

DEFINITION VI.16. The Hermitian metric A is called a Kdhler metric if dw = 0.

Almost all the good properties of Kahler metrics come from the following



THEOREM VI.17. (Ké&hler identities) Let h be a Kdhler metric on a complex manifold,
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then:
[L,d] =0 [L,d°] = [L,0]=0 |[L,0]=0
[A,d]=—6° | [A,d°] =6 |[A,0] =4 |[A,9]=—id*
[L,0] =d° |[L,6° =—d|[L,8]=id|[L,8]=—id
[A,6] =0 [A,0¢) = [A,0*]=0 |[AT] =

Proor. It is sufficient to prove that [L,d] = 0 and [A,d] = —6¢. In fact, since A =
*LLx = xLx~1 we have [A,d] + *[L,d]* = 0 and [L,d] + *[A, d]* = 0: this will prove the
first column. The second column follows from the first using the fact that C' commutes
with L and A. The last two columns are linear combinations of the first two.

If v is a p-form then, since dw = 0,
[L,dv=dvAw—d(vAw)=—(=1)Pv Adw = 0.

According to the Lefschetz decomposition it is sufficient to prove that [A,d]L"u = —6¢L"u

for every r > 0 and every primitive p-form u (p < n). We first note that, being u primitive,

L™ Pty = 0 and then L™ Ptldu = dL™ PTly = 0. This implies that the Lefschetz

decomposition of du is du = ug + Luy.

Setting « =n — p, we have u € V,,, ug € Vo—1, u1 € Vagr:

[A,d|L"u = AL"du — dAL"w = AL"ug + AL" M 'uy —r(a —r + 1)dL" tu =

— L ug 4+ (r4+ 1) (a—r4+1)L"uy — (e — 7+ 1)L ug —r(a—r + 1)L uy =
= L lug+ (a—r+1)L"u

On the other hand we have by VI.15

=r(a

—°L'u=C"'%d*xCL'u=C"'%dC*C™ '« L"u
|
— C*l dC2 -1 p(p+1)/2 T a—r
*dC(=1) @—ni
and then |
5Ly = (—1)p<p*1>/2ﬁ0*1 * Lo (ug + Luy).
Again by VI.15,
— )l
O~ s Lo Ty = (p+1)(p+2)/2( 7’). r—1
* up = (—1) (r — 1) Uuo,
— !
o 1 * L& 7'+1u _ (_1)(p71)p/2( ;’:"*’ ) Lrul'
Putting all the terms together we obtain the result. O

COROLLARY VI.18. Ifw is the associated form of a Kihler metric h then dwP = 6w”P = 0
for everyp >0 .

PROOF. The equality dw”? = 0 follows immediately from the Leibnitz rule. Since w’?

is a (p,p) form, we have CwP = w"? and then also d°wP = 0.
We prove dw”*? = 0 by induction on p, being the result trivial when p = 0. If p > 0 we have
0=d%w"! = Low Pt — §Lw P! = —w/P.
O
The gang of Laplacians is composed by:
(1) A =[d, 0] = dé + dd.
(2) Adc = AC CIAC = [dY, 6] = d®69 + 6€d°.
(3) Ay =0=[0, 8*] 00* 4+ 0%0.
(4) Ay = D =10,07]1=09 +9 0.

A straightforward computation shows that A + A¢ = 200+ 200.
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COROLLARY VI.19. In the above notation, if h is a Kdhler metric then:
— —= 1 1 —
[d,6¢] = [d“,8] = [0,0"] = [9,0"] = 0, SO = §AC =0=0.
In particular A is bihomogeneous of degree (0,0).

PROOF. According to Theorem VI.17 and the Jacobi identity we have

(d, 50] = [d,[d, A]] = ;[[d, d], A] = 0.

1
2
The proof of [d€, 8] = [9,0"] = [9,d*] = 0 is similar and left as exercise. For the equalities

among Laplacians it is sufficient to shows that A = A® and O = 0. According to the
Kahler identities

A =[d,8] = [d,[A,d°)] = [[d, A],d°] + [A, [d, d]).
Since [d,d®] = dd® + d“d = 0 we have
A =1[d,8] = [[d,A],d’] = [6¢,d°] = A°.
The proof of (0 = O is similar and it is left to the reader. ]

COROLLARY VI.20. In the above notation, if h is a Kdhler metric, then A commutes with
s

all the operators Py, *, d, L, C, A, d®, 0, 0, 6, 6¢, 0%, 0 .

PRrROOF. Since A is of type (0,0) it is clear that commutes with the projections P, .
Recalling that § = — x d* we get d = *d* and then

*A =xdd +*0d = —xd*xd*+*0%x0x =0d *x +do*x = A %

[L,A] = [L,[d, 0] = [[L,d],d] + [[L,d],d] = [d°,d] = 0.

1
[dv A] = [d7 [dv 5“ = 5[[d7 d}a 5] =0.
Now it is sufficient to observe that all the operators in the statement belong to the C-algebra
generated by P, *, d and L. O

DEeFINITION VI.21. A p-form v is called harmonic if Av = 0.

COROLLARY VI.22. Let h be a Kdhler metric and let v =), L"v, be the Lefschetz de-
composition of a p-form.
Then v is harmonic if and only if v, is harmonic for every r.

PROOF. Since A commutes with L, if Av, = 0 for every r then also Av = 0. Conversely,
since v, = G (A, L)v for suitable noncommutative polynomials with rational coefficients
Gp ., and A commutes with A, L then v harmonic implies Av, = 0 for every r. O

CoOROLLARY VI.23. In the above notation, if h is a Kdhler metric and v is a closed
primitive (p, q)-form then v is harmonic.

Note that if either p = 0 or ¢ = 0 then v is always primitive.

PRrROOF. It is sufficient to prove that dv = 0, we have

ov=Co¢C 1w =i7PC6% = i PC[d, AJv = 0.
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5. Kihler metrics on compact manifolds

In this section we assume M compact complex manifold of dimension n. We denote by
b — b — b T
L% =T(M, A*), LP = @a+b:pLa , L= @p LP.
Every Hermitian metric » on M induces a structure of pre-Hilbert space on L*® for every
a,b (and then also on L) given by:

@)= [ or.

We have already seen that the operator x: L»* — L"~%"=b is an isometry commuting with
the complex conjugation and then we also have:

(6,) = /amw /dm*w (- >“+b/*¢w /ww @9).

ProrosiTioN VI.24. With respect to the above pre-Hilbert structures we have the follow-
ing pairs (written in columns) of formally adjoint operator:

operator d| d°| o |0 | L

~k

formal adjoint | 6| 6¢ | 0| 9 | A

In particular, all the four Laplacians are formally self-adjoint operators.

PRrROOF. We show here only that ¢ is the formal adjoint of d. The proof of the remaining
assertions is essentially the same and it is left as exercise.
Let ¢ be a p-form and ¥ a p + 1-form. By Stokes theorem

:/ d(gbA*w):/ do A *p + (— /dmd*w.
Since dxtp) = d * 1) and d* 1) = (=1)2""Px2 d x1p = —(—1)P % 51 we get

o_/Md¢A*¢—/M¢A*6w—(d¢,¢>—<¢,6w>-
]

Let D be any of the operator d,d",d,0; denote D™ its formal adjoint and by Ap =
DD*+ D*D its Laplacian (i.e. Ag= A, Az = O etc...). The space of D-harmonic p-forms
is denoted by HY, = ker Ap N LP.

LEMMA VI.25. We have ker Ap = ker D Nker D*.

PrRoOOF. The inclusion D is immediate from the definitions of the Laplacian. The
inclusion C comes from

(Apg, ) = (DD*$,¢) + (D* D¢, ¢) = (D*¢, D*¢) + (D¢, D) = | D*¢||* + | Dg||*.

The theory of elliptic self-adjoint operators on compact manifolds gives:

THEOREM VI.26. In the notation above the spaces of D-harmonic forms HY, are finite
dimensional and there exist orthogonal decompositions

1
LP = HY, B Im Ap.
PROOF. See e.g. [78]. O
COROLLARY VI.27. The natural projection maps
HY — HP(M,C), Hg’q — H%(M, OF)

are isomorphism.



90 VI. KAHLER MANIFOLDS

ProoOF. We first note that, according to Lemma VI.25, every harmonic form is closed
and then the above projection maps makes sense. It is evident that ImA C Imd + Imé.
On the other hand, since d,d are formally adjoint and d?> = 6> = 0 we have kerd L Im,
kerd L Imd: this implies that Imd, Iméd and Hg are pairwise orthogonal. Therefore
ImA =Imd & Imé and ker d = HY & Im d; the conclusion follows by De Rham theorem.
The isomorphism H%q — H%(M , QP) is proved in the same way (with Dolbeault’s theorem
instead of De Rham) and it is left as exercise. O

COROLLARY VI.28. The map Ap: ImAp — Im Ap is bijective.
PRrROOF. Trivial consequence of Theorem VI.26. O

We define the harmonic projection Hp: LP — HY, as the orthogonal projection and the
Green operator Gp: LP — Im Ap as the composition of

d— AR
Gp: LP a1ty ImAp —2> ImAp.

Note that ADGD = GDAD =1Id— HD and GDHD = HDGD =0.

LEMMA VI.29. If K is an operator commuting with Ap then K commutes with Gp.
PRrOOF. Exercise (Hint: K preserves image and kernel of Ap). O

If h is a Kahler metric, then the equality A = 200 implies that
1 1
Hd == HdC == H(‘) = Hg, Gd = Gdc == §G3 == §G5

In particular, according to Lemma VI.29 and Corollary VI1.20, G4 = G ¢ commutes with
d,dc.

COROLLARY VI1.30. If h is a Kdahler metric on a compact manifold then: Every holomor-
phic p-form on M is harmonic.

PROOF. According to Corollary VI.27 the inclusion H%’O C I'(M, QP) is an isomorphism
and then if 7 is a holomorphic p-form we have A(n) = 200(n) = 0. O

EXERCISE VI.31. Let v # 0 be a primitive (p, ¢)-form on a compact manifold M with
Kahler form w. Prove that

/ VAT AWNTPTL AL,
M

6. Compact Kihler manifolds

In this section we will prove that certain good properties concerning the topology and
the complex structure of compact complex manifolds are true whenever we assume the
existence of a Kéhler metric. This motivates the following definition:

DEFINITION VI.32. A complex manifold M s called a Kdhler manifolds if there exists a
Kahler metric on M.

We note that, while every complex manifold admits a Hermitian metric (this is an easy
application of partitions of unity, cf. [37, Thm. 3.14]), not every complex manifold is
Kahlerian. We recall the following

THEOREM VI.33. (1) C™, P™ and the complex tori are Kdihler manifolds.
(2) If M is a Kdhler manifold and N C M is a regular submanifold then also N is a
Kdhler manifolds.
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For a proof of Theorem VI.33 we refer to [26].

From now on M is a fixed compact Kahler manifold on dimension n.
For every m < 2n we denote by H™(M,C) = H™(M,R) ®r C the De Rham cohomology
C-vector spaces. We note that a differential m-form 7 is d-closed if and only if its conju-
gate 77 is. In particular the complex conjugation induce an isomorphism of vector spaces
H™(M,C)=H™(M,C).

If p+ g = m we denote by FP? C H™(M,C) the subspace of cohomology classes repre-
sented by d-closed form of type (p,q) (note that a (p,q)-form 7 is d-closed if and only if it
is On = On = 0). It is clear that FP4 = FP,

THEOREM VI.34 (Hodge decomposition). In the notation above we have
H™(M,C)= & FP1
p+g=m
and the natural morphisms FP1 — HJY(M), FP? — Hg’q(M) are isomorphisms.

ProoOF. Take a Kéahler metric on M and use it to define the four Laplacians, the
harmonic projectors and the Green operators. According to Corollary VI.19 the Laplacian
A is bihomogeneous of bidegree (0,0) and we have

ker ANL? = @ ker AN L.

The isomorphism ker AN LY — H9(M,C) iar;r(i)acqes injective maps ker A N L%* — F%Y; this
maps are also surjective because every closed form « is cohomologically equivalent to its
harmonic projection Ha and H is bihomogeneous of bidegree (0,0).

The last equalities follow from the isomorphisms

ker ANL* = kerONL* = Hy"(M), ker ANL*" =kerONL* = HZ"(M).

COROLLARY VL.35. If M is a compact Kdhler manifold then:

(1) b; = Zaer:i hab

(2) hP9 = hTP  in particular b; is even if i is odd.

(3) KPP >0, in particular b; > 0 if i is even.

(4) Ewvery holomorphic p-form on M is d-closed.
(bi = dimc H'(M,C) are the Betti numbers, h?4 = dimc H4(M,QP) the Hodge numbers.)

PROOF. Items 1 and 2 are immediate consequence of the Hodge decomposition. Take a

Kahler metric on M and use it to define the four Laplacians, the harmonic projectors and
the Green operators. Let w be the associated form of the Kéhler metric on M. According
to Corollary VI.18, w”? is harmonic and then ker (0N LPP = ker A N LPP # (.

Finally, by Corollary VI.30 the holomorphic forms are A-harmonic and therefore d-closed.
O

ExAaMPLE VI.36. The Hopf surfaces (Example 1.6) have by = b3 = 1, by = 0 and then are
not Kahler.

Finally we are in a position to prove the following

THEOREM VIL.37. (09-Lemma) Let M be a compact Kihler manifold. Then
(1) There exists a linear operator o: L — L of bidegree (0,—1) such that
[0,0] =0, [0,0]0 = [0,00] = 0.
(2) Im 99 = ker d NIm 9 = ker & N Im 4.
PRrROOF. [1] Choose a Kéhler metric and define o = Ggg*. According to VI.19, VI.20
and VI.29 we have o = E*Gg, [0,0] = 0 and, denoting by H the harmonic projection,



92 VI. KAHLER MANIFOLDS

[2] (cf. Exercise VI1.39) We prove only Im 99 = ker & N Im 0, being the other equality the
conjugate of this one. The inclusion C is evident, conversely let x = da be a 0-closed
differential form; we can write

r = da = [0,0]0a = Joda + 00da = —d0oa — 00z = HI(0q).
U

COROLLARY VL.38. Let M be a compact Kahler manifold. Then for every p,q the natural
maps
ker & N ker 9 N LP4 ker & N ker 9 N LP4 ker & N LP4

o p—1,q-1 - N yrpa-t = HI(M, Q)
00LpP—1a O(ker 0 N Lpa—1) OLPa

ker O N ker & N LP4 ker & N ker 9 N LP4 ker 0 N LP4
— — — —
JoLr—1a-1 O(ker 0 N Lp—149) oLpr—1a

are isomophisms.

PROOF. The two lines are conjugates each other and then it is sufficient to prove that
the maps on the first row are isomorphisms.
Choose a Kéhler metric, every 0-closed form ¢ can be written as ¢ = o+ 91 with Do = 0.
Since [0 = O we have da = 0 and then the above maps are surjective.
According to Theorem VI.37 we have

AO(LP~147 Y c B(kerd N LPI™Y) C ker 0 NO(LP 41 c 9o(LP~ 1471
and then all the maps are injective. O
EXERCISE VI.39. Prove that for a double complex (L**,d,d) of vector spaces (with d,§

differentials of respective bidegrees (1,0) and (0, 1)) the following conditions are equivalent:

(1) There exists a linear operator o: L** — L**~! of bidegree (0, —1) such that
[d,o] =0, [0,0]d = [0,0d] = d.

(2) Imdd = keré N Imd.

(Hint: The implication [1 = 2] is the same as in Theorem VI.37. In order to prove [2 = 1]
write L% = Fo @ C* with F%* = dL% 1 and observe that the complexes (F®*,§) are
acyclic. Define first o: F»* — F%b=! such that [6,0]d = d and then o: C** — C%*~! such
that [d, o] = 0.) A

7. Historical survey, VI
Most of the properties of Kéhler manifolds are stable under deformation. For example:

THEOREM VI1.40. Let f: M — B be a family of compact complex manifolds and assume
that My is Kdhlerian for some b € B.

Then there exists an open neighbourhood b € U C B such the functions h?1: U — N,
hP4(u) = dime HP?(M,) are constant and ) h?%(u) = dim¢c H™(M,,C) for every
uel.

p+q=m

PrOOF. (Idea) Exercise L.18 implies >, _,, AP (u) > dim¢ H™(My, C) and the equal-
ity holds whenever M, is K&hlerian. On the other side, by semicontinuity theorem 1.42

the functions AP¢ are semicontinuous and by Ehresmann’s theorem the function uw +—
dim¢c H™(M,, C) is locally constant. O

Theorem VI.40 is one of the main ingredients for the proof of the following theorem,
proved by Kodaira (cf. [37], [78])

THEOREM VI.41. Let f: M — B be a family of compact complex manifolds. Then the
subset {b € B| My is Kdihlerian } is open in B.
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The proof of VI.41 requires hard functional and harmonic analysis.

It seems that the name Kdhler manifolds comes from the fact that they were defined in a
note of Erich Kahler (1906-2000) of 1933 but all their (first) good properties were estabil-
ished by W.V.D. Hodge some years later.






LECTURE VII

Deformations of manifolds with trivial canonical bundle

In the first part of this chapter we prove, following [21] and assuming Kuranishi theo-
rem [V.36, the following

THEOREM VIIL.1 (Bogomolov-Tian-Todorov). Let M be a compact Kdhler manifold with

trivial canonical bundle Ky = Opr. Then M admits a semiuniversal deformation with
smooth base (H'(M,Tyr),0).

According to Corollary 1V.37, it is sufficient to to show that the natural map

is surjective for every n > 1. This will be done using Corollary V.52 and the so called
Tian-Todorov’s lemma.

A generalization of this theorem has been given recently by H. Clemens [10]. We will prove
of Clemens’ theorem in Chapter IX.

In the second part we introduce some interesting classes of dg-algebras which arise natu-
rally both in mathematics and in physics: in particular we introduce the notion of differen-
tial Gerstenhaber algebra and differential Gerstenhaber-Batalin-Vilkovisky algebra. Then
we show (Example VIL.30) that the algebra of polyvector fields on a manifold with triv-
ial canonical bundle carries the structure of differential Gerstenhaber-Batalin-Vilkovisky
algebra.

1. Contraction on exterior algebras

Let K be a fixed field and E a vector space over K of dimension n; denote by EV its dual
and by (,): E x EY — C the natural pairing. Given v € F, the (left) contraction by v is
the linear operator v +: A’ EY — A’"' EV defined by the formula

b
v (21 Ao A 2zp) :Z(—l)iil@,zﬁzl/\.../\é}/\.../\zb.
i=1
For every a < b the contraction

/\aE « /\bE\/L)/\b_aEV
is the bilinear extension of
(Va Ao AV E (iAo A zp) =vg b (Vg1 Ao Av) E (2L Ao oA 2p))

= Z(—l)o <H<Ui, Zg(i)>> Zo(a+1) VANPIAN Zg(b)

ceG i=1
where G C X is the subset of permutations o such that o(a+1) < o(a+2) < ... < o(b).
We note that if @ = b then the contraction is a nondegenerate pairing giving a natural
isomorphism (A"E)Y = A"EY. This isomorphism is, up to sign, the same considered is
Section VI.2.
If a > b we use the convention that F= 0.

LEMMA VIIL.2. (1) For every v € E the operator v F is a derivation of degree —1 of
the graded algebra \'EV.

MARCO MANETTI: Deformations of complex manifolds version June 28, 2011
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(2) For everyve N\"E, w e /\b E, 2 € \°EY, we have
(vAw)Fz=vF (wk 2).
Incpartz'cular the operator w F: N°EY — N " EY is the adjoint of Aw: N\ " E —
L.
(3) éj\‘v ENEY, we N'E, Qe N"EY, where dimE =n, a < b, then:
vA(wk Q)= (v w)kF Q.

PRrROOF. [1] Complete v to a basis v = ey, ..., e, of F and let 21, ..., 2, be its dual basis.
Every w € A* EY can be written in a unique way as w = 23 Aw; +wy with wy, ws € A*vt.
According to the definition of F we have v - w = w;.

If w= 21 Awy + wo, u = 21 A uj + ug are decompositions as above then

wFw)Au+ (=1)%wA (vFu) =wi A (21 Aug +ug) + (—=1)%2(21 Awy + we) A uy
=wy Aug + (—=1)2ws A uy.
vE (wAu) =vk ((z1 Awi 4+ w2) A (21 Aug + ug))
=vk (21 ANwy Aug +wa Az Aug + we A ug)

= w1 Nuz + (—1)1”721112 AUj.

[2] Immediate from the definition.
[3] Induction on a; if @ = 1 then complete v to a basis v = z1,...,2, of EY and denote
e1,...,e, € E its dual basis. Writing

w = e; A wy + wo, w; € Not, w; = Q=vAn;, n; € Net,
we have by Item 2
wkEQ=(e1Aw)F Q4+ (wa k- Q)=e1 F (w1 Q)+ (wa Q) =m +vAn,

and then
vA(wkEQ)=vAm=wFQ=(vkw)k Q.

If a >1and v = v; A vy, with v1 € EVY, vy € /\“71 EVY then by item 2 and inductive
assumption

viAA(wEQ)=vA((ukFw)FQ)=(vF(vukFw)kFQ=((vi Avy) Fw)F Q.

g
LEMMA VIL.3. For every vector space E of dimension n and every integer a = 0,...,n,
the contraction operator defines a natural isomorphism
NE-SN'E@ NTEY, i) =Zo (vl Q)
where (Z,Q) € A" E x \" EY is any pair satisfying Z - Q = 1.
ProOOF. Trivial. O

EXERCISE VII.4. Let 0— E—F—G—0 be an exact sequence of vector spaces with
dimG = n < oco. Use the contraction operator to define, for every a < dim F, a natural
surjective linear map A*™"F — N°E @ N'G. A
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2. The Tian-Todorov’s lemma

The isomorphism ¢ of Lemma VII.3 can be extended fiberwise to vector bundles; in partic-
ular, if M is a complex manifold of dimension n and Ty is its holomorphic tangent bundle,
we have holomorphic isomorphisms

i N —N'Tv @ N Ty = Q3 “(Kyyp)
which extend to isomorphisms between their Dolbeault’s sheaf resolutions
i: (A" (N'Tar), 8)— (A" (N'Tar @ N Tp), 9) = (A" *(K}y), 9).
If z1,..., 2, are local holomorphic coordinates then a local set of generators of ATy is

95 = Gazil A A (982-’ being I = (i1,...,%,) a multiindex.

ta

If Q is a local frame of Ky and Z a local frame of K, such that Z - Q = 1, then
1 idf] =7Z® idZJl_Q =7Z® iFQ dzj.
0z1 0zr Ozp

Given a fixed Hermitian metric i on the line bundle K, we denote by D = D’ + 0 the
unique hermitian connection on K}, compatible with the complex structure.
We recall (cf. [35]) that D': A% (KY, ® Q4,) — A(KY, ® Q4F') is defined in local
coordinates as

given by the polyvector fields

D(Z®¢)=ZRONo+0p), ¢ A%
where 6§ = dlog(|Z|?) = dlog(h(Z, 7)) is the connection form of the frame Z.
We have moreover (D')? =0 and D'0 + 0D’ = © is the curvature of the metric.

We can now define a C-linear operator (depending on h)*
A AP (NTar) — AN Tw),  Alg) =i D'(i(9).
LEMMA VIL5. Locally on M, with Q,Z and 0 as above we have
A(Q)FQ=0AN(0pFQ)+0(p F Q)
for every ¢ € A% (N\* Twy).

PROOF. By definition
iA(¢) = Z© (A(9) F ),
iA¢) = D'(i(¢)) =D (Z® (¢ Q) =Z @ (0N (¢ Q)+ 0(6 Q).

LEMMA VIL.6. In local holomorphic coordinates z1, ..., z, we have
0 0
Al f=—dz;) = ((0f +0f) F -— ) dz;,  fe A%,
0zy Ozy

where 0 is the connection form of the frame Z = 86 A ; and the right hand side
Z1 Zn

is considered = 0 when I = ().
PROOF. We first note that if ¢ € A%°(A\*Ts) then i(¢dz ;) = i(¢)dZ; and
D'i(¢pdz;) =D (Z@(p+FQ)®dz)) =D (Z@(pFQ))@dz;:
this implies that A(¢dz;) = A(¢)dZ ;. According to Lemma VII.5

0 0 0
A<faz1)l—(2:9/\<faz[|—9>+6<faml—9>

Since 2 = dz, A ... A dz; we have 0 (66 F Q) = 0 and then, by Item 3 of Lemma VII.2,
zI

A(f;@) I—Q:(0f+8f)/\<(;;|—9> = ((Qf—i—af)l—ai[) F Q.

Ldon’t confuse this A with the Laplacian
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O

Setting P@ = A% (A~ Tyy) for every a < 0, b > 0, the direct sum P = (D Pub )
is a sheaf of dg-algebras, where the sections of A%*(A\®T)) have total degree b — a and

0: A% (N Tyy) — APPFL(A*Tyy) is the Dolbeault differential. The product on P is the
‘obvious’ one:

(E@P)AM@Y) = (~1)°T(EAD) @ (¢ AY).

LEmMmA VIL7. The C-linear operator A: P — P has degree +1; moreover A? =0 and
[A,0] = AD + 0A = i~1oi.

PrROOF. Evident. g

Consider the bilinear symmetric map of degree 1, Q: P x P — P
Q(a, ) = Ala A B) = A(a) A B = (=1)%a AA(B).

A brutal computation in local coordinates shows that @) is independent of the metric. In
fact, for every pair of C'*° functions f, g

0 P )
’ <fazfdzj’gaszde> =0 ( 02102y ) dz; A dzg
and
0 o 5 5
Q < 3217982}1) =(0fg+0(fg))+ <azl A aZH> -

(<9f+8f> 0 )Aa — (-1 (<0g+ag> - aaZH)

Ozy
According to Lemma VII.2, Item 1:

0 0 0 0 0 0
o 0 CONA2 Ly -0,
Q <faZ[7gaZH> f <a 621> 82’[-[ +( ) 982’[ <af 8ZH>
In particular if [I| =0, |[H| =1 then
_ 0 _ of ._ _
Z — (=) 2L
o R e
while, if |[I| = |H| =1 then
0 0 dg 0 of o0
dzy,g—dzg | = (=1 - dzy N dzg.
Q(fa S ZK) =1 <fazzazh 82h8z2> NG
Recalling the definition of the bracket [ , | in the Kodaira-Spencer algebra KSp5 =
@, A" (Tar) we have:
LeEMMA VIL8 (Tian-Todorov). If a € A%(Tyy), B € A% (Ty) then

(=1)%[e, 8] = Ala A B) = Ala) A B = (1) T A A(B).
In particular the bracket of two A-closed forms is A-exact.
ExAMPLE VIL9. If M is compact Kahler and ¢;(M) = 0 in H*(M,C) then by [35, 2.23]

there exists a Hermitian metric on Ky, such that © = 0; in this case [A, 9] = 0 and ker A
is a differential graded subalgebra of K.Sj;.

ExampLE VIL.10. If M has a nowhere vanishing holomorphic n-form  (n = dim M) we
can set on Ky, the trivial Hermitian metric induced by the isomorphism Q: Ky, — Oyy.
In this case, according to Lemma VII.5, the operator A is defined by the rule

(Aa) F Q2 =0(atk Q).
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3. A formality theorem

THEOREM VIIL.11. Let M be a compact Kahler manifold with trivial canonical bundle
Ky = Oy Then the Kodaira-Spencer DGLA

K Sy = @ (M, A% (Tyy))
18 quastisomorphic to an abelian DGLA. P

PROOF. Let Q € I'(M, K)s) be a nowhere vanishing holomorphic n-form (n = dim M);
via the isomorphism Q: Ky, — Oy, the isomorphism of complexes

i: (A% (Tyy),0) — (A" 1*,0)

is given in local holomorphic coordinates by

(13) -1 (o)

and induces a structure of DGLA, isomorphic to K .Sy, on
L b = @T(M, AV 1P).

Taking on Ky, the trivial metric induced gy Q: Ky, — O, the connection D is equal to
the De Rham differential and then the Tian-Todorov’s lemma implies that the bracket of
two O-closed form of L"~1* is O-exact; in particular

Q* =kerdn L1
is a DGL subalgebra of L”‘j?*.
Consider the complex (R*,0), where

P kero N L7~ Lp
- QLn2p

endowed with the trivial bracket, again by Lemma VIL.8 the projection Q* — R* is a
morphism of DGLA.
It is therefore sufficient to prove that the DGLA morphisms

Ln—L* - Q* — R*

are quasiisomorphisms. B B
According to the 90-lemma VI1.37, d(ker ) C Im 0 and then the operator 0 is trivial on
R*: therefore

ker 0 N L™~ 1P ker & N L"~ 1P
D *\ prn—lxy _
BB = <R ) = SRS
B ker @ Nker & N L~ 1P
H(Q") = = et
O(ker o N Ln—1r—1)
The conclusion now follows immediately from Corollary VI.38. 0

COROLLARY VII.12. Let M be a compact Kdahler manifold with trivial canonical bundle
Ky = Oypr. For every local Artinian C-algebra (A, my) we have

Defpr(A) = HY(M, Tyy) @ ma.

mm<CW>HDm4Qﬂ

(tn—l-l) (t2)

In particular

s surjective for every n > 2.

PROOF. According to Theorem V.55 and Corollary V.52 we have Def; = Defp«. Since
R* is an abelian DGLA we have by Proposition V.49

Defr-(A) = HY(R*) @my = H (KSy) @ my = HY (M, Ty) @ my.
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4. Gerstenhaber algebras and Schouten brackets

LEMMA VIL13. Let (G, A) be a graded Z-commutative algebra and let [,]: G[—1]xG[—1] —
G[—1] be a skewsymmetric bilinear map of degree 0 such that

ady = [a,—] € Der®e@C- (@ @), Vae G[-1].
(Note that this last condition is equivalent to the so-called Odd Poisson identity

[a,bAd = [a,b] Ac+ (=) Db A [a, ],

[anb,d =an[bd+(—1) "D, Ab,
for every a,b,c € G|—1], T = deg(z, G[-1]).)
Let G C G be a set of homogeneous generators of the algebra G, then:
(1) [,] is uniquely determined by the values [a,b], a,b € G.
(2) A derivation d € Der™ (G, G) satisfies [d, ad,] = adgq) for every a € G[-1] if and
only if
dla,b] = [da,b] + (—=1)"[a, db]
for every a,b e gG.
(3) [,] satisfies the Jacobi condition adjqy) = [ada, ady] if and only if

Haa b]? C] = [(I, [b’ CH - (_1)65[17? [a7 CH
for every a,b,c € G.

PROOF. 1) is clear.
If @ € G then by 2) the derivations [d, ad,] and ady,) take the same values in G and then
[d, ady] = adg(q). The skewsymmetry of [,] implies that for every b € G[—1] the derivations
[d, adp] and adg) take the same values in G.
The proof of 3) is made by applying twice 2), first with d = ad,, a € G, and then with
d = ady, b € G[-1]. 0

DEeFINITION VII.14. A Gerstenhaber algebra is the data of a graded Z-commutative algebra
(G,A) and a morphism of graded vector spaces ad: G[—1] — Der*(G,G) such that the
bracket

L] Gl x Gl-1); — G[~1isy, o8] = ada(b)

induce a structure of graded Lie algebra on G[—1] (cf. [17, p. 267]).
A morphism of Gerstenhaber algebras is a morphism of graded algebras commuting with
the bracket [, ].

For every graded vector space G there exists an isomorphism from the space of bilinear
skewsymmetric maps [,]: G[—1] x G[-1] — G[—1] of degree 0 and the space of bilinear
symmetric maps @: G X G — G of degree 1; this isomorphism, called décalage, is given by
the formula?

Q(a,b) = (—1)dee@C=1Dq p).

Therefore a Gerstenhaber algebra can be equivalently defined as a graded algebra (G, A)
endowed with a bilinear symmetric map @: G x G — G of degree 1 satisfying the identities

Odd Poisson Q(a,bAc) = Q(a,b) Ac+ (—1)@ 1% A Q(a, c),
Jacobi Q(a,Q(b,c)) = (-1)"Q(Q(a,b),c) + (—1)7°Q(b, Q(a, c)),
where @ = deg(a, G), b = deg(b, Q).

>The décalage isomorphism is natural up to sign; the choice of deg(a, G[—1]) instead of deg(a, G) is
purely conventional.
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ExaMpPLE VII.15. (Schouten algebras) A particular class of Gerstenhaber algebras are
the so called Schouten algebras: here the bracket is usually called Schouten bracket.
Consider a commutative K-algebra Ap and let A_; C Derg (Ap, Ag) be an Ap-submodule
such that [A_1, A_1] C A_;. Define

A=@PA_, A= NA_.
i > A
With the wedge product, A is a ngaTged algebra of nonﬁositive degrees.
There exists a unique structure of Gerstenhaber algebra (A, A,[,]) such that for every
CL,b € A[_l]l = AOa f7.g € A[_I]O = A—l

ada(b) =0, (Idf((l) = f(a)v adf(g) = [f7 g]'
In fact A is generated by Ag U A_1 and, according to Lemma VII.13, the skew-symmetric
bilinear map

oA A, Bl =D (1) (Mo A AG AL A
1=0
CoN. .. N C N  ANG] =

=N S DM GIA A AEGEN L AEG NG AGA A
=0 5=0
where h € Ag, &0, --5&n,Coy-- -, Cn € A_1 is well defined and it is the unique extension of
the natural bracket such that ad(A[—1]) C Der*(A, A).
We need to show that [, ] satisfies the Jacobi identity

Ha7 b]7c] = [a’7 [b7 C]] - (_1)Eb[b7 [CL,CH.
Again by Lemma VIL.13 we may assume that 0 < @ < b < ¢. There are 5 possible cases,

where the Jacobi identity is satisfied for trivial reasons, as summarized in the following
table:

@ |b|c | Jacobiis true because..
1{1|1]all terms are =0
0|1]1]all terms are =0
0|0 |1 |definition of [,] on A_;
0|00 |Jacobiidentity on A_;

ExamMpLE VIL.16. Let M be a complex manifold of dimension n, the sheaf of graded
algebras 7 = ®;<07;, T; = A*°(A\ ™' Ta), admits naturally a Schouten bracket.
In local holomorphic coordinates z1, ..., z,, since

g 0 0 0
I 2 — (1)1 2
[32/ 3%} o [52179] Seh =y <ag i 521) ’

the Odd Poisson identity implies that the Schouten bracket takes the simple form

0 0 0 0 0 0
— g — (—1)MI-1 F (I
[ff)z[’g@zH}Sch (=1) / <8 82’1) Oz 82 <8f 8ZH>

DEFINITION VII.17. A differential Gertstenhaber algebra is a Gerstenhaber algebra (G, A, [,])
endowed with a differential d € Der! (G, G) making (G, d,[,]) a differential graded Lie al-
gebra.

ExaMPLE VIL.18. Given any Gertstenhaber algebra G and an element a € Gy = G[—1];
such that [a,a] = 0 we have that d = ad, gives a structure of differential Gerstenhaber
algebra.

EXERCISE VIIL.19. For every f € Klzi,...,z,] the Koszul complex of the sequence
of 0

——, ..., —— carries a structure of differential Gerstenhaber algebra. A
ox1 oxy,
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5. d-Gerstenhaber structure on polyvector fields

Let M be a fixed complex manifold, then the sheaf of dg-algebras P defined in Section 2,
endowed with the Schouten bracket
A _ (_q)I0E-) [
Fomtenogdox| =1 f
is a sheaf of differential Gerstenhaber algebras.
We have only to verify that locally d is a derivation of the graded Lie algebra (P, [,]): this
follows immediately from Lemma VII.13 and from the fact that locally the Kodaira-Spencer
DGLA generates P as a graded algebra.
Via the décalage isomorphism, the Schouten bracket corresponds to the symmetric bilinear
map of degree 1 Q: P x P — P given in local holomorphic coordinates by the formulas

0 0 0 0
Q( fdzsg - 9dzk = (—)EI=D+ gz A dzgeQ | fo—rg=— |
Ozr 0zr 7 Oz

67 a:| dzZj NdzZg
Sch

d? ) )
J 82] g@zH

where

Q(szl,g;m) f(a Fi) ho (- >198821A< fF82H>
Notice that, in the notation of Section 2,
Qa, B) = Ala A B) = Aa) A B = (=1)%a A A(B)
and therefore we also have the following
LeEmMMA VII.20 (Tian-Todorov). for every «, 3 € P[—1],
(o Blsen = a A AB + (~1)* PN (A (a A ) — Aa A f).

There exists a natural morphism ~: P — Hom(A"*, A**) of sheaves of bigraded vector
spaces on M given in local coordinates by

0 B
= s
55, () =0 A ( pn 77)
Since, for every ¢ € PP = A%P 5 c A**, we have
0 0
=+ — (=11 =+
977 (@An) = (=" oA <8ZI 77)

the hat morphism ~ is a morphism of algebras, being the product in Hom(A**, A**) the
composition product. We observe that the composition product is associative and therefore
Hom (A**, A**) has also a natural structure of sheaf of graded Lie algebras. Since P is

graded commutative, [a, 3] = 0 for every a,b € P.
LEMMA VIL.21. For every a,b € P homogeneous,
(1) 9a = (3.4,
(2) Q(a,b) = [[8,a],b] = —(—1)%adb — (—1)*>**b3a + dab + bao

PROOF. The proof of the first identity is straightforward and left to the reader.
By Jacobi identity,

0= [8¢ [a7 bH = [[ava]a b] - (_1)612[[67 b]aa]
and therefore botll\sidesA of the equality VII.21 are graded symmetric.
Moreover, since b A ¢ = bc and

Qa,bAc)=Q(a,b) Nc+ (—1)(6"'1)519 A Q(a,c),
0.a],b¢] = [[0,a). bje + (~1) 5[, 3] 2,
it is sufficient to check the equality only when a,b = f, dZ;, E)azi’ fephl =400
i) If ¢ € PO* then B
[0, 0= (6 An) = (=1)%¢ A dn = 86 An.
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In particular [0, d/E\]] =0, Q(dz;,b) = 0 for every b.
i) If f,g € P*0 then Q(f,g) € P*¥ =0 and

-~
~

)
[0, f1,9ln = 0f A gn—g(0f An)=0.
of

Iffepovﬂthencg<f,§z> = - F0f =5~ and

.9 B B B
[[8,f]7azi]n=8fA(a%Fn>+aZiF(8fA77)= (aziFaf>An

0
where the last equality follows from the Leibnitz rule applied to the derivation 7 .
&

Finally @ <aazz’ 882]> = 0; since 0, aazi’ (;923 are derivations of A™*, also | |0, 6821] , 8327]
is a derivation of bidegree (—1,0) and then it is sufficient to check the equality for n = dz;.
This last verification is completely straightforward and it is left to the reader. O

EXERCISE VIL.22. Prove that Q" = {a € P|[0,a] =0}. A

6. GBV-algebras
In this section K is a fixed field of characteristic 0.

DErFINITION VIL.23. A GBV (Gerstenhaber-Batalin-Vilkovisky) algebra is the data of a
graded algebra (G, A) and a linear map A: G — G of degree 1 such that:

(1) A2=0
(2) The symmetric bilinear map of degree 1
Q(a,b) = A(a Ab) — Aa) Ab— (—1)% A A(b)
satisfies the odd Poisson identity
Qa,bAc)=Q(a,b) Nc+ (—1)(a+1)5b A Q(a,c).

Note that the second condition on the above definition means that for every homogeneous
a € G, the linear map Q(a, —) is a derivation of degree @ + 1.

The map @ corresponds, via the décalage isomorphism, to a skewsymmetric bilinear map
of degree 0, [,]: G[—1] x G|—1] — G[—1]; the expression of [,] in terms of A is

[a,b] = a A A®D) + (—1)38@CE (A(a AD) — Ala) AD).

ExAaMPLE VII.24. If A is a differential of a graded algebra (G, A), then @ = 0 and
(G,N,A) is a GBV algebra called abelian.

ExaMpPLE VII.25. The sheaf P of polyvector fields on a complex manifold, endowed with
the operator A described in Section 2 is a sheaf of GBV algebra.

EXERCISE VII.26. Let (G, A, A) be a GBV algebra. If G has a unit 1, then A(1) =0. A
LEMMA VIL.27. For every a,b € G homogeneous
AQ(a,b) + Q(A(a),b) + (=1)"Q(a, A(b)) = 0.
ProOF. It is sufficient to write Q in terms of A and use A% = 0. O

THEOREM VIL.28. If (G,A,A) is a GBV algebra then (G[—1],[,],A) is a DGLA and
therefore (G, N\, Q) is a Gerstenhaber algebra.

Proor. Working in G[—1] (i.e. @ = deg(a, G[—1])) we have from Lemma VII.27
Ala, b = [A(a),b] + (—1)"[a, A(D)]

and then we only need to prove the Jacobi identity.
Replacing a = a, b = 3 Ay in the above formula we have

[, A(BA7)] = (—1)%(Ala, BAA] = [Aa, B A7)
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and then [o, A(B A 7)] is equal to

(—D)TA(a, 8] A7) + (~1D)TIAB A 0,7]) = (~1)[Aa, Bl Ay +(=1)@DIBA[Aa, 4],
Writing B
[, [8,7] = [0, 8 A Aq] + (=1)7([o, A(BAY)] = o, AB A ),
[lee, 81,7] = lev, B) A Ay + (=1)F P (A([ov, 8] A7) = A, B] A7),
18, [, 7]l = BA Ala, 7] + (=D (AB A [,9]) = AB A, 7))

we get

[, [8:7]] = [l B, 9] + (= 1DFP[B, [, 4])-
]

DEFINITION VIL.29. Let (G,A,A) be a GBV-algebra and d a differential of degree 1 of
(G,N). If dA + Ad = 0 then the gadget (G, A, A,d) is called a differential GBV algebra.

ExaMpPLE VII.30. Let P be the algebra of polyvector fields on a complex manifold M. In
the notation of Section 2, (P, A, A, d) is a sheaf of differential GBV algebras if and only if
the connection D is integrable.

This happen in particular when M has trivial canonical bundle and D is the trivial con-
nection.

EXERCISE VIL.31. If (G, A, A, d) is a differential GBV-algebra then (G[—1],[,],d + hA) is
a DGLA for every h € K. A

7. Historical survey, VII

The Schouten bracket was introduced by Schouten in [70] while the Jacobi identity was
proved 15 years later by Nijenhuis [58].
The now called Gerstenhaber algebras have been first studied in [17] as a structure on the
cohomology of an associative ring.
Concrete examples of GBV algebra arising from string theory were studied in 1981 by
Batalin and Vilkovisky, while the abstract definition of GBV algebra given in this notes
was proposed in [48] (cf. also [75]).



LECTURE VIII

Graded coalgebras

This Lecture is a basic course on graded coalgebra, with particular emphasis on symmetric
graded coalgebra. The aim is give the main definitions and to give all the preliminaries for
a satisfactory theory of L..,-algebras.

Through all the chapter we work over a fixed field K of characteristic 0. Unless otherwise
specified all the tensor products are made over K.
The main references for this Lecture are [61, Appendix B] [22], [6].

1. Koszul sign and unshuffles

Let V,W € G be graded vector spaces over K. We recall (Definition IV.2) that the twist-
ing map T: V@ W — W @V is defined by the rule T'(v ® w) = (—=1)"%w ® v, for every
pair of homogeneous elements v € V., w € W.

The tensor algebra generated by V € G is by definition the graded vector space

(V)= @nZO@nV

endowed with the associative product (v1 ®@ ... ® vp)(Vpy1 ® ... A Vy) = V1 Q... ® Vp.

Let I C T(V) be the homogeneous ideal generated by the elements z @ y — T'(x ® y),
x,y € V; the symmetric algebra generated by V is defined as the quotient

SV)=TWV)/1=@B,>,O"V, OQ"V=Q"V/(K"VnNI)
The product in S(V') is denoted by ®. In particular if 7: T(V) — S(V) is the projection
to the quotient then for every vy,...,v, €V, 010 ... 0 v, =7(v]1 @ ... R vy).

The exterior algebra generated by V' is the quotient of T'(V') by the homogeneous ideal J
generated by the elements x @ y + T'(x ® ).

NV =T(V)/J=@B.zNV, NV=Q"V/(K"VNnJ).

Every morphism of graded vector spaces f: V — W induces canonically three homomor-
phisms of graded algebras

T(f): T(V) =TW),  S5():5SV)—=SW),  AJS): AV — AW.

The following convention is adopted in force: let V,W be graded vector spaces and
F:T(V)— T(W) a linear map. We denote by

FT(V) = QW, Fj: @V —-T(W), F:@V—-QW
the compositions of F with the inclusion ®’V — T(V) and/or the projection T'(W) —

RQW.

Similar terminology is adopted for linear maps S(V) — S(W).

If vi,...,v, is an ordered tuple of homogeneous elements of V' and o: {1,...,s} —
{1,...,n} is any map, we denote v, = V51 @ Vy2 ® ... O vys € O)°V.
If I C {1,...,n}is asubset of cardinality s we define v; as above, considering I as a strictly
increasing map I: {1,...,s} — {1,...,n}.

MARCO MANETTI: Deformations of complex manifolds version June 28, 2011
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fhHU...Ul,=J1U...UJy, ={1,...,n} are decompositions of {1,...,n} into disjoint

L. I

subsets, we define the Koszul sign e | V, 7 Ja;{vh}> = =£1 by the relation
1yeeesdb

I,...1
e(v, ! “ At v @ Qv =g, O. .. Oy,
Tiyeei

Similarly, if o is a permutation of {1,...,n}, e(V,0;v1,...,v,) = £1 is defined by
V1 O...Ovp =e(V,o501, .., 00) (V1) © - . O Vg(n))s
or more explicitly
0 — 05 vivj _
e(V,a;Ul,...,vn):H — , v = deg(v; V).
i \loi — gy

For notational simplicity we shall write €(o;v1,...,v,) or €(0) when there is no possible
confusion about V and vq,...,v,.

The action of the twisting map on ®2V extends naturally, for every n > 0, to an action
of the symmetric group 3, on the graded vector space ®"V. This action can be described
by the use of Koszul sign, more precisely

o1 @ ... Qvp) = (0501, .+, Un) (V1) @ - - - @ Vg(n))
Denote by N: S(V) — T(V) the linear map

Nvi1©...0v,) = Z (0501, -+, Un) (V1) @ -+ - @ Vg(n))

gEY,
= Z o1 ®...Q0v,), Ul,...,vp €V.
oEY,
. - . . Ida»
Since K has characteristic 0, a left inverse of m: T'(V) — S(V) is given by >-, —-N,
n!

where, according to our convention, Id"™: T(V) — @"V is the projection.
For every homomorphism of graded vector spaces f: V — W, we have

NoS(f)=T(f) o N: S(V) — T(W).

The image of N: O"V — @"V is contained in the subspace (®"V)*" of ¥,-invariant
vectors.

LEMMA VIIL1. In the notation above, let W C @"V be the subspace generated by all the
vectors v — o (v), 0 € X, v e Q"V.

Then @™V = (Q"V)* @ W and N: O"V — (Q"V)*" is an isomorphism with inverse
Py

n!’

PROOF. It is clear from the definition of W that (W) = 0; moreover v — Nllv eWw
n!

for every v € @®"V, and therefore Im(N) + W = Q" V.
On the other side if v is X,-invariant then

1 1
V= Z o(v) = aNTI’(U)
G’GEn

and therefore Im(N) = (®Q"V)**, Im(N)NW C Im(N) Nker(x) = 0. U

For every 0 < a < n, the multiplication map V®* @ V&% — V®" is an isomorphism of
graded vector spaces; we denote its inverse by

Gamq: VE" — VEIQV O,

Aan—a(V1 ®...0U,) = (11 ® ... Q0 V) ® (Vgy1 @ ... D Vp).
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The multiplication p: (O V) ® (O™ *V) — (" V is surjective but not injective; a left
-1
n
inverse is given by [a,n—a< ) , Where
a
I, I¢
[ayna(m@...@vn):z:e( ’ ;vl,...,vn>vl®v1c,
{1,...,n}

the sum is taken over all subsets I C {1,...,n} of cardinality a and I€ is the complement
of I to {1,...,n}.

DEFINITION VIIL.2. The set of unshuffles of type (p,q) is the subset S(p,q) C ¥p4q of
permutations o such that (i) < (i + 1) for every i # p.

Since o € S(p,q) if and only if the restrictions o: {1,...,p} — {1,...,p+q}, o: {p+
1,...,p+¢q} — {1,...,p + ¢}, are increasing maps, it follows easily that the unshuffles
are a set of representatives for the cosets of the canonical embedding of ¥, x 3, inside
Y p+q- More precisely for every o € 3,1, there exists a unique decomposition ¢ = 7p with
T€S5(p,q) and p € ¥, X X.

ExXERcISE VIIL.3. Prove the formula
[a,n—a(vl ©...0 Un) - Z 6(U)(vo'(l) ©...0 vo(a)) ® (Ua(a—i-l) ©...0 va(n))

oeS(an—a)
AN
LEMMA VIIL4. In the above notation, for every 0 < a <n
tan-alN = (N @ N)lon—a: O"V = QVa " V.
ProOOF. Easy exercise. O

Consider two graded vector spaces V, M and a homogeneous linear map f RV — M.
The symmetrization f: )™V — M of f is given by the formula

flar®az®...0am) = Z eWV,oya1,...,am)f(0r, @ ...® ag,,).
O'ezm

Ifg: ®lV — V' is a homogeneous linear map of degree k, the (non associative) Gersten-
haber composition product f e g: ®m+l_1V — M is defined as

fegla1®...®anmy—1) =
m—1 o o

=D (D)MEEAE (0@ .. 0 ®gai ® .. ® i) ® .. ® Ami-1)-
=0

The behavior of e with respect to symmetrization is given in the following lemma.

LEMMA VIIL5. (Symmetrization lemma) In the notation above

foeglar®...0ant1-1) =

= Z e(V,oa1, ... am)f(Glas, ®...0 Uoy) © gy © .. O gy, )
ceS(l,m—1)

PROOF. We give only some suggestion, leaving the details of the proof as exercise.
First, it is sufficient to prove the formula in the "universal” graded vector space U with ho-
mogeneous basis ai, ..., a,4;—1 and by, where I ranges over all injective maps {1,...,l} —
{1,...,m+1—1}, by is homogeneous of degree k + @) + ... + @) and g(as) = by.
Second, by linearity we may assume that M = K and f an element of the dual basis of the
standard basis of @"U.

With these assumption the calculation becomes easy. O
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2. Graded coalgebras
DEerFINITION VIIL.6. A coassociative Z-graded coalgebra is the data of a graded vector
space C' = @,eczC™ € G and of a coproduct A: C — C ® C such that:

e A is a morphism of graded vector spaces.
e (coassociativity) (A ® Idg)A = (Ide @ A)A: C - CeC®C.

The coalgebra is called cocommutative if TA = A.

For simplicity of notation, from now on with the term graded coalgebra we intend a Z-
graded coassociative coalgebra.

DEerINITION VIIL7. Let (C,A) and (B,T") be graded coalgebras. A morphism of graded
coalgebras f: C' — B is a morphism of graded vector spaces that commutes with coprod-
ucts, i.e. I'f = (f @ f)A.

The category of graded coalgebras is denoted by GC.

EXERCISE VIIL.8. A counity of a graded coalgebra is a morphism of graded vector spaces
e: C'— K such that (e ® Idc)A = (Ide ® €)A = Idc.
Prove that if a counity exists, then it is unique (Hint: (e ® €/)A =7). A

ExaMPLE VIIL9. Let C' = K[t] be the polynomial ring in one variable ¢ of even degree.
A coalgebra structure is given by

A(t") = Zn:ti ® "t
=0

We left to the reader the verification of the coassociativity, of the commutativity and the
existence of the counity.

If the degree of t is equal to 0, then for every sequence {f,},>0 C K it is associated a
morphism of coalgebras f: C — C defined as

FO=1, fEM = > fufu---at
=1 (i1,...,is)EN®
11+ Fis=n

The verification that Af = (f ® f)A can be done in the following way: Let {z"} C CV =
K [[z]] be the dual basis of {¢"}. Then for every a,b,n € N we have:

<$a®l‘b,Af(tn)> = Z fil "'fiafjl "'fjb7

i1+ Flet+j1+. . Jp=n
@@ fofA) =Y > DR TR 3 R
S i1+...+tiq=s j1+...+jb:nfs
Note that the sequence {f,,}, n > 1, can be recovered from f by the formula f,, = (z, f(t")).

We shall prove later that every coalgebra endomorphism of K [¢] has this form for some
sequence {f,}, n > 1.

LEMMA-DEFINITION VIIL.10. Let (C,A) be a graded coassociative coalgebra, we define
recursively AY = Ide and, forn > 0, A" = (Ide @ A" )A: C — Q" C. Then:
(1) For every 0 <a <mn—1 we have
A" = (A"® A"TITNALC— Q"TIC,
aa+17n_aAn — (Aa ® Anflfa)A
(2) For every s > 1 and every ag, . ..,as > 0 we have
(A% @ A" @ ... 0 A%)A® = ASTE

In particular, if C is cocommutative then the image of A"~' is contained in the
set of X, -invariant elements of Q" C.
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(3) If f: (C,A) — (B,TI') is a morphism of graded coalgebras then, for every n > 1
we have

I"f=(@"" A" ¢ — Q"B

ProOOF. [1] If @ = 0 or n = 1 there is nothing to prove, thus we can assume a > 0 and
use induction on n. we have:

(A" ® A" 1A = ((Ide @ A HA @ A"179)A =
= (Ide @ A" 1 @ A" 1) (A® Ido)A =
= (Idec @ A" ' @ A" 1) (Ide @ A)A = (Ide ® (AP @ A" 179 A)A = A™,
[2] Induction on s, being the case s = 1 proved in item 1. If s > 2 we can write

(A" A" ©... 0 A%)A° = (A" @ A" @ ... @ A%)(Id® A*")A =

(A" ® (A" @ ... ® A%)A*THA = (A% @ AT L0 9)A = AT 00,

The action of %,, on Q" C is generated by the operators T, = ldgec @ T ® Id®n7a72c,
0<a<n-—2 and, if TA = A then

TaAn_l = Ta(1d®ﬂ c® AR Id®n—a—2 C)An_2 =

= (Id®ac ® A ® Id®n7a72 C)An_Q - An_l.
[3] By induction on n,
I"f=Idp@I" f = (f@T" A = (f@ (@")A" A = (" f)A™.
O

ExamMpLE VIII.11. Let A be a graded associative algebra with product y: A® A — A
and C' a graded coassociative coalgebra with coproduct A: C' — C® C.
Then Hom*(C, A) is a graded associative algebra with product

fg=p(f®g)A.

We left as an exercise the verification that the product in Hom*(C, A) is associative.
In particular Homg(C, A) = Hom®(C, A) is an associative algebra and CV = Hom*(C,K)
is a graded associative algebra. (Notice that in general AV is not a coalgebra.)

ExaMpPLE VIIL.12. The dual of the coalgebra C' = K[t] (Example VIIIL.9) is exactly the
algebra of formal power series A = K|[[z]] = CV. Every coalgebra morphism f: C — C
induces a local homomorphism of K-algebras f': A — A. Clearly f' = 0 only if f = 0,
f* is uniquely determined by ff(z) =, ., fnz™ and then every morphism of coalgebras
f: C — C is uniquely determined by the sequence f,, = (f!(z),t") = (z, f(t")).

The map f — f! is functorial and then preserves the composition laws.

DEFINITION VIII.13. A graded coassociative coalgebra (C, A) is called nilpotent if A™ =0
for n >> 0.
It is called locally nilpotent if it is the direct limit of nilpotent graded coalgebras or equiv-
alently if C = U,, ker A™.

ExAMPLE VIII.14. The coalgebra K [t] of Example VIIIL.9 is locally nilpotent.

ExamMpPLE VIIL.15. Let A = @A; be a finite dimensional graded associative commutative
K-algebra and let C' = AY = Hom*(A,K) be its graded dual.
Since A and C are finite dimensional, the pairing (c; ® ¢2, a1 ®as) = (—=1)2(cy1, a1 ){ca, as)
gives a natural isomorphism C ® C' = (A ® A)" commuting with the twisting maps T’; we
may define A as the transpose of the multiplication map u: A® A — A.
Then (C,A) is a coassociative cocommutative coalgebra. Note that C' is nilpotent if and
only if A is nilpotent.
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EXERCISE VIII.16. Let (C, A) be a graded coalgebra and p: C' — V a morphism of graded
vector spaces. We shall say that p cogenerates C' if for every ¢ € C' there exists n > 0 such
that (@"t1p)A™(c) # 0 in Q" V.

Prove that every morphism of graded coalgebras B — (' is uniquely determined by its
composition B — C — V with a cogenerator p. A

2-A. The reduced tensor coalgebra. Given a graded vector space V', we denote
T(V) = @,-0®" V. When considered as a subset of T(V) it becomes an ideal of the
tensor algebra generated by V.

The reduced tensor coalgebra generated by V is the graded vector space W endowed with
the coproduct a: T'(V) - T (V)@ T(V),

co n—1 n—1
A=) tona GUIO...QU)=D (MO...Q0)® (V1 ®... D V,)
n=1a=1 r=1

The coalgebra (T'(V), a) is coassociative (but not cocommutative) and locally nilpotent; in
fact, for every s > 0,

0 ®...Qu,) = > M®..0V)R...0 Vi, 1 41Q...Qv;,)
1<i1<i9<...<is=n
and then kera®*~' = @°_ Q" V.

If u: Q*T(V) — T(V) denotes the multiplication map then, for every vy,...,v, € V, we
have

n—1
as ! =
pa’ (v ® ... @ vp) <8_1

For every morphism of graded vector spaces f: V — W the induced morphism of graded
algebras

>v1®...®vn.

T(f):T(V)=TW), T(f)v®...0u)=Ff(u)®...® f(v)
is also a morphism of graded coalgebras.

EXERCISE VIIL17. Let p: T(V) — T(V) be the projection with kernel K = ®°V and
¢: T(V) — T(V)®T(V) the unique homomorphism of graded algebras such that ¢(v) =
v® 1+ 1®wv for every v € V. Prove that p¢ = ap. A

If (C, A) is locally nilpotent then, for every ¢ € C, there exists n > 0 such that A™(c) =0
and then it is defined a morphism of graded vector spaces
1 o0

ﬂ:ZA": C —T(C).
n=0

ProposITION VIIL18. Let (C,A) be a locally nilpotent graded coalgebra, then:

1 _
(1) The map 1A Z A": C — T(C) is a morphism of graded coalgebras.
n>0
(2) For every graded vector space V' and every morphism of graded coalgebras ¢: C —
T(V), there exists a unique morphism of graded vector spaces f: C — V such that
¢ factors as

6 =Ty 5 = S (&"NA: € T(C) — T().
n=1

PrOOF. [1] We have

YAar|e | > A" A:Zi(A“@A"‘“)A

n>0 n>0 n>0 a=0

n
1
S A —a [ A

n>0a=0 n>0
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where in the last equality we have used the relation aA® = 0.

[2] The unicity of f is clear, since by the formula ¢ = T'(f)(>_,~, A") it follows that f is
the composition of ¢ and the projection T'(V) — V.

To prove the existence of the factorization, take any morphism of graded coalgebras ¢: C' —
T (V) and denote by ¢*: C — @'V the composition of ¢ with the projection. It is sufficient
to show that for every n > 1, ¢" is uniquely determined by ¢'. Now, the morphism
condition ag¢ = (¢ ® ¢p)A composed with the projection T(V) @ T(V) — @' (®'V @
®" V) gives the equality

n—1

" => ($'®¢" A, n>2.
i=1
Using induction on n, it is enough to observe that the restriction of a to X" V is injective

for every n > 2.
O

It is useful to restate part of the Proposition VIII.18 in the following form

CoRrROLLARY VIII.19. Let V' be a fixed graded vector space; for every locally nilpotent
graded coalgebra C' the composition with the projection T(V') — V induces a bijection

Homgc(C,T(V)) = Homg(C,V).

When C is a reduced tensor coalgebra, Proposition VIII.18 takes the following more
explicit form

COROLLARY VIIL.20. Let U,V be graded vector spaces and p: T(V) — V the projection.

Given f: T(U) — V, the linear map F: T(U) — T(V)

Fluy@...0u) =) > F1®...00,)®...0 f(vi,_141®...0v;,)

s=1 1<i1<i2<...<is=n
1s the unique morphism of graded coalgebras such that pF' = f.
ExamMpLE VIIL.21. Let A be an associative graded algebra. Consider the projection
p: T(A) — A, the multiplication map u: T(A) — A and its conjugate
u=—pT(-1), par®...®a,) = (—1D)" (a1 @ ... @ ap) = (—1)" tajay . .. an.

The two coalgebra morphisms T'(A) — T(A) induced by p and p* are isomorphisms, the
one inverse of the other.
In fact, the coalgebra morphism F': T(A) — T'(A)

n
F(a1®...®an)zz Z (a1a2...ai) @ ... (@i, 141 ---ai,)

s=1 1<i1<i2<...<is=n

is induced by p (i.e. pF = u), p*F(a) = a for every a € A and for every n > 2

pWF(a®...Q0a,) = Z(,l)s—l Z alas ... an =

s=1 1<i1<iz<...<is=n
:Zn:(—l)sf1 n-l aias...a, = nz:l(—l)S nol aiaz...a, =0
2 1 1492 . ..0Qnp 2 s 109 . . .Gy .

This implies that u*F = p and therefore, if F*: T(A) — T(A) is induced by p* then
pF*F = p*F = p and by Corollary VIII.19 F*F is the identity.

EXERCISE VIII.22. Let A be an associative graded algebra over the field K, for every
local homomorphism of K-algebras v: K[[z]] — K[[z]], v(z) = Y y.2"™, we can associate
a coalgebra morphism F: T'(A) — T'(A) induced by the linear map

fy:T(A) — A, fla1 ®...®ap) = Ypa1 ... an.
Prove the composition formula F,; = FsF,. (Hint: Example VIII.12.) A
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EXERCISE VIIL.23. A graded coalgebra morphism F: T'(U) — T(V) is surjective (resp.:
injective, bijective) if and only if F}': U — V is surjective (resp.: injective, bijective). A

2-B. The reduced symmetric coalgebra.

DEFINITION VIII.24. The reduced symmetric coalgebra is by definition S(V') = @n>0 OV,
with the coproduct [ =Y S} [?111,

n—1
I.1°
[(UIQ...Qvn):Z Z e<{1. n};vl,...,vn>v1®mc.

r=1 IC{1,0n bl I|=r T

The verification that [ is a coproduct is an easy consequence of Lemma VIII.4. In fact,
the injective map N: S(V) — T(V) satisfies the equality aN = (N ® N)[ and then N is an

isomorphism between (S(V),[) and the subcoalgebra of symmetric tensors of (T'(V), a).

REMARK VIIL.25. It is often convenient to think the symmetric algebra as a quotient of
the tensor algebra and the symmetric coalgebra as a subset of the tensor coalgebra.

The coalgebra S(V') is coassociative without counity. It follows from the definition of
[ that V = ker( and Tl = [, where T is the twisting map; in particular (S(V),[) is co-
commutative. For every morphism of graded vector spaces f: V — W, the morphism

S(f): S(V) — S(W) is a morphism of graded coalgebras.

If (C,A) is any cocommutative graded coalgebra, then the image of A” is contained in
the subspace of symmetric tensors and therefore
1 e —1

—a- oA

where
|

A

€

o0 T 7
= Z —A"L 0= 5(0).
n!
n=1
ProposITION VIIL26. Let (C,A) be a cocommutative locally nilpotent graded coalgebra,
then:
(1) The map
(2) For every graded vector space V' and every morphism of graded coalgebras ¢: C —
S(V), there exists a unique factorization

eA—1

: C'— S(C) is a morphism of graded coalgebras.

A_l e n 41 7
o=86) g =X At 0~ 5(0) ~ 5

where ¢*: C — V is a morphism of graded vector spaces f: C — V. (Note that
@' is the composition of ¢ and the projection S(V) — V.)

A
—1
PROOF. Since N is an injective morphism of coalgebras and 1A= No eT, the

proof follows immediately from Proposition VIII.18. U

COROLLARY VIIL.27. Let C' be a locally nilpotent cocommutative graded coalgebra, and V
a graded vector space. A morphism 6 € Homg (C, S(V')) is a morphism of graded coalgebras
if and only if there exists m € Homg(C,V) C Homg(C, S(V)) such that

o0

1
0 =exp(m)—1 = Z ﬁm”,

n=1

being the n-th power of m is considered with respect to the algebra structure on Homg (C, S(V))
(Example VIII.11).
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PROOF. An easy computation gives the formula m™ = (()"m)A"~! for the product
defined in Example VIII.11. ([l

EXERCISE VIII.28. Let V be a graded vector space. Prove that the formula
1

(i A Awy) = > (=D)7e0) Vo) A AV(r) @ Vgrit) A Ag(m))s
1oeS(r,n—r)

3
|

s

where (—1)7? is the signature of the permutation o, defines a coproduct on A(V)
@.-0/\"V. The resulting coalgebra is called reduced exterior coalgebra generated b

>

3. Coderivations

DEFINITION VIII.29. Let (C,A) be a graded coalgebra. A linear map d € Hom"(C,C) is
called a coderivation of degree n if it satisfies the coLeibnitz rule

Ad = (d® Ide + Ide ® d)A.

A coderivation d is called a codifferential if d*> = do d = 0.
More generally, if : C' — D is a morphism of graded coalgebras, a morphism of graded
vector spaces d € Hom"(C, D) is called a coderivation of degree n (with respect to 6) if

Apd=(d®0+0®d)Ac.

In the above definition we have adopted the Koszul sign convention: i.e. if z,y € C, f,g €
Hom*(C, D), h, k € Hom*(B, C) are homogeneous then (f ®¢)(z®y) = (—1)9% f(z) @ g(y)

and (f ® g)(h® k) = (—1)7" fh @ gk.

The coderivations of degree n with respect a coalgebra morphism 6: C' — D form a vector
space denoted Coder™(C, D;0).
For simplicity of notation we denote Coder”(C, C') = Coder"(C, C; Id).

LEMMA VIIL30. Let C-25D"5E be morphisms of graded coalgebras. The compositions
with 0 and p induce linear maps

px: Coder™(C, D;0) — Coder"(C, E; pb), f=pf;
0*: Coder™ (D, E; p) — Coder™(C, E; pf), [ fo.
PROOF. Immediate consequence of the equalities
Agp=(p@p)Ap,  Aph=(0®0)Ac.
O

EXERCISE VIIL31. Let C be a graded coalgebra and d € Coder!(C, C) a codifferential of
degree 1. Prove that the triple (L,d, [,]), where:

L= @Codaa™(C,0). [f.g] = fg— (1) af. () =[d.f
ne
is a differential graded Lie algebra. A
LEMMA VIIL.32. Let V, W be graded vector spaces, f € Homg(V, W) and g € Hom™(S(V'), W).
Then the morphism d € Hom™(S(V'), S(W)) defined by the rule

dwoon = X eI ) g o s
0£IC{1,...,n} AL

is a coderivation of degree m with respect to the morphism of graded coalgebras S(f): S(V) —
S(W).
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PROOF. Let v1,v9,...,v, be fixed homogeneous elements of V', we need to prove that
[dv1 ©...0v,) =dRS(f)+S(f) @d)(vi ©...O vy).

If A C W is the image of f and B C W is the image of g, it is not restrictive to assume
that W = A @ B: in fact we can always factorize

\%4
f
(f,0)
APB——=W
o
5(V)

and apply Lemma VIII.30 to the coalgebra morphism S(+): S(A® B) — S(W).

Under this assumption we have (S(A)B® S(A))N(S(4A)® S(A)B ) = () and the image of d
is contained in S(A)B C S(A @ B). Therefore the images of Id and (d ® S(f) + S(f) @ d){
are both contained in (S(A)B ® S(A)) @ (S(A) ® S(A)B).

Denoting by p: S(W) @ S(W) — S(A)B ® S(A) the natural projection induced by the
decomposition W = A @ B, since both the operators [d and (d ® S(f) + S(f) ® d)l are
invariant under the twisting map, it is sufficient to prove that

pld(v1 ©@...0v,) =p(d@S(f))(vi ©...Ovy).

We have (all Koszul signs are referred to vy, ..., v,)

P & ov)=p[ S <{1 ‘”n}) 9(w)) © S(F)wse) | =

0£JC{1,...,n}

= (W) (M swn s o s -

0#£JCIC{1,...,n}
JI—JI¢
D SER G P EE T M EE IR}
p£JCIC{l,...,n} T
On the other hand

p(d® S(H)(w1 O ... O v,) = pld @ S(f)) <Z€<{1 {’.{cn])m ® v,c> _

P ( }> (MI,_I?F)g(vJ>®5(f)(UI—J)®S(f)(vfe)—

JcI
J,I—JI°
B2 (G Ty ) st @ 8U0er0) @ S0,
U

ProposiTION VIIL.33. Let V be a graded vector space and C a locally nilpotent cocom-
mutative coalgebra. Then for every coalgebra morphism 0: C' — S(V) and every integer n,
the composition with the projection S(V) — V' gives an isomorphism

Coder™(C,S(V);6) — Hom"(C,V) = Homg(C, V[n|]).

PRrOOF. The injectivity is proved essentially in the same way as in Proposition VIII.18:
if d € Coder™(C,S(V);0) we denote by 0°,d': C — (O'V the composition of § and d with
the projection S(V) — (V. The coLeibnitz rule is equivalent to the countable set of
equalities

Cd'=d* @607 +0"®d 0<a<i.
Induction on ¢ and the injectivity of

DO - & (DY)
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show that d is uniquely determined by d'.
For the surjectivity, consider ¢ € Hom™(C,V); according to Proposition VIII.26 we can

A 1 A 1
write 0 = S(01)< ¢
S(V) is given by

A and, by Lemma VIII.32, the map d = § N where 0: S(C) —

5(01@...@6n) = Z e({gi}'"{‘i};};cl,...,cn) g(Ci)QS(Gl)(c{i}c)

i€{1,...,n}

is a coderivation of degree n with respect to 6 that lifts g. O

COROLLARY VIIL.34. Let V' be a graded vector space, S(V) its reduced symmetric coalge-
bra. The application Q — Q' gives an isomorphism of vector spaces

Coder™(S(V), S(V)) = Hom™(S(V), V)

whose inverse is given by the formula

Qi ®...® Un) = Z Z 6(0’)@116(1)0(1) ©...0 va(k’)) O Vs(k41) © - - O Vg(n)-
k=1 oeS(k,n—k)

In particular for every coderivation Q@ we have Q; = 0 for every ¢ > j and then the
subcoalgebras @;_, OV are preserved by Q.

PROOF. The isomorphism follows from Proposition VIII.33, while the inverse formula
comes from Lemma VIII.32. O






LECTURE IX

L., and EDF tools

In this chapter we introduce the category L, of L,-algebras and we define a sequence of
natural transformations

DGLA — L, — PreDef — Def

whose composition is the functor L +— Defy, (cf. V.66).

In all the four categories there is a notion of quasi-isomorphism which is preserved by
the above natural transformations: we recall that in the category Def quasi-isomorphism
means isomorphism in tangent spaces and then by Corollary V.72 every quasi-isomorphism
is an isomorphism.

Through all the chapter we work over a fixed field K of characteristic 0. Unless otherwise
specified all the tensor products are made over K.

1. Displacing (Décalage)
For every n and every graded vector space V, the twisting map gives a natural isomorphism

dp,: Q" (V[1]) = (®")VInl,  Via]=K[a] @V

dp, (v1[1] @ ... @ vp[l]) = (=)= (=D AV () & @u,)[n],  vla] = 1[a] @ v.

It is easy to verify that dp,,, called the displacing' isomorphism, changes symmetric into
skewsymmetric tensors and therefore it induces an isomorphism

dp,,: ©"(V[]) = (A"V)[nl,

dp, (v1[1] ® ... © va[1]) = (=1) 2= (=D eV (4, A A wy)[n].

2. DG-coalgebras and L.,-algebras

DEFINITION IX.1. By a dg-coalgebra we intend a triple (C, A, d), where (C, A) is a graded
coassociative cocommutative coalgebra and d € Coder!(C,C) is a codifferential. If C has a
counit €: C' — K, we assume that ed = 0. The category of dg-coalgebras, where morphisms
are morphisms of coalgebras commuting with codifferentials, is denoted by DGC.

ExXAMPLE IX.2. If A is a finite dimensional dg-algebra with differential d: A — A[1], then
AV (Example VIIL.15) is a dg-coalgebra with codifferential the transpose of d.

LEMMA IX.3. Let V be a graded vector space and Q € Coder'(S(V),S(V)). Then Q is a
codifferential, i.e. Q) o Q =0, if and only if for every n > 0 and every vy,...,v, €V

Z Z (o301, ) QN Qk (Vo)) O - - - O V(1)) O Vg (1) © - - - © V() = 0.
k+l=n+1 oceS(k,n—k)

MARCO MANETTI: Deformations of complex manifolds version June 28, 2011
¢ is often used the french name décalage.

117
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PROOF. Denote P=QoQ = %[Q, Q]: since P is a coderivation we have that P = 0 if
and only if P! = Q' o Q = 0. According to Corollary VIII.34

Qv ®...0v,) = Z 6({11,16 })Ql(w)QvIc
i )

and then
I,I°
Plly®...0u)= Y e<{1 n}>Q1(Q1(v1) O vre).
Ic{1,...n} T
O

n—+1

Note that P! = 0 whenever Q! = 0 for every m > and, if @) is a codifferential in

S(V) then Q1 is a differential in the graded vector space V.

DEFINITION IX.4. Let V be a graded vector space; a codifferential of degree 1 on the
symmetric coalgebra C(V) = S(V]1]) is called an Ly-structure on V. The dg-coalgebra
(C(V),Q) is called an Ly -algebra.

An Loc-algebra (C(V),Q) is called minimal if Q1 = 0.

DEFINITION IX.5. A weak morphism F: (C(V),Q) — (C(W),R) of Ly-algebras is a
morphism of dg-coalgebras. By an L..-morphism we always intend a weak morphism of
L-algebras.

A weak morphism F' is called a strong morphism if there exists a morphism of graded vector
spaces F{: V — W such that F = S(F}).

We denote by L, the category having L..-algebras as objects and (weak) Loo-morphisms
as arrows.

Consider now two L-algebras (C(V),Q), (C(W), R) and a morphism of graded coalge-
bras F': C(V) — C(W). Since FQ — RF € Coder!(C(V),C(W); F), we have that F is an
Loo-morphism if and only if F1Q = R'F.

LEMMA IX.6. Consider two Loo-algebras (C(V),Q), (C(W), R) and a morphism of graded
vector spaces F*: C(V) — W[1]. Then
el —1

[

F=S(F) H(C(V),Q) = (C(W), R)

s an Loo-morphism if and only if

n n
(4) D_RIF, =) FlQ,
i=1 i=1

for every n > 0.

PRrROOF. According to Proposition VIII.26 F' is a morphism of coalgebras. Since F'Q) —
RF € Coder!(C(V),C(W); F), we have that F is an Lo.-morphism if and only if F1Q =
R'F.

]

EXERCISE IX.7. An Lo.-morphism F is strong if and only if F! =0 for every n > 2. A

If F: (C(V),Q) — (C(W),R) is an Le-morphism, then by Lemma IX.6 RIF} = FlQ1
and therefore we have a morphism in cohomology H(F}): H*(V[1],Q}) — H*(W([1],Q1).

DEFINITION IX.8. An Lo-morphism F': (C(V),Q) — (C(W), R) is a quasiisomorphism
if H(FY): H*(V[1],Q1) — H*(W1],Q}) is an isomorphism.

The following exercise shows that the above definition is not ambiguous.

EXERCISE IX.9. An Lo-morphism F': (C(V),Q) — (C(W), R) is a quasiisomorphism if
and only if H(F): H*(C(V),Q) — H*(C(W), R) is an isomorphism. A
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Given a coderivation Q: S(V[1]) — S(V[1])[1], their components Q}: O"(V[1]) — V2],
composed with the inverse of the displacement isomorphism, give linear maps
lj = (Qjodp,)[=n]: N'V — V[2 —n].
More explicitly

(o1 A Avy) = (—1) (=12 =DV Qle, 116 L v,[1])

The conditions of Lemma IX.3 become

Z (—1)06(0)l¢(lk(vo(1) VANPIAN vg(k)) A Vo (k+1) VANPAN vg(n)) =0.

o€ S (kn—k) (DY

Setting [1(v) = d(v) and la(v1 A v2) = [v1,vg], the first three conditions (n = 1,2,3)
becomes:

1: d>=0
2 d[xay} = [dl’,y] + (—1)§[Jf,dy]
30 (=1)[lz,y), 2]+ (=1)?[[z, 2, y] + (= 1)7¥][y, 2], 2] =

- (_1)EZ+1(dl3(xa Y, Z) + lg(d.%',y, 2) + ( 1)fl (.Z' dy? ) ( 1)T+§l3(x’ y,dZ))
If I3 = 0 we recognize, in the three formulas above, the axioms defining a differential
graded Lie algebra structure on V.
EXERCISE 1X.10. Let (C(V), @) be an Ly-algebra. Then the bracket
[wi, wa] = (=1)* B YIQS (w1 [1] © wa[1]) = la(wy A wy)
gives a structure of graded Lie algebra on the cohomology of the complex (V,Q1). A

3. From DGLA to L.,-algebras

In this section we show that to every DGLA structure on a graded vector space V it
is associated naturally a L, structure on the same space V, i.e. a codifferential () on
c(V) = SV. ,

The coderivation @ is determined by its components Q}: O’V - V]2

ProposITION IX.11. Let (V,d, [, ]) be a differential graded Lie algebra. Then the coderiva-
tion QQ of components

(1) Qi(v[1]) = —d(v).
(2) Q(wi[1] © wo[1]) = (1)1 ) ey, wy]
(3) le- =0 for every j > 3.

s a codifferential and then gives an Loo-structure on V.

PROOF. The conditions of Lemma IX.3 are trivially satisfied for every n > 3. Forn < 3
they becomes (where T = z[1] and T = deg(z; V)):

n=1: QiQi(0)=d*(v) =

n=2: QIQTOY) +Q3Q ( ) ©7) + (~1)EDENQLQLE) 0 7) =
= —(=1)7(d[z,y] — [dz,y]) + [v,dy] = 0

n=3: QTP 02+ (-1)" QT Q3(J©2))+
+H=1)TTHIT o Q3T 0 2)) =
= (=1)¥[[z,y), 2] + (=17, [y, 2)] + (=) D[z, [y, 2]] = O
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It is also clear that every morphism of DGLA f: V — W induces a strong morphism of
the corresponding Leo-algebras S(f[1]): C(V) — C(W). Therefore we get in this way a
functor

DGLA — L
that preserves quasiisomorphisms.
This functor is faithful; the following example, concerning differential graded Lie algebras
arising from Gerstenhaber-Batalin-Vilkovisky algebras, shows that it is not fully faithful.
Let (A, A) be a GBV-algebra (Section VIIL.6); we have seen that (G[—1],[, |, A), where
[a, 8] = aA(b) + (=1) > (A(ab) — A(a)b)

is a differential graded Lie algebra and then it makes sense to consider the associated Lqo-
algebra (C(G[—1]),9) = (S(G),d). The codifferential ¢ is induced by the linear map of
degree 1 6' = A + Q € Hom{ (S(G), G), where 6; = A and

B=0Q: 0 -G, Qaob) =A(ab) — A(a)b — (—1)%aA(b)

LEMMA IX.12. In the notation above,

Alarag...am) = Z e(osar,...,am)A(ay )aoy, - .. Gy, +
ceS(1,m—1)
+ Z €(osar,....am)Q(as,, 00y)a0s - - - gy,
ceS(2,m—2)
for every m > 2 and every aq,...,am € G.

ProOOF. For m = 2 the above equality becomes
A(ab) = A(a)b+ (—1)%aA(b) + Q(a ® b)

which is exactly the definition of Q).
By induction on m we may assume the Lemma true for all integers < m and then

m
A((alag)ag ce am) = Z(fl)a—i_"'—kmal e A(ai)aiH et
i=1
+ZeQ(a1a2®ai)a3...é}...am+ Z €eQa; ®aj)atas...a;...a;...an.
>3 2<i<y

Replacing the odd Poisson identity
Qaraz ® a;) = (-1)"a1Q(az ® a;) + (—1) @ TH20yQ(a1 © a;)
in the above formula, we obtain the desired equality. O
As an immediate consequence we have

THEOREM IX.13. In the notation above, let (C(G[—1]),T) be the (abelian) Loo-algebra
whose codifferential is induced by A: G — G. Then the morphism of graded vector spaces
f:58(G) =G,

flag ®...0ay) =a1ay...apy
induces an isomorphism of Loo-algebras F': (C(G[-1]),0) — (C(G[-1]), 7).

PROOF. According to Lemmas IX.6 and IX.12 the morphism of graded coalgebras
induced by f is an Ly.-morphism.
Moreover, according to Example VIII.21 F is an isomorphism of graded coalgebras whose
inverse is induced by

g: S(G) — G, g(a1®...0an) = (-1)"taiay...am.
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4. From L,-algebras to predeformation functors

Let Q € Coder' (C(V),C(V)) be a Lo, structure on a graded vector space V, we define
the Maurer-Cartan functor MCy : NA — Set by setting:

MCy(A) = Hompac(4Y,C(V)).
We first note that the natural isomorphism
(C(V)® A) = Homg(AY,C(V)), (v®a)e = c(a)v

is an isomorphism of algebras and then, according to Corollary VIII.27, every coalgebra
morphism 6: AV — C(V) is written uniquely as § = exp(m)—1 for some m € (V[1]® A)° =
Homg(AY,V[1]). As in Lemma IX.6, 6 is a morphism of dg-coalgebras if and only if
md v = Q'6; considering m as an element of the algebra (C(V)® A)° this equality becomes
the Maurer-Cartan equation of an L.-structure:

1
(Idypy @da)m = —(Qp @ Ida)m”,  me (V[1]® A)°,
‘=l
Via the décalage isomorphism the Maurer-Cartan equation becomes

o0

Idy @ da(m) =

n=1
It is then clear that if the Lo, structure comes from a DGLA V (i.e. [, = 0 for every n > 3)
then the Maurer-Cartan equation reduces to the classical one.

1 n(n+1) 1
ﬁ(—l) 2 (I, @Ida)ymA...Am, me (VeA).

It is evident that M Cy is a covariant functor and MCy(0) =0. Let a: A — C, 3: B — C
be morphisms in NA, then

MCV(A Xc B) = MCV(A) XMCV(C’) MCV(B)

and therefore M CYy satisfies condition 2) of Definition V.59; in particular it makes sense
the tangent space TMC'y, .

ProposITION IX.14. The functor MCy is a predeformation functor with T'MCy =
HH(V[1], Q).

Proor. If A€ NANDG then
MCy(A)={me (VoA Idy ®ds(m) = -1y @ Ids(m)} = Z1(V @ A)

the same computation of V.66 shows that there exists a natural isomorphism T°MCy =
HI(V, 1) = H-Y(V[1], QY).

Let 0—I—A—B—0 be a small acyclic extension in NA, we want to prove that
MCy(A) — MCy(B) is surjective.

We have a dual exact sequence

0—BY—AY—TV—0, BY =T+

Since TA = 0 we have Ayv(AY) C BY @ BY.

Let ¢ € MCy(B) be a fixed element and ¢': BV — V/[1]; by Proposition VIIL.26 ¢ is
uniquely determined by ¢!. Let 1!': AY — V1] be an extension of ¢!, then, again by
VIIL.26, 9! is induced by a unique morphism of coalgebras 1: AV — C(V).

The map dav —Qv: AV — C(V)[1] is a coderivation and then, setting h = (ydv — Q) €
Homg (I, V[2]), we have that v is a morphism of dg-coalgebras if and only if h = 0.
Note that ¢! is defined up to elements of Homg(IV,V[1]) = (V[1] ® I)° and, since
Ay (AY) € BY ® BY, 4" depends only by ¢ for every i > 1. Since I is acyclic and
hdpv + Qih = 0 there exists ¢ € Homg(IV,V[1]) such that h = £dpv — Q1€ and then
6! = ! — ¢ induces a dg-coalgebra morphism 6: AV — C(V) extending ¢. O

Therefore the Maurer-Cartan functor can be considered as a functor Lo, — PreDef that
preserves quasiisomorphisms. We have already noted that the composition DGLA —
Lo — PreDef is the Maurer-Cartan functor of DGLAs.
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5. From predeformation to deformation functors

We first recall the basics of homotopy theory of dg-algebras.

We denote by K [t1,...,t,,dt1,...,dt,] the dg-algebra of polynomial differential forms on
the affine space A™ with the de Rham differential. We have K [¢, dt] = K [¢] & K [t]dt and

Kt1, ...ty dt1,. .. dty] = Q@ K [t;, dt;].
i=1

Since K has characteristic 0, it is immediate to see that H,(K|[t,dt]) = K|[0] and then by
Kinneth formula H, (K [t1,...,t,, dt1,...,dt,]) = K[0]. Note that for every dg-algebras A
and every s = (s1,...,5,) € K" we have an evaluation morphism

es: AQK[ty, ... ty,dty, ... dty] — A

defined by
es(a@p(ty, ... to,dt1,...,dty)) =p(s1,...,8n,0,...,0)a
For every dg-algebra A we denote Aft,dt] = A ® K|[t,dt]; if A is nilpotent then At, dt] is
still nilpotent. If A € NA, then A[t,dt] is the direct limit of objects in NA. To see this it
is sufficient to consider, for every positive real number ¢ > 0, the dg-subalgebra

Alt,dt]e = A ® Bpso(AImNm @ AlMln=tary ¢ Alt, di],

where A€l is the subalgebra generated by all the products ajas .. .as, s > ne, a; € A.
It is clear that if A € NA then A[t,dt]c € NA for every ¢ > 0 and A[t, dt] is the union of
all Aft,dt]., e > 0.

LEMMA IX.15. For every dg-algebra A the evaluation map ep: At,dt] — A induces an
isomorphism H(A[t,dt]) — H(A) independent from h € K.

PROOF. Let 1: A — A[t,dt] be the inclusion, since epr = Id4 it is sufficient to prove

that ¢+: H(A) — H(A]t, dt]) is bijective.
For every n > 0 denote B,, = At"® At"1dt; since d(B,) C B, and A[t, dt] = 1(A) @,,~, Bn
it is sufficient to prove that H(B,) = 0 for every n. Let z € Z;(By,), z = at" + nbt"~ 1dt
then 0 = dz = dat™ + ((—1)%a + db)nt"~'dt which implies a = (—1)*"'db and then z =
(=1)Ld(btm). O

DEeFINITION IX.16. Given two morphisms of dg-algebras f,g: A — B, a homotopy be-
tween f and g is a morphism H: A — Blt,dt] such that Hy := ego H = f, Hy :=ejoH =g
(cf. [27, p. 120]).

We denote by [A, B] the quotient of Hompga (4, B) by the equivalence relation ~ gener-
ated by homotopies.

According to Lemma IX.15, homotopic morphisms induce the same morphism in homol-
ogy.

LeEMMA IX.17. Given morphisms of dg-algebras,

A B c,

if f~gandh~1then hf ~lg

PROOF. It is obvious from the definitions that hg ~ lg. For every a € K there exists a
commutative diagram

BoK[td] 2L ookt d .

B h C

If F: A — BIJt,dt] is a homotopy between f and g, then, considering the composition of F’
with h ® Id, we get a homotopy between hf and hg. O
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Since composition respects homotopy equivalence we can also consider the homotopy
categories K(DGA) and K(NA). By definition, the objects of K(DGA) (resp.: K(NA))
are the same of DGA (resp.: NA), while the morphisms are Mor(A, B) = [A, BJ.

If A,B € DG NNA, then two morphisms f,g: A — B are homotopic in the sense of
1X.16 if and only if f is homotopic to g as morphism of complexes. In particular every
acyclic complex is contractible as a dg-algebra.

LEMmMA IX.18. A predeformation functor F: NA — Set is a deformation functor if and
only if F induces a functor [F]: K(NA) — Set.

PROOF. One implication is trivial, since every acyclic I € NA N DG is isomorphic to
0 in K(NA).
Conversely, let H: A — Blt,dt] be a homotopy, we need to prove that Hy and H; induce
the same morphism from F(A) to F(B). Since A is finite-dimensional there exists € > 0
sufficiently small such that H: A — Blt,dt].; now the evaluation map eg: Bl[t,dt] — B is
a finite composition of acyclic small extensions and then, since F' is a deformation functor
F(BJt,dt]¢) = F(B). For every a € F(A) we have H(a) = iHp(a), where i: B — BIt,dt].
is the inclusion and then Hj(a) = e1H(a) = e1iHy(a) = Ho(a).
O

THEOREM IX.19. Let F be a predeformation functor, then there exists a deformation
functor F* and a natural transformation n: F — FT such that:
(1) n is a quasiisomorphism.
(2) For every deformation functor G and every natural transformation ¢: F — G
there exists a unique natural transformation v: F* — G such that ¢ = n.

PROOF. We first define a functorial relation ~ on the sets F'(A), A € NA; weset a ~ b
if and only if there exists € > 0 and = € F(A[t,dt]¢) such that eq(x) = a, e;(x) = b. By
I1X.18 if F'is a deformation functor then a ~ b if and only if a = b. Therefore if we define
F7 as the quotient of F' by the equivalence relation generated by ~ and 1 as the natural
projection, then there exists a unique 1 as in the statement of the theorem. We only need
to prove that F'T is a deformation functor.

STEP 1: If C € DG NNA is acyclic then F+(C) = {0}.
Since C' is acyclic there exists a homotopy H: C — C[t,dt]., ¢ < 1, such that Hy = 0,
H, = Id; it is then clear that for every x € F(C) we have z = Hy(z) ~ Ho(z) = 0.

STEP 2: ~ is an equivalence relation on F'(A) for every A € NA.
This is essentially standard (see e.g. [27]). In view of the inclusion A — Alt,dt]c the
relation ~ is reflexive. The symmetry is proved by remarking that the automorphism of
dg-algebras

Alt,dt] — Alt,dt);  a®p(t,dt) — a®p(l—t,—dt)

preserves the subalgebras A[t, dt]. for every € > 0.

Consider now € > 0 and =z € F(A[t,dt].), y € F(A[s,ds]c) such that eg(z) = eo(y); we
need to prove that ej(z) ~ e1(y).

Write K[t,s,dt,ds] = @©,>05", where S™ is the n-th symmetric power of the acyclic

complex K¢ @ K s—5K dt & K ds and define Alt,s,dt,dsle = A ® ®p=o(A"l @ S). There
exists a commutative diagram

t—0

Alt, s, dt,ds|le — Als,ds].
lsr—>0 ls»—»O
A

t—0

Alt, dt]. —

The kernel of the surjective morphism
Alt, s, dt, ds|c—=A[t, dt]. x 4 Alt, dt]

is equal to @po(A™ @ (S"N1)), where I C K[t, s, dt, ds] is the homogeneous differential
ideal generated by st, sdt, tds, dtds. Since I N S™ is acyclic for every n > 0, the morphism
7 is a finite composition of acyclic small extensions.
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Let & € F(Alt, s, dt,ds].) be a lifting of (x,y) and let z € F(A[u, du].) be the image of £
under the morphism
Alt, s, dt,ds|c — Alu, du], t—1—u, s—u
The evaluation of z gives eg(z) = e1(z), e1(2) = e1(y).
STEP 3: If a: A — B is surjective then

(607O‘)

F(A[t, dt]g) — F(A) X F(B) F(B[t, dt]e)

is surjective.

It is not restrictive to assume « a small extension with kernel I. The kernel of (e, c)
is equal to @pso(A™ N T) @ (Kt* ® Kt"'dt) and therefore (eg, ) is an acyclic small
extension.

STEP 4: The functor F't satisfies 2a of V.59.

Let a € F(A), b € F(B) be such that a(a) ~ 3(b); by Step 3 there exists ' ~ a, a’ € F(A)
such that «(a’) = §(b) and then the pair (a’,b) lifts to F(A x¢ B).
STEP 5: The functor F'™ satisfies 2b of V.59.

By V.60 it is sufficient to verify the condition separately for the cases C = 0 and B = 0.
When C' = 0 the situation is easy: in fact (A x B)[t,dt]c = Alt,dt]c x BJt,dt]., F((A x
B)[t,dt]) = F(A[t,dt]) x F(B[t,dt].) and the relation ~ over F(A x B) is the product of
the relations ~ over F(A) and F(B); this implies that F*(A x B) = F*(A) x F*(B).

Assume now B = 0, then the fibred product D := A x¢ B is equal to the kernel of a. We
need to prove that the map F'*(D) — F1(A) is injective. Let ag,a; € F(D) C F(A) and
let x € F(A[t,dt]¢) be an element such that e;(x) = a;, i = 0,1. Denote by T € F(C[t, dt])
the image of x by «.

Since C' is acyclic there exists a morphism of graded vector spaces o: C' — C[—1] such
that do + od = Id and we can define a morphism of complexes

h: C— (Ks®Kds)®C C C[s,ds]i; h(v) =s®v+ds®oa(v)
The morphism h extends in a natural way to a morphism
h: C[t,dt]le — (Ks® Kds) @ C[t, dt].

such that for every scalar ( € K there exists a commutative diagram

Clt,dt]e -~ (Ks&Kds)® Cl[t,dt].
leg l[d@eg
c X (KsaKds)®C
Setting Z = h(T) we have Z|,_; = T, Z|s—0 = Zjy—0 = Z=1 = 0. By step 3 7 lifts to an
element 2 € F(A[t, dt]¢[s,ds]1) such that z,_; = z; Now the specializations 2,_g, zj;—0,
24— are annihilated by « and therefore give a chain of equivalences in F'(D)

A0 = Z|s=1,t=0 " Z|5=0,t=0 ™ Z|s=0,t=1 "~ Z|s=1,t=1 — @1

proving that ag ~ a1 inside F(D).

The combination of Steps 1, 4 and 5 tell us that F'T is a deformation functor.

STEP 6: The morphism 7n: F — F* is a quasiisomorphism.
Let € be of degree 1 — i, €2 = 0, then K e @ I; is isomorphic to the dg-subalgebra
Ke® Ket ® Kedt C Kelt, dt]

and the map p: F(I;) — F(Ke) factors as

p: F(I;) — F(I;) ® F(Ke) = FKea Ket @ Kedt) 2=2 F(Ke).
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On the other hand the evaluation maps ey, e; factor as
et Kelt,dt] ">Ke ® Ket @ Kedt—5Ke, =0, 1
where h is the morphism of dg-vector spaces

edt

h(et") = et, h(et"dt) = T
n

Vn > 0.

O

COROLLARY IX.20. Let L be a differential graded Lie algebra, then there exists a natural
isomorphism MC; = Defp,.

PROOF. According to Theorem IX.19 there exists a natural morphism of functors
v M C; — Defr; by V.66 ¢ is a quasiisomorphism and then, by Corollary V.72 1 is
an isomorphism. O

DEFINITION IX.21. Let (C(V),Q) be a Loo-algebra and let Defy = MCY: be the defor-
mation functor associated to the predeformation functor MCy . We shall call Defy the
deformation functor associated to the Loo-algebra (C(V), Q).

A morphism of Ly-algebras C(V) — C(W) induces in the obvious way a natural transfor-
mation MCy — MCy and then, according to IX.19, a morphism Defy — Defyy. Finally,
since MCy — Defy is a quasiisomorphism we have T'Defy = H'(V,Q1).

The following result is clear.

COROLLARY IX.22. Let 0: C(V) — C(W) be a morphism of Loo-algebras. The induced
morphism Defy — Defy is an isomorphism if and only if 03: V — W is a quasiisomor-
phism of complezes.

6. Cohomological constraint to deformations of Kahler manifolds

Theorem IX.13 shows that the category of Ly,-algebras is more flexible than the category
of differential graded Lie algebras. Another example in this direction is given by the main
theorem of [54].

Let X be a fixed compact Kahler manifold of dimension n and consider the graded vector
space Mx = Hom{ (H*(X,C), H*(X,C)) of linear endomorphisms of the singular cohomol-
ogy of X. The Hodge decomposition gives natural isomorphisms

My=@My, My= @ Homc(HP(Q%),H (2%))
7 r+s=p+q+i
and the composition of the cup product and the contraction operator Tx ® Q&LQ?I
gives natural linear maps

6p: HP(X,Tx) — @Hom{(H" (%), H™P(Q5 1) € M[-1]% = ME .

By Dolbeault’s theorem H*E’;(SX) = H*(X,Tx) and then the maps 6, give a morphism
of graded vector spaces §: H*(KSx) — M[—1]x. This morphism is generally nontrivial:
consider for instance a Calabi-Yau manifold where the map 6, induces an isomorphism
HP(X,Tx) = Homc(HO (%), HP(Q% ).

THEOREM IX.23. In the above notation, consider M|—1]|x as a differential graded Lie
algebra with trivial differential and trivial bracket.

Every choice of a Kdahler metric on X induces a canonical lifting of 8 to an Ly.-morphism
from KSx to M[—1]x.

The application of Theorem IX.23 to deformation theory, see [54], are based on the idea
that Loo-morphisms induce natural transformations of (extended) deformation functors
commuting with tangential actions and obstruction maps (cf. Theorem V.69). Being the
deformation functor of the DGLA M|[—1] essentially trivial, the lifting of § impose several
constraint on deformations of X.

Denote by:
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o AM* =P, , AP, where AP? =T'(X, A7) the vector space of global (p, ¢)-forms.
o N** = Homg (A", A**) = @, , NP9, where NP4 = @), ; Homg (A", APIH9) is
the space of homogeneous endomorphisms of A** of bidegree (p, q).

The space N**, endowed with the composition product and total degree deg(¢) = p + ¢
whenever ¢ € NP4, is a graded associative algebra and therefore, with the standard bracket

[0, 0] = g — (~1) D dE DIy

becomes a graded Lie algebra. We note that the adjoint operator [0, ]: N** — N***1 g
a differential inducing a structure of DGLA.

LEMMA IX.24. Let X be a compact Kdihler manifold, then there exists T € NY~1 such
that:

(1) 7 factors to a linear map A™*/ker & — Imd.

(2) [0,7] = 0.
In particular & € N is a coboundary in the DGLA (N**,[, 1,[0, ])-
PROOF. In the notation of Theorem VI.37 it is sufficient to consider 7 = 00 = —0do.
Note that the above 7 is defined canonically from the choice of the Kahler metric. ]

We fix a Kéhler metric on X and denote by: H C A** the graded vector space of harmonic
forms, i: H — A®™* the inclusion and h: A®* — H the harmonic projector.
We identify the graded vector space Mx with the space of endomorphisms of harmonic
forms Homg (H, H). We also we identify Der*(A**, A**) with its image into N = Homg. (A**, A**).

According to Lemma IX.24 there exists 7 € N° such that
hd =0h=T1Th=hr =01 =70 =0, [0,7] = 0.

For simplicity of notation we denote by L = @LP the Z-graded vector space KS[1]x,
this means that LP = I'(X, A%?*1(Tx)), —1 < p < n — 1. The local description of the
two linear maps of degree +1, d: L — L, Q: ®? L — L introduced, up to décalage, in

Proposition IX.11 is: if z1, ..., 2z, are local holomorphic coordinates, then
0 — .0
dl op— ) = (0¢)—, e A%,
(65-) - @05 o
_ 0 9 0,0
If I, J are ordered subsets of {1,...,n}, a = fdzla—, b= gdzza—, f,g € A% then
Z Zj

e _ dg 0 of 0 _
1 a _———— — = L .
Qa®b) = (-1)%dz; Ndzy < 9z, g » Z> ) a = deg(a, L)

The formula

a1 ©...0an) = Z e(Lyo;a1,...,am)dag, @ gy @ ...O agy,, +
ceS(1,m-1)
(5)
+ Z e(L,o5a1,...,am)Q(05; ® Apy) ® gy © ... O ag,,
c€S(2,m—2)

gives a codifferential § of degree 1 on S(L) and the differential graded coalgebra (S(L), §)
is exactly the L..-algebra associated to the Kodaira-Spencer DGLA K Sx.

If Der?(A** A**) denotes the vector space of C-derivations of degree p of the sheaf of
graded algebras (A** A), where the degree of a (p,q)-form is p + ¢ (note that 9,0 €
Der!(A**, A**)), then we have a morphism of graded vector spaces

L—sDer*(A**, A**) = @Der?(A™*, A™*),  aw—a
p

given in local coordinates by
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LEMMA IX.25. If [, ] denotes the standard bracket on Der*(A** A**), then for every
pair of homogeneous a,b € L we have:

(1) da = [9,a] = da — (—1)7a0.
(2) Q(a®b) = —[[8,3d],b] = (—1)7adb + (—1)2+°bda + dab + bao.

PRrooOF. This is a special case of Lemma VII.21. O

Consider the morphism
FliL—>Mx, Fl(a):haz

We note that Fj is a morphism of complexes, in fact Fi(da) = hdai = h(da £ @d)i = 0.
By construction Fj induces the morphism # in cohomology and therefore the theorem is

proved whenever we lift F} to a morphism of graded vector spaces F': S(L) — Mx such
that Fod =0.

Define, for every m > 2, the following morphisms of graded vector spaces

o
fm: @"L— My,  Fp:Q"L—Mx, F=3 Fn:S(L)— Mx,
m=1

fm(a1 ®as @ ... ay) = ha1TazaTas ... Tami.
Frla1®a2®...0ay) = Z e(Lyoya1,...,am)fm(as @ ... R ag,,).
O’GEm

THEOREM 1X.26. In the above notation Fod =0 and therefore

— 1 m m—
e = Z MFQ © AC(Klsx)‘ (C(KSx),0) — (C(M[-1]x),0)
m=1

18 an Loo-morphism with linear term F}.

PROOF. We need to prove that for every m > 2 and aq,...,a, € L we have

F,, Z e(L,o)dag, ©® a5y ©...0 ag,,
ceS(1,m—1)

=—Fn Z €(L,0)Q(a5, ® gy) @ oy © ... O ag,, |,
oeS(2,m—2)

where €(L,0) = €(L,0;a1,...,an).
It is convenient to introduce the auxiliary operators q: ®2 L — NI1], ¢(a®@b) = (—=1)%adb
and g,: @ L — M[l]x,

-2
gm(a1® ... @ ap) ==Y (=) PHAERG r @rq(aii @ aige)Tairs . Tami.
=0

Since for every choice of operators &« = h,7 and 8 = 7,7 and every a,b € L we have
aQ(a ®b)8 = a((=1)%a0b + (~1)""T60a)8 = algla @ b) + (~1)"*q(b @ a))5,
the symmetrization lemma VIII.5 gives

Z €(L,0)gm(as ®...Q0q,,) = —Fn_1 Z €(L,0)Q(a5, © Ggy) ® oy @ ... O ag,,
oEYm €S (2,m—2)



128 IX. Lo AND EDF TOOLS

On the other hand

m—1
fm ( (- TFlig @, .®a¢Qda ®...0 am> =

1=0
m—1
= ()T FEhay G (0ai — (—1) 5 G 0)T . Tami
=0
m—2

= (=) AT hay G (— (=) a1 07d e + (— 1) T @m0 12)T - Tami

=0
m—2
= — Z (—1)a1+...+aihd\1 o a//\iT((il)aH—laﬁ[a’ T]@)T N .T@i
=0
m—2

=— (=) FUhay . aiq(aii1 @ Aig2)T ... Tami

=gm(a1 @ ... R ap).

Using again Lemma VIII.5 we have

Z e(L,0)gm(as, ® ... ®a,,,) = Fn Z e(L,0)dag, ©® a5y ®...0 ag,,
0EXm UES(l,mfl)

O O

Remark. If X is a Calabi-Yau manifold with holomorphic volume form 2, then the com-
position of F' with the evaluation at 2 induces an Lo-morphism C(KSx) — C(H[n — 1]).
For every m > 2, evgoF,,: (O™ L — H[n] vanishes on (" {a € L|d(a - ) = 0}.

7. Historical survey, IX

Lo-algebras, also called strongly homotopy Lie algebras, are the Lie analogue of the A,
( strongly homotopy associative algebras), introduced by Stasheff [74] in the context of
algebraic topology.

The popularity of L.,-algebras has been increased recently by their application in defor-
mation theory (after [68]), in deformation quantization (after [44]) and in string theory
(after [82], cf. also [47]).
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