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1. semicosimplicial tot

Let ∆mon be the category whose objects are the finite ordinal sets [n] = {0, 1, . . . , n}, n =
0, 1, . . ., and whose morphisms are order-preserving injective maps among them. Every morphism
in ∆mon, different from the identity, is a finite composition of coface morphisms:

∂k : [i− 1]→ [i], ∂k(p) =

{
p if p < k

p+ 1 if k ≤ p
, k = 0, . . . , i.

The relations about compositions of them are generated by

∂l∂k = ∂k+1∂l , for every l ≤ k.

A semicosimplicial object in a category C is a covariant functor A∆ : ∆mon → C. Equivalently,
a semicosimplicial object A∆ is a diagram in C:

A0
// // A1

////// A2

//////// · · · ,

where each Ai is in C, and, for each i > 0, there are i+ 1 morphisms

∂k : Ai−1 → Ai, k = 0, . . . , i,

such that ∂l∂k = ∂k+1∂l, for any l ≤ k.
Given a semicosimplicial abelian group

V ∆ : V0
//// V1

// //// V2

//////// · · · ,

the map

δ : Vi → Vi+1, δ =
∑
i

(−1)i∂i

satisfies δ2 = 0 and then give a complex of vector spaces denoted

Tot(V ∆) : V0
δ−→V1

δ−→V2 → · · ·

Example 1.1. Let L be a sheaf of abelian groups on a topological space X, and U = {Ui} an
open covering of X; it is naturally defined the semicosimplicial abelian group of Čech alternating
cochains:

L(U) :
∏
i L(Ui)

////
∏
i<j L(Uij)

// ////
∏
i<j<k L(Uijk)

//////// · · · ,

where the coface maps ∂h :
∏

i0<···<ik−1

L(Ui0···ik−1
)→

∏
i0<···<ik

L(Ui0···ik) are given by

∂h(x)i0...ik = xi0...îh...ik |Ui0···ik
, for h = 0, . . . , k.

Thus Tot(L(U)) is the Čech complex of L in the covering U .
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2. Maurer-Cartan and deformation functor

Consider a semicosimplicial Lie algebra g∆ is a diagram

g∆ : g0
//// g1

////// g2

//////// · · · ,

Denoting by αi = ∂i : g0 → g1, βj = ∂j : g1 → g2 and γk = ∂k : g2 → g3 the coface maps we
have:

(2.1) β1α0 = β0α0, β2α0 = β0α1, β2α1 = β1α1,

γ0β0 = γ1β0, γ0β1 = γ2β0, γ0β2 = γ3β0, γ1β1 = γ2β1, γ1β2 = γ3β1, γ2β2 = γ3β2.

Define the Maurer-Cartan functor

MCg∆ : Art→ Set,

MCg∆(A) = {ex ∈ exp(g1 ⊗mA) | eβ0(x)e−β1(x)eβ2(x) = 1},
or equivalently, using the BCH product •,

MCg∆(A) = {x ∈ g1 ⊗mA | (β0(x)) • (−β1(x)) • (β2(x)) = 0}.

Lemma 2.1. The action

exp(g0 ⊗mA)× exp(g1 ⊗mA)→ exp(g1 ⊗mA), (ea, ex) 7→ eα1(a)exe−α0(a)

preserves Maurer-Cartan elements.

Proof. Let ex ∈ MCg∆(A), ea ∈ exp(g0 ⊗mA) and denote ey = eα1(a)exe−α0(a). Then

eβ0(y) = eβ0α1(a)eβ0(x)e−β0α0(a),

e−β1(y) = eβ1α0(a)e−β0(x)e−β1α1(a),

eβ2(y) = eβ2α1(a)eβ2(x)e−β2α0(a),

and the proof follows from equations (2.1). �

Moreover, we can define the quotient functor

Defg∆ : Art→ Set, Defg∆(A) =
MCg∆(A)

exp(g0 ⊗mA)

Proposition 2.2. The projectioon MCg∆ → Defg∆ is a smooth morphism of deformation func-
tors.

Proof. Immediate consequence of ?? (altra dispensa). �

Notice that if g2 is abelian, then

eβ0(x)e−β1(x)eβ2(x) = eβ0(x)−β1(x)+β2(x)

and therefore MCg∆ is a smooth functor, since

MCg∆(A) = Z1(Tot(g∆))⊗mA.

Finally every morphism of semicosimplicial Lie algebras induce a natural transfor-
mation of associated MC and Def functors.

Let’s now compute tangent and obstruction space of MCg∆ and Defg∆ .

T 1 MCg∆ = MCg∆(K[ε]) = {x ∈ g1 ⊗Kε | eβ0(x)e−β1(x)eβ2(x) = 1} =

{x ∈ g1 ⊗ ε | β0(x)− β1(x) + β2(x) = 0} = ker(δ) = Z1(Tot(g∆)).

Next

Defg∆(K[ε]) =
MCg∆(K[ε])

exp(g0 ⊗Kε)
=
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=
Z1(Tot(g∆))

{−α1(a) + α0(a) | a ∈ g0}
= H1(Tot(g∆)).

Next goal is to determine a complete obstruction theory for MCg∆ ; by Lemma ?? (altra
dispensa), this will be also an obstruction theory for Defg∆ .

Let 0 → J → A → B → 0 be a small extension and let x ∈ g1 ⊗ mA be any lifting of an
element y ∈ MCg∆(B), then

eβ0(x)e−β1(x)eβ2(x) = er, where r ∈ g2 ⊗ J.

Since J is annihilated by maximal ideals, the element er belongs to the center of the group
exp(g2 ⊗mA) and then we have

er = eβ0(x)e−β1(x)eβ2(x) = eβ2(x)eβ0(x)e−β1(x) = e−β1(x)eβ2(x)eβ0(x).

Lemma 2.3. In the notation above r is a cocycle in Tot(g∆), i.e.
∑
k(−1)kγk(r) = 0.

Proof. Notice that

γi(e
r)γj(e

r) = eγi(r)+γj(r) = γj(e
r)γi(e

r)

for every i, j. It is therefore sufficient to prove that

γ0(er)γ2(er) = γ1(er)γ3(er).

We have

γk(er) = eγkβ0(x)e−γkβ1(x)eγkβ2(x), k = 0, 1, 2, 3,

and then

(γ1(er))−1γ0(er) = e−γ1β2(x)eγ1β1(x)e−γ0β1(x)eγ0β2(x),

γ2(er)(γ3(er))−1 = eγ2β0(x)e−γ2β1(x)eγ3β1(x)e−γ3β0(x) = e−γ3β0(x)eγ2β0(x)e−γ2β1(x)eγ3β1(x),

(γ1(er))−1γ0(er)γ2(er)(γ3(er))−1 =

= e−γ1β2(x)eγ1β1(x)e−γ0β1(x)eγ0β2(x)e−γ3β0(x)eγ2β0(x)e−γ2β1(x)eγ3β1(x)

= e−γ1β2(x)eγ1β1(x)e−γ0β1(x)eγ2β0(x)e−γ2β1(x)eγ3β1(x)

= e−γ1β2(x)eγ1β1(x)e−γ2β1(x)eγ3β1(x)

= e−γ1β2(x)eγ3β1(x) = 1.

�

Therefore, the element r defines a cohomology class [r] ∈ H2(Tot(g∆)) ⊗ J depending only
by the class of y in g1 ⊗mB . In fact, any other lifting is equal to x+ u, with u ∈ g1 ⊗ J . Every
eβj(u) belongs to the center of exp(g2 ⊗mA) and so

eβ0(x+u)e−β1(x+u)eβ2(x+u) = eβ0(x)e−β1(x)eβ2(x)eβ0(u)−β1(u)+β2(u) = er+δ(u).

The same argument proves that [r] ∈ H2(Tot(g∆))⊗ J is a complete obstruction.

Corollary 2.4. Notation as above, if H2(Tot(g∆)) = 0 then Defg∆ is smooth.

Corollary 2.5. Let f : g∆ → h∆ be a morphism of semicosimplicial Lie algebras. If:

(1) f : H1(Tot(g∆))→ H1(Tot(h∆)) is surjective,
(2) f : H2(Tot(g∆))→ H2(Tot(h∆)) is injective,

then the morphism f : Defg∆ → Defh∆ is smooth.

Proof. Apply standard smoothness criterion. �
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3. Deformations of manifolds

Let U = {Ui} be an affine open cover of a smooth variety X, defined over an algebraically
closed field of characteristic 0; denote by ΘX the tangent sheaf of X. Then, we can define the
Čech semicosimplicial Lie algebra ΘX(U) as the semicosimplicial Lie algebra

ΘX(U) :
∏
i ΘX(Ui)

////
∏
i<j ΘX(Uij)

// ////
∏
i<j<k ΘX(Uijk)

// ////// · · · ,

Since every infinitesimal deformation of a smooth affine scheme is trivial [?, Lemma II.1.3],
every infinitesimal deformation XA of X over Spec(A) is obtained by gluing the trivial defor-
mations Ui × Spec(A) along the double intersections Uij , and therefore it is determined by the
sequence {θij}i<j of automorphisms of sheaves of A-algebras

O(Uij)

O(Uij)⊗A
θij

'
//

88rrrrrrrrrr
O(Uij)⊗A

ffLLLLLLLLLL

A

88qqqqqqqqqqqq

ffMMMMMMMMMMMM

satisfying the cocycle condition

(3.1) θjkθ
−1
ik θij = IdO(Uijk)⊗A, ∀ i < j < k ∈ I.

Since we are in characteristic zero, we can take the logarithms and write θij = edij , where
dij ∈ ΘX(Uij)⊗mA. Therefore, the Equation (3.1) is equivalent to

edjke−dikedij = 1 ∈ exp(ΘX(Uijk)⊗mA), ∀ i < j < k ∈ I.
Next, let X ′A be another deformation of X over Spec(A), defined by the cocycle θ′ij . To give

an isomorphism of deformations X ′A ' XA is the same to give, for every i, an automorphism

αi of O(Ui)⊗ A such that θij = αi
−1θ′ij

−1
αj , for every i < j. Taking again logarithms, we can

write αi = eai , with ai ∈ ΘX(Ui)⊗mA, and so e−aied
′
ijeaj = edij .

Theorem 3.1. Let U be an affine open cover of a smooth algebraic variety X defined over
an algebraically closed field of characteristic 0. Denoting by DefX the functor of infinitesimal
deformations of X, there exist isomorphisms of functors

DefX ∼= DefΘX(U)

where ΘX(U) is the semicosimplicial Lie algebra defined above.

Proof. By definition,

MCΘX(U)(A) = {{xij} ∈
∏
i<j

ΘX(Uij)⊗mA | exjke−xikexij = 1 ∀ i < j < k},

for each A ∈ Art. Moreover, given x = {xij} and y = {yij} ∈
∏
i<j ΘX(Uij) ⊗ mA, we have

x ∼ y if and only if there exists a = {ai} ∈
∏
i ΘX(Ui)⊗mA such that e−ajexijeai = eyij for all

i < j. �

In particular this proves that if H2(ΘX) = 0 then X has unobstructed deformations.
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