CHAPTER 8

Totalization of semicosimplicial DG-vector spaces

8.1. Simplicial objects

Let $\boldsymbol{\Delta}$ be the category of finite ordinals: the objects are objects are $[0]=\{0\},[1]=\{0,1\}$, $[2]=\{0,1,2\}$ ecc. and morphisms are the non decreasing maps.

Finally $\boldsymbol{\Delta}_{\text {mon }}$ is the category with the same objects as above and whose morphisms are order-preserving injective maps among them.

In order to avoid heavy notations it is convenient to denote also $[n]=\emptyset$ for every $n<0$ and write

$$
\begin{gathered}
M(n, m)=\operatorname{Mor}_{\boldsymbol{\Delta}}([n],[m])=\{f:\{0,1, \ldots, n\} \rightarrow\{0,1, \ldots, m\} \mid f(i) \leq f(i+1)\} \\
I(n, m)=\operatorname{Mor}_{\boldsymbol{\Delta}_{\text {mon }}}([n],[m])=\{f:\{0,1, \ldots, n\} \rightarrow\{0,1, \ldots, m\} \mid f(i)<f(i+1)\} .
\end{gathered}
$$

Every morphism in $\boldsymbol{\Delta}_{\text {mon }}$, different from the identity, is a finite composition of coface morphisms:

$$
\partial_{k}:[i-1] \rightarrow[i], \quad \partial_{k}(p)=\left\{\begin{array}{ll}
p & \text { if } p<k \\
p+1 & \text { if } k \leq p
\end{array}, \quad k=0, \ldots, i\right.
$$

Equivalently ∂_{k} is the unique strictly monotone map whose image misses k.
More generally, every morphism in $\boldsymbol{\Delta}$ is a finite composition of coface morphisms and codegeneracy morphisms

$$
s_{k}:[i+1] \rightarrow[i], \quad s_{k}(p)=\left\{\begin{array}{ll}
p & \text { if } p \leq k \\
p-1 & \text { if } k>p
\end{array}, \quad k=0, \ldots, i\right.
$$

Equivalently s_{k} is the unique surjective monotone hitting k twice.
The relations about compositions of cofaces and codegeneracies are generated by the cosimplicial identities (see e.g. [36]):
(1) $\partial_{l} \partial_{k}=\partial_{k+1} \partial_{l}$ for every $l \leq k$;
(2) $\partial_{l} s_{k}=s_{k+1} \partial_{l}$ for every $l \leq k$;
(3) $s_{k} \partial_{k}=s_{k} \partial_{k+1}=I d$;
(4) $\partial_{l} s_{k}=s_{k} \partial_{l+1}$ for every $l>k$;
(5) $s_{l} s_{k}=s_{k} s_{l+1}$ for every $k \leq l$.

Definition 8.1.1 ([123]). Let \mathbf{C} be a category:
(1) A cosimplicial object in \mathbf{C} is a covariant functor $A^{\Delta}: \boldsymbol{\Delta} \rightarrow \mathbf{C}$.
(2) A semicosimplicial object in \mathbf{C} is a covariant functor $A^{\Delta}: \boldsymbol{\Delta}_{\text {mon }} \rightarrow \mathbf{C}$.
(3) A simplicial object in \mathbf{C} is a contravariant functor $A_{\Delta}: \boldsymbol{\Delta} \rightarrow \mathbf{C}$.
(4) A semisimplicial object in \mathbf{C} is a contravariant functor $A_{\Delta}: \boldsymbol{\Delta}_{\text {mon }} \rightarrow \mathbf{C}$.

Example 8.1.2. Giving a semicosimplicial object A^{Δ} is the same of giving a diagram

$$
A_{0} \Longrightarrow A_{1} \Longrightarrow A_{2} \equiv \rightrightarrows \cdots,
$$

where each A_{i} is in \mathbf{C}, and, for each $i>0$, there are $i+1$ morphisms

$$
\partial_{k}: A_{i-1} \rightarrow A_{i}, \quad k=0, \ldots, i
$$

such that $\partial_{l} \partial_{k}=\partial_{k+1} \partial_{l}$, for any $l \leq k$.
Example 8.1.3. Let \mathbb{K} be a field. Define the standard n-simplex over \mathbb{K} as the affine space

$$
\Delta^{n}=\left\{\left(t_{0}, \ldots, t_{n}\right) \in \mathbb{K}^{n+1} \mid t_{0}+t_{1}+\cdots+t_{n}=1\right\}
$$

The vertices of Δ^{n} are the points

$$
e_{0}=(1,0, \ldots, 0), \quad e_{1}=(0,1, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 1)
$$

Then the family $\left\{\Delta^{n}\right\}, n \geq 0$, is a cosimplicial affine space, where for every monotone map $f:[n] \rightarrow[m]$ we set $f: \Delta^{n} \rightarrow \Delta^{m}$ as the affine map such that $f\left(e_{i}\right)=e_{f(i)}$. Equivalently $f\left(t_{0}, \ldots, t_{n}\right)=\sum t_{i} e_{f(i)}=\left(u_{0}, \ldots, u_{m}\right)$, where

$$
u_{i}=\sum_{\{j \mid f(j)=i\}} t_{j} \quad\left(\text { we intend that } \sum_{\emptyset} t_{j}=0\right) .
$$

In particular, for $m=n+1$ we have

$$
\partial_{k}\left(t_{0}, \ldots, t_{n}\right)=\left(t_{0}, \ldots, t_{k-1}, 0, t_{k}, \ldots, t_{n}\right)
$$

and this explain why ∂_{k} is called face map.
Example 8.1.4 ([22]). For every $0 \leq p \leq n$, let Ω_{n}^{p} be the vector space of polynomial differential p-forms on the standard n-simplex Δ^{n}. Then, the space of polynomial differential forms on the standard n-simplex

$$
\Omega_{n}=\bigoplus_{p=0}^{n} \Omega_{n}^{p}=\frac{\mathbb{K}\left[t_{0}, \ldots, t_{n}, d t_{0}, \ldots, d t_{n}\right]}{\left(1-\sum t_{i}, \sum d t_{i}\right)}
$$

is a differential graded algebra. Notice that there exists a natural isomorphism of differential graded algebras

$$
\mathbb{K}\left[t_{1}, \ldots, t_{n}, d t_{1}, \ldots, d t_{n}\right] \rightarrow \Omega_{n}
$$

Since every affine map $f: \Delta^{n} \rightarrow \Delta^{m}$ induce by pull-back a morphism of differential graded algebra $f^{*}: \Omega_{m} \rightarrow \Omega_{n}$ we have that the sequence $\Omega_{\bullet}=\left\{\Omega_{n}\right\}$ is a simplicial DG-algebra.

In particular the face maps $\partial_{k}^{*}: \Omega_{n}^{p} \rightarrow \Omega_{n-1}^{p}, k=0, \ldots, n$, are given by pull-back of forms under the inclusion of standard simplices

$$
\left(t_{0}, \ldots, t_{n-1}\right) \mapsto\left(t_{0}, \ldots, t_{k-1}, 0, t_{k}, \ldots, t_{n-1}\right)
$$

Let $X=\left\{X_{n}\right\}$ be a simplicial set and for every $f \in M(n, m)$ denote by $f^{*}: X_{m} \rightarrow X_{n}$ the corresponding map. In particular, dualizing the first cosimplicial identity we obtain

$$
\partial_{i}^{*} \partial_{j}^{*}=\partial_{j-1}^{*} \partial_{i}^{*}, \quad \text { for every } \quad i<j
$$

In particular, for $n \geq 2, x \in X_{n}$ and $x_{i}=\partial_{i}^{*} x \in X_{n-1}$ we have $\partial_{i}^{*} x_{j}=\partial_{j-1}^{*} x_{i}$ for every $i<j$.
Definition 8.1.5. A simplicial set $\left\{X_{n}\right\}$ is called an acyclic Kan complex if:
(1) the map $X_{1} \rightarrow X_{0} \times X_{0}, x \mapsto\left(\partial_{0}^{*} x, \partial_{1}^{*} x\right)$, is surjective;
(2) for every $n \geq 2$ and every sequence $x_{0}, \ldots, x_{n} \in X_{n-1}$ such that

$$
\partial_{i}^{*} x_{j}=\partial_{j-1}^{*} x_{i} \quad \text { for every } \quad i<j,
$$

there exists $x \in X_{n}$ such that $\partial_{i}^{*} x=x_{i}$ for every i.
Theorem 8.1.6. The simplicial $D G$-algebra Ω_{\bullet} is an acyclic Kan complex.
Proof. See [22].

8.2. Integration and Stokes formula

Lemma 8.2.1. Let \mathbb{K} be a field of characteristic 0, then there exists a unique sequence of linear maps

$$
\int_{\Delta^{n}}: \Omega_{n} \rightarrow \mathbb{K}, \quad n \geq 0
$$

such that:
(1) $\int_{\Delta^{n}} \eta=0$ if $\eta \in \Omega_{n}^{p}$ and $p \neq n$.
(2) $\int_{\Delta^{0}}: \Omega_{0}^{0}=\frac{\mathbb{K}\left[t_{0}\right]}{\left(t_{0}-1\right)} \rightarrow \mathbb{K}, \quad \int_{0} p\left(t_{0}\right)=p(1)$.
(3) $\int_{\Delta^{n}} t_{0}^{k_{0}} t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} d t_{1} \wedge \cdots \wedge d t_{n}=\frac{k_{0}!k_{1}!\cdots k_{n}!}{\left(k_{0}+k_{1}+\cdots+k_{n}+n\right)!}$.
(4) (Stokes formula) For every $n>0$ and $\omega \in \Omega_{n}^{n-1}$, we have

$$
\int_{\Delta^{n}} d \omega=\sum_{k=0}^{n}(-1)^{k} \int_{\Delta^{n-1}} \partial_{k}^{*} \omega
$$

Proof. The unicity follows from the first two conditions. To prove the existence, define

$$
\int_{\Delta^{n}} t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} d t_{1} \wedge \cdots \wedge d t_{n}=\frac{k_{1}!\cdots k_{n}!}{\left(k_{1}+\cdots+k_{n}+n\right)!}
$$

and extend by \mathbb{K} linearity to a map $\int_{\Delta^{n}}: \Omega_{n}^{n} \rightarrow \mathbb{K}$. We first prove by induction on k_{0} the formula

$$
\int_{\Delta^{n}} t_{0}^{k_{0}} t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} d t_{1} \wedge \cdots \wedge d t_{n}=\frac{k_{0}!k_{1}!\cdots k_{n}!}{\left(k_{0}+k_{1}+\cdots+k_{n}+n\right)!}
$$

Assume $k_{0}>0$ and denote $a=\left(k_{0}-1\right)!k_{1}!\cdots k_{n}!, b=k_{0}+k_{1}+\cdots+k_{n}+n$. Since

$$
t_{0}^{k_{0}} t_{1}^{k_{1}} \cdots t_{n}^{k_{n}}=t_{0}^{k_{0}-1} t_{1}^{k_{1}} \cdots t_{n}^{k_{n}}\left(1-\sum_{i=1}^{n} t_{i}\right)
$$

by induction hypothesis, we have

$$
\begin{gathered}
\int_{\Delta^{n}} t_{0}^{k_{0}} t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} d t_{1} \wedge \cdots \wedge d t_{n}=\frac{a}{(b-1)!}-\sum_{i=1}^{n} \frac{a}{b!}\left(k_{i}+1\right) \\
=\frac{a}{(b-1)!}-\frac{a}{b!}\left(b-k_{0}\right)=\frac{a b-a\left(b-k_{0}\right)}{b!}=\frac{k_{0} a}{b!} .
\end{gathered}
$$

Notice that the symmetric group \mathfrak{S}_{n+1} acts on Ω_{n} by permutation of indices and, for every $\sigma \in \mathfrak{S}_{n+1}$, we have

$$
\int_{\Delta^{n}} \sigma(\omega)=(-1)^{\sigma} \int_{\Delta^{n}} \omega
$$

(It is sufficient to check the above identity for transpositions).
By linearity, it is sufficient to prove Stokes formula for ω of type

$$
\omega=t_{1}^{k_{1}} \cdots t_{n}^{k_{n}} d t_{1} \wedge \cdots \wedge \widehat{d t_{i}} \wedge \cdots \wedge d t_{n}
$$

Up to permutation of indices, we may assume $i=n$. Assume first $k_{n}=0$, i.e.,

$$
\omega=t_{1}^{k_{1}} \cdots t_{n-1}^{k_{n-1}} d t_{1} \wedge \cdots \wedge d t_{n-1}
$$

In this case, $d \omega=0, \partial_{k}^{*} \omega=0$ for every $k \neq 0, n$, and

$$
\begin{gathered}
\partial_{0}^{*} \omega=t_{0}^{k_{1}} \cdots t_{n-2}^{k_{n-1}} d t_{0} \wedge \cdots \wedge d t_{n-2}=(-1)^{n-1} t_{0}^{k_{1}} \cdots t_{n-2}^{k_{n-1}} d t_{1} \wedge \cdots \wedge d t_{n-1} \\
\partial_{n}^{*} \omega=t_{1}^{k_{1}} \cdots t_{n-1}^{k_{n-1}} d t_{1} \wedge \cdots \wedge d t_{n-1}
\end{gathered}
$$

therefore

$$
\int_{\Delta^{n-1}} \partial_{0}^{*} \omega+(-1)^{n} \int_{\Delta^{n-1}} \partial_{n}^{*} \omega=0
$$

Next, assume $k_{n}>0$, then $\partial_{k}^{*} \omega=0$ for every $k \neq 0$, and

$$
\begin{aligned}
\int_{\Delta^{n}} d \omega & =\int_{\Delta^{n}}(-1)^{n-1} k_{n} t_{1}^{k_{1}} \cdots t_{n}^{k_{n}-1} d t_{1} \wedge \cdots \wedge d t_{n}=\frac{(-1)^{n-1} k_{1}!\cdots k_{n}!}{\left(k_{1}+\cdots+k_{n}+n-1\right)!} \\
\int_{\Delta^{n-1}} \partial_{0}^{*} \omega & =\int_{\Delta^{n-1}} t_{0}^{k_{1}} \cdots t_{n-1}^{k_{n}} d t_{0} \wedge \cdots \wedge d t_{n-2} \\
& =(-1)^{n-1} \int_{\Delta^{n-1}} t_{0}^{k_{1}} \cdots t_{n-1}^{k_{n}} d t_{1} \wedge \cdots \wedge d t_{n-1}=\frac{(-1)^{n-1} k_{1}!\cdots k_{n}!}{\left(k_{1}+\cdots+k_{n}+n-1\right)!}
\end{aligned}
$$

Exercise Prove that for $\mathbb{K}=\mathbb{R}$ the operator $\int_{\Delta^{n}}$ is equal to the usual integration on the topological simplex $\Delta^{n} \cap\left\{t_{i} \geq 0 \forall i\right\}$.

8.3. Homotopy operators

For every $n \geq-1$, consider the affine space

$$
C^{n}=\left\{\left(s, t_{0}, t_{1}, \ldots, t_{n}\right) \in \mathbb{K}^{n+2} \mid s+\sum t_{i}=1\right\} .
$$

The identity on \mathbb{K}^{n+2} induces an isomorphism $c: \Delta^{n+1} \rightarrow C^{n}$ and therefore an integration operator

$$
\int_{C^{n}}: \frac{\mathbb{K}\left[s, t_{0}, \ldots, t_{n}, d s, d t_{0}, \ldots, d t_{n}\right]}{\left(s+\sum t_{i}-1, d s+\sum d t_{i}\right)} \rightarrow \mathbb{K}, \quad \int_{C^{n}} \eta=\int_{\Delta^{n}} c^{*} \eta
$$

We have affine maps

$$
i: \Delta^{n} \rightarrow C^{n}, \quad i\left(t_{0}, \ldots, t_{n}\right)=\left(0, t_{0}, \ldots, t_{n}\right)
$$

and for every $f \in M(n, m)$ we also denote

$$
\begin{gathered}
f: C^{n} \rightarrow C^{m}, \quad f(1,0, \ldots, 0)=(1,0, \ldots, 0), \quad f\left(e_{i}\right)=e_{f(i)}, i \geq 0 . \\
\widehat{f}: C^{n} \times \Delta^{m} \rightarrow \Delta^{m}, \quad \widehat{f}\left(\left(s, t_{0}, \ldots, t_{n}\right), v\right)=s v+\sum t_{i} e_{f(i)}, \\
\widetilde{f}: \Delta^{n} \times \Delta^{m} \rightarrow \Delta^{m}, \quad \widetilde{f}(u, v)=\widehat{f}(i(u), v) .
\end{gathered}
$$

Finally define for every $k=0, \ldots, n$

$$
\widehat{f}_{k}: C^{n-1} \times \Delta^{m} \rightarrow \Delta^{m}, \quad \widehat{f}_{k}(u, v)=\widehat{f}\left(\partial_{k} u, v\right)
$$

Lemma 8.3.1. In the notation above:
(1) $\widehat{f_{k}}=\widehat{f \partial_{k}}$,
(2) \widetilde{f} is the composition of the projection $\Delta^{n} \times \Delta^{m} \rightarrow \Delta^{n}$ and $f: \Delta^{n} \rightarrow \Delta^{m}$.

Proof. Trivial.
Lemma 8.3.2. In the notation above, for every $g \in M(m, p)$ we have a commutative diagram

Proof. Trivial.
Passing to differential forms we have morphisms for differential graded alebras

$$
\widehat{f}^{*}: \Omega_{m} \rightarrow B_{n} \otimes \Omega_{m}
$$

where

$$
B_{m}=\frac{\mathbb{K}\left[s, t_{0}, \ldots, t_{n}, d s, d t_{0}, \ldots, d t_{n}\right]}{\left(s+\sum t_{i}-1, d s+\sum d t_{i}\right)}
$$

is the de Rham algebra of C^{n}.
Definition 8.3.3. For every $n \geq-1, m \geq 0$ and $f \in M(n, m)$ define the operator $h_{f} \in$ $\operatorname{Hom}^{-n-1}\left(\Omega_{m}, \Omega_{m}\right)$ as the composition

$$
h_{f}: \Omega_{m} \xrightarrow{\widehat{f}^{*}} B_{n} \otimes \Omega_{m} \xrightarrow{\int_{C^{n}} \otimes I d} \Omega_{m} .
$$

Notice that for $n=-1$ the above operator equals the identity.
Lemma 8.3.4. For every $n \geq 0, m \geq 0, f \in M(n, m)$ and $\eta \in \Omega_{m}$ we have

$$
\left[h_{f}, d\right](\eta)=h_{f}(d \eta)+(-1)^{n} d h_{f}(\eta)=\int_{\Delta^{n}} f^{*} \eta-\sum_{k=0}^{n}(-1)^{k} h_{f \partial_{k}}(\eta)
$$

In particular, for $n=0$ we have $h_{f}(d \eta)+d h_{f}(\eta)=\eta\left(e_{f(0)}\right)-\eta$ and then the evaluation at a vertex is homotopic to the identity.

Proof. For every $\beta \in B_{n}$ we have by Stokes formula

$$
\int_{C^{n}} d \beta=\int_{\Delta^{n}} i^{*} \beta-\sum_{k=0}^{n}(-1)^{k} \int_{C^{n-1}} \partial_{k}^{*} \beta .
$$

Writing

$$
\widehat{f}^{*} \eta=\sum_{i} \beta_{i} \otimes \alpha_{i}, \quad \beta_{i} \in B_{n}, \alpha_{i} \in A_{m}
$$

we have

$$
\begin{gathered}
d h_{f}(\eta)=d \sum_{i}\left(\int_{C^{n}} \beta_{i}\right) \alpha_{i}=\sum_{i}\left(\int_{C^{n}} \beta_{i}\right) d \alpha_{i}, \\
\widehat{f}^{*}(d \eta)=d \widehat{f}^{*}(\eta)=\sum_{i} d \beta_{i} \otimes \alpha_{i}+\sum_{i}(-1)^{\overline{\beta_{i}}} \beta_{i} \otimes d \alpha_{i}, \\
h_{f}(d \eta)=\sum_{i}\left(\int_{C^{n}} d \beta_{i}\right) \otimes \alpha_{i}+(-1)^{n+1} \sum_{i}\left(\int_{C^{n}} \beta_{i}\right) \otimes d \alpha_{i},
\end{gathered}
$$

Therefore

$$
\begin{aligned}
h_{f}(d \eta)+(-1)^{n} d h_{f}(\eta) & =\sum_{i}\left(\int_{C^{n}} d \beta_{i}\right) \otimes \alpha_{i} \\
& =\sum_{i}\left(\int_{\Delta^{n}} i^{*} \beta_{i}\right) \otimes \alpha_{i}-\sum_{k=0}^{n}(-1)^{k} \sum_{i}\left(\int_{C^{n-1}} \partial_{k}^{*} \beta_{i}\right) \otimes \alpha_{i} \\
& =\left(\int_{\Delta^{n}} \otimes I d\right)\left(i^{*} \otimes I d\right) \widehat{f}^{*}(\eta)-\sum_{k=0}^{n}(-1)^{k}\left(\int_{C^{n-1}} \otimes I d\right)\left(\partial_{k}^{*} \otimes I d\right) \widehat{f}^{*}(\eta) \\
& =\left(\int_{\Delta^{n}} \otimes I d\right) \widetilde{f}^{*}(\eta)-\sum_{k=0}^{n}(-1)^{k}\left(\int_{C^{n-1}} \otimes I d\right){\widehat{f \partial_{k}}}^{*}(\eta) \\
& =\int_{\Delta^{n}} f^{*} \eta-\sum_{k=0}^{n}(-1)^{k} h_{f \partial_{k}}(\eta) .
\end{aligned}
$$

Lemma 8.3.5. Given $f \in M(n, m), g \in M(m, p)$ and $\eta \in \Omega_{p}$ we have:

$$
g^{*} h_{g f}(\eta)=h_{f}\left(g^{*} \eta\right)
$$

Proof. Immediate consequence of the commutative diagram

8.4. Whitney elementary forms

Definition 8.4.1. For every $f \in M(n, m)$ define the elementary form

$$
\omega_{f}=n!\sum_{i=0}^{n}(-1)^{i} t_{f(i)} d t_{f(0)} \wedge \cdots \wedge \widehat{d t_{f(i)}} \wedge \cdots \wedge d t_{f(n)} \in \Omega_{m}^{n}
$$

Denote by $W_{m} \subset \Omega_{m}$ the graded subspace generated by the elementary forms.
Notice that $\omega_{f} \neq 0$ if and only if f is injective.
Lemma 8.4.2. We have:
(1) For every $f \in M(n, m)$ and every $g \in M(p, m)$ we have

$$
g^{*} \omega_{f}=\sum_{\{h \in M(n, p) \mid f=g h\}} \omega_{h} .
$$

In particular for $n=p$ we have $g^{*} \omega_{f} \neq 0$ if and only if $f=g$.
(2) For every $f \in M(n, m)$

$$
d \omega_{f}=\sum_{k}(-1)^{k} \sum_{\left\{g \mid g \partial_{k}=f\right\}} \omega_{g} .
$$

(3) For every $f \in I(n, m)$ we have

$$
\int_{\Delta^{n}} f^{*} \omega_{f}=1
$$

In particular $\left\{W_{m}\right\}$ is a simplicial differential graded subspace of $\left\{\Omega_{m}\right\}$
Proof. The first item is easy and left as an exercise. More generally, for every finite sequence $0 \leq i_{0}, i_{1}, \ldots, i_{n} \leq m$ denote

$$
\omega_{i_{0}, \ldots, i_{n}}=n!\sum_{k=0}^{n}(-1)^{k} t_{i_{k}} d t_{i_{0}} \wedge \cdots \wedge \widehat{d t_{i_{k}}} \wedge \cdots \wedge d t_{i_{n}}
$$

then

$$
d \omega_{i_{0}, \ldots, i_{n}}=\sum_{i=0}^{m} \omega_{i, i_{0}, \ldots, i_{n}}
$$

In fact

$$
d \omega_{i_{0}, \ldots, i_{n}}=n!\sum_{k=0}^{n} d t_{i_{0}} \wedge \cdots \wedge d t_{i_{k}} \wedge \cdots \wedge d t_{i_{n}}=(n+1)!d t_{i_{0}} \wedge \cdots \wedge d t_{i_{k}} \wedge \cdots \wedge d t_{i_{n}}
$$

and

$$
\begin{aligned}
\sum_{i=0}^{m} \omega_{i, i_{0}, \ldots, i_{n}} & =(n+1)!\sum_{i=0}^{m} t_{i} d t_{i_{0}} \wedge \cdots \wedge d t_{i_{k}} \wedge \cdots \wedge d t_{i_{n}}-(n+1) \sum_{i=0}^{m} d t_{i} \wedge \omega_{i_{0}, \ldots, i_{n}} \\
& =(n+1)!d t_{i_{0}} \wedge \cdots \wedge d t_{i_{k}} \wedge \cdots \wedge d t_{i_{n}}
\end{aligned}
$$

It is now sufficient to observe that for $f \in M(n, m)$ we have

$$
\sum_{i=0}^{m} \omega_{i, f(0), \ldots, f(n)}=\sum_{k=0}^{n}(-1)^{k} \sum_{f(k-1)<i<f(k)} \omega_{f(0), \ldots, f(k-1), i, f(k), \ldots, f(n)}=\sum_{k}(-1)^{k} \sum_{\left\{g \mid g \partial_{k}=f\right\}} \omega_{g}
$$

Since

$$
f^{*} \omega_{f}=n!\sum_{k=0}^{n}(-1)^{k} t_{k} d t_{0} \wedge \cdots \wedge{\widehat{d t_{k}}} \wedge \cdots \wedge d t_{n}
$$

using the equalities $d t_{0}=-\sum_{i>0} d t_{i}, \sum_{i} t_{i}=1$ we obtain

$$
\begin{aligned}
f^{*} \omega_{f}= & n!\left(t_{0} d t_{1} \wedge \cdots \wedge d t_{n}-\sum_{k=1}^{n}(-1)^{k} t_{k} d t_{k} \wedge \cdots \wedge \widehat{d t_{k}} \wedge \cdots \wedge d t_{n}\right) \\
= & n!\left(t_{0}+\cdots+t_{n}\right) d t_{1} \wedge \cdots \wedge d t_{n}=n!d t_{1} \wedge \cdots \wedge d t_{n}
\end{aligned}
$$

and then

$$
\int_{\Delta^{n}} f^{*} \omega_{f}=n!\int_{\Delta^{n}} d t_{1} \wedge \cdots \wedge d t_{n}=1
$$

Remark 8.4.3. For later use we point out that

$$
\bigcap_{k=0}^{m} \operatorname{ker}\left(\partial_{k}^{*}: W_{m} \rightarrow W_{m-1}\right)=W_{m}^{m}
$$

Definition 8.4.4. For every $m \geq 0$ define the operators

$$
\begin{gathered}
\pi_{m}: \Omega_{m} \rightarrow W_{m}, \quad \pi_{m}(\eta)=\sum_{n=0}^{m} \sum_{f \in I(n, m)}\left(\int_{\Delta_{n}} f^{*} \eta\right) \omega_{f} \\
K_{m}: \Omega_{m} \rightarrow \Omega_{m}, \quad K_{m}(\eta)=\sum_{n=0}^{m} \sum_{f \in I(n, m)} \omega_{f} \wedge h_{f}(\eta) .
\end{gathered}
$$

Theorem 8.4.5. In the above notation we have:
(1) π_{m} is a projector, i.e. $\pi_{m}^{2}=\pi_{m}$;

$$
\begin{equation*}
K_{m} d+d K_{m}=\pi_{m}-I d \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
K_{p} g^{*}=g^{*} K_{m}, \quad \pi_{p} g^{*}=g^{*} \pi_{m}, \quad \text { for every } g \in M(p, m) \tag{3}
\end{equation*}
$$

Proof. The first item is trivial. For the second we have

$$
\begin{aligned}
& K_{m}(d \eta)+d K_{m}(\eta)= \\
& \quad \sum_{n=0}^{m} \sum_{f \in I(n, m)} d \omega_{f} \wedge h_{f}(\eta)+\sum_{n=0}^{m} \sum_{f \in I(n, m)} \omega_{f} \wedge\left((-1)^{n} d h_{f}(\eta)+h_{f}(d \eta)\right) \\
& \quad=\sum_{n=0}^{m} \sum_{f \in I(n, m)} d \omega_{f} \wedge h_{f}(\eta)+\sum_{n=0}^{m} \sum_{f \in I(n, m)} \omega_{f} \wedge\left(\int_{\Delta^{n}} f^{*} \eta-\sum_{k=0}^{n}(-1)^{k} h_{f \partial_{k}}(\eta)\right)
\end{aligned}
$$

Since $h_{\emptyset}=I d$ and $\sum_{f \in I(0, m)} \omega_{f}=\sum_{i=0}^{m} t_{i}=1$ we have
$K_{m}(d \eta)+d K_{m}(\eta)-\pi_{m}(\eta)+\eta=\sum_{n=0}^{m} \sum_{f \in I(n, m)} d \omega_{f} \wedge h_{f}(\eta)-\sum_{n=1}^{m} \sum_{f \in I(n, m)} \omega_{f} \wedge \sum_{k=0}^{n}(-1)^{k} h_{f \partial_{k}}(\eta)$.
The vanishing of the right side follows from the equations

$$
\begin{gathered}
\sum_{n=0}^{m} \sum_{f \in I(n, m)} d \omega_{f} \wedge h_{f}(\eta)=\sum_{n=0}^{m-1} \sum_{f \in I(n, m)} d \omega_{f} \wedge h_{f}(\eta)= \\
=\sum_{n=0}^{m-1} \sum_{f \in I(n, m)} \sum_{k=0}^{n}(-1)^{k} \sum_{\left\{g \mid f=g \partial_{k}\right\}} \omega_{g} \wedge h_{g \partial_{k}}(\eta)=\sum_{n=1}^{m} \sum_{g \in I(n, m)} \sum_{k=0}^{n}(-1)^{k} \omega_{g} \wedge h_{g \partial_{k}}(\eta) .
\end{gathered}
$$

For the last item it is sufficient to prove that $K_{p} g^{*}=g^{*} K_{m}$;

$$
\begin{aligned}
g^{*} K_{m}(\eta) & =\sum_{n=0}^{m} \sum_{f \in I(n, m)} g^{*}\left(\omega_{f}\right) \wedge g^{*} h_{f}(\eta)=\sum_{n=0}^{m} \sum_{f \in I(n, m)} \sum_{\{h \in M(n, p) \mid f=g h\}} \omega_{h} \wedge g^{*} h_{f}(\eta)= \\
& =\sum_{n=0}^{m} \sum_{h \in I(n, p)} \omega_{h} \wedge g^{*} h_{g h}(\eta)=\sum_{n=0}^{m} \sum_{h \in I(n, p)} \omega_{h} \wedge h_{h}\left(g^{*} \eta\right)=K_{p}\left(g^{*} \eta\right) .
\end{aligned}
$$

8.5. Cochains and normalized cochains

Given a double complex $C^{i, j}, i, j \in \mathbb{Z}$, of vector spaces, with differentials

$$
d_{1}: C^{i, j} \rightarrow C^{i+1, j}, \quad d_{2}: C^{i, j} \rightarrow C^{i, j+1}, \quad d_{1}^{2}=d_{2}^{2}=d_{1} d_{2}+d_{2} d_{1}=0
$$

we can define their total complexes as the DG-vector spaces:

$$
\begin{aligned}
\operatorname{Tot}^{\oplus}\left(C^{*, *}\right) & =\bigoplus_{n \in \mathbb{Z}} \operatorname{Tot}\left(C^{*, *}\right)^{n}, \quad \operatorname{Tot}^{\oplus}\left(C^{*, *}\right)^{n}=\bigoplus_{i+j=n} C^{i, j}, \quad d=d_{1}+d_{2} \\
\operatorname{Tot} \Pi\left(C^{*, *}\right) & =\bigoplus_{n \in \mathbb{Z}} \operatorname{Tot}\left(C^{*, *}\right)^{n}, \quad \operatorname{Tot}{ }^{\Pi}\left(C^{*, *}\right)^{n}=\prod_{i+j=n} C^{i, j}, \quad d=d_{1}+d_{2}
\end{aligned}
$$

The above two constructions have different behaviour with respect spectral sequences.

Lemma 8.5.1. Let $f: C^{*, *} \rightarrow D^{*, *}$ be a morphism of double complexes. Assume that:
(1) $C^{i, *}=D^{i, *}=0$ for every $i<0$,
(2) $f:\left(C^{i, *}, d_{2}\right) \rightarrow\left(D^{i, *}, d_{2}\right)$ is a quasiisomorphism for every i.

Then $f: \operatorname{Tot}^{\Pi}\left(C^{*, *}\right) \rightarrow \operatorname{Tot}^{\Pi}\left(D^{*, *}\right)$ is a quasiisomorphism.
Proof. Exercise.
Example 8.5.2. The above lemma is generally false for the total complex $\operatorname{Tot}^{\oplus}$. Consider for instance the double complex $C^{i, j}=\mathbb{K}$ for $i+j=0,1, i \geq 0$, and $C^{i, j}=0$ otherwise, with both differentials d_{1}, d_{2} equal to the identity for $i+j=0$ and 0 otherwise. Then $\operatorname{Tot}{ }^{\Pi}\left(C^{*, *}\right)$ is acyclic, while $H^{1}\left(\operatorname{Tot}^{\oplus}\left(C^{*, *}\right)\right)=\mathbb{K}$.

Lemma 8.5.3. Let $f: C^{*, *} \rightarrow D^{*, *}$ be a morphism of double complexes. Assume that:
(1) $C^{i, *}=D^{i, *}=0$ for every $i<0$,
(2) $H^{j}\left(C^{i, *}, d_{2}\right)=H^{j}\left(D^{i, *}, d_{2}\right)=0$ for every i and every $j<0$,
(3) $f:\left(C^{*, j}, d_{1}\right) \rightarrow\left(D^{*, j}, d_{1}\right)$ is a quasiisomorphism for every j.

Then $f: \operatorname{Tot}^{\Pi}\left(C^{*, *}\right) \rightarrow \operatorname{Tot}^{\Pi}\left(D^{*, *}\right)$ is a quasiisomorphism.
Proof. Exercise. Hint: use the Lemma above and truncations.

Let

$$
V^{\Delta}: \quad V_{0} \Longrightarrow V_{1} \Longrightarrow V_{2} \equiv \cdots,
$$

be a semicosimplicial DG -vector space. Then the graded vector space $\bigoplus_{n \geq 0} V_{n}[-n]$ has two differentials

$$
d=\sum_{n}(-1)^{n} d_{n}, \quad \text { where } \quad d_{n} \text { is the differential of } V_{n}
$$

and

$$
\partial=\sum_{i}(-1)^{i} \partial_{i}, \quad \text { where } \quad \partial_{i} \text { are the face maps. }
$$

More explicitly, if $v \in V_{n}^{i}$, then the degree of v is $i+n$ and

$$
d(v)=(-1)^{n} d_{n}(v) \in V_{n}^{i+1}, \quad \partial(v)=\partial_{0}(v)-\partial_{1}(v)+\cdots+(-1)^{n+1} \partial_{n+1}(v) \in V_{n+1}^{i}
$$

Since $d^{2}=\partial^{2}=d \partial+\partial d=0$ the following definition makes sense:
Definition 8.5.4. The cochain complex of V^{Δ} is the differential graded vector space

$$
C\left(V^{\Delta}\right)=\left(\prod_{n \geq 0} V_{n}[-n], d+\partial\right)
$$

More explicitely,

$$
C\left(V^{\Delta}\right)=\bigoplus_{p \in \mathbb{Z}} C\left(V^{\Delta}\right)^{p}, \quad C\left(V^{\Delta}\right)^{p}=\prod_{n \geq 0} V_{n}^{p-n}
$$

Corollary 8.5.5. Let $f: V^{\Delta} \rightarrow W^{\Delta}$ be a morphism of cosimplicial $D G$-vector spaces. If $f: V_{n} \rightarrow W_{n}$ is a quasiisomorphism for every $n \geq 0$, then also the map

$$
f: C\left(V^{\Delta}\right) \rightarrow C\left(W^{\Delta}\right)
$$

is a quasiisomorphism.

8.6. The Thom-Whitney-Sullivan construction

Here we consider only the semicosimplicial case; the same results holds, with minor modification also in the cosimplicial case.

Definition 8.6.1. The (Thom-Whitney-Sullivan) semicosimplicial totalization of a semicosimplicial DG-vector space

$$
V^{\Delta}: \quad V_{0} \Longrightarrow V_{1} \Longrightarrow V_{2} \equiv \begin{aligned}
& \rightrightarrows \\
&
\end{aligned} \cdots,
$$

is

$$
\operatorname{Tot}\left(V^{\Delta}\right)=\left\{\left(x_{n}\right) \in \prod_{n \geq 0} \Omega_{n} \otimes V_{n} \mid\left(\partial_{k}^{*} \otimes I d\right) x_{n}=\left(I d \otimes \partial_{k}\right) x_{n-1} \text { for every } 0 \leq k \leq n\right\}
$$

Theorem 8.6.2 (Whitney). The map

$$
\oint: \operatorname{Tot}\left(V^{\Delta}\right) \rightarrow C\left(V^{\Delta}\right)
$$

defined componentwise as

$$
\operatorname{Tot}\left(V^{\Delta}\right)^{p} \xrightarrow{\text { inclusion }} \prod_{n \geq 0}\left(\bigoplus_{i} \Omega_{n}^{p-i} \otimes V_{n}^{i}\right) \xrightarrow{\prod_{n} \int_{\Delta^{n}} \otimes I d_{V_{n}}} \prod_{n} V_{n}^{p-n}=C\left(V^{\Delta}\right)^{p}
$$

is a quasiisomorphism of differential graded vector spaces.
Proof. Consider the subspace
$W\left(V^{\Delta}\right)=\left\{\left(x_{n}\right) \in \prod_{n \geq 0} W_{n} \otimes V_{n} \mid\left(\partial_{k}^{*} \otimes I d\right) x_{n}=\left(I d \otimes \partial_{k}\right) x_{n-1} \quad\right.$ for every $\left.0 \leq k \leq n\right\}$.
Since the operators K_{m} and π_{n} are simplicial we have

$$
\begin{aligned}
K & =\prod_{n}\left(K_{n} \otimes I d_{V_{n}}\right): \operatorname{Tot}\left(V^{\Delta}\right) \rightarrow \operatorname{Tot}\left(V^{\Delta}\right) \\
\pi & =\prod_{n}\left(\pi_{n} \otimes I d_{V_{n}}\right): \operatorname{Tot}\left(V^{\Delta}\right) \rightarrow \operatorname{Tot}\left(V^{\Delta}\right)
\end{aligned}
$$

and the equality $d K+K d=\pi-I d$. This implies that π is a quasiisomorphism of DG-vector spaces. Consider now the morphism

$$
\phi: W\left(V^{\Delta}\right) \rightarrow C\left(V^{\Delta}\right)
$$

defined componentwise as

$$
W\left(V^{\Delta}\right)^{p} \xrightarrow{\text { inclusion }} \prod_{n \geq 0}\left(\bigoplus_{i} W_{n}^{p-i} \otimes V_{n}^{i}\right) \xrightarrow[n]{\prod_{n} \int_{\Delta^{n}} \otimes I d_{V_{n}}} \prod_{n} V_{n}^{p-n}=C\left(V^{\Delta}\right)^{p}
$$

In order to conclude the proof we will show that ϕ is an isomorphism and $\oint=\phi \circ \pi$.
For every $n \geq 0$ consider the map $E: C\left(V^{\Delta}\right) \rightarrow \prod_{n} W_{n} \otimes V_{n}$ defined componentwise as

$$
E_{n}: C\left(V^{\Delta}\right) \rightarrow W_{n} \otimes V_{n}, \quad E_{n}\left(\left\{v_{p}\right\}\right)=\sum_{p=0}^{n} \sum_{f \in I(p, n)} \omega_{f} \otimes f(v)
$$

For every $g \in I(n, m)$ we have

$$
\begin{aligned}
\left(g^{*} \otimes I d\right) E_{m}(v) & =\sum_{f \in I(p, m)} g^{*} \omega_{f} \otimes f(v)=\sum_{f \in I(p, m)} \sum_{\{h \mid f=g h\}} \omega_{h} \otimes g h(v)= \\
& =\sum_{h \in I(p, n)} \omega_{h} \otimes g h(v)=(I d \otimes g) E_{n}(v)
\end{aligned}
$$

It is obvious that $\phi \circ E=I d$ and if $\phi\left(x_{n}\right)=0$ then $x_{p}=0$ and if $x_{n}=\sum_{f \in I(p, n)} \omega_{f} \otimes v_{f}$ then $\left(f^{*} \otimes I d\right)\left(x_{n}\right)=f^{*} \omega_{f} \otimes v_{f}=(I d \otimes f)\left(x_{p}\right)=0$ and then $v_{f}=0$. This proves that ϕ is bijective. As easy application od Stokes formula show that $\partial \phi=\phi d$.

Corollary 8.6.3. Let $f: V^{\Delta} \rightarrow W^{\Delta}$ be a morphism of semicosimplicial $D G$-vector spaces. If $f: V_{n} \rightarrow W_{n}$ is a quasiisomorphism for every $n \geq 0$, then also the map $f: \operatorname{Tot}\left(V^{\Delta}\right) \rightarrow \operatorname{Tot}\left(W^{\Delta}\right)$ is a quasiisomorphism.

Theorem 8.6.4. Let $0 \rightarrow K^{\Delta} \rightarrow V^{\Delta} \xrightarrow{f} W^{\Delta} \rightarrow 0$ be a sequence of morphisms of semicosimplicial $D G$-vector spaces such that for every n the sequence

$$
0 \rightarrow K_{n} \rightarrow V_{n} \xrightarrow{f} W_{n} \rightarrow 0
$$

is exact. Then the sequence

$$
0 \rightarrow \operatorname{Tot}\left(K^{\Delta}\right) \rightarrow \operatorname{Tot}\left(V^{\Delta}\right) \xrightarrow{f} \operatorname{Tot}\left(W^{\Delta}\right) \rightarrow 0
$$

is exact.
Proof. The only non trivial assertion is the surjectivity of $\operatorname{Tot}\left(V^{\Delta}\right) \xrightarrow{f} \operatorname{Tot}\left(W^{\Delta}\right)$. Let $\left(w_{0}, w_{1}, \ldots\right) \in \operatorname{Tot}\left(W^{\Delta}\right)$ and assume that for some n we have $\left(v_{1}, \ldots, v_{n-1}\right) \in \prod_{i<n} \Omega_{i} \otimes V_{i}$ such that

$$
f\left(v_{i}\right)=w_{i}, \quad \partial_{k} v_{i}=\partial_{k}^{*} v_{i+1}
$$

Let $z \in \Omega_{n} \otimes V_{n}$ such that $f(z)=w_{n}$ and consider the elements

$$
k_{i}=\partial_{i}^{*} z-\partial_{i} v_{n-1} \in \Omega_{n-1} \otimes K_{n}, \quad i=0, \ldots, n
$$

For every $0 \leq i<j \leq n$ we have:

$$
\partial_{i}^{*} k_{j}=\partial_{i}^{*} \partial_{j}^{*} z-\partial_{i}^{*} \partial_{j} v_{n-1}=\partial_{i}^{*} \partial_{j}^{*} z-\partial_{j} \partial_{i}^{*} v_{n-1}=\partial_{i}^{*} \partial_{j}^{*} z-\partial_{j} \partial_{i} v_{n-2}
$$

Similarly we have $\partial_{j-1}^{*} k_{i}=\partial_{j-1}^{*} \partial_{i}^{*} z-\partial_{i} \partial_{j-1} v_{n-2}$ and then $\partial_{i}^{*} k_{j}=\partial_{j-1}^{*} k_{i}$ for every $i<j$. Since $\Omega_{\bullet} \otimes K_{n}$ is an acyclic Kan complex there exists $k \in K_{n}$ such that $\partial_{i}^{*} k=k_{i}$ and then

$$
f(z-k)=w_{n}, \quad \partial_{i}^{*}(z-k)=\partial_{i} v_{n-1} .
$$

We set $v_{n}=z-k$ and proceed by induction.

8.7. The cosimplicial case

Definition 8.7.1. Let V^{Δ} be a cosimplicial DG-vector space. The normalized cochain complex of V^{Δ} is the graded subspace $N\left(V^{\Delta}\right) \subset C\left(V^{\Delta}\right)$ defined as $N\left(V^{\Delta}\right)=\left(\prod_{n \geq 0} K_{n}[-n], d+\partial\right)$ where $K_{0}=V_{0}$ and

$$
K_{n}=\bigcap_{f \in M(n, n-1)} \operatorname{ker}\left(f: V_{n} \rightarrow V_{n-1}\right), \quad n>0
$$

Theorem 8.7.2. In the notation above $N\left(V^{\Delta}\right)$ is a $D G$-vector subspace of $C\left(V^{\Delta}\right)$ and the inclusion $N\left(V^{\Delta}\right) \rightarrow C\left(V^{\Delta}\right)$ is a quasiisomorphism.

Proof. See e.g. [18, 36].
The cosimplicial totalization of a cosimplicial DG-vector space is defined as

$$
\operatorname{Tot}\left(V^{\Delta}\right)=\left\{\left(x_{n}\right) \in \prod_{n \geq 0} \Omega_{n} \otimes V_{n} \mid\left(f^{*} \otimes I d\right) x_{n}=(I d \otimes f) x_{m} \forall n, m, f:[m] \rightarrow[n]\right\}
$$

In this case the integration map \oint is a surjective quasiisomorphism onto the normalized cochain complex $N\left(V^{\Delta}\right)$: the proof is completely similar to the semicosimplicial case.

