SEMICOSIMPLICIAL LIE ALGEBRAS

DEFORMATION THEORY 2011-12; M. M.

1. Semicosimplicial tot

Let Δ_{mon} be the category whose objects are the finite ordinal sets $[n] = \{0, 1, \ldots, n\}$, $n = 0, 1, \ldots$, and whose morphisms are order-preserving injective maps among them. Every morphism in Δ_{mon} , different from the identity, is a finite composition of *coface* morphisms:

$$\partial_k \colon [i-1] \to [i], \qquad \partial_k(p) = \begin{cases} p & \text{if } p < k\\ p+1 & \text{if } k \le p \end{cases}, \qquad k = 0, \dots, i.$$

The relations about compositions of them are generated by

$$\partial_l \partial_k = \partial_{k+1} \partial_l$$
, for every $l \le k$.

A semicosimplicial object in a category **C** is a covariant functor $A^{\Delta} : \Delta_{\text{mon}} \to \mathbf{C}$. Equivalently, a semicosimplicial object A^{Δ} is a diagram in **C**:

$$A_0 \Longrightarrow A_1 \Longrightarrow A_2 \Longrightarrow \cdots$$

where each A_i is in **C**, and, for each i > 0, there are i + 1 morphisms

$$\partial_k \colon A_{i-1} \to A_i, \qquad k = 0, \dots, i,$$

such that $\partial_l \partial_k = \partial_{k+1} \partial_l$, for any $l \leq k$.

Given a semicosimplicial abelian group

$$V^{\Delta}: V_0 \Longrightarrow V_1 \Longrightarrow V_2 \Longrightarrow \cdots,$$

the map

$$\delta \colon V_i \to V_{i+1}, \qquad \delta = \sum_i (-1)^i \partial_i$$

satisfies $\delta^2 = 0$ and then give a complex of vector spaces denoted

$$\operatorname{Tot}(V^{\Delta}): V_0 \xrightarrow{\delta} V_1 \xrightarrow{\delta} V_2 \to \cdots$$

Example 1.1. Let \mathcal{L} be a sheaf of abelian groups on a topological space X, and $\mathcal{U} = \{U_i\}$ an open covering of X; it is naturally defined the semicosimplicial abelian group of Čech alternating cochains:

$$\mathcal{L}(\mathcal{U}): \qquad \prod_{i} \mathcal{L}(U_{i}) \Longrightarrow \prod_{i < j} \mathcal{L}(U_{ij}) \Longrightarrow \prod_{i < j < k} \mathcal{L}(U_{ijk}) \Longrightarrow \cdots,$$

where the coface maps $\partial_h \colon \prod_{i_0 < \cdots < i_{k-1}} \mathcal{L}(U_{i_0 \cdots i_{k-1}}) \to \prod_{i_0 < \cdots < i_k} \mathcal{L}(U_{i_0 \cdots i_k})$ are given by

$$\partial_h(x)_{i_0\dots i_k} = x_{i_0\dots \widehat{i_h}\dots i_k \mid U_{i_0\dots i_k}}, \quad \text{for } h = 0,\dots,k.$$

Thus $\operatorname{Tot}(\mathcal{L}(\mathcal{U}))$ is the Čech complex of \mathcal{L} in the covering \mathcal{U} .

Consider a semicosimplicial Lie algebra \mathfrak{g}^{Δ} is a diagram

 $\mathfrak{g}^{\Delta}: \mathfrak{g}_0 \Longrightarrow \mathfrak{g}_1 \Longrightarrow \mathfrak{g}_2 \Longrightarrow \cdots,$ Denoting by $\alpha_i = \partial_i: \mathfrak{g}_0 \to \mathfrak{g}_1, \ \beta_j = \partial_j: \mathfrak{g}_1 \to \mathfrak{g}_2 \text{ and } \gamma_k = \partial_k: \mathfrak{g}_2 \to \mathfrak{g}_3 \text{ the coface maps we}$ have:

 $\beta_1 \alpha_0 = \beta_0 \alpha_0, \qquad \beta_2 \alpha_0 = \beta_0 \alpha_1, \qquad \beta_2 \alpha_1 = \beta_1 \alpha_1,$ (2.1)

 $\gamma_0\beta_0=\gamma_1\beta_0,\quad \gamma_0\beta_1=\gamma_2\beta_0,\quad \gamma_0\beta_2=\gamma_3\beta_0,\quad \gamma_1\beta_1=\gamma_2\beta_1,\quad \gamma_1\beta_2=\gamma_3\beta_1,\quad \gamma_2\beta_2=\gamma_3\beta_2.$ Define the Maurer-Cartan functor

$$MC_{\mathfrak{g}\Delta} : \mathbf{Art} \to \mathbf{Set},$$

 $\mathrm{MC}_{\mathfrak{g}^{\Delta}}(A) = \{ e^x \in \exp(\mathfrak{g}_1 \otimes \mathfrak{m}_A) \mid e^{\beta_0(x)} e^{-\beta_1(x)} e^{\beta_2(x)} = 1 \},\$ or equivalently, using the BCH product \bullet ,

$$\mathrm{MC}_{\mathfrak{g}^{\Delta}}(A) = \{ x \in \mathfrak{g}_1 \otimes \mathfrak{m}_A \mid (\beta_0(x)) \bullet (-\beta_1(x)) \bullet (\beta_2(x)) = 0 \}$$

Lemma 2.1. The action

 $\exp(\mathfrak{g}_0 \otimes \mathfrak{m}_A) \times \exp(\mathfrak{g}_1 \otimes \mathfrak{m}_A) \to \exp(\mathfrak{g}_1 \otimes \mathfrak{m}_A), \qquad (e^a, e^x) \mapsto e^{\alpha_1(a)} e^x e^{-\alpha_0(a)}$ preserves Maurer-Cartan elements.

Proof. Let $e^x \in \mathrm{MC}_{\mathfrak{g}^{\Delta}}(A)$, $e^a \in \exp(\mathfrak{g}_0 \otimes \mathfrak{m}_A)$ and denote $e^y = e^{\alpha_1(a)} e^x e^{-\alpha_0(a)}$. Then $\rho^{\beta_0}(y) = \rho^{\beta_0} \alpha_1(a) \rho^{\beta_0}(x) \rho^{-\beta_0} \alpha_0(a)$

$$e^{-\beta_1(y)} = e^{\beta_1\alpha_0(a)}e^{-\beta_0(x)}e^{-\beta_1\alpha_1(a)},$$

$$e^{\beta_2(y)} = e^{\beta_2\alpha_1(a)}e^{\beta_2(x)}e^{-\beta_2\alpha_0(a)},$$

and the proof follows from equations (2.1).

Moreover, we can define the quotient functor

$$\operatorname{Def}_{\mathfrak{g}^{\Delta}} \colon \operatorname{\mathbf{Art}} \to \operatorname{\mathbf{Set}}, \qquad \operatorname{Def}_{\mathfrak{g}^{\Delta}}(A) = \frac{\operatorname{MC}_{\mathfrak{g}^{\Delta}}(A)}{\exp(\mathfrak{g}_0 \otimes \mathfrak{m}_A)}$$

Proposition 2.2. The projectioon $MC_{\mathfrak{g}^{\Delta}} \to Def_{\mathfrak{g}^{\Delta}}$ is a smooth morphism of deformation functors.

Proof. Immediate consequence of ?? (altra dispensa).

Notice that if \mathfrak{g}_2 is abelian, then

$$e^{\beta_0(x)}e^{-\beta_1(x)}e^{\beta_2(x)} = e^{\beta_0(x) - \beta_1(x) + \beta_2(x)}$$

and therefore $\mathrm{MC}_{\mathfrak{g}^{\Delta}}$ is a smooth functor, since

$$\mathrm{MC}_{\mathfrak{g}^{\Delta}}(A) = Z^1(\mathrm{Tot}(\mathfrak{g}^{\Delta})) \otimes \mathfrak{m}_A.$$

Finally every morphism of semicosimplicial Lie algebras induce a natural transformation of associated MC and Def functors.

Let's now compute tangent and obstruction space of $MC_{\mathfrak{g}^{\Delta}}$ and $Def_{\mathfrak{g}^{\Delta}}$.

$$T^{1} \operatorname{MC}_{\mathfrak{g}^{\Delta}} = \operatorname{MC}_{\mathfrak{g}^{\Delta}}(\mathbb{K}[\varepsilon]) = \{ x \in \mathfrak{g}_{1} \otimes \mathbb{K}\varepsilon \mid e^{\beta_{0}(x)}e^{-\beta_{1}(x)}e^{\beta_{2}(x)} = 1 \} = \{ x \in \mathfrak{g}_{1} \otimes \varepsilon \mid \beta_{0}(x) - \beta_{1}(x) + \beta_{2}(x) = 0 \} = \operatorname{ker}(\delta) = Z^{1}(\operatorname{Tot}(\mathfrak{g}^{\Delta})).$$

Next

$$\operatorname{Def}_{\mathfrak{g}^{\Delta}}(\mathbb{K}[\varepsilon]) = \frac{\operatorname{MC}_{\mathfrak{g}^{\Delta}}(\mathbb{K}[\varepsilon])}{\exp(\mathfrak{g}_0 \otimes \mathbb{K}\varepsilon)} =$$

$$=\frac{Z^{1}(\operatorname{Tot}(\mathfrak{g}^{\Delta}))}{\{-\alpha_{1}(a)+\alpha_{0}(a)\mid a\in\mathfrak{g}_{0}\}}=H^{1}(\operatorname{Tot}(\mathfrak{g}^{\Delta})).$$

Next goal is to determine a complete obstruction theory for $MC_{\mathfrak{g}^{\Delta}}$; by Lemma ?? (altra dispensa), this will be also an obstruction theory for $Def_{\mathfrak{g}^{\Delta}}$.

Let $0 \to J \to A \to B \to 0$ be a small extension and let $x \in \mathfrak{g}_1 \otimes \mathfrak{m}_A$ be any lifting of an element $y \in \mathrm{MC}_{\mathfrak{q}^{\Delta}}(B)$, then

$$e^{\beta_0(x)}e^{-\beta_1(x)}e^{\beta_2(x)} = e^r$$
, where $r \in \mathfrak{g}_2 \otimes J$.

Since J is annihilated by maximal ideals, the element e^r belongs to the center of the group $\exp(\mathfrak{g}_2 \otimes \mathfrak{m}_A)$ and then we have

$$e^{r} = e^{\beta_{0}(x)}e^{-\beta_{1}(x)}e^{\beta_{2}(x)} = e^{\beta_{2}(x)}e^{\beta_{0}(x)}e^{-\beta_{1}(x)} = e^{-\beta_{1}(x)}e^{\beta_{2}(x)}e^{\beta_{0}(x)}$$

Lemma 2.3. In the notation above r is a cocycle in $\operatorname{Tot}(\mathfrak{g}^{\Delta})$, i.e. $\sum_{k} (-1)^{k} \gamma_{k}(r) = 0$.

Proof. Notice that

$$\gamma_i(e^r)\gamma_j(e^r) = e^{\gamma_i(r) + \gamma_j(r)} = \gamma_j(e^r)\gamma_i(e^r)$$

for every i, j. It is therefore sufficient to prove that

$$\gamma_0(e^r)\gamma_2(e^r) = \gamma_1(e^r)\gamma_3(e^r).$$

We have

$$\gamma_k(e^r) = e^{\gamma_k \beta_0(x)} e^{-\gamma_k \beta_1(x)} e^{\gamma_k \beta_2(x)}, \qquad k = 0, 1, 2, 3$$

and then

$$(\gamma_1(e^r))^{-1}\gamma_0(e^r) = e^{-\gamma_1\beta_2(x)}e^{\gamma_1\beta_1(x)}e^{-\gamma_0\beta_1(x)}e^{\gamma_0\beta_2(x)}$$

$$\gamma_2(e^r)(\gamma_3(e^r))^{-1} = e^{\gamma_2\beta_0(x)}e^{-\gamma_2\beta_1(x)}e^{\gamma_3\beta_1(x)}e^{-\gamma_3\beta_0(x)} = e^{-\gamma_3\beta_0(x)}e^{\gamma_2\beta_0(x)}e^{-\gamma_2\beta_1(x)}e^{\gamma_3\beta_1(x)},$$

$$\begin{aligned} (\gamma_1(e^r))^{-1}\gamma_0(e^r)\gamma_2(e^r)(\gamma_3(e^r))^{-1} &= \\ &= e^{-\gamma_1\beta_2(x)}e^{\gamma_1\beta_1(x)}e^{-\gamma_0\beta_1(x)}e^{\gamma_0\beta_2(x)}e^{-\gamma_3\beta_0(x)}e^{\gamma_2\beta_0(x)}e^{-\gamma_2\beta_1(x)}e^{\gamma_3\beta_1(x)} \\ &= e^{-\gamma_1\beta_2(x)}e^{\gamma_1\beta_1(x)}e^{-\gamma_0\beta_1(x)}e^{\gamma_2\beta_0(x)}e^{-\gamma_2\beta_1(x)}e^{\gamma_3\beta_1(x)} \\ &= e^{-\gamma_1\beta_2(x)}e^{\gamma_1\beta_1(x)}e^{-\gamma_2\beta_1(x)}e^{\gamma_3\beta_1(x)} \\ &= e^{-\gamma_1\beta_2(x)}e^{\gamma_3\beta_1(x)}e^{-\gamma_2\beta_1(x)}e^{\gamma_3\beta_1(x)} \\ &= e^{-\gamma_1\beta_2(x)}e^{\gamma_3\beta_1(x)}e^{-\gamma_2\beta_1(x)}e^{\gamma_3\beta_1(x)} \\ \end{aligned}$$

Therefore, the element r defines a cohomology class $[r] \in H^2(\text{Tot}(\mathfrak{g}^{\Delta})) \otimes J$ depending only by the class of y in $\mathfrak{g}_1 \otimes \mathfrak{m}_B$. In fact, any other lifting is equal to x + u, with $u \in \mathfrak{g}_1 \otimes J$. Every $e^{\beta_j(u)}$ belongs to the center of $\exp(\mathfrak{g}_2 \otimes \mathfrak{m}_A)$ and so

$$e^{\beta_0(x+u)}e^{-\beta_1(x+u)}e^{\beta_2(x+u)} = e^{\beta_0(x)}e^{-\beta_1(x)}e^{\beta_2(x)}e^{\beta_0(u)-\beta_1(u)+\beta_2(u)} = e^{r+\delta(u)}e^{-\beta_1(x+u)}e^{-\beta_2(x+u)}e^{-\beta_2(x+u)} = e^{r+\delta(u)}e^{-\beta_2(x+u)}e^{-\beta_2(x+u)} = e^{r+\delta(u)}e^{-\beta_2(x+u)}e^{-\beta_2(x+u)} = e^{r+\delta(u)}e^{-\beta_2(x+u)}e^{-\beta_2(x+u)} = e^{r+\delta(u)}e^{-\beta_2(x+u)}e^{-\beta_2(x+u)} = e^{r+\delta(u)}e^{-\beta_2(x+u)}e^{-\beta_2(x+u)} = e^{r+\delta(u)}e^{-\beta_2(x+u)}e^{-\beta_2(x+u)}e^{-\beta_2(x+u)} = e^{r+\delta(u)}e^{-\beta_2(x+u)$$

The same argument proves that $[r] \in H^2(\operatorname{Tot}(\mathfrak{g}^{\Delta})) \otimes J$ is a complete obstruction.

Corollary 2.4. Notation as above, if $H^2(\operatorname{Tot}(\mathfrak{g}^{\Delta})) = 0$ then $\operatorname{Def}_{\mathfrak{g}^{\Delta}}$ is smooth.

Corollary 2.5. Let $f: \mathfrak{g}^{\Delta} \to \mathfrak{h}^{\Delta}$ be a morphism of semicosimplicial Lie algebras. If:

- (1) $f: H^1(\operatorname{Tot}(\mathfrak{g}^{\Delta})) \to H^1(\operatorname{Tot}(\mathfrak{h}^{\Delta}))$ is surjective,
- (2) $f: H^2(\operatorname{Tot}(\mathfrak{g}^{\Delta})) \to H^2(\operatorname{Tot}(\mathfrak{h}^{\Delta}))$ is injective,

then the morphism $f: \operatorname{Def}_{\mathfrak{g}^{\Delta}} \to \operatorname{Def}_{\mathfrak{h}^{\Delta}}$ is smooth.

Proof. Apply standard smoothness criterion.

3. Deformations of manifolds

Let $\mathcal{U} = \{U_i\}$ be an affine open cover of a smooth variety X, defined over an algebraically closed field of characteristic 0; denote by Θ_X the tangent sheaf of X. Then, we can define the Čech semicosimplicial Lie algebra $\Theta_X(\mathcal{U})$ as the semicosimplicial Lie algebra

$$\Theta_X(\mathcal{U}): \quad \prod_i \Theta_X(U_i) \Longrightarrow \prod_{i < j} \Theta_X(U_{ij}) \Longrightarrow \prod_{i < j < k} \Theta_X(U_{ijk}) \Longrightarrow \cdots,$$

Since every infinitesimal deformation of a smooth affine scheme is trivial [?, Lemma II.1.3], every infinitesimal deformation X_A of X over Spec(A) is obtained by gluing the trivial deformations $U_i \times \text{Spec}(A)$ along the double intersections U_{ij} , and therefore it is determined by the sequence $\{\theta_{ij}\}_{i < j}$ of automorphisms of sheaves of A-algebras

satisfying the cocycle condition

(3.1)
$$\theta_{jk} \theta_{ik}^{-1} \theta_{ij} = Id_{\mathcal{O}(U_{ijk}) \otimes A}, \quad \forall i < j < k \in I.$$

Since we are in characteristic zero, we can take the logarithms and write $\theta_{ij} = e^{d_{ij}}$, where $d_{ij} \in \Theta_X(U_{ij}) \otimes \mathfrak{m}_A$. Therefore, the Equation (3.1) is equivalent to

$$e^{d_{jk}}e^{-d_{ik}}e^{d_{ij}} = 1 \in \exp(\Theta_X(U_{ijk}) \otimes \mathfrak{m}_A), \quad \forall i < j < k \in I.$$

Next, let X'_A be another deformation of X over $\operatorname{Spec}(A)$, defined by the cocycle θ'_{ij} . To give an isomorphism of deformations $X'_A \simeq X_A$ is the same to give, for every i, an automorphism α_i of $\mathcal{O}(U_i) \otimes A$ such that $\theta_{ij} = \alpha_i^{-1} {\theta'_{ij}}^{-1} \alpha_j$, for every i < j. Taking again logarithms, we can write $\alpha_i = e^{a_i}$, with $a_i \in \Theta_X(U_i) \otimes \mathfrak{m}_A$, and so $e^{-a_i} e^{d'_{ij}} e^{a_j} = e^{d_{ij}}$.

Theorem 3.1. Let \mathcal{U} be an affine open cover of a smooth algebraic variety X defined over an algebraically closed field of characteristic 0. Denoting by Def_X the functor of infinitesimal deformations of X, there exist isomorphisms of functors

$$\operatorname{Def}_X \cong \operatorname{Def}_{\Theta_X(\mathcal{U})}$$

where $\Theta_X(\mathcal{U})$ is the semicosimplicial Lie algebra defined above.

Proof. By definition,

$$\mathrm{MC}_{\Theta_X(\mathcal{U})}(A) = \{ \{x_{ij}\} \in \prod_{i < j} \Theta_X(U_{ij}) \otimes \mathfrak{m}_A \mid e^{x_{jk}} e^{-x_{ik}} e^{x_{ij}} = 1 \ \forall \ i < j < k \},$$

for each $A \in \operatorname{Art}$. Moreover, given $x = \{x_{ij}\}$ and $y = \{y_{ij}\} \in \prod_{i < j} \Theta_X(U_{ij}) \otimes \mathfrak{m}_A$, we have $x \sim y$ if and only if there exists $a = \{a_i\} \in \prod_i \Theta_X(U_i) \otimes \mathfrak{m}_A$ such that $e^{-a_j} e^{x_{ij}} e^{a_i} = e^{y_{ij}}$ for all i < j.

In particular this proves that if $H^2(\Theta_X) = 0$ then X has unobstructed deformations.