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1 Introduction

Let K be a fixed algebraically closed field of characteristic 0, X ⊂ A
n = A

n
K

a closed
subscheme. Denote by Art the category of local artinian K -algebras with residue field K .

Definition 1.1. An infinitesimal deformation of X over A ∈ Art is a commutative diagram
of schemes

X
i ��

��

XA

fA

��
Spec(K ) �� Spec(A)

such that fA is flat and the induced morphism X → XA×Spec(A) Spec(K ) is an isomorphism.

It is not difficult to see (cf. [1]) that XA is affine and more precisely it is isomorphic to a
closed subscheme of A

n×Spec(A). Two deformationsX i−→XA
fA−→Spec(A),X

j−→X̃A
gA−→Spec(A)

are isomorphic if there exists a commutative diagram of schemes

X
i ��

j

��

XA

fA

��θ�����������

X̃A gA

�� Spec(A)

It is easy to prove that necessarily θ is an isomorphism (cf. [5]). Since flatness commutes with
base change, for every deformations X i−→XA

fA−→Spec(A) and every morphism A → B in
the category Art, the diagram

X ��

��

XA ×Spec(A) Spec(B)

��
Spec(K ) �� Spec(B)

is a deformation of X over Spec(B); it is then defined a covariant functor DefX : Art → Set,

DefX(A) = { isomorphism classes of deformations of X over A }.

The set DefX(K ) contains only one point.
In a similar way we can define the functor HilbX : Art → Set of embedded deformations

of X into A
n: HilbX(A) is the set of closed subschemes XA ⊂ A

n × Spec(A) such that the

15



restriction to XA of the projection on the second factor is a flat map XA → Spec(A) and
XA ∩ (An × Spec(K )) = X × Spec(K ).

In these notes we give a recipe for the construction of two differential graded Lie algebras
H, L together two isomorphism of functors

DefL =
MCL
gauge

→ DefX , DefH =
MCH
gauge

→ HilbX .

The DGLAs L, H are unique up to quasiisomorphism and their cohomology can be computed
in terms of the cotangent complex of X. For the notion of differential graded Lie algebra,
Maurer-Cartan functors and gauge equivalence we refer to [3], [5], [2].

Moreover we can choose H as a differential graded Lie subalgebra of L such that Hi = Li

for every i > 0.

2 Flatness and relations

In this section A ∈ Art is a fixed local artinian K -algebra with residue field K .

Lemma 2.1. Let M be an A-module, if M ⊗A K = 0 then M = 0.

Proof. If M is finitely generated this is Nakayama’s lemma. In the general case consider a
filtration of ideals 0 = I0 ⊂ I1 ⊂ . . . ⊂ In = A such that Ii+1/Ii = K for every i. Applying
the right exact functor ⊗AM to the exact sequences of A-modules

0−→K =
Ii+1

Ii
−→A
Ii
−→ A

Ii+1
−→0

we get by induction that M ⊗A (A/Ii) = 0 for every i.

The following is a special case of the local flatness criterion [6, Thm. 22.3]

Theorem 2.2. For an A-module M the following conditions are equivalent:

1. M is free.

2. M is flat.

3. TorA
1 (M,K ) = 0.

Proof. The only nontrivial assertion is 3) ⇒ 1). Assume TorA
1 (M,K ) = 0 and let F be a

free module such that F ⊗A K = M ⊗A K . Since M → M ⊗A K is surjective there exists
a morphism α : F → M such that its reduction α : F ⊗A K → M ⊗A K is an isomorphism.
Denoting by K the kernel of α and by C its cokernel we have C ⊗A K = 0 and then C = 0;
K ⊗A K = TorA

1 (M,K ) = 0 and then K = 0.

Corollary 2.3. Let h : P → L be a morphism of flat A-modules, A ∈ Art. If h : P ⊗A K →
L⊗A K is injective (resp.: surjective) then also h is injective (resp.: surjective).

Proof. Same proof of Theorem 2.2.

Corollary 2.4. Let 0 →M → N → P → 0 be an exact sequence of A-modules with N flat.
Then:

1. M ⊗A K → N ⊗A K injective ⇒ P flat.

2. P flat ⇒M flat and M ⊗A K → N ⊗A K injective.
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Proof. Take the associated long TorA
∗ (−,K ) exact sequence and apply 2.2 and 2.3.

Corollary 2.5. Let

P
f−→Q g−→R h−→M−→0 (1)

be a complex of A-modules such that:

1. P,Q,R are flat.

2. Q
g−→R h−→M−→0 is exact.

3. P ⊗A K
f−→Q⊗A K

g−→R⊗A K
h−→M ⊗A K−→0 is exact.

Then M is flat and the sequence (1) is exact.

Proof. Denote by H = kerh = Im g and g = φη, where φ : H → R is the inclusion and
η : Q→ H; by assumption we have an exact diagram

P ⊗A K
f �� Q⊗A K

g ��

η

��

R⊗A K
h �� M ⊗A K �� 0

H ⊗A K

φ

��

�� 0

which allows to prove, after an easy diagram chase, that φ is injective. According to Corol-
lary 2.4 H and M are flat modules. Denoting L = ker g we have, since H is flat, that also L
is flat and L⊗A K → Q⊗A K injective. This implies that P ⊗A K → L⊗A K is surjective.
By Corollary 2.3 P → L is surjective.

Corollary 2.6. Let n > 0 and

0−→I−→P0
d1−→P1−→ . . . dn−→Pn,

a complex of A-modules with P0, . . . , Pn flat. Assume that

0−→I ⊗A K−→P0 ⊗A K
d1−→P1 ⊗A K−→ . . . dn−→Pn ⊗A K

is exact; then I, coker(dn) are flat modules and the natural morphism I → ker(P0 ⊗A K →
P1 ⊗A K ) is surjective.

Proof. Induction on n and Corollary 2.5.

3 Differential graded algebras, I

Unless otherwise specified by the symbol ⊗ we mean the tensor product ⊗K over the field
K . We denote by:

• G the category of Z-graded K -vector space; given an object V = ⊕Vi, i ∈ Z, of G and
a homogeneous element v ∈ Vi we denote by v = i its degree.

• DG the category of Z-graded differential K -vector space (also called complexes of
vector spaces).
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Given (V, d) in DG we denote as usual by Z(V ) = ker d, B(V ) = d(V ), H(V ) = Z(V )/B(V ).
Given an integer n, the shift functor [n] : DG → DG is defined by setting V [n] = K [n]⊗V ,

V ∈ DG, f [n] = IdK [n] ⊗ f , f ∈ MorDG, where

K [n]i =
{

K if i+ n = 0
0 otherwise

More informally, the complex V [n] is the complex V with degrees shifted by n, i.e. V [n]i =
Vi+n, and differential multiplied by (−1)n.

Given two graded vector spaces V,W , the “graded Hom” is the graded vector space

Hom∗
K

(V,W ) = ⊕n Homn
K

(V,W ) ∈ G,

where by definition Homn
K

(V,W ) is the set of K -linear map f : V → W such that f(Vi) ⊂
Wi+n fore every i ∈ Z. Note that Hom0

K
(V,W ) = HomG(V,W ) is the space of morphisms in

the category G and there exist natural isomorphisms

Homn
K

(V,W ) = HomG(V [−n],W ) = HomG(V,W [n]).

A morphism in DG is called a quasiisomorphism if it induces an isomorphism in homology.
A commutative diagram in DG

A ��

g

��

B

f

��
C �� D

is called cartesian if the morphism A → C ×D B is an isomorphism; it is an easy exercise
in homological algebra to prove that if f is a surjective (resp.: injective) quasiisomorphism,
then g is a surjective (resp.: injective) quasiisomorphism.

Definition 3.1. A graded (associative, Z-commutative) algebra is a graded vector space A =
⊕Ai ∈ G endowed with a product Ai ×Aj → Ai+j satisfying the properties:

1. a(bc) = (ab)c.

2. a(b+ c) = ab+ ac, (a+ b)c = ac+ bc.

3. (Koszul sign convention) ab = (−1)a bba for a, b homogeneous.

The algebra A is unitary if there exists 1 ∈ A0 such that 1a = a1 = a for every a ∈ A.

Let A be a graded algebra, then A0 is a commutative K -algebra in the usual sense;
conversely every commutative K -algebra can be considered as a graded algebra concentrated
in degree 0. If I ⊂ A is a homogeneous left (resp.: right) ideal then I is also a right (resp.:
left) ideal and the quotient A/I has a natural structure of graded algebra.

Example 3.2. Polynomial algebras. Given a set {xi}, i ∈ I, of homogeneous indeterminates
of integral degree xi ∈ Z we can consider the graded algebra K [{xi}]. As a K -vector space
K [{xi}] is generated by monomials in the indeterminates xi. Equivalently K [{xi}] can be
defined as the symmetric algebra

⊕
n≥0

⊙n
V , where V = ⊕i∈IKxi ∈ G. In some cases, in

order to avoid confusion about terminology, for a monomial xα1
i1
. . . xαn

in
it is defined:

• The internal degree
∑

h xih
αh.

• The external degree
∑

h αh.
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In a similar way it is defined A[{xi}] for every graded algebra A.

Definition 3.3. A dg-algebra (differential graded algebra) is the data of a graded algebra A
and a K -linear map s : A→ A, called differential, with the properties:

1. s(An) ⊂ An+1, s2 = 0.

2. (graded Leibnitz rule) s(ab) = s(a)b+ (−1)aas(b).

A morphism of dg-algebras is a morphism of graded algebras commuting with differentials;
the category of dg-algebras is denoted by DGA.

In the sequel, for every dg-algebra A we denote by A� the underlying graded algebra.

Exercise 3.4. Let (A, s) be a unitary dg-algebra; prove:

1. 1 ∈ Z(A).

2. 1 ∈ B(A) if and only if H(A) = 0.

3. Z(A) is a graded subalgebra of A and B(A) is a homogeneous ideal of Z(A).

4. If A is local with maximal ideal M then s(M) ⊂M if and only if H(A) �= 0.

�

A differential ideal of a dg-algebra (A, s) is a homogeneous ideal I of A such that s(I) ⊂ I;
there exists an obvious bijection between differential ideals and kernels of morphisms of dg-
algebras.

On a polynomial algebra K [{xi}] a differential s is uniquely determined by the values
s(xi).

Example 3.5. Let t, dt be inderminates of degrees t = 0, dt = 1; on the polynomial algebra
K [t, dt] = K [t] ⊕ K [t]dt there exists an obvious differential d such that d(t) = dt, d(dt) = 0.
Since K has characteristic 0, we haveH(K [t, dt]) = K . More generally if (A, s) is a dg-algebra
then A[t, dt] is a dg-algebra with differential s(a ⊗ p(t)) = s(a) ⊗ p(t) + (−1)aa ⊗ p′(t)dt,
s(a⊗ q(t)dt) = s(a) ⊗ q(t)dt.

Definition 3.6. A morphism of dg-algebras B → A is a quasiisomorphism if the induced
morphism H(B) → H(A) is an isomorphism.

Given a morphism of dg-algebras B → A the space Dern
B(A,A) of B-derivations of degree

n is by definition

Dern
B(A,A) = {φ ∈ Homn

K
(A,A) |φ(ab)=φ(a)b+ (−1)naaφ(b), φ(B)=0}.

We also consider the graded vector space

Der∗B(A,A) =
⊕
n∈Z

Dern
B(A,A) ∈ G.

There exists a structure of differential graded Lie algebra on Der∗B(A,A) with differential

d : Dern
B(A,A) → Dern+1

B (A,A), dφ = dAφ− (−1)nφdA

and bracket

[f, g] = fg − (−1)f ggf.
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Exercise 3.7. Verify that d[f, g] = [df, g] + (−1)f [f, dg]. �

Exercise 3.8. Let A be graded algebra: if every a �= 0 is invertible then A = A0 is a field. �

Exercise 3.9. Let A be a graded algebra and let I ⊂ A be a left ideal. Then the following
conditions are equivalent:

1. I is the unique left maximal ideal.

2. A0 is a local ring with maximal ideal M and I =M ⊕i �=0 Ai.

�

4 The DG-resolvent

Let X ⊂ A
n be a closed subscheme, R0 = K [x1, . . . , xn] the ring of regular functions on A

n,
I0 ⊂ R0 the ideal of X and OX = R0/I the function ring of X.

Our aim is to construct a dg-algebra (R, d) and a quasiisomorphism R → OX such that
R = R0[y1, y2, . . . ] is a countably generated graded polynomial R0-algebra, every indeter-
minate yi has negative degree and, if R = ⊕i≤0Ri, then Ri is a finitely generated free R0

module.
Choosing a set of generators f1, . . . , fs1 of the ideal I0 we first consider the graded-

commutative polynomial dg-algebra

R(1) = K [x1, . . . , xn, y1, . . . , ys1 ] = R0[y1, . . . , ys1 ], xi = 0, yi = −1

with differential d defined by dxi = 0, dyj = fj . Note that (R(1), d), considered as a complex
ofR0 modules, is the Koszul complex of the sequence f1, . . . , fs1 . By construction the complex
of R0-modules

. . .−→R(1)−2
d−→R(1)−1

d−→R0
π−→OX−→0

is exact in R0 and OX . If (R(−1), d) → OX is a quasiisomorphism of dg-algebras (e.g. ifX is a
complete intersection) the construction is done. Otherwise let fs1+1, . . . , fs2 ∈ ker d∩R(1)−1

be a set of generators of the R0 module (ker d ∩R(1)−1)/dR(1)−2 and define

R(2) = R(1)[ys1+1, . . . , ys2 ], yj = −2, dyj = fj , j = s1 + 1, . . . , s2.

Repeating in a recursive way the above argument (step by step killing cycles) we get a chain
of polynomial dg-algebras

R0 = R(0) ⊂ R(1) ⊂ . . . ⊂ R(i) ⊂ . . .

such that (R(i), d) → OX is a quasiisomorphism in degree > −i. Setting

R = ∪R(i) = K [x1, . . . , xn, y1, . . . , ym, . . . ] =
⊕
i≤0

Ri,

the projection π : R→ OX is a quasiisomorphism of dg-algebras; in particular

. . .
d−→R−i

d−→ . . . d−→R−2
d−→R−1

d−→R0
π−→OX−→0

is a free resolution of the R0 module OX .
We denote by:

1. Zi = ker d ∩Ri.
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2. L = Der∗
K

(R,R).

3. H = Der∗R0
(R,R) = {g ∈ L | g(R0) = 0}.

It is clear that, since gRi ⊂ Ri+j for every g ∈ Lj , Li = Hi for every i > 0 and then
the DGLAs L, H have the same Maurer-Cartan functor MCH =MCL. Moreover R is a free
graded algebra and then Lj is in bijection with the maps of “degree j” {xi, yh} → R.

Consider a fixed η ∈ MCH(A). Recalling the definition of MCH we have that η =∑
ηi ⊗ ai ∈ Der1R0

(R,R) ⊗mA and the A-derivation

d+ η : R⊗A→ R⊗A, (d+ η)(x⊗ a) = dx⊗ a+
∑
ηi(x) ⊗ aia

is a differential. Denoting by OA the cokernel of d + η : R−1 ⊗ A → R0 ⊗ A we have by
Corollary 2.5 that (R⊗A, d+η) → OA is a quasiisomorphism, OA is flat and OA⊗K = OX .
Therefore we have natural transformations of functors

MCH =MCL → HilbX → DefX .

Lemma 4.1. The above morphisms of functors are surjective.

Proof. Let OA be a flat A-algebra such that OA ⊗A K = OX ; since R0 is a free K -algebra,
the projection R0

π−→OX can be extended to a morphism of flat A-algebras R0 ⊗ A πA−→OA.
According to Corollary 2.3 πA is surjective; this proves that HilbX(A) → DefX(A) is sur-
jective (in effect it is possible to prove directly that HilbX → DefX is smooth, cf. [1]). An
element of HilbX(A) gives an exact sequence of flat A-modules

R0 ⊗A πA−→OA−→0.

Denoting by I0,A ⊂ R0 ⊗ A the kernel of πA we have that I0,A is A-flat and the projection
I0,A → I0 is surjective. We can therefore extend the restriction to R(1) of the differential d
to a differential dA on R(1) ⊗ A by setting dA(yj) ∈ I0,A a lifting of d(yj), j = 1, . . . , s1.
Again by local flatness criterion the kernel Z−1,A of R−1 ⊗ A = R(1)−1 ⊗ A dA−→R0 ⊗ A is
flat and surjects onto Z−1. The same argument as above, with I0,A replaced by Z−1,A shows
that d can be extended to a differential dA on R(2) and then by induction to a differential
dA on R ⊗ A such that (R ⊗ A, dA) → OA is a quasiisomorphism. If a1, . . . , ar is a K -
basis of the maximal ideal of A we can write dA(x ⊗ 1) = dx ⊗ 1 +

∑
ηi(x) ⊗ ai and then

η =
∑
ηi ⊗ ai ∈MCH(A).

If ξ ∈ Der0R0
(R,R) ⊗ mA, A ∈ Art, then eξ : R ⊗ A → R ⊗ A is an automorphism

inducing the identity on R and R0 ⊗ A. Therefore the morphism MCH(A) → HilbX(A)
factors through DefH(A) → HilbX(A). Similarly the morphismMCL(A) → DefX(A) factors
through DefL(A) → DefX(A).

Theorem 4.2. The natural transformations

DefH → HilbX , DefL → DefX

are isomorphisms of functors.

Proof. We have already proved the surjectivity. The injectivity follows from the following
lifting argument. Given dA, d′A : R⊗A→ R⊗A two liftings of the differential d and f0 : R0⊗
A → R0 ⊗ A a lifting of the identity on R0 such that f0dA(R−1 ⊗ A) ⊂ d′A(R−1 ⊗ A) there
exists an isomorphism f : (R ⊗ A, dA) → (R ⊗ A, d′A) extending f0 and the identity on R.
This is essentially trivial because R ⊗ A is a free R0 ⊗ A graded algebra and (R ⊗ A, d′A) is
exact in degree < 0. Thinking f as an automorphism of the graded algebra R ⊗ A we have,
since K has characteristic 0, that f = eξ for some ξ ∈ L0 and ξ ∈ H0 if and only if f0 = Id.
By the definition of gauge action d′A − d = exp(ξ)(dA − d); the injectivity follows.
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Proposition 4.3. If I ⊂ R0 is the ideal of X ⊂ A
n then:

1. Hi(H) = Hi(L) = 0 for every i < 0.

2. H0(H) = 0, H0(L) = DerK (OX ,OX).

3. H1(H) = HomOX
(I/I2,OX) and H1(L) is the cokernel of the natural morphism

DerK (R0,OX) α−→HomOX
(I/I2,OX).

Proof. There exists a short exact sequence of complexes

0−→H−→L−→Der∗
K

(R0, R)−→0.

Since R0 is free and R is exact in degree < 0 we have:

Hi(Der∗
K

(R0, R)) =
{

0 i �= 0,
DerK (R0,OX) i = 0.

Moreover DerK (OX ,OX) is the kernel of α and then it is sufficient to compute Hi(H) for
i ≤ 1.

Every g ∈ Zi(H), i ≤ 0, is a R0-derivation g : R → R such that g(R) ⊂ ⊕i<0Ri and
gd = ±dg. As above R is free and exact in degree < 0, a standard argument shows that g is
a coboundary. If g ∈ Z1(H) then g(R−1) ⊂ R0 and, since gd+ dg = 0, g induces a morphism

g :
R−1

dR−2
= I−→ R0

dR−1
= OX .

The easy verification that Z1(H) → HomR0(I,OX) induces an isomorphism H1(H) →
HomR0(I,OX) is left to the reader.
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