
CHAPTER 8

Totalization of semicosimplicial DG-vector spaces

8.1. Simplicial objects

Let ∆ be the category of finite ordinals: the objects are objects are [0] = {0}, [1] = {0, 1},
[2] = {0, 1, 2} ecc. and morphisms are the non decreasing maps.

Finally ∆mon is the category with the same objects as above and whose morphisms are
order-preserving injective maps among them.

In order to avoid heavy notations it is convenient to denote also [n] = ∅ for every n < 0 and
write

M(n,m) = Mor∆([n], [m]) = {f : {0, 1, . . . , n} → {0, 1, . . . ,m} | f(i) ≤ f(i+ 1)},
I(n,m) = Mor∆mon([n], [m]) = {f : {0, 1, . . . , n} → {0, 1, . . . ,m} | f(i) < f(i+ 1)}.

Every morphism in ∆mon, different from the identity, is a finite composition of coface
morphisms:

∂k : [i− 1]→ [i], ∂k(p) =

{
p if p < k

p+ 1 if k ≤ p
, k = 0, . . . , i.

Equivalently ∂k is the unique strictly monotone map whose image misses k.
More generally, every morphism in ∆ is a finite composition of coface morphisms and code-

generacy morphisms

sk : [i+ 1]→ [i], sk(p) =

{
p if p ≤ k
p− 1 if k > p

, k = 0, . . . , i.

Equivalently sk is the unique surjective monotone hitting k twice.
The relations about compositions of cofaces and codegeneracies are generated by the cosim-

plicial identities (see e.g. [36]):
(1) ∂l∂k = ∂k+1∂l for every l ≤ k;
(2) ∂lsk = sk+1∂l for every l ≤ k;
(3) sk∂k = sk∂k+1 = Id;
(4) ∂lsk = sk∂l+1 for every l > k;
(5) slsk = sksl+1 for every k ≤ l.

Definition 8.1.1 ([123]). Let C be a category:
(1) A cosimplicial object in C is a covariant functor A∆ : ∆→ C.
(2) A semicosimplicial object in C is a covariant functor A∆ : ∆mon → C.
(3) A simplicial object in C is a contravariant functor A∆ : ∆→ C.
(4) A semisimplicial object in C is a contravariant functor A∆ : ∆mon → C.

Example 8.1.2. Giving a semicosimplicial object A∆ is the same of giving a diagram

A0
//// A1

////// A2

//////// · · · ,

where each Ai is in C, and, for each i > 0, there are i+ 1 morphisms

∂k : Ai−1 → Ai, k = 0, . . . , i,

such that ∂l∂k = ∂k+1∂l, for any l ≤ k.

Example 8.1.3. Let K be a field. Define the standard n-simplex over K as the affine space

∆n = {(t0, . . . , tn) ∈ K n+1 | t0 + t1 + · · ·+ tn = 1}.
The vertices of ∆n are the points

e0 = (1, 0, . . . , 0), e1 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).
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Then the family {∆n}, n ≥ 0, is a cosimplicial affine space, where for every monotone map
f : [n] → [m] we set f : ∆n → ∆m as the affine map such that f(ei) = ef(i). Equivalently
f(t0, . . . , tn) =

∑
tief(i) = (u0, . . . , um), where

ui =
∑

{j|f(j)=i}

tj (we intend that
∑
∅

tj = 0).

In particular, for m = n+ 1 we have

∂k(t0, . . . , tn) = (t0, . . . , tk−1, 0, tk, . . . , tn),

and this explain why ∂k is called face map.

Example 8.1.4 ([22]). For every 0 ≤ p ≤ n, let Ωpn be the vector space of polynomial differential
p-forms on the standard n-simplex ∆n. Then, the space of polynomial differential forms on the
standard n-simplex

Ωn =
n⊕
p=0

Ωpn =
K [t0, . . . , tn, dt0, . . . , dtn]

(1−
∑
ti,
∑
dti)

is a differential graded algebra. Notice that there exists a natural isomorphism of differential
graded algebras

K [t1, . . . , tn, dt1, . . . , dtn]→ Ωn.

Since every affine map f : ∆n → ∆m induce by pull-back a morphism of differential graded
algebra f∗ : Ωm → Ωn we have that the sequence Ω• = {Ωn} is a simplicial DG-algebra.

In particular the face maps ∂∗k : Ωpn → Ωpn−1, k = 0, . . . , n, are given by pull-back of forms
under the inclusion of standard simplices

(t0, . . . , tn−1) 7→ (t0, . . . , tk−1, 0, tk, . . . , tn−1).

Let X = {Xn} be a simplicial set and for every f ∈ M(n,m) denote by f∗ : Xm → Xn the
corresponding map. In particular, dualizing the first cosimplicial identity we obtain

∂∗i ∂
∗
j = ∂∗j−1∂

∗
i , for every i < j.

In particular, for n ≥ 2, x ∈ Xn and xi = ∂∗i x ∈ Xn−1 we have ∂∗i xj = ∂∗j−1xi for every i < j.

Definition 8.1.5. A simplicial set {Xn} is called an acyclic Kan complex if:
(1) the map X1 → X0 ×X0, x 7→ (∂∗0x, ∂

∗
1x), is surjective;

(2) for every n ≥ 2 and every sequence x0, . . . , xn ∈ Xn−1 such that

∂∗i xj = ∂∗j−1xi for every i < j,

there exists x ∈ Xn such that ∂∗i x = xi for every i.

Theorem 8.1.6. The simplicial DG-algebra Ω• is an acyclic Kan complex.

Proof. See [22]. �

8.2. Integration and Stokes formula

Lemma 8.2.1. Let K be a field of characteristic 0, then there exists a unique sequence of linear
maps ∫

∆n

: Ωn → K , n ≥ 0,

such that:

(1)
∫

∆n

η = 0 if η ∈ Ωpn and p 6= n.

(2)
∫

∆0
: Ω0

0 =
K [t0]

(t0 − 1)
→ K ,

∫
0

p(t0) = p(1).

(3)
∫

∆n

tk0
0 t

k1
1 · · · tkn

n dt1 ∧ · · · ∧ dtn =
k0!k1! · · · kn!

(k0 + k1 + · · ·+ kn + n)!
.
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(4) (Stokes formula) For every n > 0 and ω ∈ Ωn−1
n , we have∫

∆n

dω =
n∑
k=0

(−1)k
∫

∆n−1
∂∗kω.

Proof. The unicity follows from the first two conditions. To prove the existence, define∫
∆n

tk1
1 · · · tkn

n dt1 ∧ · · · ∧ dtn =
k1! · · · kn!

(k1 + · · ·+ kn + n)!

and extend by K linearity to a map
∫

∆n : Ωnn → K . We first prove by induction on k0 the
formula ∫

∆n

tk0
0 t

k1
1 · · · tkn

n dt1 ∧ · · · ∧ dtn =
k0!k1! · · · kn!

(k0 + k1 + · · ·+ kn + n)!
.

Assume k0 > 0 and denote a = (k0 − 1)!k1! · · · kn!, b = k0 + k1 + · · ·+ kn + n. Since

tk0
0 t

k1
1 · · · tkn

n = tk0−1
0 tk1

1 · · · tkn
n (1−

n∑
i=1

ti),

by induction hypothesis, we have∫
∆n

tk0
0 t

k1
1 · · · tkn

n dt1 ∧ · · · ∧ dtn =
a

(b− 1)!
−

n∑
i=1

a

b!
(ki + 1)

=
a

(b− 1)!
− a

b!
(b− k0) =

ab− a(b− k0)
b!

=
k0a

b!
.

Notice that the symmetric group Sn+1 acts on Ωn by permutation of indices and, for every
σ ∈ Sn+1, we have ∫

∆n

σ(ω) = (−1)σ
∫

∆n

ω.

(It is sufficient to check the above identity for transpositions).
By linearity, it is sufficient to prove Stokes formula for ω of type

ω = tk1
1 · · · tkn

n dt1 ∧ · · · ∧ d̂ti ∧ · · · ∧ dtn.

Up to permutation of indices, we may assume i = n. Assume first kn = 0, i.e.,

ω = tk1
1 · · · t

kn−1
n−1 dt1 ∧ · · · ∧ dtn−1.

In this case, dω = 0, ∂∗kω = 0 for every k 6= 0, n, and

∂∗0ω = tk1
0 · · · t

kn−1
n−2 dt0 ∧ · · · ∧ dtn−2 = (−1)n−1tk1

0 · · · t
kn−1
n−2 dt1 ∧ · · · ∧ dtn−1,

∂∗nω = tk1
1 · · · t

kn−1
n−1 dt1 ∧ · · · ∧ dtn−1;

therefore ∫
∆n−1

∂∗0ω + (−1)n
∫

∆n−1
∂∗nω = 0.

Next, assume kn > 0, then ∂∗kω = 0 for every k 6= 0, and∫
∆n

dω =
∫

∆n

(−1)n−1knt
k1
1 · · · tkn−1

n dt1 ∧ · · · ∧ dtn =
(−1)n−1k1! · · · kn!

(k1 + · · ·+ kn + n− 1)!
,

∫
∆n−1

∂∗0ω =
∫

∆n−1
tk1
0 · · · t

kn
n−1dt0 ∧ · · · ∧ dtn−2

= (−1)n−1

∫
∆n−1

tk1
0 · · · t

kn
n−1dt1 ∧ · · · ∧ dtn−1 =

(−1)n−1k1! · · · kn!
(k1 + · · ·+ kn + n− 1)!

.

�

Exercise Prove that for K = R the operator
∫

∆n is equal to the usual integration on the
topological simplex ∆n ∩ {ti ≥ 0 ∀i}.
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8.3. Homotopy operators

For every n ≥ −1, consider the affine space

Cn = {(s, t0, t1, . . . , tn) ∈ K n+2 | s+
∑

ti = 1}.

The identity on K n+2 induces an isomorphism c : ∆n+1 → Cn and therefore an integration
operator ∫

Cn

:
K [s, t0, . . . , tn, ds, dt0, . . . , dtn]

(s+
∑
ti − 1, ds+

∑
dti)

→ K ,

∫
Cn

η =
∫

∆n

c∗η.

We have affine maps

i : ∆n → Cn, i(t0, . . . , tn) = (0, t0, . . . , tn)

and for every f ∈M(n,m) we also denote

f : Cn → Cm, f(1, 0, . . . , 0) = (1, 0, . . . , 0), f(ei) = ef(i), i ≥ 0.

f̂ : Cn ×∆m → ∆m, f̂((s, t0, . . . , tn), v) = sv +
∑

tief(i),

f̃ : ∆n ×∆m → ∆m, f̃(u, v) = f̂(i(u), v).

Finally define for every k = 0, . . . , n

f̂k : Cn−1 ×∆m → ∆m, f̂k(u, v) = f̂(∂ku, v).

Lemma 8.3.1. In the notation above:
(1) f̂k = f̂∂k,
(2) f̃ is the composition of the projection ∆n ×∆m → ∆n and f : ∆n → ∆m.

Proof. Trivial. �

Lemma 8.3.2. In the notation above, for every g ∈M(m, p) we have a commutative diagram

Cn ×∆m

Id×g
��

bf // ∆m

g

��
Cn ×∆p

cgf // ∆p

Proof. Trivial. �

Passing to differential forms we have morphisms for differential graded alebras

f̂∗ : Ωm → Bn ⊗ Ωm,

where

Bm =
K [s, t0, . . . , tn, ds, dt0, . . . , dtn]

(s+
∑
ti − 1, ds+

∑
dti)

is the de Rham algebra of Cn.

Definition 8.3.3. For every n ≥ −1, m ≥ 0 and f ∈ M(n,m) define the operator hf ∈
Hom−n−1(Ωm,Ωm) as the composition

hf : Ωm
bf∗−→ Bn ⊗ Ωm

R
Cn ⊗Id−−−−−→ Ωm.

Notice that for n = −1 the above operator equals the identity.

Lemma 8.3.4. For every n ≥ 0, m ≥ 0, f ∈M(n,m) and η ∈ Ωm we have

[hf , d](η) = hf (dη) + (−1)ndhf (η) =
∫

∆n

f∗η −
n∑
k=0

(−1)khf∂k
(η).

In particular, for n = 0 we have hf (dη) + dhf (η) = η(ef(0)) − η and then the evaluation at a
vertex is homotopic to the identity.
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Proof. For every β ∈ Bn we have by Stokes formula∫
Cn

dβ =
∫

∆n

i∗β −
n∑
k=0

(−1)k
∫
Cn−1

∂∗kβ.

Writing
f̂∗η =

∑
i

βi ⊗ αi, βi ∈ Bn, αi ∈ Am

we have

dhf (η) = d
∑
i

(∫
Cn

βi

)
αi =

∑
i

(∫
Cn

βi

)
dαi ,

f̂∗(dη) = df̂∗(η) =
∑
i

dβi ⊗ αi +
∑
i

(−1)βiβi ⊗ dαi,

hf (dη) =
∑
i

(∫
Cn

dβi

)
⊗ αi + (−1)n+1

∑
i

(∫
Cn

βi

)
⊗ dαi,

Therefore

hf (dη) + (−1)ndhf (η) =
∑
i

(∫
Cn

dβi

)
⊗ αi

=
∑
i

(∫
∆n

i∗βi

)
⊗ αi −

n∑
k=0

(−1)k
∑
i

(∫
Cn−1

∂∗kβi

)
⊗ αi

=
(∫

∆n

⊗Id
)

(i∗ ⊗ Id)f̂∗(η)−
n∑
k=0

(−1)k
(∫

Cn−1
⊗Id

)
(∂∗k ⊗ Id)f̂∗(η)

=
(∫

∆n

⊗Id
)
f̃∗(η)−

n∑
k=0

(−1)k
(∫

Cn−1
⊗Id

)
f̂∂k

∗
(η)

=
∫

∆n

f∗η −
n∑
k=0

(−1)khf∂k
(η).

�

Lemma 8.3.5. Given f ∈M(n,m), g ∈M(m, p) and η ∈ Ωp we have:

g∗hgf (η) = hf (g∗η).

Proof. Immediate consequence of the commutative diagram

Ap

g∗

��

cgf∗ // Bn ⊗Ap

Id⊗g∗

��

R
Cn ⊗Id // Ap

g∗

��
Am

bf∗ // Bn ⊗Am
R

Cn ⊗Id // Am

�

8.4. Whitney elementary forms

Definition 8.4.1. For every f ∈M(n,m) define the elementary form

ωf = n!
n∑
i=0

(−1)itf(i)dtf(0) ∧ · · · ∧ d̂tf(i) ∧ · · · ∧ dtf(n) ∈ Ωnm.

Denote by Wm ⊂ Ωm the graded subspace generated by the elementary forms.

Notice that ωf 6= 0 if and only if f is injective.

Lemma 8.4.2. We have:
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(1) For every f ∈M(n,m) and every g ∈M(p,m) we have

g∗ωf =
∑

{h∈M(n,p)|f=gh}

ωh.

In particular for n = p we have g∗ωf 6= 0 if and only if f = g.
(2) For every f ∈M(n,m)

dωf =
∑
k

(−1)k
∑

{g|g∂k=f}

ωg.

(3) For every f ∈ I(n,m) we have ∫
∆n

f∗ωf = 1.

In particular {Wm} is a simplicial differential graded subspace of {Ωm}

Proof. The first item is easy and left as an exercise. More generally, for every finite
sequence 0 ≤ i0, i1, . . . , in ≤ m denote

ωi0,...,in = n!
n∑
k=0

(−1)ktikdti0 ∧ · · · ∧ d̂tik ∧ · · · ∧ dtin ,

then

dωi0,...,in =
m∑
i=0

ωi,i0,...,in .

In fact

dωi0,...,in = n!
n∑
k=0

dti0 ∧ · · · ∧ dtik ∧ · · · ∧ dtin = (n+ 1)!dti0 ∧ · · · ∧ dtik ∧ · · · ∧ dtin .

and
m∑
i=0

ωi,i0,...,in = (n+ 1)!
m∑
i=0

tidti0 ∧ · · · ∧ dtik ∧ · · · ∧ dtin − (n+ 1)
m∑
i=0

dti ∧ ωi0,...,in

= (n+ 1)!dti0 ∧ · · · ∧ dtik ∧ · · · ∧ dtin
It is now sufficient to observe that for f ∈M(n,m) we have

m∑
i=0

ωi,f(0),...,f(n) =
n∑
k=0

(−1)k
∑

f(k−1)<i<f(k)

ωf(0),...,f(k−1),i,f(k),...,f(n) =
∑
k

(−1)k
∑

{g|g∂k=f}

ωg.

Since

f∗ωf = n!
n∑
k=0

(−1)ktkdt0 ∧ · · · ∧ d̂tk ∧ · · · ∧ dtn,

using the equalities dt0 = −
∑
i>0 dti,

∑
i ti = 1 we obtain

f∗ωf = n!

(
t0dt1 ∧ · · · ∧ dtn −

n∑
k=1

(−1)ktkdtk ∧ · · · ∧ d̂tk ∧ · · · ∧ dtn

)

= n!(t0 + · · ·+ tn)dt1 ∧ · · · ∧ dtn = n! dt1 ∧ · · · ∧ dtn
and then ∫

∆n

f∗ωf = n!
∫

∆n

dt1 ∧ · · · ∧ dtn = 1.

�

Remark 8.4.3. For later use we point out that
m⋂
k=0

ker(∂∗k : Wm →Wm−1) = Wm
m .
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Definition 8.4.4. For every m ≥ 0 define the operators

πm : Ωm →Wm, πm(η) =
m∑
n=0

∑
f∈I(n,m)

(∫
∆n

f∗η

)
ωf

Km : Ωm → Ωm, Km(η) =
m∑
n=0

∑
f∈I(n,m)

ωf ∧ hf (η).

Theorem 8.4.5. In the above notation we have:
(1) πm is a projector, i.e. π2

m = πm;
(2)

Kmd+ dKm = πm − Id;
(3)

Kpg
∗ = g∗Km, πpg

∗ = g∗πm, for every g ∈M(p,m).

Proof. The first item is trivial. For the second we have

Km(dη) + dKm(η) =
m∑
n=0

∑
f∈I(n,m)

dωf ∧ hf (η) +
m∑
n=0

∑
f∈I(n,m)

ωf ∧ ((−1)ndhf (η) + hf (dη))

=
m∑
n=0

∑
f∈I(n,m)

dωf ∧ hf (η) +
m∑
n=0

∑
f∈I(n,m)

ωf ∧

(∫
∆n

f∗η −
n∑
k=0

(−1)khf∂k
(η)

)
Since h∅ = Id and

∑
f∈I(0,m) ωf =

∑m
i=0 ti = 1 we have

Km(dη) + dKm(η)− πm(η) + η =
m∑
n=0

∑
f∈I(n,m)

dωf ∧ hf (η)−
m∑
n=1

∑
f∈I(n,m)

ωf ∧
n∑
k=0

(−1)khf∂k
(η).

The vanishing of the right side follows from the equations
m∑
n=0

∑
f∈I(n,m)

dωf ∧ hf (η) =
m−1∑
n=0

∑
f∈I(n,m)

dωf ∧ hf (η) =

=
m−1∑
n=0

∑
f∈I(n,m)

n∑
k=0

(−1)k
∑

{g|f=g∂k}

ωg ∧ hg∂k
(η) =

m∑
n=1

∑
g∈I(n,m)

n∑
k=0

(−1)kωg ∧ hg∂k
(η).

For the last item it is sufficient to prove that Kpg
∗ = g∗Km;

g∗Km(η) =
m∑
n=0

∑
f∈I(n,m)

g∗(ωf ) ∧ g∗hf (η) =
m∑
n=0

∑
f∈I(n,m)

∑
{h∈M(n,p)|f=gh}

ωh ∧ g∗hf (η) =

=
m∑
n=0

∑
h∈I(n,p)

ωh ∧ g∗hgh(η) =
m∑
n=0

∑
h∈I(n,p)

ωh ∧ hh(g∗η) = Kp(g∗η).

�

8.5. Cochains and normalized cochains

Given a double complex Ci,j , i, j ∈ Z, of vector spaces, with differentials

d1 : Ci,j → Ci+1,j , d2 : Ci,j → Ci,j+1, d2
1 = d2

2 = d1d2 + d2d1 = 0

we can define their total complexes as the DG-vector spaces:

Tot⊕(C∗,∗) =
⊕
n∈Z

Tot(C∗,∗)n, Tot⊕(C∗,∗)n =
⊕
i+j=n

Ci,j , d = d1 + d2,

Tot
Q

(C∗,∗) =
⊕
n∈Z

Tot(C∗,∗)n, Tot
Q

(C∗,∗)n =
∏

i+j=n

Ci,j , d = d1 + d2.

The above two constructions have different behaviour with respect spectral sequences.
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Lemma 8.5.1. Let f : C∗,∗ → D∗,∗ be a morphism of double complexes. Assume that:

(1) Ci,∗ = Di,∗ = 0 for every i < 0,
(2) f : (Ci,∗, d2)→ (Di,∗, d2) is a quasiisomorphism for every i.

Then f : Tot
Q

(C∗,∗)→ Tot
Q

(D∗,∗) is a quasiisomorphism.

Proof. Exercise. �

Example 8.5.2. The above lemma is generally false for the total complex Tot⊕. Consider for
instance the double complex Ci,j = K for i + j = 0, 1, i ≥ 0, and Ci,j = 0 otherwise, with
both differentials d1, d2 equal to the identity for i+ j = 0 and 0 otherwise. Then Tot

Q
(C∗,∗) is

acyclic, while H1(Tot⊕(C∗,∗)) = K .

Lemma 8.5.3. Let f : C∗,∗ → D∗,∗ be a morphism of double complexes. Assume that:

(1) Ci,∗ = Di,∗ = 0 for every i < 0,
(2) Hj(Ci,∗, d2) = Hj(Di,∗, d2) = 0 for every i and every j < 0,
(3) f : (C∗,j , d1)→ (D∗,j , d1) is a quasiisomorphism for every j.

Then f : Tot
Q

(C∗,∗)→ Tot
Q

(D∗,∗) is a quasiisomorphism.

Proof. Exercise. Hint: use the Lemma above and truncations. �

Let

V ∆ : V0
// // V1

////// V2

//////// · · · ,

be a semicosimplicial DG-vector space. Then the graded vector space
⊕

n≥0 Vn[−n] has two
differentials

d =
∑
n

(−1)ndn, where dn is the differential of Vn,

and

∂ =
∑
i

(−1)i∂i, where ∂i are the face maps.

More explicitly, if v ∈ V in, then the degree of v is i+ n and

d(v) = (−1)ndn(v) ∈ V i+1
n , ∂(v) = ∂0(v)− ∂1(v) + · · ·+ (−1)n+1∂n+1(v) ∈ V in+1.

Since d2 = ∂2 = d∂ + ∂d = 0 the following definition makes sense:

Definition 8.5.4. The cochain complex of V ∆ is the differential graded vector space

C(V ∆) =

∏
n≥0

Vn[−n], d+ ∂

 .

More explicitely,

C(V ∆) =
⊕
p∈Z

C(V ∆)p, C(V ∆)p =
∏
n≥0

V p−nn .

Corollary 8.5.5. Let f : V ∆ → W∆ be a morphism of cosimplicial DG-vector spaces. If
f : Vn →Wn is a quasiisomorphism for every n ≥ 0, then also the map

f : C(V ∆)→ C(W∆)

is a quasiisomorphism.
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8.6. The Thom-Whitney-Sullivan construction

Here we consider only the semicosimplicial case; the same results holds, with minor modifi-
cation also in the cosimplicial case.

Definition 8.6.1. The (Thom-Whitney-Sullivan) semicosimplicial totalization of a semicosim-
plicial DG-vector space

V ∆ : V0
// // V1

////// V2

//////// · · · ,

is

Tot(V ∆) =

(xn) ∈
∏
n≥0

Ωn ⊗ Vn

∣∣∣∣∣∣ (∂∗k ⊗ Id)xn = (Id⊗ ∂k)xn−1 for every 0 ≤ k ≤ n

 .

Theorem 8.6.2 (Whitney). The map∮
: Tot(V ∆)→ C(V ∆)

defined componentwise as

Tot(V ∆)p inclusion−−−−−−→
∏
n≥0

(
⊕

i
Ωp−in ⊗ V in)

Q
n

R
∆n ⊗IdVn−−−−−−−−−−→

∏
n

V p−nn = C(V ∆)p

is a quasiisomorphism of differential graded vector spaces.

Proof. Consider the subspace

W (V ∆) =

(xn) ∈
∏
n≥0

Wn ⊗ Vn

∣∣∣∣∣∣ (∂∗k ⊗ Id)xn = (Id⊗ ∂k)xn−1 for every 0 ≤ k ≤ n

 .

Since the operators Km and πn are simplicial we have

K =
∏
n

(Kn ⊗ IdVn) : Tot(V ∆)→ Tot(V ∆),

π =
∏
n

(πn ⊗ IdVn
) : Tot(V ∆)→ Tot(V ∆),

and the equality dK + Kd = π − Id. This implies that π is a quasiisomorphism of DG-vector
spaces. Consider now the morphism

φ : W (V ∆)→ C(V ∆)

defined componentwise as

W (V ∆)p inclusion−−−−−−→
∏
n≥0

(
⊕

i
W p−i
n ⊗ V in)

Q
n

R
∆n ⊗IdVn−−−−−−−−−−→

∏
n

V p−nn = C(V ∆)p

In order to conclude the proof we will show that φ is an isomorphism and
∮

= φ ◦ π.
For every n ≥ 0 consider the map E : C(V ∆)→

∏
nWn ⊗ Vn defined componentwise as

En : C(V ∆)→Wn ⊗ Vn, En({vp}) =
n∑
p=0

∑
f∈I(p,n)

ωf ⊗ f(v).

For every g ∈ I(n,m) we have

(g∗ ⊗ Id)Em(v) =
∑

f∈I(p,m)

g∗ωf ⊗ f(v) =
∑

f∈I(p,m)

∑
{h|f=gh}

ωh ⊗ gh(v) =

=
∑

h∈I(p,n)

ωh ⊗ gh(v) = (Id⊗ g)En(v).

It is obvious that φ ◦ E = Id and if φ(xn) = 0 then xp = 0 and if xn =
∑
f∈I(p,n) ωf ⊗ vf then

(f∗ ⊗ Id)(xn) = f∗ωf ⊗ vf = (Id⊗ f)(xp) = 0 and then vf = 0. This proves that φ is bijective.
As easy application od Stokes formula show that ∂φ = φd. �

Corollary 8.6.3. Let f : V ∆ → W∆ be a morphism of semicosimplicial DG-vector spaces. If
f : Vn →Wn is a quasiisomorphism for every n ≥ 0, then also the map f : Tot(V ∆)→ Tot(W∆)
is a quasiisomorphism.
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Theorem 8.6.4. Let 0→ K∆ → V ∆ f−→W∆ → 0 be a sequence of morphisms of semicosimpli-
cial DG-vector spaces such that for every n the sequence

0→ Kn → Vn
f−→Wn → 0

is exact. Then the sequence

0→ Tot(K∆)→ Tot(V ∆)
f−→Tot(W∆)→ 0

is exact.

Proof. The only non trivial assertion is the surjectivity of Tot(V ∆)
f−→Tot(W∆). Let

(w0, w1, . . .) ∈ Tot(W∆) and assume that for some n we have (v1, . . . , vn−1) ∈
∏
i<n Ωi⊗Vi such

that
f(vi) = wi, ∂kvi = ∂∗kvi+1.

Let z ∈ Ωn ⊗ Vn such that f(z) = wn and consider the elements

ki = ∂∗i z − ∂ivn−1 ∈ Ωn−1 ⊗Kn, i = 0, . . . , n.

For every 0 ≤ i < j ≤ n we have:

∂∗i kj = ∂∗i ∂
∗
j z − ∂∗i ∂jvn−1 = ∂∗i ∂

∗
j z − ∂j∂∗i vn−1 = ∂∗i ∂

∗
j z − ∂j∂ivn−2.

Similarly we have ∂∗j−1ki = ∂∗j−1∂
∗
i z−∂i∂j−1vn−2 and then ∂∗i kj = ∂∗j−1ki for every i < j. Since

Ω• ⊗Kn is an acyclic Kan complex there exists k ∈ Kn such that ∂∗i k = ki and then

f(z − k) = wn, ∂∗i (z − k) = ∂ivn−1.

We set vn = z − k and proceed by induction. �

8.7. The cosimplicial case

Definition 8.7.1. Let V ∆ be a cosimplicial DG-vector space. The normalized cochain com-
plex of V ∆ is the graded subspace N(V ∆) ⊂ C(V ∆) defined as N(V ∆) = (

∏
n≥0Kn[−n], d+∂)

where K0 = V0 and

Kn =
⋂

f∈M(n,n−1)

ker(f : Vn → Vn−1), n > 0.

Theorem 8.7.2. In the notation above N(V ∆) is a DG-vector subspace of C(V ∆) and the
inclusion N(V ∆)→ C(V ∆) is a quasiisomorphism.

Proof. See e.g. [18, 36]. �

The cosimplicial totalization of a cosimplicial DG-vector space is defined as

Tot(V ∆) =

(xn) ∈
∏
n≥0

Ωn ⊗ Vn

∣∣∣∣∣∣ (f∗ ⊗ Id)xn = (Id⊗ f)xm ∀ n,m, f : [m]→ [n]

 .

In this case the integration map
∮

is a surjective quasiisomorphism onto the normalized cochain
complex N(V ∆): the proof is completely similar to the semicosimplicial case.
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