I teoremi di Hilbert

Nello studio delle soluzioni di un sistema di equazioni algebriche

$$f_i(x_1, \dots, x_n) = 0, \quad i = 1, \dots, m, \quad f_i \in \mathbb{K}[x_1, \dots, x_n],$$

è naturale adottare alcune manipolazioni algebriche in modo da ottenere nuove equazioni di più facile comprensione; un caso tipico è il metodo di riduzione a forma trapezoidale dei sistemi di equazioni lineari (eliminazione di Gauss). È generalmente utile considerare delle espressioni $g_j = \sum h_{ji} f_i$ nelle quali alcune delle variabili x_1, \ldots, x_n non compaiono. Le ricette per esplicitare, se esistono, dei polinomi g_i come sopra fanno parte della teoria dell'eliminazione. In termini un po' più astratti possiamo dire che la teoria dell'eliminazione si occupa del seguente problema.

Dato un anello A ed un ideale $I \subset A[x_1, \ldots, x_n]$, determinare quando l'ideale $I \cap A \ \dot{e}$ diverso da 0, ed in tal caso esplicitarne elementi non banali.

Lo strumento "basic" per eccellenza in teoria dell'eliminazione è il risultante, con il quale si riesce a dare una risposta più che soddisfacente al suddetto problema nel caso n=1. Il risultante sarà inoltre uno degli strumenti tecnici più usati nel resto di queste note. Il risultato di maggior rilievo teorico in teoria dell'eliminazione è invece il teorema degli zeri di Hilbert, del quale daremo una dimostrazione nella Sezione 1.5.

1.1 Il risultante di due polinomi

Sia A un anello, per ogni intero non negativo n indichiamo con $A[x]_{\leq n}$ il sottomodulo libero dei polinomi di grado minore di n. Possiamo identificare $A[x]_{\leq n}$ con A^n tramite l'isomorfismo di A-moduli che associa ad ogni vettore riga $p=(a_0,\ldots,a_{n-1})\in A^n$ il polinomio $p = \sum a_i x^{n-1-i} \in M$. Ricordiamo che il grado del polinomio nullo è posto per convenzione uguale a $-\infty$.

Definizione 1.1.1. Siano A un anello e

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n,$$
 $g(x) = b_0 x^m + b_1 x^{m-1} + \dots + b_m,$ $a_0, b_0 \neq 0,$

due polinomi in A[x] di gradi n e m rispettivamente, con $n, m \geq 0$. La matrice di**Sylvester** della coppia (f,g) è la matrice quadrata di ordine n+m

1 I teoremi di Hilbert

2

$$S(f,g) = \begin{pmatrix} a_0 & a_1 & \cdots & \cdots & \cdots & a_n \\ a_0 & \cdots & \cdots & \cdots & \cdots & a_n \\ & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\ & & a_0 & a_1 & a_2 & \cdots & \cdots & \cdots & a_n \\ b_0 & b_1 & \cdots & b_m & & & & & \\ b_0 & \cdots & \cdots & b_m & & & & & \\ & & \ddots & \vdots & \vdots & \vdots & \ddots & & & \\ & & & b_0 & b_1 & b_2 & \cdots & b_m & & & \\ & & & & b_0 & b_1 & \cdots & b_m & & \\ & & & & b_0 & \cdots & \cdots & b_m & & \\ & & & & b_0 & \cdots & \cdots & b_m & & \\ & & & & & \ddots & \vdots & \vdots & \vdots & \ddots & \\ & & & & & b_0 & b_1 & b_2 & \cdots & b_m \end{pmatrix}$$

$$(1.1)$$

Osservazione 1.1.2. Rispetto alle identificazioni $A[x]_{< n} = A^n$ descritte precedentemente, la trasposta della matrice di Sylvester è la matrice che rappresenta l'applicazione A-lineare

$$A[x]_{\leq m} \oplus A[x]_{\leq n} \to A[x]_{\leq n+m}, \qquad (p,q) \mapsto fp + gq.$$

Definizione 1.1.3. Il **risultante** R(f,g) di due polinomi $f,g \in A[x]$ è il determinante della matrice di Sylvester della coppia (f,g), ossia $R(f,g) = \det S(f,g)$.

Ad esempio il risultante dei polinomi $x^2 - 2$ e $2x^2 - x$ è uguale a:

$$\begin{vmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 0 & -2 \\ 2 & -1 & 0 & 0 \\ 0 & 2 & -1 & 0 \end{vmatrix} = 14$$

Se f, g hanno entrambi grado 0, ossia se sono costanti diverse da 0, allora S(f, g) è la matrice vuota e R(f,g) = 1.

Osservazione 1.1.4. La matrice di Sylvester (1.1) ha senso anche se g ha grado minore di m, ossia se $b_0=0$. In tal caso, se $a_0\neq 0$ segue dallo sviluppo di Laplace rispetto alla prima colonna, e dall'induzione su $m - \deg(g)$, che il determinante di (1.1) è uguale a $a_0^{m-\deg(g)}R(f,q).$

Proposizione 1.1.5. Nelle notazioni precedenti vale:

- 1. $R(f,g) = (-1)^{nm} R(g,f)$. 2. R(1,g) = 1, $R(x^n,g) = g(0)^n$ e R(xf,g) = g(0)R(f,g). 3. $R(af,bg) = a^m b^n R(f,g)$ per ogni $a,b \in A$ tali che $aa_0 \neq 0$, $bb_0 \neq 0$.
- 4. Esistono $F, G \in A[x]$ polinomi tali che $\deg(F) \leq n-1$, $\deg(G) \leq m-1$ e R(f,g) =Gf + Fg; in particolare R(f,g) appartiene all'intersezione di A con l'ideale generato da f e g.

Dimostrazione. Le proprietà 1, 2 e 3 seguono da 1.1 e dalle proprietà elementari del determinante. Al fine di dimostrare il punto 4 calcoliamo il determinante della matrice di Sylvester nell'anello A[x]. Tale determinante non cambia se all'ultima colonna sommiamo la penultima colonna moltiplicata per x, la terzultima moltiplicata per x^2 e così via. Alla fine l'ultima colonna diventa

$$\begin{pmatrix} x^{m-1}f \\ \vdots \\ f \\ x^{n-1}g \\ \vdots \\ g \end{pmatrix}$$

e lo sviluppo di Laplace rispetto all'ultima colonna fornisce il risultante come una combinazione linere a coefficienti in A dei polinomi

$$x^{m-1}f, x^{m-2}f, \dots, f, x^{n-1}g, \dots, g.$$

Lemma 1.1.6. Siano $f, g \in A[x]$ e sia q un ideale primo di A tale che $R(f, g) \in \mathfrak{q}$. Allora esistono $F, G \in A[x]$ non entrambi in $\mathfrak{q}[x]$ tali che $\deg(F) < \deg(f)$, $\deg(G) < \deg(g)$ e $Gf + Fg \in \mathfrak{q}[x]$.

Dimostrazione. Siano n,m i gradi di f e g. Per ipotesi la riduzione della matrice di Sylvester nel dominio di integrità $\frac{A}{\mathfrak{q}}$ ha determinante nullo e quindi le sue righe sono linearmente dipendenti nel campo delle frazioni. Moltiplicando per un denominatore comune possiamo dire che le righe sono linearmente dipendenti in $\frac{A}{\mathfrak{q}}$. Sollevando i coefficienti ad A troviamo n+m elementi $c_1,\ldots,c_m,d_1,\ldots,d_n\in A$, non tutti appartenenti all'ideale \mathfrak{q} e tali che tali che

$$c_1 x^{m-1} f + \dots + c_m f + d_1 x^{n-1} g + \dots + d_n g$$

è un polinomio a coefficienti in \mathfrak{q} .

Teorema 1.1.7. Siano $f, g \in A[x]$ con f polinomio monico di grado n.

1. Sia (a_{ij}) è la matrice quadrata di ordine n a coefficienti in A tale che per ogni $i = 0, \ldots, n-1$ vale

$$x^{i}g = h_{i}f + \sum_{j=0}^{n-1} a_{ij}x^{j}, \quad con \ h_{i} \in A[x].$$

Allora $R(f,g) = \det(a_{ij})$. In particolare per ogni polinomio monico f il risultante R(f,g) dipende solo dalla classe di g in A[x]/(f).

2. Sia ϕ : $A[x] \to B[x]$ un omomorfismo di anelli tale che $\phi(x) = x$ e $\phi(A) \subset B$, allora vale $R(\phi(f), \phi(g)) = \phi(R(f, g))$.

Dimostrazione. Se m è il grado di g, allora ogni polinomio $h_i f$ è una combinazione lineare a coefficienti in A di $f, x f, \ldots, x^{m-1} f$. È dunque possibile sommare ad ognuna delle ultime n righe della matrice S(f,g) dei multipli delle prime m righe in modo tale che diventi una matrice della forma

$$\begin{pmatrix} T & * \\ 0 & a_{ij} \end{pmatrix}$$
,

dove T è una matrice triangolare superiore di ordine m con i coefficienti della diagonale tutti uguali a 1.

Il secondo item segue immediatamente dal primo.

Proposizione 1.1.8 (Invarianza per traslazione). Per ogni $f,g \in A[x]$ e per ogni $a \in A$ vale

$$R(f(x-a), g(x-a)) = R(f(x), g(x)).$$

Dimostrazione. Sia $M_d \subset A[x]$ il modulo dei polinomi di grado $\leq d-1$; Il modulo M_d è libero ed ha come una base canonica $1, x, \ldots, x^{d-1}$. Il risultante è esattamente il determinante dell'applicazione

$$M_m \oplus M_n \to M_{n+m}, \qquad (p,q) \mapsto fp + gq,$$

calcolato rispetto alle basi canoniche. Basta quindi osservare che l'isomorfismo di traslazione $T_a\colon A[x]\to A[x]$, dove $T_a(x)=x-a$ e $T_a(b)=b$ per ogni $b\in A$, preserva i sottomoduli M_d e su ciascuno di essi si rappresenta nella base canonica con una matrice triangolare con tutti 1 sulla diagonale ed ha quindi determinante 1.

Corollario 1.1.9. Siano $f, g \in A[x]$ polinomi. Se $f = a_0 \prod_{i=1}^n (x - \alpha_i)$, allora

$$R_{n,m}(f,g) = a_0^m \prod_{i=1}^n g(\alpha_i)$$

e quindi se $g = b_0 \prod_{i=1}^m (x - \beta_i)$, allora vale

$$R_{n,m}(f,g) = a_0^m b_0^n \prod_{i=1}^n \prod_{j=1}^m (\alpha_i - \beta_j).$$

In particolare valgono le relazioni di bilinearità.

$$R_{n+n',m}(ff',g) = R_{n,m}(f,g)R_{n',m}(f',g), \quad R_{n,m+m'}(f,gg') = R_{n,m}(f,g)R_{n,m'}(f,g').$$

Dimostrazione. Per la Proposizione 1.1.5 non è restrittivo supporre $a_0 = 1$; dimostriamo che vale $R_{n,m}(f,g) = a_0^m \prod_{i=1}^n g(\alpha_i)$ per induzione su n: se n = 0 non c'è nulla da dimostrare. Sia dunque n > 0 e scriviamo $f = (x - \alpha_1)f'$; l'invarianza per traslazione dà

$$R_{n,m}(f,g) = R_{n,m}((x - \alpha_1)f'(x), g(x)) = R_{n,m}(xf'(x + \alpha_1), g(x + \alpha_1)),$$

e per 1.1.5 si ha dunque

$$R_{n,m}(f,g) = g(\alpha_1)R_{n-1,m}(f'(x+\alpha_1),g(x+\alpha_1)) = g(\alpha_1)R_{n-1,m}(f'(x),g(x)).$$

Le relazioni di bilinearità sono chiaramente funtoriali, si può quindi assumere senza perdita di generalità che $A = \mathbb{Z}[a_i, a_i', b_i]$ dove a_i, a_i', b_i sono indeterminate che rappresentano i coefficienti di f, f' e g. Dunque non è restrittivo assumere A dominio di integrità. Basta adesso immergere A in una chiusura algebrica del suo campo delle frazioni per avere la completa riducibilità di f, f' e g. La dimostrazione della bilinearità è allora una conseguenza immediata della rappresentazione di R come funzione della differenza delle radici.

Corollario 1.1.10. Sia A un dominio a fattorizzazione unica e $f, g \in A[x]$. Allora f e g possiedono un fattore comune di grado positivo se e solo se R(f, g) = 0.

Dimostrazione. Sia \mathbb{K} la chiusura algebrica del campo delle frazioni di A, è allora ben noto che f e g hanno un fattore comune di grado positivo se e solo se hanno una radice comune in \mathbb{K} . La tesi segue immediatamente da 1.1.9.

Teorema 1.1.11. Siano A un anello, $\mathfrak{p} \subset A[x]$ un ideale primo $e \mathfrak{q} = A \cap \mathfrak{p}$. Supponiamo $\mathfrak{p} \neq \mathfrak{q}[x]$ e sia f un polinomio di grado minimo in $\mathfrak{p} - \mathfrak{q}[x]$. Allora vale $R(f,g) \notin \mathfrak{q}$ per ogni $g \notin \mathfrak{p}$.

Dimostrazione. Sia $g \notin \mathfrak{p}$ e supponiamo per assurdo $R(f,g) \in \mathfrak{q}$. Per il Lemma 1.1.6 esistono $F,G \in A[x]$, non entrambi in $\mathfrak{q}[x]$ e tali che

$$Gf + Fq \in \mathfrak{q}[x], \quad \deg(F) < \deg(f).$$

Siccome $f \in \mathfrak{p}$ si ha $Fg \in \mathfrak{p}$ e siccome $g \notin \mathfrak{p}$ si ha $F \in \mathfrak{p}$. Dato che f ha grado minimo in $\mathfrak{p} - \mathfrak{q}[x]$ si ha $F \in \mathfrak{q}[x]$ e di conseguenza $G \notin \mathfrak{q}[x]$ e $Gf \in \mathfrak{q}[x]$ in contraddizione con il fatto che $\mathfrak{q}[x]$ è un ideale primo.

Corollario 1.1.12. Siano $\mathfrak{p}_1 \subset \mathfrak{p}_2 \subset A[x]$ ideali primi tali che $1 \notin \mathfrak{p}_2$ e \mathfrak{p}_1 contenga un polinomio monico. Allora $\mathfrak{p}_1 \cap A = \mathfrak{p}_2 \cap A$ se e solo se $\mathfrak{p}_1 = \mathfrak{p}_2$.

Dimostrazione. Sia $\mathfrak{q}=\mathfrak{p}_1\cap A=\mathfrak{p}_2\cap A$, siccome \mathfrak{q} è un ideale proprio di $A,\mathfrak{q}[x]$ non contiene polinomi monici e quindi $\mathfrak{q}[x] \neq \mathfrak{p}_1$. Se per assurdo esistesse $g \in \mathfrak{p}_2 - \mathfrak{p}_1$, allora per il Teorema 1.1.11 esisterebbe $f \in \mathfrak{p}_1$ tale che $R(f,g) \not\in \mathfrak{q}$ in contraddizione con il fatto che $R(f,g) \in (f,g) \subset \mathfrak{p}_2$.

Esercizi

1.1 (k-risultanti). Sia A un dominio a fattorizzazione unica, $f,g \in A[x]$ polinomi, $\deg(f) = n$, $\deg(g) = m$. Per ogni $k \geq 0$ si definisce il k-risultante $R_k(f,g)$ come il determinante della matrice quadrata di ordine n + m - 2k ricavata eliminando dalla matrice di Sylvester $S_{n,m}(f,g)$ le righe $1,2,\ldots,k,m+1,\ldots,m+k$ e le colonne $1, 2, \ldots, k, n+m, n+m-1, \ldots, n+m-k+1.$

Dimostrare che f e g hanno un fattore comune di grado > k se e solo se $R_0(f,g) =$ $R_1(f,g) = \cdots = R_k(f,g) = 0$. (Sugg.: induzione su k: la condizione $R_k(f,g) = 0$ equivale all'esistenza di due polinomi A_k, B_k di grado < m - k, n - k rispettivamente tali che $A_k f + B_k g$ ha grado $\langle k. \rangle$

- 1.2. Calcolare esplicitamente il risultante di due polinomi di secondo grado.
- **1.3.** Sia A un dominio di integrità, $f, g \in A[x]$ e $s \in (f,g) \cap A$. Provare che $s^3 \in (f^2,g^2) \cap A$ e che $R(f^2, g^2) = R(f, g)^4$. Dedurre che, in generale, il risultante non genera l'ideale contratto $(f,g) \cap A$.

1.2 Il discriminante

Per semplicità espositiva consideriamo esclusivamente il caso in cui A è un dominio di integrità perfetto oppure di caratteristica sufficientemente alta, lasciando le possibili generalizzazioni per esercizio al lettore interessato.

Dato un polinomio $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n \in A[x]$, con $a_0 \neq 0$, e considerando la sua derivata formale $f'(x) = na_0x^{n-1} + \cdots + a_{n-1}$ si osserva che la prima colonna della matrice di Sylvester della coppia (f, f') è divisibile per a_0 . Esiste dunque unico un elemento $\Delta(f) \in A$ detto **discriminante** di f, tale che

$$\Delta(f) = \frac{1}{a_0} R(f, f') = \frac{1}{a_0} R(f', f).$$

Se A è un dominio a fattorizzazione unica, segue dal Corollario 1.1.10 che f possiede un fattore multiplo di grado positivo se e solo se $\Delta(f) = 0$. Dato che la derivazione rispetto ad x ed il risultante commutano con le traslazioni $x \mapsto x - a$, si ha $\Delta(f(x)) = \Delta(f(x - a))$ per ogni $a \in A$; se

$$f = a_0 \prod_{i=1}^{n} (x - \alpha_i), \qquad f' = a_0 \sum_{i=1}^{n} \prod_{j \neq i} (x - \alpha_j)$$

allora $f'(\alpha_i) = a_0 \prod_{j \neq i} (\alpha_i - \alpha_j)$ e, per il Corollario 1.1.9, si ha

$$\Delta(f) = a_0^{-1} R(f, f') = a_0^{n-2} \prod_{i=1}^n f'(\alpha_i) = a_0^{2n-2} \prod_{i \neq j} (\alpha_i - \alpha_j).$$

Naturalmente, se $\beta_1, \ldots, \beta_{n-1}$ sono le radici della derivata f', allora vale anche la formula $\Delta(f) = n^n a_0^{n-1} \prod_{i=1}^{n-1} f(\beta_i).$

Esempio 1.2.1. (caratteristica $\neq 2$) Se $f = ax^2 + bx + c$, allora $-\frac{b}{2a}$ è la radice di f' e vale

$$\Delta(f) = 2^2 a f\left(-\frac{b}{2a}\right) = 4ac - b^2.$$

Esempio 1.2.2. (caratteristica $\neq 2,3$) Se $f=x^3-px-q$, allora le radici di f' sono $\pm\sqrt{\frac{p}{3}}$ e quindi il discriminante vale

$$\Delta(f) = 27f\left(\sqrt{\frac{p}{3}}\right)f\left(-\sqrt{\frac{p}{3}}\right) = 27q^2 - 4p^3.$$

Esempio 1.2.3. Per la Proposizione 1.1.5, vale $\Delta(x^n + a) = n^n a^{n-1}$.

Un utile trucco per calcolare $\Delta(f)$ quando f è un polinomio monico, consiste nell'applicare l'algoritmo euclideo per determinare il massimo comune divisore fra f e f' e poi moltiplicare per uno scalare in modo da avere la relazione dell'Esempio 1.2.3 soddisfatta. Ad esempio se $f = x^4 + cx^2 + bx + a$ si ha $27\Delta(f) = 4(c^2 + 12a)^3 - (2c^3 - 72ac + 27b^2)^2$.

Esercizi

- **1.4.** Siano \mathbb{K} un campo perfetto e $f,g\in\mathbb{K}[x]$ polinomi senza fattori comuni. Dimostrare che vale una delle seguenti possibilità:
- 1. Il polinomio tf(x) + g(x) ha radici multiple per al più finiti valori di $t \in \mathbb{K}$.
- 2. La caratteristica di \mathbb{K} è p>0 ed esistono $\tilde{f}, \tilde{g} \in \mathbb{K}[x]$ tali che $f=\tilde{f}^p, g=\tilde{g}^p$.
- **1.5.** (caratteristica 0) Sia A un dominio di integrità di caratteristica 0 e $f \in A[x]$ un polinomio di grado n. Provare che

$$\Delta(f) = \frac{R_{n-1,n-1}(nf - xf', f')}{n^{n-1}}.$$

1.3 Anelli Noetheriani

In questa sezione dimostreremo il teorema della base di Hilbert. Per future applicazioni è conveniente inquadrare il teorema in un ambito più astratto di quello considerato precedentemente.

Definizione 1.3.1. Un anello in cui ogni ideale è finitamente generato si dice Noetheriano.

Lemma 1.3.2. Per un anello A le seguenti condizioni sono equivalenti:

- 1. A è Noetheriano.
- 2. Ogni catena ascendente di ideali in A è stazionaria.
- 3. Ogni catena ascendente numerabile di ideali in A è stazionaria.
- 4. Ogni famiglia di ideali di A contiene un elemento massimale.

Dimostrazione. $[1 \Rightarrow 2]$ Sia $\{I_v \mid v \in V\}$ una catena ascendente di ideali e sia I = V $\cup \{I_v \mid v \in V\}$. L'ideale I è finitamente generato, diciamo da a_1, \ldots, a_n . Se $a_i \in I_{v_i}$, per $i=1,\ldots,n$, allora detto w il massimo di v_1,\ldots,v_n si ha che $I\subset I_w\subset I_v\subset I$ per ogni $v \geq w$ e quindi la catena è stazionaria.

author: Marco Manetti

 $[2 \Rightarrow 3]$ è ovvio e $[3 \Rightarrow 4]$ è una immediata applicazione del Lemma ??.

 $[4 \Rightarrow 1]$ Sia I un ideale e sia $J \subset I$ un elemento massimale della famiglia degli ideali finitamente generati contenuti in I, dimostriamo che J = I. Sia $a \in I$ allora l'ideale $J+(a) \subset I$ è ancora finitamente generato e per la massimalità di J si deve avere $a \in J$. \square

Emmy Noether è stata la prima a introdurre nel 1923 la nozione di catena ascendente di ideali ed a studiare la classe degli anelli, oggi chiamati in suo onore, Noetheriani. I campi e gli anelli ad ideali principali sono tutti Noetheriani.

Teorema 1.3.3 (Della base di Hilbert). Se $A \ \dot{e} \ un \ anello \ Noetheriano, allora anche <math>A[x] \ \dot{e} \ Noetheriano.$

Dimostrazione. Dato un polinomio $f \in A[x]$ di grado $r \geq 0$ chiameremo coefficiente direttore di f il coefficiente di x^r in f; è utile osservare che i polinomi f, xf, x^2f, \ldots hanno tutti lo stesso coefficiente direttore.

Sia $I\subset A[x]$ un ideale e, per ogni $m\geq 0$, denotiamo con $J_m\subset A$ l'insieme formato dallo 0 e dai coefficienti direttori dei polinomi di grado m contenuti in I. Si osserva immediatamente che J_m è un ideale e che $J_m\subset J_{m+1}$ per ogni m. Per ipotesi l'anello A è Noetheriano, dunque gli ideali J_m sono tutti finitamente generati e la catena ascendente $\{J_m\mid m\in \mathbb{N}\}$ è stazionaria. Sia N>0 tale che $J_m=J_N$ per ogni $m\geq N$ e, per ogni $i=0,\ldots,N$, siano $f_1^i,\ldots,f_j^i\in I$ polinomi di grado i i cui coefficienti direttori generano J_i . Sia $H\subset I$ l'ideale generato dai polinomi f_j^i , per $i=0,\ldots,N$, e proviamo che H=I. Infatti, sia $f\in I$ e scriviamo f=h+g con $h\in H$, g di grado minimo e si assuma per assurdo $g\neq 0$. Sia $r=\min(\deg(g),N)$, allora il coefficiente direttore di g appartiene a J_r e quindi esistono $a_1,\ldots,a_j\in A$ tali che, detto $s=\deg(g)-r$, il polinomio $g-(a_1f_1^r+\cdots+a_jf_j^r)x^s$ ha grado minore del grado di g. Dato che $\sum a_if_i^r\in H$ l'assurdo è servito.

Proposizione 1.3.4. Sia A un anello Noetheriano e I un ideale. Allora l'anello quoziente A/I è Noetheriano.

Dimostrazione. Sia $\pi: A \to A/I$ la proiezione al quoziente, una catena ascendente di ideali $\{J_v\} \subset A/I$ è stazionaria se e solo se la catena $\{\pi^{-1}(J_v)\} \subset A$ è stazionaria.

Corollario 1.3.5. Per ogni campo \mathbb{K} e per ogni ideale $I \subset \mathbb{K}[x_1, \ldots, x_n]$, l'anello quoziente $\mathbb{K}[x_1, \ldots, x_n]/I$ è Noetheriano.

Dimostrazione. Il campo \mathbb{K} è Noetheriano, per il teorema della base di Hilbert e per induzione su n si ha che $\mathbb{K}[x_1,\ldots,x_n]$ è Noetheriano. Basta adesso applicare la Proposizione 1.3.4.

Teorema 1.3.6 (Lemma di Artin-Rees). Sia A un anello Noetheriano e siano $I, M \subset A$ ideali. Allora esiste un intero $k \geq 0$ tale che, per ogni $n \geq k$ vale

$$I \cap M^n = M^{n-k}(I \cap M^k)$$

e quindi $M^nI \subset I \cap M^n \subset M^{n-k}I$.

Dimostrazione. L'inclusione \supset è evidente per ogni n,k, proviamo che vale \subset . Fissiamo un insieme di generatori a_1,\ldots,a_r dell'ideale M e consideriamo l'omomorfismo di anelli $f\colon A[t_1,\ldots,t_r]\to A$ tale che $f(t_i)=a_i$ per $i=1,\ldots,r$ e f(a)=a per ogni $a\in A$. Notiamo che M^n è l'immagine tramite f dell'insieme dei polinomi omogenei di grado n. Per ogni $n\geq 0$ sia $J_n\subset A[t_1,\ldots,t_r]$ l'ideale generato dai polinomi omogenei p di grado $p\leq n$ tali che p0 di grado p1 dell'insieme della base l'anello p1 e Noetheriano e la catena p2 cui p3.

1 I teoremi di Hilbert

Fissiamo un intero k tale che $J_k = J_n$ per ogni $n \ge k$. Dato $n \ge k$ e $a \in I \cap M^n$ esiste $p \in J_n$ polinomio omogeneo di grado n tale che a = f(p); siccome $J_n = J_k$ vale $p = \sum p_i q_i$, dove ogni $p_i \in J_k$ è omogeneo di grado k e ogni q_i è omogeneo di grado n - k; quindi $f(p_i) \in I \cap M^k$, $f(q_i) \in M^{n-k}$ e la tesi è dimostrata.

Corollario 1.3.7. Sia A un anello Noetheriano e $M \subset A$ un ideale. Se 1+M non contiene divisori di 0 allora

$$\bigcap_{n\geq 0} M^n = 0$$

Dimostrazione. Sia $J=\cap_{n\geq 0}M^n$; per il lemma di Artin-Rees 1.3.6 esiste $k\geq 0$ tale che $J=J\cap M^{k+1}=M(J\cap M^k)=MJ$. Per il lemma di Nakayama esiste $a\in M$ tale che (1-a)J=0 e quindi J=0.

Corollario 1.3.8. Sia A un anello locale Noetheriano con ideale massimale \mathfrak{m} . Allora per ogni ideale $I \subset \mathfrak{m}$ vale

$$\bigcap_{n>0} (I+\mathfrak{m}^n) = I.$$

Dimostrazione. Basta applicare il Corollario 1.3.7 all'anello quoziente A/I ed al suo ideale massimale. \Box

Esercizi

- **1.6.** Provare che l'anello delle funzioni continue $f:[0,1]\to\mathbb{R}$ non è Noetheriano.
- **1.7.** Siano A un anello Noetheriano ed $E \subset A$ un sottoinsieme. Provare che esiste un sottoinsieme finito $E_0 \subset E$ tale che $(E) = (E_0)$.
- **1.8.** Siano A un anello Noetheriano e $f:A\to A$ un endomorfismo surgettivo di anelli. Provare che f è un isomorfismo.
- 1.9 (Moduli Noetheriani). Un modulo si dice Noetheriano se ogni suo sottomodulo è finitamente generato. Si provi:
 - 1. Sia M un modulo e $N \subset M$ un sottomodulo. Allora M è Noetheriano se e solo se N e M/N sono Noetheriani.
 - 2. Se M, N sono Noetheriani, allora $M \oplus N$ è Noetheriano.
 - 3. Se A è un anello Noetheriano, allora ogni A-modulo finitamente generato è Noetheriano. (Sugg.: ogni modulo finitamente generato è quoziente di un modulo libero di rango finito.)
- **1.10.** Sia A un anello locale Noetheriano con ideale massimale \mathfrak{m} tale che $\mathfrak{m}^n = \mathfrak{m}^{n+1}$ per qualche intero $n \geq 0$. Provare che $\mathfrak{m}^n = 0$ (Sugg.: Nakayama) e che ogni catena discendente di ideali è stazionaria (Sugg.: induzione su n). Un anello con queste caratteristiche si dice **locale Artiniano**.
- **1.11.** Sia A un anello e denotiamo con \mathcal{V} la famiglia degli ideali di A che non sono finitamente generati. Provare che se $\mathcal{V} \neq \emptyset$, cioè se A non è Noetheriano, allora \mathcal{V} contiene elementi massimali rispetto all'inclusione. Dimostrare inoltre gli elementi massimali di \mathcal{V} sono ideali primi di A. (Sugg.: se I è un ideale, $xy \in I$ e $J \subset I$ un ideale tale che I + (x) = J + (x), allora vale I = J + x(I : x), dove $(I : x) = \{y \in A \mid xy \in I\}$.)

1.4 La topologia di Zariski

Sia \mathbb{K} un campo (infinito) fissato e $\mathbb{A}^n \cong \mathbb{K}^n$ lo spazio affine su \mathbb{K} di dimensione n. L'anello $\mathbb{K}[x_1,\ldots,x_n]$ è un'algebra di funzioni su \mathbb{A}^n a valori in \mathbb{K} ed è naturale pensare ogni sottoinsieme di $\mathbb{K}[x_1,\ldots,x_n]$ come un insieme di equazioni algebriche nelle variabili x_1,\ldots,x_n .

Il **luogo di zeri** di un sottoinsieme $E \subset \mathbb{K}[x_1, \dots, x_n]$ è definito come

$$V(E) = \{(a_1, \dots, a_n) \in \mathbb{A}^n \mid f(a_1, \dots, a_n) = 0 \text{ per ogni } f \in E\}.$$

Dalla definizione appare chiaro che, se (E) è l'ideale generato da E, allora E ed (E) hanno lo stesso luogo di zeri, cioè V(E) = V((E)). Ne segue che non è restrittivo considerare esclusivamente luoghi di zeri di ideali di $\mathbb{K}[x_1,\ldots,x_n]$.

Definizione 1.4.1. Un sottoinsieme $X \subset \mathbb{A}^n$ si dice **algebrico** se è X = V(I) per qualche ideale $I \subset \mathbb{K}[x_1,\ldots,x_n]$.

Non tutti i sottoinsiemi di \mathbb{A}^n sono algebrici: ad esempio un sottoinsieme proprio di \mathbb{A}^1 è algebrico se e solo se è finito. Le seguenti proprietà sono di immediata verifica:

- 1. $V(0) = \mathbb{A}^n \in V(\mathbb{K}[x_1, \dots, x_n]) = \emptyset$.
- 2. Se $I \subset J$ sono ideali, allora $V(J) \subset V(I)$.
- 3. Per ogni ideale I, vale $V(I) = V(\sqrt{I})$.
- 4. Dati I, J ideali, vale $V(IJ) = V(I) \cup V(J)$.
- 5. Data una famiglia qualsiasi $\{I_{\alpha}\}$ di ideali, vale $V(\sum I_{\alpha}) = \cap V(I_{\alpha})$.

Le proprietà 1), 4) e 5) mostrano che i sottoinsiemi algebrici di \mathbb{A}^n sono i chiusi di una topologia, detta **topologia di Zariski**.

- 6. Se $\mathbb{K} = \overline{\mathbb{K}}$ è algebricamente chiuso e $I \subset \mathbb{K}[t]$ è un ideale proprio, allora il luogo di zeri $V(I) \subset \mathbb{A}^1$ è non vuoto (poiché $\mathbb{K}[t]$ è un anello ad ideali principali ogni ideale proprio è della forma (f), con f polinomio di grado positivo e V(f) è l'insieme delle radici di f).
- 7. Se $\mathbb{K} = \overline{\mathbb{K}}$ è algebricamente chiuso, $n \geq 2$ e $f \in \mathbb{K} [x_1, \dots, x_n]$ è un polinomio di grado positivo, allora $V(f) \subset \mathbb{A}^n$ è infinito. Infatti se, tanto per fissare le idee, f ha grado d>0 nella variabile x_n , allora $f=f_0(x_1,\ldots,x_{n-1})x_n^d+\cdots$ e per ogni $a\in\mathbb{A}^{n-1}$ tale che $f_0(a) \neq 0$ esiste $a_n \in \mathbb{K}$ tale che $f(a, a_n) = 0$.

Lemma 1.4.2 (di preparazione). Siano \mathbb{K} un campo infinito $e f \in \mathbb{K}[x_1, \dots, x_n]$ un polinomio non nullo di grado $d \geq 0$. Allora:

- 1. L'aperto $\mathbb{A}_f^n = \{a \in \mathbb{A}^n \mid f(a) \neq 0\} \ \hat{e} \ non \ vuoto.$
- 2. Esiste un cambio lineare di coordinate $x_i = \sum a_{ij}y_j$ ed una costante $c \in \mathbb{K}$ tale che il polinomio cf è monico di grado d rispetto alla variabile y_n .

Dimostrazione. [1] Lavoriamo per induzione su n, assumiamo l'enunciato vero per polinomi in $\mathbb{K}[x_1,\ldots,x_{n-1}]$ e scriviamo $f=\sum f_ix_n^i$, con i polinomi $f_i\in\mathbb{K}[x_1,\ldots,x_{n-1}]$ non tutti nulli. Sia $a \in \mathbb{A}^{n-1}$ tale che i valori $f_0(a), f_1(a), \ldots$ non siano tutti nulli. Allora il polinomio $f(a, x_n)$ non è nullo in $\mathbb{K}[x_n]$ ed ha al più un numero finito di radici.

[2] Sia f_d la componente omogenea di grado d di f. Per il punto 1) esiste un punto $a \in \mathbb{A}^n$ tale che $f_d(a) \neq 0$; scegliamo un sistema di coordinate y_1, \ldots, y_n tale che il punto a corrisponda a $(0,0,\ldots,0,1)$. Nel nuovo sistema di coordinate il polinomio $f(0,\ldots,0,y_n)$ ha grado d e basta quindi prendere come costante $c = 1/f_d(0, \dots, 0, 1)$.

Le proiezioni affini non sono applicazioni chiuse; consideriamo ad esempio l'iperbole $X = V(xy-1) \subset \mathbb{A}^2$ e sia $\pi \colon \mathbb{A}^2 \to \mathbb{A}^1$ la proiezione sulla prima coordinata. Si vede immediatamente che $\pi(X)$ non è un chiuso di Zariski. Similmente se facciamo la proiezione sulla seconda coordinata. Però, se prima si effettua un cambio lineare di coordinate x =au + bv, y = cu + dv, con $ad - bc \neq 0$, si trova che $X = V(bdv^2 + vu(ad + bc) + acu^2 - 1)$ e, se $bd \neq 0$, allora la proiezione di X sul primo asse coordinato è \mathbb{A}^1 , che è quindi chiuso. Abbiamo quindi sperimentato che la generica proiezione di X su di un sottospazio affine è un chiuso. Quanto appena visto è un caso particolare di un fatto molto più generale che viene detto Lemma di normalizzazione di Noether.

Lemma 1.4.3 (di proiezione). Siano $\mathbb{K}=\overline{\mathbb{K}}$ un campo algebricamente chiuso, $J\subset$ $\mathbb{K}[x_1,\ldots,x_n]$ un ideale, $J^c=J\cap\mathbb{K}[x_1,\ldots,x_{n-1}]$ e $\pi\colon\mathbb{A}^n\to\mathbb{A}^{n-1}$ la proiezione sulle prime coordinate. Se esiste un polinomio $F \in J$ monico rispetto a x_n (e.g. se $\deg_{x_n} F =$ $\deg F$), allora $\pi\colon V(J)\to V(J^c)$ è chiusa e surgettiva.

Dimostrazione. Se $(a_1,\ldots,a_n)\in V(J)$, allora $f(a_1,\ldots,a_n)=0$ per ogni $f\in J^c$ e quindi $(a_1,\ldots,a_{n-1})\in V(J^c).$

Proviamo adesso la surgettività: si consideri un punto $(a_1, \ldots, a_{n-1}) \in V(J^c)$ e sia $M \subset \mathbb{K}[x_1,\ldots,x_n]$ l'ideale generato da $x_1-a_1,\ldots,x_{n-1}-a_{n-1}$. Siccome

$$V(J+M) = V(J) \cap V(M) \subset V(M) = \pi^{-1}(a_1, \dots, a_{n-1}),$$

basta dimostrare che V(J+M) è non vuoto. Mostriamo come primo passo che 1 $\not\in$ J+M: infatti, se per assurdo $1=f+\sum (x_i-a_i)g_i$ per qualche $f\in J$ e $g_1,\ldots,g_{n-1}\in$ $\mathbb{K}[x_1,\ldots,x_n]$, allora $f(a_1,\ldots,a_{n-1},t)=1$ per ogni $t\in\mathbb{K}$ e quindi, se

$$f(x_1, \dots, x_{n-1}, t) = \sum f_i(x_1, \dots, x_{n-1})t^i,$$

deve essere $f_0(a_1,\ldots,a_{n-1})=1$ e $f_i(a_1,\ldots,a_{n-1})=0$ per ogni i>0. Si consideri adesso il risultante $R = R(F, f) \in J^c$ dell'eliminazione della variabile x_n da $F \in f$. Vale $R = \det S(F, f)$, dove S(F, f) è la matrice di Sylvester della coppia F, f. Siccome $S(F,f)(a_1,\ldots,a_{n-1})$ è una matrice triangolare superiore con tutti 1 sulla diagonale si ha $R(F, f)(a_1, \ldots, a_{n-1}) = 1$ in contraddizione con l'appartenenza a J^c , dunque $1 \notin J + M$.

Si consideri adesso l'omomorfismo surgettivo $\phi \colon \mathbb{K}[x_1, \dots, x_n] \to \mathbb{K}[t]$ definito da $\phi(x_n) = t \ \mathrm{e} \ \phi(x_i) = a_i$; è chiaro che $M = \mathrm{Ker}(\phi)$ (cfr. Esercizio ??) e quindi che $\phi^{-1}(\phi(J)) = J + M$. Dato che $1 \notin J + M$ ne segue che $\phi(J)$ è un ideale proprio e quindi esiste $a_n \in \mathbb{K}$ tale che per ogni $f \in J$ vale $f(a_1, \ldots, a_n) = \phi(f)(a_n) = 0$.

Sia $X \subset V(J)$ un chiuso di Zariski, allora $X = V(I) \cap V(J) = V(I+J)$; a meno di sostituire I con I+J non è restrittivo supporre $J\subset I$: in particolare $F\in I$ e $\pi(X)=$ $V(I^c)$.

Due dimostrazioni alternative del lemma di proiezione saranno presentate negli Esercizi 1.16 e 1.40.

Esercizi

- 1.12. Provare che la topologia di Zariski non è di Hausdorff.
- **1.13.** Provare che i sottoinsiemi $\mathbb{A}_f^n = \{a \in \mathbb{A}^n \mid f(a) \neq 0\}$ formano, al variare di $f \in \mathbb{K}[x_1, \dots, x_n]$, una base di aperti della topologia di Zariski.
- **1.14.** Sia $I \subset \mathbb{K}[x_1,\ldots,x_n]$ un ideale e $X \subset \mathbb{A}^n$ un sottoinsieme finito tale che $X \cap V(I) =$ \emptyset . Provare che esiste un polinomio $f \in I$ tale che $f(x) \neq 0$ per ogni $x \in X$. Provare inoltre che se I è un ideale omogeneo, allora è possibile scegliere f omogeneo. (Sugg.: poiché X è finito esistono $f_1, \ldots, f_s \in I$ tali che, per ogni $x \in X$, esiste un indice i per cui $f_i(x) \neq 0$. Ne segue che l'insieme dei vettori $a=(a_1,\ldots,a_s)\in\mathbb{K}^s$ per cui $V(\sum a_if_i)\cap X\neq\emptyset$ è unione di un numero finito di iperpiani.)

- 1.15. Sia $\pi \colon \mathbb{A}^n \to \mathbb{A}^{n-1}$ la proiezione sulle prime coordinate. Mostrare che, nella topologia di Zariski, π è aperta. (Sugg.: se $f(x_1,\ldots,x_n)=\sum_i f_i(x_1,\ldots,x_{n-1})x_n^i$ mostrare che $\pi(\mathbb{A}_f^n) = \bigcup_i \mathbb{A}_{f_i}^{n-1}.)$
- 1.16. Prima dimostrazione alternativa del lemma di proiezione 1.4.3. Questa dimostrazione è interamente basata sulle proprietà del risultante. Nelle notazioni del Lemma 1.4.3 sia $a=(a_1,\ldots,a_{n-1})\in V(J^c)$ e denotiamo $X=V(F)\cap \pi^{-1}(a)$. Mostrare che X è un insieme finito. Supponiamo quindi per assurdo che $X \cap V(I) = \emptyset$; per l'Esercizio 1.14 esiste $f \in I$ tale che $X \cap V(f) = \emptyset$: questo significa che i due polinomi $F(a, x_n), f(a, x_n) \in \mathbb{K}[x_n]$ non hanno zeri comuni ed il loro risultante R(F, f) non si annulla in a.

1.5 Il teorema degli zeri di Hilbert

Dato un qualsiasi sottoinsieme $X \subset \mathbb{A}^n$, si definisce

$$I(X) = \{ f \in \mathbb{K} [x_1, \dots, x_n] \mid f(a) = 0 \text{ per ogni } a \in X \}.$$

L'insieme V(I(X)) è uguale alla chiusura di X nella topologia di Zariski. Infatti si ha $X \subset$ V(I(X)) e, se V(J) è un chiuso che contiene X, allora $J \subset I(X)$ e quindi $V(I(X)) \subset V(J)$. L'applicazione $X \mapsto I(X)$ soddisfa inoltre le proprietà:

- 1. $I(\emptyset) = \mathbb{K}[x_1, \dots, x_n] \in I(\mathbb{A}^n) = 0.$
- 2. Se $X \subset Y$, allora $I(Y) \subset I(X)$.
- 3. Per ogni sottoinsieme chiuso $X \subset \mathbb{A}^n$, vale $I(X) = \sqrt{I(X)}$ e X = V(I(X)).
- 4. Per ogni ideale $J \subset \mathbb{K}[x_1, \dots, x_n]$, vale $\sqrt{J} \subset I(V(J))$.

L'inclusione del punto 4) è in generale propria: ad esempio, se $\mathbb{K} = \mathbb{R}, n = 1$ e $J=(x^2+1)$, allora $V(J)=\emptyset$ e $I(V(J))=\mathbb{R}[x]\neq \sqrt{J}$.

Teorema 1.5.1 (degli zeri di Hilbert (1892), forma debole). Se il campo $\mathbb K$ è algebricamente chiuso e $J \subset \mathbb{K}[x_1,\ldots,x_n]$ è un ideale, allora vale $V(J) = \emptyset$ se e solo se

Dimostrazione. L'enunciato è ovvio se $1 \in J$ oppure se J = 0. Supponiamo quindi $0 \neq J$ $J \neq \mathbb{K}[x_1, \dots, x_n]$ e proviamo che V(J) è non vuoto.

Se n=1, allora l'ideale J è principale, diciamo J=(f), e quindi V(J) è l'insieme delle radici di f. Siccome f non è invertibile deve avere grado positivo e quindi possiede

Se n > 1, ragioniamo per induzione e supponiamo il teorema vero in \mathbb{A}^{n-1} . Sia $F \in J$ un polinomio di grado m > 0. Per il lemma di preparazione 1.4.2, a meno di un cambio lineare di coordinate e di moltiplicazione per una costante, possiamo supporre che Fsia un polinomio monico di grado m rispetto a x_n . Consideriamo l'ideale $J^c=J\cap$ $\mathbb{K}[x_1,\ldots,x_{n-1}]$; per l'ipotesi induttiva $V(J^c)\neq\emptyset$. Denotando con $\pi\colon\mathbb{A}^n\to\mathbb{A}^{n-1}$ la proiezione sulle prime n-1 coordinate, per il Lemma 1.4.3, vale $\pi(V(J)) = V(J^c)$ e perciò $V(J) \neq \emptyset$.

Corollario 1.5.2. Se il campo K è algebricamente chiuso, allora gli ideali massimali di $\mathbb{K}[x_1,\ldots,x_n]$ sono tutti e soli gli ideali del tipo I(p), per $p\in\mathbb{A}^n$. Esiste dunque una bigezione naturale fra \mathbb{A}^n e l'insieme degli ideali massimali di $\mathbb{K}[x_1,\ldots,x_n]$.

Dimostrazione. Sia $\mathfrak{m} \subset \mathbb{K}[x_1,\ldots,x_n]$ massimale e $p \in V(\mathfrak{m})$; allora $\mathfrak{m} \subset I(p)$ da cui segue $\mathfrak{m}=I(p)$. Viceversa se $p\in\mathbb{A}^n$ e $I(p)\subset\mathfrak{m}$, con \mathfrak{m} massimale, allora esiste $q\in\mathbb{A}^n$ tale che $I(p) \subset \mathfrak{m} = I(q)$, da cui $\{q\} \subset \{p\}$ e quindi p = q.

Teorema 1.5.3 (degli zeri di Hilbert (1892), forma forte). Se il campo \mathbb{K} è algebricamente chiuso, allora per ogni ideale $J \subset \mathbb{K}[x_1, \ldots, x_n]$ vale $\sqrt{J} = I(V(J))$.

Dimostrazione. Siccome $X=V(J)=V(\sqrt{J})$ si può supporre senza perdita di generalità che $J=\sqrt{J}$, cioè che $S=\mathbb{K}\left[x_1,\ldots,x_n\right]/J$ non possieda elementi nilpotenti. Dobbiamo dimostrare che se $F\not\in J$ allora esiste $x\in X$ tale che $F(x)\neq 0$. Sia F come sopra fissato, $\alpha\colon\mathbb{K}\left[x_1,\ldots,x_n\right]\to S$ la proiezione al quoziente, $f=\alpha(F)$. Si noti che 1-tf è

invertibile in S[[t]] con inverso $\sum_{i=0}^{\infty} t^i f^i$ e quindi 1-tf è invertibile in S[t] se e solo se

f è nilpotente. Per ipotesi S è ridotto e quindi (1-tf) è un ideale proprio di S[t] e di conseguenza J e 1-tF generano un ideale proprio di $\mathbb{K}[x_1,\ldots,x_n,t]$. Per la forma debole del teorema degli zeri esistono a_0,\ldots,a_n,t_0 tali che $g(a_0,\ldots,a_n)=0$ per ogni $g\in J$ e $1-t_0F(a_0,\ldots,a_n)=0$. Dunque $x=(a_0,\ldots,a_n)\in X$ e $F(x)\neq 0$.

Corollario 1.5.4. Supponiamo \mathbb{K} algebricamente chiuso e siano $f, g \in \mathbb{K}[x_1, \dots, x_n]$ con f irriducibile. Se $V(f) \subset V(g)$, allora f divide g.

Dimostrazione. Per il teorema degli zeri vale $g \in I(V(f)) = \sqrt{(f)} = (f)$.

Ricordiamo che un ideale $I \subset \mathbb{K}[x_1,\ldots,x_n]$ si dice omogeneo se è generato da polinomi omogenei; se $S_d \subset \mathbb{K}[x_1,\ldots,x_n]$ è il sottospazio dei polinomi omogenei di grado d si verifica facilmente che I è omogeneo se e solo se $I = \bigoplus (I \cap S_d)$. Sia infine $0 = (0,\ldots,0) \in \mathbb{A}^n$; notiamo che se I è omogeneo e $V(I) \neq \emptyset$, allora $0 \in V(I)$.

Corollario 1.5.5 (Teorema degli zeri omogeneo). Se il campo \mathbb{K} è algebricamente chiuso e $I \subset \mathbb{K}[x_1, \ldots, x_n]$ è un ideale omogeneo proprio, allora $V(I) = \{0\}$ se e solo se esiste d > 0 tale che $S_d \subset I$.

Dimostrazione. Se $S_d \subset I$, allora per ogni i si ha $x_i^d \in I$, quindi $x_i \in \sqrt{I}$ e perciò $V(I) = V(\sqrt{I}) = \{0\}.$

Viceversa, se $V(I) = \{0\}$, allora per il teorema degli zeri $\sqrt{I} = I(\{0\}) = (x_1, \dots, x_n)$. Esiste dunque d > 0 tale che $x_i^d \in I$ per ogni i e quindi $S_{dn-n+1} \subset I$.

Un risultato collegato al teorema degli zeri omogeneo, che riportiamo senza dimostrazione è il seguente.

Teorema 1.5.6. Sia $I \subset \mathbb{K}[x_0,\ldots,x_n]$ un ideale generato da n+1 polinomi omogenei di gradi d_0,\ldots,d_n . Se $\sqrt{I}=(x_0,\ldots,x_n)$, allora la dimensione di $S_h\cap I$ dipende solo dai numeri h,n,d_0,\ldots,d_n e non dall'ideale I. In particolare $S_d\subset I$ se e solo se $d\geq \sum d_i-n$.

Dimostreremo più avanti tale risultato come semplice corollario del Teorema ?? (vedi Esercizio ??).

Esercizi

1.17. Sia $Y \subset \mathbb{A}^3$ l'unione dei tre piani coordinati e $X \subset \mathbb{A}^3$ l'unione dei tre assi coordinati. Provare che I(Y) = (xyz) e che I(X) = (xy, yz, zx). (Sugg.: se $f \in I(X)$ considerare f(x,y,z) - f(0,y,z) - f(x,0,z) - f(x,y,0).)

1.18. Sia $J \subset S = \mathbb{K}[x_1, \dots, x_n]$ un ideale e X = V(J). Provare che se $f \in I(X)$ allora 1 + f è invertibile in S/J.

1.19. Dimostrare che ogni ideale primo di $\mathbb{C}[x_1,\ldots,x_n]$ è intersezione di ideali massimali.

1.6 Esercizi complementari

- **1.20.** Sia $f \in A[x]$ un polinomio monico. Provare che per ogni coppia di polinomi $g, h \in$ A[x] vale R(f,g) = R(f,g+hf).
- 1.21. Sia A un dominio a fattorizzazione unica e siano $f,g\in A[x]$ polinomi di gradi $\deg(f) = n$, $\deg(g) = m$. Dimostrare che $f \in g$ hanno un fattore comune di grado > k, con $0 \le k \le \min(n, m)$, se e solo se la matrice

$$\begin{pmatrix} x^{m-k-1}f \\ \vdots \\ f \\ x^{n-k-1}g \\ \vdots \\ g \end{pmatrix} \in M(n+m-2k, n+m-k, A)$$

non ha rango massimo.

- **1.22** (Sistemi risultanti). Siano A un dominio a fattorizzazione unica, $f, g_1, \ldots, g_r \in$ A[x] polinomi, a_1, \ldots, a_r indeterminate e sia $R \in A[a_1, \ldots, a_r]$ il risultante dell'eliminazione di x dai polinomi f e $a_1g_1 + \cdots + a_rg_r$. Provare che R = 0 se e solo se gli r + 1polinomi f, g_1, \ldots, g_r hanno un fattore comune di grado positivo. Provare inoltre che i coefficienti di $R(a_1, \ldots, a_r)$ appartengono a $A \cap (f, g_1, \ldots, g_r)$.
- 1.23. Dato un polinomio monico f a coefficienti reali, senza radici multiple, determinare la relazione tra il segno del discriminante, il grado del polinomio e la classe di resto modulo 4 del numero di radici reali. In particolare si provi che se il grado di f è 3 allora f possiede tre radici reali distinte se e solo se $\Delta(f) < 0$.
- **1.24.** Provare che se $f,g\in\mathbb{K}[x]$ hanno gradi n,m allora vale la formula di polarizzazione

$$R(f,g)^{2} = (-1)^{nm} \frac{\Delta(fg)}{\Delta(f)\Delta(g)}.$$

1.25. Sia $f = \sum a_i x^{n-i} y^i$ un polinomio omogeneo di grado n a coefficienti in un campo di caratteristica 0 e siano f_x, f_y le derivate di f rispetto a x e y rispettivamente. Provare che:

$$R_{n,n-1}(f,f_x) = \frac{a_0}{n^{n-2}} R_{n-1,n-1}(f_x,f_y), \qquad \Delta(f) = \frac{1}{n^{n-2}} R_{n-1,n-1}(f_x,f_y).$$

- **1.26.** Siano $f, g, q \in \mathbb{K}[x]$ polinomi senza fattori comuni di gradi n, n, m rispettivamente, con m < n. Provare che $R(f + \lambda q, g + \mu q) \in \mathbb{K}[\lambda, \mu]$ è un polinomio di grado $\leq n$. (Sugg.: non è restrittivo supporre $\mathbb K$ algebricamente chiuso, si considerino allora gli omomorfismi $\mathbb{K}[\lambda,\mu] \to \mathbb{K}[t]$ dati da $\lambda \mapsto at$, $\mu \mapsto bt$, al variare di $a,b \in \mathbb{K}$.)
- 1.27 (Implicitizzazione delle curve razionali nel piano). Dati $f, g, q \in \mathbb{K}[t]$ polinomi senza fattori comuni, provare che esiste $F \in \mathbb{K}[x_1, x_2]$ polinomio irriducibile tale che

$$\left\{ \left. \left(\frac{f(t)}{q(t)}, \frac{g(t)}{q(t)} \right) \, \right| \, t \in \mathbb{K} \, , \, q(t) \neq 0 \right\} \subset V(F).$$

(Sugg.: Esercizio 1.26.)

1.28 (*). Un anello si dice Artiniano se ogni catena discendente di ideali è stazionaria. Dimostrare che ogni anello Artiniano è anche Noetheriano ma che non vale il viceversa.

- **1.29.** Sia $I \subset \mathbb{K}[x_1, \dots, x_n]$ un ideale proprio, $\mathbb{K} \subset L$ una estensione di campi e $I^e = IL[x_1, \dots, x_n]$ l'estensione di I. Mostrare che $1 \notin I^e$. Più in generale mostrare che $I^e \cap \mathbb{K}[x_1, \dots, x_n] = I$. (Sugg.: teorema di Rouché-Capelli.)
- **1.30.** Sia $I \subset \mathbb{K}[x_1, \dots, x_n]$ un ideale proprio. Dimostrare che esiste una estensione finita di campi $\mathbb{K} \subset L$ tale che $V(I^e) \neq \emptyset$, dove I^e denota l'ideale esteso $I^e = IL[x_1, \dots, x_n]$.
- **1.31.** Dimostrare che se $\mathbb{K} \subset L$ è una estensione di campi e L è una \mathbb{K} -algebra finitamente generata, allora L è una estensione algebrica finita di \mathbb{K} . (Sugg.: sia $L = \mathbb{K}[x_1, \dots, x_n]/I$; mostrare che esiste un omomorfismo di \mathbb{K} algebre $\phi \colon \mathbb{K}[x_1, \dots, x_n] \to \overline{\mathbb{K}}$ tale che $\phi(I) = 0$.)
- **1.32 (caso particolare del Teorema 1.5.6, *).** Siano $f, g \in \mathbb{K}[x, y]$ omogenei di grado d senza fattori comuni. Provare che $S_n \subset (f, g)$ se e solo se $n \geq 2d 1$. (Sugg.: usare 1.1.5.4.)
- **1.33.** Dimostrare che nel Teorema 1.5.6 non è restrittivo supporre \mathbb{K} campo algebricamente chiuso.
- **1.34 (Lemma di Gieseker).** Sia $I \subset \mathbb{K}[x,y]$ un ideale omogeneo e scriviamo $I = \bigoplus_{d \geq 0} I_d$, dove $I_d = I \cap S_d$. Dimostrare che se dim $I_{d+1} \leq \dim I_d + 1$, allora esistono $h \leq d$ e $f \in S_{d-h}$ tale che $I_d = fS_h$. (Sugg.: sia f_0, \ldots, f_n una base di I_d tale che $f_i = x^{r_i}g_i$ con $g_i(0,1) = 1$ e $r_i < r_{i+1}$ per ogni $i = 0, \ldots, n$. Si consideri l'insieme $A = \{i \mid g_n \not \mid g_i\} \cup \{i \mid r_{i+1} \geq r_i + 2\}$; se $A \neq \emptyset$ sia $s = \max(A)$ e si provi che $yf_0, xf_0, \ldots, xf_s, yf_{s+1}, xf_{s+1}, \ldots, xf_n$ sono linearmente indipendenti.)
- **1.35.** Nelle notazioni di 1.5.6, siano $V \subset S_a$, $W \subset S_b$ sottospazi vettoriali e $\mu: V \otimes W \to S_{a+b}$ la mappa di moltiplicazione $\mu(f \otimes g) = fg$. Provare che il rango di μ è almeno dim $V + \dim W 1$. (Sugg.: usare la fattorizzazione unica in $\mathbb{K}[x_1, \ldots, x_n]$.)
- **1.36 (Teorema di Hopf).** Siano A, B, C spazi vettoriali di dimensione finita su un campo algebricamente chiuso e sia $\mu \colon A \otimes B \to C$ un'applicazione lineare e separatamente iniettiva, cioè tale che $\mu(a \otimes b) = 0$ se e solo se $a \otimes b = 0$.
- 1. (*) Provare che se dim A=2, allora dim C> dim B. (Sugg.: sia per assurdo $\mu\colon A\otimes B\to B$ come sopra, e_1,e_2 una base di $A,\ f_i(b)=\mu(e_i\otimes b)$ e si considerino gli endomorfismi $\lambda f_1+\eta f_2$, con $[\lambda,\eta]\in\mathbb{P}^1$.)
- 2. (**?) Provare che dim $C \ge \dim A + \dim B 1$ (vedi Esercizio ??).
- **1.37.** Sia \mathbb{K} un campo sul quale vale il teorema di Hopf (punto 2 dell'Esercizio 1.37) e siano A, B, C, μ come in 1.37. Mostrare che, se vale dim $C = \dim A + \dim B 1$, allora per ogni $c \in C$ esistono a, b tali che $c = \mu(a \otimes b)$. Utilizzare questo fatto per mostrare che ogni forma binaria di grado ≥ 2 a coefficienti in \mathbb{K} non è irriducibile e quindi che \mathbb{K} è algebricamente chiuso.
- **1.38.** Sia A un anello, $I \subset A[x]$ un ideale e B = A[x]/I. Provare che I contiene un polinomio monico se e solo se B è un A-modulo finitamente generato.
- 1.39 (Seconda dimostrazione alternativa del lemma di proiezione 1.4.3). Questa dimostrazione sostituisce, grazie all'Esercizio 1.39, l'utilizzo del risultante con il lemma di Nakayama ?? (cfr. [?, Esercizio II.3.15]).

Per dimostrare che $(a_1,\ldots,a_{n-1})\in V(J^c)$ appartiene alla proiezione di V(J) occorre dimostrare, come in 1.4.3, che $1\not\in\phi(J)$. Considerare, nelle notazioni di $\ref{initial}$??, $A=\mathbb{K}\left[x_1,\ldots,x_{n-1}\right],\,M=\mathbb{K}\left[x_1,\ldots,x_n\right]/J,\,N=0$ e $I=(x_1-a_1,\ldots,x_{n-1}-a_{n-1})\subset A$. Se per assurdo $1\in J+I\mathbb{K}\left[x_1,\ldots,x_n\right]$ allora IM=M e applicare $\ref{initial}$?? per arrivare ad una contraddizione.

1.40. Siano $A \subset B$ anelli Noetheriani con B finitamente generato come A-modulo. Provare:

- 1. Ogni $x \in B$ è radice di un polinomio monico a coefficienti in A. (Sugg.: polinomio caratteristico della moltiplicazione per x.)
- 2. Se $I \subset A$ è un ideale proprio, allora $IB \neq B$. (Sugg. Nakayama.)
- 3. Se \mathbb{K} è un campo algebricamente chiuso, allora ogni morfismo $A \to \mathbb{K}$ si estende ad un morfismo $B \to \mathbb{K}$. (Sugg.: usare il lemma di Zorn ed il punto 2 per ricondursi al caso A campo e B = A[x], con x algebrico su A.)

1.7 Un lungo esercizio: il teorema di Lüroth

Gli esercizi di questa sezione, svolti nella sequenza proposta forniranno una dimostrazione del seguente celebre teorema.

Teorema 1.7.1 (Lüroth (1875)). Sia \mathbb{K} un campo algebricamente chiuso e $L \subset \mathbb{K}(x)$ un sottocampo. Se \mathbb{K} è strettamente contenuto in L, allora L è una estensione puramente $trascendente\ di\ \mathbb{K}$.

Esercizi

- 1.41 (versione geometrica, *). Sia \mathbb{K} un campo algebricamente chiuso e $F(x,y) \in$ $\mathbb{K}[x,y]$ un polinomio con le seguenti proprietà:
 - 1. La relazione \sim cosi definita:

 $a \sim b$ se e solo se $(a, b) \in V(F) \subset \mathbb{K}^2$,

è una relazione di equivalenza su \mathbb{K} .

- 2. F è combinazione lineare di monomi $x^a y^b$, con $a, b \le n$.
- 3. Esiste $x_0 \in \mathbb{K}$ tale che il polinomio $F(x_0, y) \in \mathbb{K}[y]$ possiede n radici semplici distinte.

Provare che esistono $f, g \in \mathbb{K}[t]$ di grado $\leq n$ tali che F(x,y) = f(x)g(y) - f(y)g(x). (Sugg.: svolgere nell'ordine i seguenti punti:

- 1. Non è restrittivo supporre che F non contenga fattori del tipo x-a, y-b.
- 2. Il polinomio F è ridotto e $F(x,y) = \delta F(y,x)$, con $\delta \in \mathbb{K}$ tale che $\delta^2 = 1$.
- 3. Esistono n punti distinti $a_1, \ldots, a_n \in \mathbb{K}$ tali che $F(a_i, y) = c_i F(a_i, y)$ per opportune costanti $c_2, \ldots, c_n \in \mathbb{K}$.
- 4. Sia $V \subset \mathbb{K}[y]$ il sottospazio vettoriale dei polinomi di grado $\leq n$; dimostrare che l'immagine dell'applicazione $\mathbb{K} \to V$, $a \mapsto F(a, y)$, è contenuta in un piano $P \subset V$.
- 5. Sia f, g una base di P. Per ogni $a \in \mathbb{K}$ esistono costanti α, β tali che F(a, y) = $\alpha f(y) - \beta g(y)$. Se $g(a)f(a) \neq 0$ esiste una costante c_a tale che $F(a,y) = c_a(g(a)f(y) - g(a)f(y))$ f(a)g(y)).
- 6. Utilizzare la simmetria di F (punto 2) per mostrare che $c_a = c$ non dipende da a.)
- **1.42** (*). Siano $p,q \in \mathbb{K}[x]$ senza fattori comuni e sia n il massimo dei gradi di p e q. Si ponga $\phi = \frac{p}{q} \in \mathbb{K}(x), F(x,y) = p(x)q(y) - p(y)q(x)$ e

$$\Sigma(F) = \left\{ \frac{r(x)}{s(x)} \middle| F(x,y) \text{ divide } r(x)s(y) - r(y)s(x) \right\}.$$

Provare che $\Sigma(F) = \mathbb{K}(\phi)$ e che $\Sigma(F) \subset \mathbb{K}(x)$ è una estensione algebrica finita di grado n. Si noti che n è il grado di F rispetto alla variabile y. (Sugg.: provare nell'ordine i seguenti punti:

- 1. Σ è un campo contenente $\mathbb{K}(\phi)$.
- 2. L'estensione $\mathbb{K}(\phi) \subset \mathbb{K}(x)$ ha grado $\leq n$.
- 3. Siano $r, s \in \mathbb{K}[x]$ senza fattori comuni, se r(x)s(y) r(y)s(x) non è ridotto, allora $char\mathbb{K} = p > 0$ e $r, s \in \mathbb{K}[x]^p = \mathbb{K}[x^p]$; dedurre che in caratteristica p vale $\Sigma(F^p) = \Sigma(F)^p$ e quindi che le estensioni $\Sigma(F^p) \subset \mathbb{K}(x^p)$ e $\Sigma(F) \subset \mathbb{K}(x)$ hanno lo stesso grado.
- 4. Se F è ridotto, allora l'estensione $\Sigma(F) \subset \mathbb{K}(x)$ ha grado $\geq n$: se

$$g(t,x) = t^h + \sum_{i=0}^{h-1} t^i \frac{r_i(x)}{s_i(x)}$$

è il polinomio minimo di x su $\Sigma(F)$, e se $a \in \mathbb{K}$ è tale che $s_i(a) \neq 0$ e F(x, a) possiede n radici distinte $a = a_1, \ldots, a_n$, allora $g(a_i, a) = 0$ per ogni $i = 1, \ldots, n$.)

1.43 (versione algebrica effettiva, *). Sia \mathbb{K} algebricamente chiuso e siano $f_1, \ldots, f_d \in \mathbb{K}(x)$; scriviamo $f_i = \frac{p_i}{q_i}$, con $p_i, q_i \in \mathbb{K}[x]$ senza fattori comuni. Poniamo $F_i(x,y) = p_i(x)q_i(y) - p_i(y)q_i(x)$ e sia F il massimo comune divisore di F_1, \ldots, F_d . Se il polinomio F_1 soddisfa le ipotesi della versione geometrica (Esercizio 1.42), allora anche F le soddisfa e, nelle notazioni dell'Esercizio 1.43, vale $\mathbb{K}(f_1, \ldots, f_d) = \Sigma(F) = \mathbb{K}(\phi)$ per qualche $\phi \in \mathbb{K}(x)$. (Sugg.: basta dimostrare che $\mathbb{K}(f_1, \ldots, f_d) = \Sigma(F)$, essendo le rimanenti asserzioni conseguenze immediate della versione geometrica del teorema di Lüroth. Dall'Esercizio 1.43 segue che $\mathbb{K}(f_i) = \Sigma(F_i) \subset \Sigma(F)$ e quindi $\mathbb{K}(f_1, \ldots, f_d) \subset \Sigma(F)$. Per il lemma di Gauss (??) F coincide con il massimo comune divisore di F_1, \ldots, F_d nell'anello $\mathbb{K}(x)[y]$. Sia $g(y) \in \mathbb{K}(f_1, \ldots, f_d)[y]$ il polinomio minimo di x; dato che g divide i polinomi $p_i(y) - f_i q_i(y)$ in $\mathbb{K}(x)[y]$, ne segue che g divide F in $\mathbb{K}(x)[y]$ e quindi il grado dell'estensione $\mathbb{K}(f_1, \ldots, f_d) \subset \mathbb{K}(x)$ è minore o uguale al grado di F rispetto ad g. Applicare adesso l'Esercizio 1.43.)

1.44 (versione nazionalpopolare). Sia \mathbb{K} un campo algebricamente chiuso e $L \subset \mathbb{K}(x)$ un sottocampo. Provare che se \mathbb{K} è strettamente contenuto in L, allora L è una estensione puramente trascendente di \mathbb{K} . (Sugg.: sia $f_1 \in L - \mathbb{K}$, allora $\mathbb{K}(f_1) \subset \mathbb{K}(x)$ è una estensione finita; a maggior ragione $\mathbb{K}(f_1) \subset L$ è finita e quindi $L = \mathbb{K}(f_1, \ldots, f_d)$. Se \mathbb{K} ha caratteristica p > 0, allora a meno di sostituire x con x^{p^e} per un opportuno $e \geq 0$, si può prendere $f_1 \notin \mathbb{K}(x^p)$.)

La topologia di Zariski

In tutto il capitolo \mathbb{K} denoterà un campo algebricamente chiuso. Chiameremo quasicompatto uno spazio topologico tale che ogni ricoprimento aperto ammette un sottoricoprimento finito: riserveremo il termine compatto agli spazi quasicompatti di Hausdorff. Diremo che un'applicazione continua $f: X \to Y$ tra spazi topologici è una **immersione topologica** se $f: X \to f(X)$ è un omeomorfismo, dove f(X) ha la topologia di sottospazio. Notiamo che una applicazione continua $f: X \to Y$ è iniettiva e chiusa se e solo se è una immersione topologica e f(X) è chiuso in Y. Similmente f è iniettiva ed aperta se e solo se è una immersione topologica e f(X) è aperto in Y.

2.1 Esempi di spazi topologici

Ricordiamo che il luogo di zeri di un ideale $I \subset \mathbb{K}[x_1, \dots, x_n]$ è definito come

$$V(I) = \{ a \in \mathbb{A}^n \mid f(a) = 0 \text{ per ogni } f \in I \}$$

e che l'ideale di un sottoinsieme $X \subset \mathbb{A}^n$ è

$$I(X) = \{ f \in \mathbb{K} [x_1, \dots, x_n] \mid f(a) = 0 \text{ per ogni } a \in X \}.$$

Il Teorema degli Zeri di Hilbert 1.5.3 afferma che per ogni ideale $J \subset \mathbb{K}[x_1, \dots, x_n]$ vale $I(V(J)) = \sqrt{J}$. Abbiamo inoltre già osservato che gli insiemi $V(I) = V(\sqrt{I})$ formano, al variare di I tra gli ideali di $\mathbb{K}[x_1, \dots, x_n]$, la famiglia dei chiusi di una topologia su \mathbb{A}^n detta **topologia di Zariski**.

Definizione 2.1.1. Un sottoinsieme non vuoto $X \subset \mathbb{A}^n$ si dice una **ipersuperfice affine** se X = V(f) per qualche polinomio f di grado positivo.

Siccome ogni ideale di $\mathbb{K}[x_1,\ldots,x_n]$ è finitamente generato, si ha che ogni chiuso di Zariski è intersezione finita di ipersuperfici. Inoltre gli aperti $\mathbb{A}_f^n := \mathbb{A}^n - V(f)$, con $f \in \mathbb{K}[x_1,\ldots,x_n]$, formano una base della topologia di Zariski.

In modo analogo è possibile definire la topologia di Zariski anche nello spazio proiettivo. Sia x_0,\ldots,x_n un sistema di coordinate omogenee su \mathbb{P}^n e denotiamo

$$S = \oplus S_d = \mathbb{K}\left[x_0, \dots, x_n\right],$$

dove S_d denota lo spazio vettoriale dei polinomi omogenei di grado d. Dato un polinomio omogeneo $f \in S$ è ben definita **l'ipersuperfice proiettiva**

$$V_{\mathbb{P}}(f) = \{ [x] \in \mathbb{P}^n \mid f(x) = 0 \}$$

e si definiscono i chiusi di Zariski come i sottoinsiemi che sono intersezione di ipersuperfici. Se $I \subset S$ è un ideale omogeneo si definisce $V_{\mathbb{P}}(I)$ come l'intersezione di tutte le ipersuperfici $V_{\mathbb{P}}(f)$ al variare di f tra gli elementi omogenei di I. Per definizione gli insiemi $V_{\mathbb{P}}(I)$, al variare di I tra gli ideali omogenei, sono tutti e soli i chiusi di Zariski. la verifica che i chiusi di Zariski sono realmente i chiusi di una topologia è lasciata per esercizio.

Da ora in poi, salvo avviso contrario, qualsiasi affermazione riguardante la topologia dello spazio affine e/o proiettivo si intende relativa alla topologia di Zariski.

Denotiamo con $\pi: \mathbb{A}^{n+1} - \{0\} \to \mathbb{P}^n$, $\pi(x_0, \dots, x_n) = [x_0, \dots, x_n]$, la proiezione al quoziente. Per ogni sottoinsieme $X \subset \mathbb{P}^n$ si definisce il **cono affine** di X come

$$C(X) = \pi^{-1}(X) \cup \{0\}.$$

Si verifica immediatamente che se $I \subset S_+ := \bigoplus_{d>0} S_d$ è un ideale omogeneo allora $C(V_{\mathbb{P}}(I)) = V(I)$. Viceversa se $X \subset \mathbb{P}^n$ si definisce $I(X) \subset S_+$ come l'ideale generato dai polinomi omogenei di grado positivo che si annullano su X.

Lemma 2.1.2. Nelle notazioni precedenti, per ogni sottoinsieme $X \subset \mathbb{P}^n$ vale I(X) = I(C(X)).

Dimostrazione. Segue immediatamente dalla definizione che I(X) e I(C(X)) contengono gli stessi polinomi omogenei, basta quindi dimostrare che l'ideale I(C(X)) è omogeneo. Sia $f \in I(C(X))$ di grado m e $f = f_1 + \cdots + f_m$ la decomposizione di f nelle sue componenti omogenee; bisogna dimostrare che $f_i \in I(C(X))$ per ogni $i = 1, \ldots, m$. Dato che C(X) è un cono di centro 0, per ogni $t \in \mathbb{K}$ il polinomio $f_t(x_0, \ldots, x_n) = f(tx_0, \ldots, tx_n)$ appartiene ancora all'ideale I(C(X)). Dato che $f_t = tf_1 + \ldots + t^m f_m$, prendendo m valori distinti $t_1, \ldots, t_m \in \mathbb{K} - \{0\}$ e invertendo la matrice di Vandermonde (t_i^j) si può scrivere f_1, \ldots, f_m come combinazione lineare dei polinomi f_{t_1}, \ldots, f_{t_m} .

Teorema 2.1.3 (Teorema degli zeri proiettivo). Per ogni ideale omogeneo $J \subset S_+$ vale $I(V_{\mathbb{P}}(J)) = \sqrt{J}$.

Dimostrazione. Segue immediatamente dal Lemma 2.1.2 ed dal teorema degli zeri affine

Si osservi che l'enunciato del teorema degli zeri proiettivo sarebbe falso senza l'ipotesi $J \subset S_+$: ad esempio $V_{\mathbb{P}}(S) = V_{\mathbb{P}}(S_+) = \emptyset$.

Corollario 2.1.4. Sia $J = \bigoplus J_d \subset S_+ = \bigoplus_{d>0} S_d$ un ideale omogeneo. Allora vale $V_{\mathbb{P}}(J) = \emptyset$ se e solo se esiste k tale che $S_d = J_d$ per ogni $d \geq k$.

Dimostrazione. Se $S_d = J_d$ per qualche d allora $V(J) = \emptyset$. Viceversa se $V(J) = \emptyset$, allora per il teorema degli zeri $\sqrt{J} = S_+$ e dato che S_+ è finitamente generato esiste k > 0 tale che $S_+^k \subset J$.

Corollario 2.1.5. Nelle notazioni precedenti, siano $f_0, \ldots, f_r \in S_+$ polinomi omogenei di gradi $d_0 \ge d_1 \ge \cdots \ge d_r > 0$ e, per ogni intero d > 0, si consideri l'applicazione lineare

$$\phi_d \colon S_{d-d_0} \oplus \cdots \oplus S_{d-d_r} \to S_d, \qquad \phi_d(g_0, \ldots, g_r) = g_0 f_0 + \cdots + g_r f_r.$$

Allora vale $V(f_0) \cap \cdots \cap V(f_r) = \emptyset$ se e solo se ϕ_d è surgettiva per qualche d > 0.

Dimostrazione. Ovvia conseguenza di 2.1.4.

Osservazione 2.1.6. È possibile dimostrare (Esercizio ??) che, nelle notazioni del Corollario 2.1.5, se $V(f_0, \ldots, f_r) = \emptyset$, allora $r \geq n$ e ϕ_d è surgettiva per ogni $d \geq d_0 + d_1 + \cdots + d_n - n$.

author: Marco Manetti

Molto utili per le applicazioni sono gli spazi misti affino-multiproiettivi

$$\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_s} \times \mathbb{A}^m$$

sui quali si definisce la topologia di Zariski come l'unica topologia avente la seguente proprietà: per ogni scelta di iperpiani $H_1 \subset \mathbb{P}^{n_1}, \ldots, H_s \subset \mathbb{P}^{n_s}$, la topologia indotta sul sottospazio $(\mathbb{P}^{n_1} - H_1) \times \cdots \times (\mathbb{P}^{n_s} - H_s) \times \mathbb{A}^m$ coincide con la topologia di Zariski su $\mathbb{A}^{m+\sum n_i}$.

In analogia con il caso di \mathbb{P}^n , possiamo definire una ipersuperfice in $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_s} \times \mathbb{A}^m$ come il luogo di zeri di un polinomio separatamente omogeneo nelle coordinate omogenee di ciascun fattore \mathbb{P}^{n_i} e quindi definire i chiusi come intersezioni di ipersuperfici. Consideriamo per esempio il caso $\mathbb{P}^n \times \mathbb{A}^m$. Un polinomio $f \in \mathbb{K} [x_0, \dots, x_n, y_1, \dots, y_m]$ risulta essere omogeneo rispetto alle variabili x_0, \dots, x_n se e solo se si può scrivere $f(x,y) = \sum h_i(x)k_i(y)$, con i polinomi h_i omogenei dello stesso grado. Per un tale polinomio è ben definita la corrispondente ipersuperfice $V(f) \subset \mathbb{P}^n \times \mathbb{A}^m$. Ricordiamo (vedi il Capitolo ??) che ogni fattore irriducibile di f è ancora omogeneo rispetto alle variabili x_0, \dots, x_n e quindi, se f = gh, allora $V(f) = V(g) \cup V(h)$.

Teorema 2.1.7. La proiezione sul secondo fattore $\pi: \mathbb{P}^n \times \mathbb{A}^m \to \mathbb{A}^m$ è un'applicazione chiusa.

Dimostrazione. Sia $X \subset \mathbb{P}^n \times \mathbb{A}^m$ un chiuso e siano x_0, \ldots, x_n coordinate omogenee su \mathbb{P}^n . Allora X è intersezione di un numero finito di ipersuperfici $V(f_0), \ldots, V(f_r)$, con i polinomi $f_i(x,y)$ omogenei nelle variabili x_0, \ldots, x_n . Un punto $a \in \mathbb{A}^m$ appartiene a $\pi(X)$ se e solo se i polinomi omogenei $f_0(x,a), \ldots, f_r(x,a) \in \mathbb{K}[x_0,\ldots,x_n]$ hanno uno zero comune in \mathbb{P}^n e questo equivale a dire che per ogni intero positivo d l'applicazione lineare $\phi_d(a)$, definita nel Corollario 2.1.5, non è surgettiva. Se Y_d denota l'insieme dei punti a tali che $\phi_d(a)$ non è surgettiva, allora vale $X = \bigcap_d Y_d$ e quindi è sufficiente dimostrare che Y_d è chiuso per ogni d. L'applicazione lineare $\phi_d(a)$ è rappresentata da una matrice i cui coefficienti dipendono in modo polinomiale da a e la condizione $\phi_d(a)$ non surgettiva equivale all'annullarsi dei determinanti minori di ordine uguale alla dimensione di S_d . Questo prova la chiusura di Y_d .

Corollario 2.1.8. La proiezione

$$\mathbb{P}^{n_0} \times \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_s} \times \mathbb{A}^m \to \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_s} \times \mathbb{A}^m$$

è un'applicazione chiusa.

Dimostrazione. Basta osservare che $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_s} \times \mathbb{A}^m$ è ricoperto da un numero finito di spazi affini $\mathbb{A}^{m+\sum n_i}$.

Esercizi

- **2.1.** Provare che \mathbb{A}^n , inteso come spazio topologico, è quasicompatto.
- **2.2.** Dimostrare che per ogni scelta di $p_1, \ldots, p_s \in \mathbb{K}[x_1, \ldots, x_n]$, l'applicazione $\mathbb{A}^n \to \mathbb{A}^s$, definita da $a \mapsto (p_1(a), \ldots, p_s(a))$ è continua: in particolare le affinità di \mathbb{A}^n in sé sono omeomorfismi.
- **2.3.** Mostrare che l'applicazione $\mathbb{A}^n \to \mathbb{A}^{n+1}$, $(a_1, \dots, a_n) \mapsto (a_1, \dots, a_n, 0)$, è una immersione topologica chiusa.

2.4. Utilizzando la bigezione naturale $\mathbb{A}^{n+m}\cong\mathbb{A}^n\times\mathbb{A}^m$, confrontare la topologia di Zariski su \mathbb{A}^{n+m} con la topologia prodotto su $\mathbb{A}^n\times\mathbb{A}^m$ e provare che se $X\subset\mathbb{A}^n$ e $Y\subset\mathbb{A}^m$ sono chiusi, allora $X\times Y\subset\mathbb{A}^{n+m}$ è chiuso.

Osservazione 2.1.9. Il fatto che la topologia di Zariski su \mathbb{A}^{n+m} è strettamente più fine della topologia prodotto permette di supplire a certi inconvenienti tipici delle topologie non-Hausdorff. Ad esempio il grafico dell'applicazione definita nell'Esercizio 2.2 è un sottoinsieme chiuso di \mathbb{A}^{n+s} .

- **2.5.** Dimostrare che le proiettività $\mathbb{P}^n \to \mathbb{P}^n$ sono omeomorfismi e che l'applicazione $\mathbb{A}^n \to \mathbb{P}^n$ definita da $(a_1, \ldots, a_n) \mapsto [1, a_1, \ldots, a_n]$ è una immersione topologica aperta.
- **2.6.** Provare che la proiezione sul secondo fattore $\mathbb{P}^m \times \mathbb{A}^n \to \mathbb{A}^n$ è aperta. (Sugg.: applicare l'Esercizio 1.15 ad un opportuno ricoprimento aperto di $\mathbb{P}^m \times \mathbb{A}^n$.)
- **2.7.** Siano $X \subset \mathbb{A}^n$ un chiuso, I = I(X) il suo ideale, $f \in \mathbb{K}[x_1, \dots, x_n]$ un polinomio e $\Gamma \subset X \times \mathbb{A}^1 \subset \mathbb{A}^{n+1}$ il grafico dell'applicazione $f \colon X \to \mathbb{A}^1$. Dimostrare che Γ è chiuso e che $I(\Gamma)$ è l'ideale generato da I e da $x_{n+1} f(x_1, \dots, x_n)$.

2.2 L'immersione di Veronese

Siano $f_0, \ldots, f_s \in \mathbb{K}[x_0, \ldots, x_n]$ polinomi omogenei dello stesso grado d senza zeri comuni, cioè tali che $V(f_0, \ldots, f_s) = \emptyset$. Possiamo definire un'applicazione

$$f: \mathbb{P}^n \to \mathbb{P}^s, \qquad f([x]) = [f_0(x), \dots, f_s(x)],$$

che si verifica immediatamente essere continua.

Definizione 2.2.1. La d-esima immersione di Veronese

$$v_d \colon \mathbb{P}^n \to \mathbb{P}^N$$

è l'applicazione definita in coordinate omogenee da

$$v_d([x_0,\ldots,x_n]) = [\ldots,x^I,\ldots],$$

al variare di $I = (i_0, \dots, i_n) \in \mathbb{N}^{n+1}$ tra tutti i multiindici di grado $|I| = i_0 + \dots + i_n = d$ e dove $x^{(i_0, \dots, i_n)} = x_0^{i_0} \cdots x_n^{i_n}$. Il numero N+1 è perciò uguale al numero di monomi di grado d nelle variabili x_0, \dots, x_n e quindi $N = \binom{n+d}{d} - 1$.

Ad esempio la seconda immersione di Veronese $v_2 : \mathbb{P}^2 \to \mathbb{P}^5$ è data da

$$[x_0, x_1, x_2] \mapsto [x_0^2, x_0 x_1, x_0 x_2, x_1^2, x_1 x_2, x_2^2].$$

Proposizione 2.2.2. Per ogni coppia di interi positivi n e d, la d-esima immersione di Veronese $v_d \colon \mathbb{P}^n \to \mathbb{P}^N$ è una immersione topologica chiusa e la sua immagine $v_d(\mathbb{P}^n)$ è intersezione finita di quadriche proiettive.

Dimostrazione. Iniziamo con l'osservare che per ogni proiettività ϕ di \mathbb{P}^n esiste una proiettività indotta ψ su \mathbb{P}^N tale che $v_d\phi=\psi v_d$. Dato che v_d non è costante ed il gruppo delle proiettività di \mathbb{P}^n agisce in modo doppiamente transitivo (significa che $\operatorname{PGL}(n+1)$ agisce transitivamente su $\mathbb{P}^n \times \mathbb{P}^n$ -Diagonale) ne segue immediatamente che v_d è iniettiva. Il fatto che v_d è una applicazione chiusa può essere dedotto da un risultato generale

non costruttivo che dimostreremo in seguito. Per motivi didattici preferiamo dare qui una dimostrazione costruttiva della chiusura di v_d .

Sia y_{I_0},\ldots,y_{I_N} un sistema di coordinate omogenee su \mathbb{P}^N tale che l'equazioni $y_{I_j}=x^{I_j}$ definiscono l'immersione di Veronese. Poniamo $X=v_d(\mathbb{P}^n)$ dotato della topologia di sottospazio e proviamo prima che $v_d\colon \mathbb{P}^n\to X$ è un omeomorfismo e poi che X è intersezione finita di quadriche in \mathbb{P}^N . Dato che ogni chiuso di \mathbb{P}^n è intersezione di ipersuperfici, è sufficiente provare che $v_d(V(g))$ è chiuso in X per ogni polinomio omogeneo g. A meno di sostituire g con una sua potenza non è restrittivo supporre che il grado di g sia un multiplo di d. Esiste allora un polinomio $P\in\mathbb{K}\left[y_0,\ldots,y_N\right]$ tale che $P(x^{I_0},\ldots,x^{I_N})=g$. È allora evidente che $v_d(V(g))=X\cap V(P)$. Consideriamo il chiuso di \mathbb{P}^N , intersezione di (finite) quadriche

$$Y = \bigcap \{ V(y_{I_1}y_{I_2} - y_{J_1}y_{J_2}) \mid I_1 + I_2 = J_1 + J_2 \}.$$

È chiaro che $X \subset Y$; proviamo che vale X = Y. Sia $[y] \in Y$ e sia $I = (i_0, \ldots, i_n)$ un multiindice tale che $y_I \neq 0$. A meno di permutazioni degli indici si può supporre $i_0 > 0$; se $i_0 < d$ possiamo trovare due multiindici $J = (j_0, \ldots, j_n)$ e H, di grado d, tali che 2I = J + H e $j_0 > i_0$. Siccome $y_I^2 = y_J y_H$ si ha $y_J \neq 0$. Non è quindi restrittivo supporre $I = (d, 0, 0, \ldots, 0)$ e se definiamo $x_0 = y_{(d,0,0,\ldots,0)} = 1$ e $x_j = y_{(d-1,0,\ldots,1,\ldots,0)}$ dove 1 è posto alla j-esima posizione si verifica facilmente che $f([x_0,\ldots,x_n]) = [y]$ (si noti che lo stesso argomento mostra che $y_d : \mathbb{P}^n \to Y$ è bigettiva).

Esercizi

2.8 (Definizione intrinseca dell'immersione di Veronese). Sia V uno spazio vettoriale e denotiamo con V_d lo spazio vettoriale delle forme $f\colon V\to \mathbb{K}$ omogenee di grado d (cioè f si rappresenta con un polinomio omogeneo di grado d in ogni sistema di coordinate su V). Per ogni $p\in \mathbb{P}(V)$ denotiamo con $L(-p)\subset V_d$ il sottospazio vettoriale delle forme che si annullano in p. Dimostrare che L(-p) è un iperpiano e che, in opportuni sistemi di coordinate, l'applicazione

$$\mathbb{P}(V) \to \mathbb{P}(V_d^{\vee}), \qquad p \mapsto L(-p),$$

è la d-esima immersione di Veronese. (Sugg.: isomorfismi canonici $(V^{\vee})_d = (V_d)^{\vee}$.)

- **2.9.** Il complementare in \mathbb{P}^n di una ipersuperfice proiettiva è omeomorfo ad un chiuso di uno spazio affine. (Sugg.: immersione di Veronese.)
- ${\bf 2.10.}$ Provare che l'immagine della n-esima immersione di Veronese

$$\mathbb{P}^1 \to \mathbb{P}^n, \qquad [x_0, x_1] \to [x_0^n, \dots, x_1^n]$$

è il chiuso determinantale di equazione

$$\operatorname{rank}\begin{pmatrix} y_0 \ y_1 \cdots \ y_{n-1} \\ y_1 \ y_2 \cdots \ y_n \end{pmatrix} \le 1.$$

2.3 Componenti irriducibili

In questa sezione svilupperemo alcune nozioni di topologia generale che ben si adattano alla topologia di Zariski.

Sia X uno spazio topologico, un sottoinsieme $Z \subset X$ si dice **localmente chiuso** se per ogni $z \in Z$ esiste un aperto $U \subset X$ tale che $z \in U$ e $Z \cap U$ è chiuso in U. Ad esempio i sottoinsiemi aperti ed i sottoinsiemi chiusi sono anche localmente chiusi.

Lemma 2.3.1. Siano X uno spazio topologico e $Z \subset X$ un sottoinsieme. Allora sono fatti equivalenti:

- 1. Z è localmente chiuso.
- 2. $Z \ \dot{e} \ aperto \ in \ \overline{Z} \ (rispetto \ alla \ topologia \ di \ sottospazio).$
- 3. Z è intersezione di un chiuso e di un aperto di X.

Dimostrazione. $[1 \Rightarrow 2]$ Per ogni punto $z \in Z$ esiste un aperto $z \in U \subset X$ tale che $Z \cap U$ è chiuso in U e quindi esiste un chiuso $C \subset X$ tale che $C \cap U = Z \cap U$; a meno di sostituire C con $C \cup (X - U)$ non è restrittivo supporre $Z \subset C$. Quindi $Z \cap U \subset \overline{Z} \cap U \subset C \cap U = Z \cap U$ che implica $\overline{Z} \cap U \subset Z$.

Le implicazioni $[2 \Rightarrow 3]$ e $[3 \Rightarrow 1]$ sono banali.

Definizione 2.3.2. Un sottoinsieme di uno spazio topologico si dice costruibile se è unione finita di sottoinsiemi localmente chiusi.

Lemma 2.3.3. (??) Sia Z un sottoinsieme costruibile di uno spazio topologico. Allora Z contiene un aperto denso di \overline{Z} .

Dimostrazione. Sara vero?

2.11. Sia Z un sottoinsieme costruibile di uno spazio topologico. Provare che Z contiene un aperto di \overline{Z} .

Definizione 2.3.4. Uno spazio topologico si dice irriducibile se ogni coppia di aperti non vuoti ha intersezione non vuota. Equivalentemente uno spazio è irriducibile se non è unione finita di chiusi propri. Un sottospazio di uno spazio topologico si dice irriducibile se è irriducibile per la topologia indotta.

Ad esempio l'insieme vuoto, i punti e, più in generale, qualsiasi spazio topologico dotato della topologia indiscreta è irriducibile.

Lemma 2.3.5. Siano X uno spazio topologico e $Y \subset X$ un sottospazio irriducibile. Allora:

- 1. La chiusura topologica \overline{Y} è irriducibile.
- 2. Se $U \subset X$ è un aperto, allora $Y \cap U$ è irriducibile.
- 3. Se $f: X \to Z$ è continua, allora f(Y) è irriducibile.

Dimostrazione. [1] Siano U, V due aperti non vuoti di \overline{Y} , siccome Y è denso nella sua chiusura si ha $U \cap Y \neq \emptyset$, $V \cap Y \neq \emptyset$; siccome Y è irriducibile si ha $U \cap V \cap Y \neq \emptyset$ ed a maggior ragione $U \cap V \neq \emptyset$.

- [2] Ogni aperto di $U \cap Y$ è aperto anche in Y. Se V_1, V_2 sono aperti non vuoti di $Y \cap U$ allora V_1 e V_2 sono aperti non vuoti di Y e quindi hanno intersezione non vuota.
- [3] Basta osservare che se $U\subset f(Y)$ è un aperto non vuoto, allora $f^{-1}(U)$ è un aperto non vuoto di X.

Lemma 2.3.6. Sia U un aperto in uno spazio topologico X. Esiste una bigezione naturale tra l'insieme A dei chiusi irriducibili non vuoti di U e l'insieme \mathcal{B} dei chiusi irriducibili di X che intersecano U. Più precisamente, le applicazioni

$$A \to \mathcal{B}, \qquad W \mapsto \overline{W},$$
 $\mathcal{B} \to \mathcal{A}, \qquad Z \mapsto Z \cap U,$

sono una l'inversa dell'altra.

П

Dimostrazione. Per ogni chiuso C di X vale $C = (C - U) \cup \overline{(C \cap U)}$ e quindi se C è irriducibile e $C \cap U \neq \emptyset$ si ha $C = \overline{(C \cap U)}$. Viceversa, se B è un chiuso di U, esiste un chiuso D di X tale che $B = D \cap U$, dunque $\overline{B} \subset D$ e quindi $B = \overline{B} \cap U$. Per concludere basta applicare i punti 1 e 2 del Lemma 2.3.5.

Lemma 2.3.7. Siano dati due spazi topologici irriducibili X, Y ed una topologia sul prodotto cartesiano $X \times Y$ tale che per ogni $(x_0, y_0) \in X \times Y$ le inclusioni

$$X \to X \times Y$$
, $x \mapsto (x, y_0)$,

e

$$Y \to X \times Y$$
, $y \mapsto (x_0, y)$,

siano continue. Allora anche $X \times Y$ è irriducibile.

Dimostrazione. Siano $U_1, U_2 \subset X \times Y$ aperti non vuoti, $(x_1, y_1) \in U_1$, $(x_2, y_2) \in U_2$. Per ipotesi i sottoinsiemi $V_1 = \{y \in Y \mid (x_1, y) \in U_1\}$ e $V_2 = \{y \in Y \mid (x_2, y) \in U_2\}$ sono aperti non vuoti di Y e quindi esiste $y_0 \in Y$ tale che $(x_1, y_0) \in U_1$ e $(x_2, y_0) \in U_2$. Ne segue che $W_1 = \{x \in X \mid (x, y_0) \in U_1\}$ e $W_2 = \{x \in X \mid (x, y_0) \in U_2\}$ sono aperti non vuoti di X e quindi esiste $x_0 \in X$ tale che $(x_0, y_0) \in U_1 \cap U_2$.

Definizione 2.3.8. Le componenti irriducibili di uno spazio topologico sono gli elementi massimali della famiglia dei chiusi irriducibili, ordinata rispetto all'inclusione.

Definizione 2.3.9. Uno spazio topologico X si dice **Noetheriano** se ogni famiglia di aperti possiede un elemento massimale rispetto all'inclusione.

Per il Lemma ?? uno spazio topologico è Noetheriano se e solo se ogni catena numerabile ascendente di aperti è stazionaria: per passaggio al complementare si ha che uno spazio topologico è Noetheriano se e solo se ogni catena numerabile discendente di chiusi è stazionaria. Tutti gli spazi considerati nella Sezione 2.1 sono Noetheriani: infatti, ad una catena discendente di chiusi X_i dello spazio affine \mathbb{A}^n corrisponde una catena ascendente di ideali $I(X_i)$ che, per il teorema della base di Hilbert, è stazionaria.

Lemma 2.3.10. Sia X uno spazio topologico Noetheriano. Allora:

- 1. $X \ è \ quasicompatto$.
- 2. Ogni immagine continua di X è Noetheriana.
- 3. Ogni sottospazio topologico di X è Noetheriano.

Dimostrazione. [1] Sia \mathcal{U} un ricoprimento di X; per trovare un sottoricoprimento finito basta prendere un elemento massimale nella famiglia delle unioni finite di aperti di \mathcal{U} .

- [2] È banale.
- [3] Sia $Y \subset X$ un sottospazio. Denotiamo con $\mathcal{T}(X)$ e $\mathcal{T}(Y) = \{U \cap Y \mid U \in \mathcal{T}(X)\}$ le famiglie di aperti di X e Y rispettivamente e con $r \colon \mathcal{T}(X) \to \mathcal{T}(Y)$ la naturale mappa di restrizione. Sia $\mathcal{F} \subset \mathcal{T}(Y)$ una collezione di aperti e sia $U \in \mathcal{T}(X)$ un elemento massimale della famiglia $r^{-1}(\mathcal{F})$; proviamo che $r(U) = U \cap Y$ è massimale in \mathcal{F} . Se $r(U) \subset r(V)$ e $r(V) \in \mathcal{F}$ allora $U \cup V \in r^{-1}(\mathcal{F})$ e per la massimalità di U vale $V \subset U$ e quindi r(U) = r(V).

Teorema 2.3.11. Sia X uno spazio topologico Noetheriano. Allora:

- 1. X possiede un numero finito di componenti irriducibili X_1, \ldots, X_n .
- 2. $X = X_1 \cup \cdots \cup X_n$.

3. Per ogni indice i, la componente X_i non è contenuta nell'unione delle componenti X_j , per $j \neq i$.

Dimostrazione. Dimostriamo per cominciare che ogni chiuso di X si può scrivere come unione finita di chiusi irriducibili; a tal fine consideriamo la famiglia \mathcal{C} di tutti i chiusi di X e la sottofamiglia $\mathcal{F} \subset \mathcal{C}$ dei chiusi che sono unioni finite di chiusi irriducibili. Se per assurdo $\mathcal{F} \neq \mathcal{C}$, allora esiste $Z \in \mathcal{C} - \mathcal{F}$ minimale; poiché $Z \notin \mathcal{F}$, il chiuso Z non è irriducibile e quindi esistono due chiusi propri Z_1, Z_2 tali che $Z = Z_1 \cup Z_2$. Per la minimalità di Z si ha che $Z_1, Z_2 \in \mathcal{F}$ e quindi anche $Z \in \mathcal{F}$. Possiamo quindi scrivere $X = X_1 \cup \cdots \cup X_n$, dove ogni X_i è un chiuso irriducibile ed in modo tale che la condizione 3) sia soddisfatta. Dimostriamo che X_1, \ldots, X_n sono tutte e sole le componenti irriducibili di X. Sia $Z \subset X$ un chiuso irriducibile, allora $Z = (Z \cap X_1) \cup \cdots \cup (Z \cap X_n)$ e quindi i chiusi $Z \cap X_i$ non possono essere tutti propri, ovvero esiste un indice i tale che $Z \subset X_i$. Lo stesso vale se Z è una componente irriducibile e quindi, tenendo presente la massimalità deduciamo che ogni componente irriducibile di X è uguale ad un X_i .

Viceversa se X_i non è massimale esiste una inclusione propria $X_i \subset Z$ con Z irriducibile; per l'argomento precedente Z è contenuto in qualche X_j in contraddizione con la condizione 3).

Esercizi

- 2.12. Dimostrare che l'intersezione finita di sottoinsiemi localmente chiusi è localmente chiusa.
- **2.13.** Quali dei seguenti sottoinsiemi di \mathbb{A}^2 sono localmente chiusi?

$$X = \{xy \neq 0\} \cup \{(0,0)\}, \qquad Y = (\{xy = 1\} \cap \{x \neq y\}) \cup \{(1,1)\},$$

$$Z = \left\{ (x,y) \in \mathbb{A}^2 \mid \begin{pmatrix} x & 2x \\ y & y \end{pmatrix} \text{ è diagonalizzabile} \right\}.$$

- **2.14.** Dimostrare che la famiglia dei sottoinsiemi costruibili è la più piccola famiglia di sottoinsiemi che contiene gli aperti ed è chiusa per le operazioni di complemento e di unione finita.
- 2.15. Dimostrare che unione finita di spazi topologici Noetheriani è Noetheriana.
- **2.16.** Dimostrare che in uno spazio topologico di Hausdorff ogni sottospazio irriducibile non vuoto è formato da un solo punto.
- **2.17.** Sia $f: X \to Y$ un'applicazione continua ed aperta. Se le fibre di f sono irriducibili e $Z \subset Y$ è irriducibile, provare che $f^{-1}(Z)$ è irriducibile.
- **2.18.** Sia $\{Y_i\}$ una catena ascendente di sottospazi irriducibili di uno spazio topologico (non necessariamente Noetheriano). Dimostrare che $\cup Y_i$ e $\overline{\cup Y_i}$ sono irriducibili. Utilizzare il Lemma di Zorn per dedurre che ogni chiuso irriducibile è contenuto in una componente irriducibile e che ogni spazio topologico è unione delle sue componenti irriducibili.
- **2.19.** Sia $X = X_1 \cup X_2$ con X_1, X_2 aperti irriducibili non vuoti. Dimostrare che X è irriducibile se e solo se $X_1 \cap X_2 \neq \emptyset$.

author: Marco Manetti

date/time: 5-Apr-2011/17:03

2.20. Provare che ogni spazio topologico Noetheriano di Hausdorff è finito.

2.4 La dimensione combinatoria di uno spazio topologico

Definizione 2.4.1. La dimensione combinatoria di uno spazio topologico

$$\dim X \in \{-1, 0, 1, 2, \ldots\} \cup \{+\infty\}$$

è l'estremo superiore dell'insieme dei numeri interi $n \geq -1$ per i quali esiste una catena $Z_{-1} \subset Z_0 \subset \cdots \subset Z_n \subset X$, dove gli Z_i sono chiusi irriducibili e $Z_i \neq Z_{i-1}$ per ogni i.

Lemma 2.4.2. L'insieme vuoto ha dimensione -1. La dimesione di uno spazio topologico non vuoto X è maggiore od oguale a 0 ed è uguale all'estremo superiore dell'insieme dei numeri interi $n \geq 0$ per i quali esiste una catena $Z_0 \subset \cdots \subset Z_n \subset X$, dove gli Z_i sono chiusi irriducibili non vuoti e $Z_i \neq Z_{i-1}$ per ogni i.

Dimostrazione. Siccome il vuoto è irriducibile, che la dimensione dell'insieme vuoto sia -1 segue immediatamente dalla definizione. Se X non è vuoto, allora per ogni punto $p \in X$ la sua chiusura \overline{p} è un chiuso irriducibile e $\emptyset \subset \overline{p}$ è una inclusione propria di chiusi irriducibili; questo prova che dim $X \geq 0$.

Definizione 2.4.3. La dimensione combinatoria di uno spazio topologico X in un punto $p \in X$ è l'estremo inferiore delle dimensioni degli aperti di X contenenti p, ossia

$$\dim_p X = \inf \{ \dim U \mid p \in U \ e \ U \subset X \ aperto \ \}.$$

Da ora in poi, quando non ci sarà rischio di confusione, scriveremo semplicemente dimensione intendendo la dimensione combinatoria. Conveniamo inoltre che se $p \notin X$, allora $\dim_p X = -1$.

Lemma 2.4.4. Siano X uno spazio topologico e $Y \subset X$ un sottospazio. Allora

$$\dim Y \leq \dim X$$

e per ogni punto $p \in Y$ vale

$$\dim_p Y \leq \dim_p X$$
.

Dimostrazione. Sia $Z \subset Y$ chiuso irriducibile e \overline{Z} la chiusura di Z in X. Dalla formula $Z=Y\cap\overline{Z}$ segue che la chiusura in X trasforma inclusioni proprie di chiusi irriducibili di Y in inclusioni proprie di chiusi irriducibili di X. Questo prova che dim $Y \leq \dim X$. Lo stesso argomento mostra che per ogni aperto U di X vale $\dim(Y\cap U)\leq \dim U$ e quindi che $\dim_p Y \leq \dim_p X$.

Segue immediatamente dalla definizione e dal Lemma 2.4.4 che la dimensione in un punto è un invariante locale cioè, se $U \subset X$ è un aperto contenente un punto p, allora $\dim_p U = \dim_p X$.

Lemma 2.4.5. Sia $Z_n \subset Z_{n-1} \subset \cdots \subset Z_0 \subset X$ una catena di inclusioni proprie di chiusi irriducibili di uno spazio topologico X, allora $\dim_p X \geq n$ per ogni $p \in \mathbb{Z}_n$. In particolare vale

$$\dim X = \sup_{p \in X} \dim_p X.$$

Dimostrazione. Sia U un aperto che contiene p. Per il Lemma 2.3.6 la restrizione ad U trasforma inclusioni proprie di chiusi irriducibili di X contenenti p in inclusioni proprie di chiusi irriducibili di U. Quindi dim $U \geq n$ e quindi dim $_p X \geq n$.

Uno spazio avente la stessa dimensione in tutti i suoi punti è detto equidimensionale o di dimensione pura.

Lemma 2.4.6. Sia X uno spazio topologico irriducibile di dimensione finita. Allora per ogni chiuso proprio $Y \subset X$ vale $\dim Y < \dim X$.

Dimostrazione. Sia $n < +\infty$ la dimensione di X e si assuma per assurdo che esista una catena di n inclusioni proprie di chiusi irriducibili di Y, diciamo $Z_n \subset Z_{n-1} \subset \cdots \subset Z_0 \subset Y$. Poiché $X \neq Y$ si avrebbe che la catena di chiusi irriducibili $Z_n \subset \cdots \subset Z_0 \subset X$ sarebbe propria e quindi dim $X \geq n+1$.

Lemma 2.4.7. Sia $\pi: X \to Y$ un'applicazione continua, chiusa e surgettiva tra spazi topologici Noetheriani. Allora:

1. $\dim X > \dim Y$;

2. se $y \in Y$ e la fibra $\pi^{-1}(y)$ è formata da un sol punto x, allora $\dim_x X \ge \dim_y Y$.

Dimostrazione. [1] È sufficiente dimostrare che per ogni catena finita $Z_n \subset \cdots \subset Z_0$ di chiusi irriducibili di Y esiste una catena $H_n \subset \cdots \subset H_0$ di chiusi irriducibili di X tali che $\pi(H_i) = Z_i$. Essendo $\pi^{-1}(Z_0)$ un chiuso in uno spazio Noetheriano esso è unione di un numero finito di componenti irriducibili, diciamo $\pi^{-1}(Z_0) = W_1 \cup \cdots \cup W_s$. I chiusi $\pi(W_j)$ ricoprono Z_0 e per l'irriducibilità esiste un indice j tale che $\pi(W_j) = Z_0$. Poniamo $H_0 = W_j$ e ripetiamo il ragionamento con H_0 al posto di X e Z_1 al posto di Z_0 .

[2] Se $\dim_x X = +\infty$ non c'è nulla da dimostrare; se $\dim_x X < +\infty$ scegliamo un aperto $p \in U \subset X$ tale che $\dim_x X = \dim U$. Sia $V = Y - \pi(X - U)$, allora V è un aperto che contiene y e $x \in \pi^{-1}(V) \subset U$. Siccome $\pi^{-1}(V) \to V$ è continua, chiusa e surgettiva, per la prima parte del lemma si ha

$$\dim_y Y \le \dim V \le \dim \pi \pi^{-1}(V) \le \dim U = \dim_x X.$$

Lemma 2.4.8. Siano $\{X_i \mid i \in I\}$ le componenti irriducibili di uno spazio topologico Noetheriano X. Allora

$$\dim X = \sup \{\dim X_i \mid i \in I\}$$

e per ogni punto $p \in X$ vale

$$\dim_p X = \sup \{ \dim_p X_i \mid p \in X_i \}.$$

Dimostrazione. Lasciata per esercizio.

Esercizi

- **2.21.** Trovare una topologia su \mathbb{N} che lo rende uno spazio topologico Noetheriano di dimensione infinita.
- **2.22.** Dato uno spazio topologico X, un'applicazione $f\colon X\to\mathbb{N}\cup\{+\infty\}$ si dice semicontinua superiormente se per ogni $p\in X$ esiste un aperto $U\subset X$ tale che $p\in U$ e $f(q)\leq f(p)$ per ogni $q\in U$. Equivalentemente f è semicontinua superiormente se per ogni $n\in\mathbb{N}\cup\{+\infty\}$ il sottoinsieme $\{p\in X\mid f(p)\geq n\}$ è chiuso. Dimostrare che l'applicazione $p\mapsto \dim_p X$ è semicontinua superiormente.

2.5 La dimensione dello spazio affine

Dimostriamo adesso che la dimensione di \mathbb{A}^n è uguale a n. Tale risultato, associato all'esistenza delle proiezioni normalizzate, permetterà di trovare un'utile caratterizzazione della dimensione dei chiusi affini e proiettivi.

Lemma 2.5.1. Un sottoinsieme chiuso $X \subset \mathbb{A}^n$ è irriducibile se e solo se I(X) è un ideale primo.

Dimostrazione. Se $X = X_1 \cup X_2$ con X_i chiusi propri, allora esistono $f_i \in I(X_i) - I(X)$, i = 1, 2. Chiaramente $f_1 f_2 \in I(X)$ e quindi I(X) non è primo.

Viceversa se $f_1, f_2 \notin I(X)$ e $f_1 f_2 \in I(X)$ allora possiamo scrivere $X = X_1 \cup X_2$ dove $X_i = X \cap V(f_i)$ è un chiuso proprio e dunque X non è irriducibile.

Corollario 2.5.2. Lo spazio affine \mathbb{A}^n è uno spazio topologico Noetheriano irriducibile.

Dimostrazione. L'ideale $I(\mathbb{A}^n) = 0$ è primo.

Definizione 2.5.3. Sia $X \subset \mathbb{A}^n$ un chiuso di Zariski. Diremo che la proiezione lineare sulle prime n-1 coordinate $\mathbb{A}^n \to \mathbb{A}^{n-1}$ è **normalizzata** rispetto a X se esiste un polinomio $f \in I(X)$ che è monico di grado positivo rispetto alla variabile x_n .

Segue dal Lemma di Proiezione 1.4.3 che, se $\pi: \mathbb{A}^n \to \mathbb{A}^{n-1}$ è normalizzata rispetto a X, allora $\pi: X \to \mathbb{A}^{n-1}$ è un'applicazione chiusa e $I(\pi(X)) = I(X) \cap \mathbb{K}[x_1, \dots, x_{n-1}]$.

Lemma 2.5.4. Supponiamo che la proiezione sulle prime n-1 coordinate $\pi: \mathbb{A}^n \to \mathbb{A}^{n-1}$ sia normalizzata rispetto ad un chiuso irriducibile non vuoto $X \subset \mathbb{A}^n$. Allora per ogni chiuso proprio $Z \subset X$ vale $\pi(Z) \neq \pi(X)$.

Dimostrazione. Per il Lemma 1.4.3, la proiezione $\pi\colon X\to\mathbb{A}^{n-1}$ è un applicazione chiusa, $I(\pi(X))=I(X)\cap\mathbb{K}\,[x_1,\ldots,x_{n-1}]$ e $I(\pi(Z))=I(Z)\cap\mathbb{K}\,[x_1,\ldots,x_{n-1}]$. Dato che $\pi(X)$ è irriducibile e Z è unione finita di irriducibili, non è restrittivo supporre Z irriducibile e non vuoto. Siccome $I(X)\subset I(Z)$ sono ideali primi, $1\not\in I(Z)$ e I(X) contiene un polinomio monico in x_n , per il Corollario 1.1.12 si ha $I(X)\cap\mathbb{K}\,[x_1,\ldots,x_{n-1}]\neq I(Z)\cap\mathbb{K}\,[x_1,\ldots,x_{n-1}]$ e quindi $\pi(X)\neq\pi(Z)$.

Proposizione 2.5.5. Se la proiezione sulle prime coordinate $\pi: \mathbb{A}^n \to \mathbb{A}^{n-1}$ è normalizzata rispetto ad un chiuso irriducibile non vuoto $X \subset \mathbb{A}^n$, allora dim $X = \dim \pi(X)$.

Dimostrazione. Per il Lemma 2.5.4, la proiezione π trasforma inclusioni proprie di chiusi irriducibili di X in inclusioni proprie di chiusi irriducibili di $\pi(X)$ contenenti $\pi(p)$: questo prova che dim $X \leq \dim \pi(X)$. D'altronde per il Lemma 2.4.7 dim $X \geq \dim \pi(X)$ e quindi dim $X = \dim \pi(X)$.

Teorema 2.5.6. Per ogni intero $n \geq 0$ lo spazio affine \mathbb{A}^n ha dimensione pura n. Se $X \subset \mathbb{A}^n$ e $Y \subset \mathbb{A}^m$ sono chiusi irriducibili, allora $X \times Y \subset \mathbb{A}^{n+m}$ è irriducibile di dimensione $\dim(X \times Y) = \dim X + \dim Y$.

Dimostrazione. Lo spazio affine ha dimensione pura in quanto il gruppo degli omeomorfismi agisce transitivamente. Proviamo inizialmente, per induzione su n che dim $\mathbb{A}^n=n$. Gli unici chiusi propri irriducibili di \mathbb{A}^1 sono i punti, quindi il teorema è vero per n=1; per induzione possiamo supporre il teorema vero per \mathbb{A}^{n-1} . Esiste una ovvia catena di chiusi irriducibili $0=Z_n\subset\cdots\subset Z_1\subset Z_0=\mathbb{A}^n$, dove $Z_i=\{x_1=\cdots=x_i=0\}$, dalla quale segue che dim $\mathbb{A}^n\geq n$. Per ogni chiuso proprio irriducibile $X\subset\mathbb{A}^n$ si ha dim X< n; infatti

a meno di un cambio lineare di coordinate la proiezione $\pi\colon \mathbb{A}^n\to \mathbb{A}^{n-1}$ è normalizzata rispetto a X e per la Proposizione 2.5.5 si ha dim $X=\dim \pi(X)\leq \dim \mathbb{A}^{n-1}=n-1$. Questo prova che dim $\mathbb{A}^n=n$. Consideriamo adesso due chiusi irriducibili $X\subset \mathbb{A}^n,\,Y\subset \mathbb{A}^m;$ dal Lemma 2.3.7 segue che anche $X\times Y$ è irriducibile. Se $X=\mathbb{A}^n$ e $Y=\mathbb{A}^m,$ allora $X\times Y=\mathbb{A}^{n+m}$ e la formula $\dim(X\times Y)=\dim X+\dim Y.$ Altrimenti, supponiamo per fissare le idee che $X\neq \mathbb{A}^n;$ a meno di un generico cambio di coordinate la proiezione $\pi\colon \mathbb{A}^n\to \mathbb{A}^{n-1}$ è normalizzata rispetto a X e quindi anche la proiezione

$$\pi \times Id \colon \mathbb{A}^n \times \mathbb{A}^m \to \mathbb{A}^{n-1} \times \mathbb{A}^m$$

è normalizzata rispetto a $X \times Y$ e quindi $\dim(X \times Y) = \dim(\pi(X) \times Y)$. La conclusione segue per induzione.

La dimostrazione di 2.5.5 fornisce, assieme al Teorema 2.5.6, una ricetta per il calcolo della dimensione di un chiuso affine X; basta infatti eseguire una serie di proiezioni $\pi_n \colon \mathbb{A}^n \to \mathbb{A}^{n-1}, \dots, \pi_{s+1} \colon \mathbb{A}^{s+1} \to \mathbb{A}^s$ normalizzate rispetto a X, $\pi_n(X)$ ecc...in modo tale che $\pi_{s+1}\pi_{s+2}\cdots\pi_n(X) = \mathbb{A}^s$. La dimensione di X sarà quindi uguale a s.

Concludiamo il paragrafo analizzando in dettaglio il caso delle ipersuperfici. Abbiamo già osservato che V(f) è irriducibile se f è irriducibile. In generale se f_1, \ldots, f_r sono i fattori irriducibili di f vale $V(f) = V(f_1) \cup \cdots \cup V(f_r)$ e i chiusi $V(f_i)$ sono esattamente le componenti irriducibili di V(f).

Proposizione 2.5.7. Sia $X \subset \mathbb{A}^n$ una ipersuperfice, allora $\dim_p X = n-1$ per ogni $p \in X$. Viceversa se $X \subset \mathbb{A}^n$ è un chiuso irriducibile di dimensione n-1 allora X è un'ipersuperfice.

Dimostrazione. Dimostriamo la proposizione per induzione su n, essendo il risultato banalmente vero per n=1; possiamo quindi supporre n>1 ed assumere il teorema vero per ipersuperfici in \mathbb{A}^{n-1} . Sia $p\in X$ un punto qualsiasi, poiché ogni componente di X è infinita, possiamo trovare un iperpiano affine H passante per p tale che $H\cap X$ non contiene alcuna componente irriducibile di $X\cup H$. L'intersezione $X\cap H$ è un chiuso di X ed una ipersuperfice in $H=\mathbb{A}^{n-1}$; per induzione

$$n-2 = \dim_p(X \cap H) < \dim_p X < n = \dim \mathbb{A}^n.$$

Viceversa, se $X \subset \mathbb{A}^n$ è irriducibile di dimensione n-1, allora l'ideale $I(X) \neq 0$ è primo e contiene un polinomio irriducibile f. Dunque $X \subset V(f)$ e dim $X = \dim V(f) < +\infty$. Dato che V(f) è irriducibile, il Lemma 2.4.6 implica che X = V(f).

Esercizi

2.23 (Lemma di normalizzazione di E. Noether). Sia $X \subset \mathbb{A}^n$ un chiuso di Zariski. Diremo che la proiezione lineare sulle prime s coordinate $\mathbb{A}^n \to \mathbb{A}^s$ è **normalizzata** rispetto a X se per ogni indice $i=s+1,s+2,\ldots,n$ esiste un polinomio $f_i \in I(X) \cap \mathbb{K}[x_1,\ldots,x_s][x_i] \subset \mathbb{K}[x_1,\ldots,x_n]$ che è monico di grado positivo rispetto alla variabile x_i . Dimostrare:

- 1. Siano $\pi_1 : \mathbb{A}^n \to \mathbb{A}^s$, $\pi_2 : \mathbb{A}^s \to \mathbb{A}^r$ proiezioni normalizzate rispetto a X e $\pi_1(X)$ rispettivamente. Allora $\pi_2 \circ \pi_1$ è normalizzata rispetto a X. (Sugg.: estensioni intere per gli esperti, induzione su s-r e risultante per gli inesperti.)
- 2. Sia $X \subset \mathbb{A}^n$ un chiuso di dimensione s. Allora, a meno di un cambio lineare di coordinate, la proiezione sulle prime s coordinate è normalizzata rispetto a X.

2.6 La dimensione delle intersezioni

Una delle caratteristiche fondamentali degli spazi considerati nella geometria algebrica classica (pre teoria degli schemi) è che ogni punto possiede un sistema fondamentale di intorni omeomorfi a chiusi affini. D'altra parte ogni chiuso affine può essere pensato come un aperto di un chiuso proiettivo; è quindi possibile studiare le proprietà locali, come ad esempio la dimensione in un punto, restringendo la nostra attenzione alla classe dei chiusi proiettivi.

Teorema 2.6.1. Lo spazio proiettivo \mathbb{P}^n , dotato della topologia di Zariski, è uno spazio irriducibile Noetheriano di dimensione pura n.

Dimostrazione. Siccome ogni punto possiede un intorno omeomorfo ad \mathbb{A}^n si deduce immediatamente che $\dim_p \mathbb{P}^n = n$ per ogni $p \in \mathbb{P}^n$.

Uno dei vantaggi dei chiusi proiettivi è la mancanza di asintoti e quindi la normalizzazione automatica delle proiezioni.

Lemma 2.6.2. Sia $X \subset \mathbb{P}^n$ un chiuso, $o \notin X$ un punto $e \pi : (\mathbb{P}^n - \{o\}) \to \mathbb{P}^{n-1}$ la proiezione di centro o. Allora:

- 1. Ogni fibra di $\pi \colon X \to \pi(X)$ ha cardinalità finita.
- 2. $\pi(X)$ è chiuso in \mathbb{P}^{n-1} e dim $X = \dim \pi(X)$.
- 3. Se $p \in X$ e la retta \overline{op} interseca X solamente nel punto p, allora $\dim_p X$ $\dim_{\pi(p)} \pi(X)$.

Dimostrazione. Siano x_0, \ldots, x_n coordinate omogenee su \mathbb{P}^n tali che $o = [1, 0, \ldots, 0]$, allora la proiezione si esprime in coordinate omogenee come $\pi([x_0,\ldots,x_n])=[x_1,\ldots,x_n]$. Dato che $o \notin X$, esiste un polinomio omogeneo $f \in I(X)$ tale che $f(o) \neq 0$. Necessariamente f è un multiplo scalare di un polinomio monico in x_0 , basta quindi applicare i risultati del paragrafo precedente alle restrizioni $\pi_i \colon X \cap \mathbb{A}^n_i \to H \cap \mathbb{A}^n_i = \mathbb{A}^{n-1}$ dove $\mathbb{A}_i^n = \{x_i \neq 0\}$ per ogni $i = 1, \dots, n$.

Corollario 2.6.3. Sia $X \subset \mathbb{P}^n$ un chiuso e sia \mathcal{F} la famiglia dei sottospazi proiettivi di \mathbb{P}^n che non intersecano X. Se $K \in \mathcal{F}$ è un elemento massimale rispetto all'inclusione, $allora \dim X + \dim K = n - 1.$

Dimostrazione. Il risultato è banalmente vero se $X = \emptyset$, \mathbb{P}^n oppure n = 1. Se $X \neq \emptyset$, \mathbb{P}^n , allora prendiamo un punto $o \in K$ e denotiamo con $\pi \colon X \to \mathbb{P}^{n-1}$ la proiezione di centro o. Per il Lemma 2.6.2, i chiusi $X \in \pi(X)$ hanno la stessa dimensione, mentre dim $\pi(K)$ $\dim K - 1$. Dato che $\pi(K)$ è chiaramente massimale tra i sottospazi di \mathbb{P}^{n-1} che non intersecano $\pi(X)$, l'induzione su n conclude la dimostrazione.

Lemma 2.6.4. Siano $X \subset \mathbb{P}^n$ un chiuso di dimensione $\leq n-2$ e $p \in X$ un punto qualsiasi. Allora esiste un punto $o \neq p$ tale che la retta \overline{op} interseca X solamente nel punto p.

Dimostrazione. Per il Corollario 2.6.3 esiste una retta $L \subset \mathbb{P}^n$ che non interseca X; indichiamo con P il piano proiettivo generato dalla retta L e dal punto p. Dato che $(X \cap P) \cap L = \emptyset$, per il Corollario 2.6.3 la dimensione di $X \cap P$ è uguale a 0. Dunque $X \cap P$ è un insieme finito di punti ed esistono al più finiti punti $o \in L$ che non soddisfano la condizione richiesta.

author: Marco Manetti

Teorema 2.6.5. Siano $X \subset \mathbb{P}^n$ un chiuso, H un iperpiano $e \ p \in X \cap H$ un punto:

- 1. Se $p \in Z \subset X$ è un sottoinsieme chiuso irriducibile, allora $\dim_p X \ge \dim Z$.
- 2. Se $X \ \dot{e} \ irriducibile$, allora $\dim_p X = \dim X$.
- 3. $\dim_p(X \cap H) \ge \dim_p X 1$. In particolare se X è irriducibile tutte le componenti di $X \cap H$ hanno la stessa dimensione.

Dimostrazione. Se n=1 il teorema è evidente, per induzione su n possiamo assumere vero il teorema per chiusi di \mathbb{P}^{n-1} . Osserviamo che se il teorema vale per ogni componente irriducibile di X allora vale anche per X, non è quindi restrittivo assumere X chiuso proprio irriducibile e Z=X.

Se X è una ipersuperfice abbiamo già dimostrato che $\dim_p X = \dim X = n-1$ e $X \cap H$ è ancora una ipersuperfice e quindi $\dim_p(X \cap H) \geq n-2$.

Se X non è una ipersuperfice allora dim X < n-1 e per il Lemma 2.6.4 esiste una proiezione $\pi \colon X \to \mathbb{P}^{n-1}$ tale che $\pi^{-1}(\pi(p)) = p$; per induzione su n si ricava

$$\dim_p X = \dim_{\pi(p)} \pi(X) = \dim \pi(X) = \dim X.$$

Sia $Y = X \cap H$; se X = Y, allora il punto 3) è banale; se Y è un chiuso proprio di X, allora $\dim Y < \dim X$ e quindi $\dim Y \le \dim H - 2$. Per 2.6.4 esiste una proiezione $\pi \colon X \to \mathbb{P}^{n-1}$ di centro $o \in H$ tale che $\pi^{-1}(\pi(p)) = p$. Dunque $\dim_p Y = \dim_{\pi(p)} \pi(Y)$ e la conclusione segue osservando che $\pi(Y)$ è una sezione iperpiana di $\pi(X)$.

Corollario 2.6.6. Sia $U \subset \mathbb{P}^n$ un sottoinsieme localmente chiuso irriducibile, allora $U \in equidimensionale$.

Dimostrazione. Sia $X=\overline{U}$ la chiusura proiettiva di U. Poiché U è aperto in X vale $\dim_p U=\dim_p X$; se U è irriducibile anche X è irriducibile e se X è equidimensionale anche U è equidimensionale.

Grazie all'immersione di Veronese, che sappiamo essere una immersione topologica chiusa, possiamo generalizzare immediatamente e senza fatica i precedenti risultati alle intersezioni di chiusi di \mathbb{P}^n con ipersuperfici.

Corollario 2.6.7. Sia $X \subset \mathbb{P}^n$ chiuso e $H \subset \mathbb{P}^n$ ipersuperfice, allora se $\dim X > 0$ vale $X \cap H \neq \emptyset$ e per ogni $p \in X \cap H$ si ha $\dim_p(X \cap H) \geq \dim_p X - 1$. In particolare n ipersuperfici in \mathbb{P}^n hanno intersezione non vuota.

Dimostrazione. Supponiamo H=V(f), con f polinomio omogeneo di grado d. Se $v_d\colon \mathbb{P}^n\to \mathbb{P}^N$ indica la d-esima immersione di Veronese, allora esiste un unico iperpiano $W\subset \mathbb{P}^N$ tale che $v_d^{-1}(W)=H$ e quindi $v_d(X\cap H)$ è omeomorfo all'intersezione di $v_d(X)$ con W.

Corollario 2.6.8 (Versione geometrica del teorema dell'ideale principale di Krull). Siano $X \subset \mathbb{A}^n$ un chiuso e $H \subset \mathbb{A}^n$ ipersuperfice affine. Allora per ogni $p \in X \cap H$ vale $\dim_p(X \cap H) \ge \dim_p X - 1$.

Dimostrazione. Immergiamo \mathbb{A}^n in uno spazio proiettivo \mathbb{P}^n e prendiamo le chiusure di X e H. Basta osservare adesso che la chiusura proiettiva di una ipersuperfice è ancora una ipersuperfice, più precisamente se $f \in \mathbb{K}[x_1, \ldots, x_n]$ ha grado $d \in H = V(f)$, la chiusura di H in \mathbb{P}^n è l'ipersuperfice definita dall'omogeneizzato di f in $\mathbb{K}[x_0, x_1, \ldots, x_n]$. \square

Teorema 2.6.9. Sia $X \subset \mathbb{A}^n$ un chiuso affine. Allora la dimensione di X in un suo punto p è uguale al minimo intero s per il quale esistono s polinomi $f_1, \ldots, f_s \in \mathbb{K}[x_1, \ldots, x_n]$ ed un aperto $U \subset X$ tali che $U \cap V(f_1, \ldots, f_s) = p$.

Dimostrazione. Se $U \cap V(f_1, \ldots, f_s) = p$, allora per il Corollario 2.6.8 $0 = \dim\{p\} \ge \dim_p U - s$ e quindi $\dim_p X \le s$. Viceversa se $\dim_p X = d > 0$, allora possiamo trovare un iperpiano $H_1 = V(f_1)$ passante per p e non contenente alcuna componente irriducibile di X. Abbiamo $\dim_p(X \cap H_1) = \dim_p X - 1$ e, ripetendo d volte il ragionamento, possiamo trovare d iperpiani H_1, \ldots, H_d tali che $\dim_p X \cap H_1 \cap \cdots \cap H_d = 0$ e quindi $d \ge s$. \square

Osservazione 2.6.10. Il Teorema 2.6.9 è la versione geometrica del teorema [?, 11.14] di algebra commutativa secondo il quale la dimensione di un anello locale Noetheriano con ideale massimale \mathfrak{m} è uguale al minimo numero di generatori di un ideale \mathfrak{m} -primario (vedi Esercizio ??).

Corollario 2.6.11. Siano $X, Y \subset \mathbb{A}^n$ chiusi affini $e \ p \in X \cap Y$. Allora vale

$$\dim_p(X \cap Y) \ge \dim_p X + \dim_p Y - n.$$

Dimostrazione. Non è restrittivo supporre $p=(0,\ldots,0)$ e i chiusi X,Y irriducibili. L'applicazione diagonale $\mathbb{A}^n\to\mathbb{A}^n\times\mathbb{A}^n,\ x\mapsto(x,x)$, è un'immersione topologica chiusa ed induce un omeomorfismo tra $X\cap Y$ e l'intersezione di $X\times Y$ con la diagonale Δ . Per Il Teorema 2.5.6 dim $_0X+\dim_0Y=\dim_0(X\times Y)$ e, dato che Δ è data dall'intersezione di n iperpiani, per il Corollario 2.6.8

$$\dim_0(X \cap Y) = \dim_0(X \times Y \cap \Delta) \ge \dim_0 X + \dim_0 Y - n.$$

Esempio 2.6.12 (Il cono tangente ridotto). Consideriamo la moltiplicazione per scalare

$$\phi \colon \mathbb{A}^1 \times \mathbb{A}^n \to \mathbb{A}^n, \qquad \phi(t, x) = tx$$

e per ogni chiuso affine $X \subset \mathbb{A}^n$ denotiamo con $\hat{X} \subset \mathbb{A}^1 \times \mathbb{A}^n$ l'unione delle componenti irriducibili di $\phi^{-1}(X)$ che non sono contenute in $\{0\} \times \mathbb{A}^n$ e con $C_0(X) = \hat{X} \cap (\{0\} \times \mathbb{A}^n)$. Notiamo che \hat{X} è la chiusura di Zariski dell'insieme delle coppie (t,x) tali che $t \neq 0$ e $tx \in X$ e di conseguenza che $C_0(X \cup Y) = C_0(X) \cup C_0(Y)$ per ogni coppia di chiusi X, Y. Se $f \in \mathbb{K}[x_1, \ldots, x_n]$ scriviamo $f = f_m + f_{m+1} + \cdots$ con f_i omogeneo di grado i e $f_m \neq 0$; chiameremo $m = \text{mult}_0(f)$ la molteplicità di f in 0 e f_m la forma iniziale di f. Vogliamo adesso dimostrare che:

- 1. Se X = V(I) per qualche ideale $I \subset \mathbb{K}[x_1, \dots, x_n]$, allora $C_0(X)$ è il luogo di zeri delle forme iniziali degli elementi di I.
- 2. $C_0(X) \neq \emptyset$ se e solo se $0 \in X$.
- 3. $\dim_0 X = \dim C_0(X)$.

Per dimostrare (1), osserviamo che se X = V(I), allora $\phi^{-1}(X)$ è il luogo di zeri dei polinomi g(t,x) = f(tx) al variare di $f \in I$ e quindi \hat{X} è il luogo di zeri dei polinomi $\hat{f}(t,x) := \frac{f(tx)}{t^m}$, dove $m = \operatorname{mult}_0(f)$ e f varia in I. Ne segue che $C_0(X)$ è il luogo di zeri dei polinomi $\hat{f}(0,x)$, con $f \in I$. Basta adesso osservare che $\hat{f}(0,x)$ è esattamente la forma iniziale di f. Per dimostrare (2) notiamo che $0 \in X$ se e solo se ogni $f \in I$ ha molteplicità in 0 positiva e questo è equivalente a dire che 0 annulla tutte le forme iniziali degli elementi di I. Per dimostrare (3) possiamo assumere X irriducibile e $0 \in X$; in particolare $\dim_0 X = \dim X$. Siano Y_1, \ldots, Y_s le componenti irriducibili di \hat{X} , è chiaro che nessuna delle Y_i è contenuta in un iperpiano t =costante. Applicando il Corollario 2.6.8 all'intersezione di \hat{X} con gli iperpiani t = 1 e t = 0 otteniamo le uguaglianze dim $\hat{X} - 1 = \dim X$ e dim $C_0(X) = \dim \hat{X} - 1$. Il cono $C_0(X)$ si dice **cono tangente ridotto** a X nel punto 0.

Esempio 2.6.13 (Coni proiettivi). Sia $X \subset \mathbb{P}^n$ un chiuso: identifichiamo \mathbb{P}^n con un iperpiano di \mathbb{P}^{n+1} e prendiamo un punto $o \in \mathbb{P}^{n+1} - \mathbb{P}^n$. L'insieme $C_{\mathbb{P}}(X) \subset \mathbb{P}^{n+1}$, unione delle rette \overline{op} al variare di $p \in X$ si dice **cono proiettivo** di X. Possiamo trovare coordinate omogenee x_0,\ldots,x_{n+1} in \mathbb{P}^{n+1} tali che $o=[1,0,\ldots,0]$ e l'iperpiano \mathbb{P}^n abbia equazione $x_0 = 0$. Per costruzione, un polinomio omogeneo $f = \sum_i x_0^i f_i(x_1, \dots, x_{n+1})$ si annulla su $C_{\mathbb{P}}(X)$ se e solo se tutti i f_i si annullano su X. Dunque $C_{\mathbb{P}}(X)$ è il chiuso proiettivo definito da tutti i polinomi omogenei in x_1, \ldots, x_{n+1} che si annullano in X.

Mostriamo adesso che se X è irriducibile, allora anche $C_{\mathbb{P}}(X)$ è irriducibile di dimensione dim X+1. Se $U, V \subset C_{\mathbb{P}}(X)$ sono aperti non vuoti, allora esiste un iperpiano H che non contiene o e che li interseca entrambi; siccome la proiezione di centro o induce una proiettività tra $X \in C_{\mathbb{P}}(X) \cap H$, ne segue che $U \cap V \cap H \neq \emptyset$. Il computo della dimensione segue dal fatto che X è una sezione iperpiana propria di $C_{\mathbb{P}}(X)$. Si noti che la restrizione di $C_{\mathbb{P}}(X)$ all'aperto affine $x_0 \neq 0$ è isomorfa al cono affine C(X).

Teorema 2.6.14. Siano $X,Y \subset \mathbb{P}^n$ chiusi irriducibili. Se dim X + dim $Y \geq n$ allora $X \cap Y \neq \emptyset$ e in ogni punto $p \in X \cap Y$ vale $\dim_p X \cap Y \geq \dim X + \dim Y - n$.

Dimostrazione. Basta mostrare che $X \cap Y \neq \emptyset$, essendo la stima sulla dimensione locale di $X \cap Y$ conseguenza immediata del Corollario 2.6.11. Nelle notazioni dell'Esempio 2.6.13

$$\dim_o(C_{\mathbb{P}}(X) \cap C_{\mathbb{P}}(Y)) \ge (\dim X + 1) + (\dim Y + 1) - (n+1) > 0$$

e quindi $C_{\mathbb{P}}(X) \cap C_{\mathbb{P}}(Y)$ contiene almeno una retta passante per o che interseca l'iperpiano \mathbb{P}^n in un punto di $X \cap Y$.

Esercizi

- **2.24.** Siano $f,g \in \mathbb{K}[x_1,\ldots,x_n]$ polinomi omogenei non nulli dello stesso grado d>0 e denotiamo $X = V(x_0^d + f, g) \subset \mathbb{P}^n$. Dimostrare che il chiuso X ha dimensione n-2 e che il numero delle sue componenti irriducibili non supera d volte il numero di componenti irriducibili dell'ipersuperfice V(q). In caratteristica 0, trovare $f \in q$ come sopra tali che X ha esattamente d^2 componenti irriducibili.
- **2.25.** Mostrare con un esempio che, se X, Y, Z sono chiusi irriducibili di \mathbb{P}^n con $X \cup Y \subset Z$ e dim X + dim $Y \ge \dim Z$, è generalmente falso che $X \cap Y \ne \emptyset$.
- **2.26.** Nelle notazioni dell'Esempio 2.6.12, mostrare che, se g_1, \dots, g_r sono generatori dell'ideale I(X), allora in generale $C_0(X)$ non è definito dalle parti iniziali di g_1, \ldots, g_r .

2.7 La dimensione delle fibre

Il principale risultato di questa sezione è noto come teorema sulla dimensione delle fibre ed è la versione moderna dell'ottocentesco principio di Plücker-Clebsch sul quale rimandiamo a [?, Libro I, p. 149] per maggiori informazioni.

Teorema 2.7.1. Sia $X \subset \mathbb{A}^m \times \mathbb{P}^n$ un chiuso, $\pi \colon X \to \mathbb{A}^m$ la proiezione sul primo fattore e per ogni $q \in \mathbb{A}^m$ denotiamo $X_q = \pi^{-1}(q) = X \cap (\{q\} \times \mathbb{P}^n)$. Allora:

- 1. Per ogni $p \in X$ vale $\dim_p X \leq \dim_p X_q + \dim_q \pi(X)$, dove $q = \pi(p)$.
- 2. Per ogni intero h, l'insieme $Y_h = \{q \in \mathbb{A}^n \mid \dim X_q \geq h\}$ è un chiuso di Zariski.
- 3. Se X è irriducibile, allora esiste un aperto denso $U \subset \pi(X)$ tale che dim $X_q =$ $\dim X - \dim \pi(X) \text{ per ogni } q \in U.$

Dimostrazione. [1] Sia $r = \dim_q \pi(X)$, esistono allora r iperpiani H_1, \ldots, H_r di \mathbb{A}^m passanti per q tali che q è un punto isolato di $\pi(X) \cap H_1 \cap \cdots \cap H_r$; si ha quindi $\dim_p X_q = \dim_p(X \cap (H_1 \times \mathbb{P}^n) \cap \cdots \cap (H_r \times \mathbb{P}^n))$ e, dato che $H_i \times \mathbb{P}^n$ è un iperpiano per ogni i, si ha che $\dim_p X_q \geq \dim_p X - r$.

[2] Sappiamo che π è una applicazione chiusa: per ogni sottoinsieme $Z \subset \pi(X)$ denotiamo con $d_Z = \min \{ \dim X_q \mid q \in Z \} \in \mathbb{N}$. Poniamo $X_0 = X$, $Z_0 = \pi(X)$ e sia $q \in Z_0$ tale che dim $X_q = d_{Z_0}$. Sia $H \subset \mathbb{P}^n$ un sottospazio proiettivo massimale che non interseca X_q e poniamo $Z_1 = \pi(X_0 \cap (\mathbb{A}^m \times H))$, $X_1 = \pi^{-1}(Z_1)$. Segue immediatamente dalla costruzione che, se $Z_0 \neq \emptyset$, allora Z_1 è un chiuso proprio di Z_0 e valedim $X_q = d_{Z_0}$ per ogni $q \in Z_0 - Z_1$. Ripetiamo il procedimento con X_1, Z_1 al posto di X_0, Z_0 e costruiamo X_2, Z_2 al posto di X_1, Z_1 . Iterando il procedimento troviamo una catena discendente di chiusi $Z_0 \supset Z_1 \supset \cdots \supset Z_i \supset \cdots$ con le proprietà che $Z_{i+1} \neq Z_i$, eccetto il caso in cui $Z_i = \emptyset$, e dim $X_q = d_{Z_i}$ per ogni $q \in Z_i - Z_{i+1}$. Per Noetherianità $Z_i = \emptyset$ per i >> 0 e gli insiemi Y_h corrispondono ai chiusi Z_i tali che $d_{Z_i} > d_{Z_{i-1}}$.

[3] Segue da [1] e [2] che l'insieme U dei punti $q \in \pi(X)$ tali che dim $X_q = \dim X - \dim \pi(X)$ è aperto; dato che $\pi(X)$ è irriducibile basta dimostrare che U non è vuoto. Siano $s = \dim X$, $r = \dim \pi(X)$ e dimostriamo il risultato per induzione su r. Se r = 0 allora $\pi(X)$ è un punto e l'asserto è banale. Si assuma r > 0, sia $Z \subset \pi(X)$ un chiuso irriducibile di dimensione r - 1 e denotiamo $W = X \cap \pi^{-1}(Z)$. Osserviamo che W è un chiuso di $\mathbb{A}^m \times \mathbb{P}^n$ di dimensione strettamente minore di s e che la proiezione $\pi \colon W \to Z$ è surgettiva. Scriviamo $W = X_1 \cup \cdots \cup X_a \cup Y_1 \cup \cdots \cup Y_b$, dove X_i, Y_j sono le componenti irriducibili divise in modo tale che $\pi(X_i) = Z$ e $\pi(Y_j) \neq Z$. Dato che π è chiusa e Z è irriducibile necessariamente dovrà aversi a > 0. Per l'ipotesi induttiva, per ogni $i = 1, \ldots, a$, esiste un aperto non vuoto $U_i \subset Z$ tale che le fibre di X_i sopra U_i hanno dimensione esattamente dim $X_i - r + 1 \leq s - r$. Per qualsiasi punto $q \in (U_1 \cap \cdots \cap U_a) - (\pi(Y_1) \cup \cdots \cup \pi(Y_b))$ vale dim $X_q = s - r$.

Corollario 2.7.2. Nelle notazioni del Teorema 2.7.1, se $\pi(X)$ è irriducibile e se, al variare di $q \in \pi(X)$, le fibre X_q sono tutte irriducibili e della stessa dimensione, allora X è irriducibile.

Dimostrazione. Siano $Z_1, \ldots, Z_a, W_1, \ldots, W_b$ le componenti irriducibili di X ordinate in modo tale che $\pi(Z_i) = \pi(X), \pi(W_i) \neq \pi(X)$ e dim $Z_1 \geq \dim Z_i$ per ogni i. Proviamo che $X = Z_1$. Dato che Y è irriducibile e π è chiusa deve essere a > 0, denotiamo con s e r le dimensioni di Z_1 e $\pi(X)$ rispettivamente. Per il Teorema 2.7.1 esiste un aperto denso $U \subset \pi(X)$ tale che, per ogni $q \in U$, vale $(W_i)_q = \emptyset$ e dim $(Z_i)_q = \dim Z_i - r$; ne segue in particolare che se $q \in U$, allora la dimensione di X_q è esattamente s - r. Per ipotesi le fibre X_q sono tutte irriducibili di dimensione s - r e quindi per ogni $q \in \pi(X)$ vale $(Z_1)_q \subset X_q$, dim $(Z_1)_q \geq s - r = \dim X_q$ e di conseguenza $(Z_1)_q = X_q$. Questo implica che $Z_1 = X$.

Lo stesso argomento usato in 2.1.8 mostra che il Teorema 2.7.1 ed il suo Corollario 2.7.2 restano validi per sottoinsiemi chiusi $X \subset \mathbb{P}^{n_0} \times \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_s} \times \mathbb{A}^m$ e per la proiezione $\pi \colon X \to \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_s} \times \mathbb{A}^m$.

Vediamo adesso alcune applicazioni dei precedenti risultati.

Esempio 2.7.3 (Insiemi costruibili). Proviamo adesso che, nelle stesse notazioni di 2.7.1, se $Z \subset \mathbb{A}^m \times \mathbb{P}^n$ è costruibile allora anche $\pi(Z)$ è costruibile. Chiaramente non è restrittivo supporre Z localmente chiuso ed irriducibile, ovvero $Z = X \cap V$ con X chiuso irriducibile e V aperto. Se $Z = \emptyset$ non c'è nulla da dimostrare; se $Z \neq \emptyset$ allora vale $X = Z \cup C$ con C chiuso di dimensione dim $C < \dim X$. Per il Teorema 2.7.1 esiste un aperto non vuoto $U \subset \pi(X)$ tale che per ogni $q \in U$ vale dim $X_q = \dim X - \dim \pi(X)$ e dim $X_q < \dim X - \dim Y$. Dunque $U \subset \pi(Z)$ e quindi $\pi(Z) = U \cup \pi(Z \cap \pi^{-1}(\pi(X) - U))$; siccome

la chiusura di $Z \cap \pi^{-1}(\pi(X) - U)$ è strettamente contenuta in X basta ragionare per induzione sulla dimensione di \overline{Z} per dedurre che $\pi(Z \cap \pi^{-1}(\pi(X) - U))$ è costruibile e quindi che anche $\pi(Z)$ è costruibile.

Esempio 2.7.4 (Curve piane singolari). Sia n un intero maggiore di 1 e sia \mathbb{P}^N , con $N=\frac{1}{2}n(n+3)$, lo spazio proiettivo delle curve piane di grado n. Dimostriamo che l'insieme $Y\subset \mathbb{P}^N$ delle curve singolari è una ipersuperfice irriducibile. Consideriamo infatti l'insieme $X\subset \mathbb{P}^2\times \mathbb{P}^N$ formato dalle coppie (p,C) tali che p è un punto singolare di C. Si vede facilmente che X è un chiuso, infatti la coppia di punti di coordinate omogenee ([x],[F]), con F equazione di C, appartiene a X se e solo se $F(x)=F_0(x)=F_1(x)=F_2(x)=0$. Fissato un punto $p\in \mathbb{P}^2$ le curve piane singolari in p formano un sistema lineare di dimensione N-3, per i Teoremi 2.7.1 e 2.7.2 applicati alla proiezione $X\to \mathbb{P}^2$, o più precisamente alle restrizioni agli aperti affini di \mathbb{P}^2 , abbiamo che X è irriducibile di dimensione N-1. La fibra di $\pi\colon X\to \mathbb{P}^N$ sopra la curva C consiste nell'insieme dei punti singolari di C, e siccome esiste almeno una curva di grado n con un punto singolare, per il Teorema 2.7.1 ricaviamo che $Y=\pi(X)$ è un chiuso irriducibile di dimensione N-1 e quindi una ipersuperfice.

Esempio 2.7.5 (Luoghi determinantali, cfr. Esercizio ??). Sia n un intero positivo fissato: per ogni coppia di interi $m \geq k \geq \max(0, m-n)$ denotiamo con M(n,m) lo spazio vettoriale delle matrici $n \times m$ a coefficienti nel campo base \mathbb{K} e con $M_{m,k} \subset \mathbb{P}(M(n,m))$ l'insieme delle classi di omotetia di matrici il cui nucleo ha dimensione $\geq k$. Proviamo per induzione su k che $M_{m,k}$ è un chiuso irriducibile di dimensione (m-k)(n+k)-1.

Se $k = \max(0, m - n)$ allora $M_{m,k} = \mathbb{P}(M(n, m)), (m - k)(n + k) - 1 = nm - 1$ e l'asserto è banalmente verificato. Supponiamo quindi $k > \max(0, m - n)$ e consideriamo

$$X_{m,k} = \{([A], [x]) \in \mathbb{P}(M(n, m)) \times \mathbb{P}^{m-1} \mid [A] \in M_{m,k}, Ax = 0\}.$$

Le fibre della proiezione $X_{m,k} \to \mathbb{P}^{m-1}$ sono tutte isomorfe a $M_{m-1,k-1}$ e quindi per l'ipotesi induttiva ed il Corollario 2.7.2 $X_{m,k}$ è irriducibile di dimensione (m-k)(n+k-1)+(m-1)-1. La proiezione $X_{m,k} \to M_{m,k}$ è surgettiva e quindi $M_{m,k}$ è irriducibile. Inoltre le fibre sui punti dell'aperto non vuoto $M_{m,k}-M_{m,k+1}$ sono isomorfe a \mathbb{P}^{k-1} ; per il Teorema 2.7.1 vale dim $M_{m,k}=\dim X_{m,k}-(k-1)=(m-k)(n+k)-1$.

Altre significative applicazioni di 2.7.1 e 2.7.2 saranno esposte prossimamente utilizzando il linguaggio delle varietà algebriche.

Esercizi

2.8 Esercizi complementari

- **2.27.** Uno spazio topologico si dice **Artiniano** se ogni famiglia di aperti contiene un elemento minimale. Sia X uno spazio topologico Artiniano, provare che:
 - 1. X contiene un numero finito di punti chiusi.
- 2. Ogni chiuso di X è unione finita di componenti irriducibili.
- 3. Se X è irriducibile, l'unione dei chiusi propri di X è un chiuso proprio.
- 4. (*) Se X è anche Noetheriano allora contiene un numero finito di aperti. (Sugg.: uno spazio Artiniano con infiniti chiusi contiene una catena discendente non stazionaria di chiusi.)

author: Marco Manetti

2.28. Mostrare che esistono spazi topologici Artiniani di dimensione infinita.

- **2.29.** Sia X uno spazio topologico Noetheriano. Provare che un sottoinsieme $A \subset X$ è aperto se e solo se per ogni chiuso irriducibile $E \subset X$ esiste un sottoinsieme $S \subset E$ aperto in E tale che $S \subset A \cap E \subset \overline{S}$. (Sugg.: si consideri la famiglia dei chiusi C di X tali che C A non è chiuso.)
- **2.30.** Descrivere l'immagine dell'applicazione $f: \mathbb{A}^2 \to \mathbb{A}^2$, f(x,y) = (x,xy) e dire se è chiusa, aperta, localmente chiusa, costruibile o niente di tutto ciò.
- **2.31.** (caratteristica $\neq 2$) Determinare le componenti irriducibili di

$$X = \{x^2 + y^2 + z^2 = x^2 + 1 - y^2 - z^2 = 0\} \subset \mathbb{A}^3.$$

- **2.32.** Nelle notazioni del Corollario 2.1.5, se n=2, r=1 e f_0, f_1 sono senza fattori comuni, determinare la dimensione del conucleo di ϕ_d per d>>0. (Sugg.: descrivere il nucleo di ϕ_d .)
- **2.33.** Siano $p, q \in \mathbb{N}$ senza fattori comuni, $X = \{x^p = y^q\} \subset \mathbb{A}^2 \in \phi \colon \mathbb{A}^1 \to X$ definita da $\phi(t) = (t^q, t^p)$. Provare che ϕ è un omeomorfismo. (Sugg.: esistono interi n, m tali che np + mq = 1.)
- **2.34.** Si consideri l'applicazione $\phi \colon \mathbb{A}^1 \to \mathbb{A}^3$, $\phi(t) = (t, t^2, t^3)$; dimostrare che $X = \phi(\mathbb{A}^1)$ è chiuso e si determini I(X).
- **2.35.** Enunciare e dimostrare il teorema degli zeri di Hilbert per $\mathbb{P}^n \times \mathbb{P}^m$.
- **2.36.** Dimostrare che:
 - 1. Ogni sottoinsieme costruibile di \mathbb{A}^n è della forma $\pi(X)$, dove $X \subset \mathbb{A}^{n+1}$ è un sottoinsieme chiuso e π è la proiezione sulle prime n coordinate. (Sugg.: mostrare prima che ogni sottoinsieme localmente chiuso di \mathbb{A}^n è della forma $\pi(X)$.)
 - 2. Un sottoinsieme costruibile $Z \subset \mathbb{A}^n$ è chiuso se e solo se $Z \cap C$ è chiuso per ogni chiuso irriducibile $C \subset \mathbb{A}^n$ di dimensione 1.
 - 3. Il risultato di 2) è generalmente falso senza l'ipotesi che Z sia costruibile.
- 2.37. Nelle stesse notazioni del Teorema 2.7.1 si provi che la funzione

$$\mathbb{A}^m \times \mathbb{P}^n \to \mathbb{Z}, \qquad p \mapsto \dim_p X_{\pi(p)}$$

è semicontinua superiormente. (Sugg.: se l'asserzione è vera per due sottoinsiemi chiusi di $\mathbb{A}^m \times \mathbb{P}^n$ allora è vera anche per la loro unione; non è quindi restrittivo supporre X irriducibile. Ragionare per induzione sulla dimensione di $\pi(X)$ utilizzando 2.7.1.)

- **2.38.** Sia $X \subset \mathbb{A}^n$ un chiuso e $\pi \colon \mathbb{A}^n \to \mathbb{A}^{n-1}$ la proiezione sulle prime n-1 coordinate. Provare che se $f = \sum_{i \geq 0} g_i(x_1, \dots, x_{n-1}) x_n^{d-i} \in I(X)$, allora $\pi(X) V(g_0)$ è chiuso in $\mathbb{A}^{n-1} V(g_0)$ e dedurne che $\pi(X)$ contiene un aperto di $\overline{\pi(X)}$. (Sugg.: si può ripetere sostanzialmente la dimostrazione del lemma di proiezione oppure si può considerare il chiuso $\tilde{X} \subset \mathbb{A}^n \times \mathbb{A}$ definito da I(X) e $1 tg_0$.)
- **2.39.** Provare che \mathbb{A}^2 e \mathbb{P}^2 , dotati della topologia di Zariski, non sono omeomorfi. Più in generale se $n \geq 2$ e $X \subset \mathbb{P}^n$ è chiuso di dimensione $\leq n-3$, si provi che \mathbb{A}^n e \mathbb{P}^n-X non sono omeomorfi.
- **2.40.** (caratteristica \neq 2) Sia $X \subset \mathbb{A}^3$ il chiuso definito dalle equazioni $xy-z^2=y^3-x^5=0$. Provare che X ha due componenti irriducibili.

- **2.41.** (caratteristica 0) Sia $F(x_1,\ldots,x_n)$ un polinomio omogeneo di grado m>0 senza fattori multipli; poniamo $C = V(F) \subset \mathbb{A}^n$ e sia \mathcal{A} l'insieme dei sottospazi affini di \mathbb{A}^n contenuti in C. Definiamo infine C_0 come l'intersezione dei sottospazi in A che sono massimali rispetto all'inclusione. Provare:
 - 1. C_0 è un sottospazio affine contenente l'origine $(0, \ldots, 0)$.
 - 2. A meno di un cambio lineare di coordinate si può assumere che esista $s \leq n$ tale che $\frac{\partial F}{\partial x_i} = 0$ per ogni i > s e i polinomi $\frac{\partial F}{\partial x_1}, \dots, \frac{\partial F}{\partial x_s}$ linearmente indipendenti su \mathbb{K} .

 3. (*) In un sistema di coordinate come al punto 2) vale $C_0 = \{x_1 = \dots = x_s = 0\}$.
- **2.42.** Sia $M = M(n, n, \mathbb{K})$ lo spazio affine delle matrici $n \times n$ e sia $X \subset \mathbb{P}(M)$ il proiettivizzato dell'insieme delle matrici A che hanno un autovalore $\lambda \neq 0$ tale che $\lambda^n + (-1)^n \det(A) = 0$. Provare che X è una ipersuperfice irriducibile.
- **2.43** (*). Dimostrare che ogni chiuso proprio in \mathbb{P}^n è intersezione (insiemistica) di al più n+1 ipersuperfici. (Sugg.: Esercizio 1.14.)
- **2.44.** Sia $S_d \subset \mathbb{K}[x_0,\ldots,x_n]$ lo spazio vettoriale dei polinomi omogenei di grado d e $v_n\colon \mathbb{P}^1\to \mathbb{P}^n$ la n-esima immersione di Veronese. Determinare la dimensione dello spazio vettoriale $V_d = \{ f \in S_d \mid v_n(\mathbb{P}^1) \subset V(f) \}$ per ogni d > 0.
- **2.45.** (caratteristica 0) Sia $X \subset M(4,4,\mathbb{K}) = \mathbb{A}^{16}$ il sottoinsieme delle matrici A tali che $I, A \in A^2$ sono vettori linearmente dipendenti in $M(4, 4, \mathbb{K})$. Dimostrare:
- 2. X non è irriducibile (Sugg.: polinomio caratteristico).
- **2.46 (Lo scoppiamento).** Sia $X \subset \mathbb{A}^n$ un chiuso e denotiamo con: $Y = X \{0\}$, con $\tilde{Y} \subset (\mathbb{A}^n - \{0\}) \times \mathbb{P}^{n-1}$ l'insieme dei punti $\{(y, [y])\}$ al variare di $y \in Y$, con $\tilde{X} \subset \mathbb{A}^n \times \mathbb{P}^{n-1}$ la chiusura di Zariski di \tilde{Y} e con $E = (\{0\} \times \mathbb{P}^{n-1}) \cap \tilde{X}$.
 - 1. Dimostrare che \tilde{Y} è un chiuso di $(\mathbb{A}^n \{0\}) \times \mathbb{P}^{n-1}$ omeomorfo a Y. (Sugg.: considerare dapprima il caso $X = \mathbb{A}^n$.)
- 2. Descrivere esplicitamente \tilde{X} ed E nei casi $X = \mathbb{A}^n$ e X ipersuperfice.
- 3. Se X è unione di due chiusi X_1 e X_2 , provare che $\tilde{X} = \tilde{X_1} \cup \tilde{X_2}$.
- 4. Mostrare che, se $0 \in X$, allora il cono affine di E coincide con il cono tangente ridotto $C_0(X)$ e quindi $\dim_0 X = \dim E + 1$.
- 2.47 (Scoppiamento lungo sottospazi proiettivi). Sia $K \subset \mathbb{P}^n$ un sottospazio proiettivo di codimensione h+1, con h>0; denotiamo con \mathbb{P}^h lo spazio proiettivo dei sottospazi di \mathbb{P}^n di codimensione h che contengono K e con

$$\operatorname{Bl}_K \mathbb{P}^n = \{(p, H) \in \mathbb{P}^n \times \mathbb{P}^h \mid p \in H\}.$$

- (Si noti che $K \times \mathbb{P}^h \subset \operatorname{Bl}_K \mathbb{P}^n$.) Indichiamo con $\pi_1 \colon \operatorname{Bl}_K \mathbb{P}^n \to \mathbb{P}^n$ e $\pi_2 \colon \operatorname{Bl}_K \mathbb{P}^n \to \mathbb{P}^h$ le proiezioni sui fattori.
- 1) Mostrare che per ogni sottospazio H di codimensione h vale $\pi_1\pi_2^{-1}(H)=H$ e che, se $p \notin K$ allora $\pi_2 \pi_1^{-1}(p) = K + p$.
- 2) Se K è definito dalle h+1 equazioni lineari indipendenti $f_i(x_0,\ldots,x_n)=0$, con i=1 $0,\ldots,h$, provare che Bl_K \mathbb{P}^n è il chiuso definito dalle $\binom{h+1}{2}$ equazioni $y_if_j(x_0,\ldots,x_n)=$ $y_j f_i(x_0, \dots, x_n)$, con $0 \le i < j \le h$.
- 3) Sia $X \subset \mathbb{P}^n$ un chiuso tale che alcuna componente irriducibile di X sia contenuta in K. Allora si definisce $Bl_K X \subset Bl_K \mathbb{P}^n$ come l'unione delle componenti irriducibili di $\pi_1^{-1}(X)$ che non sono contenute in $\pi_1^{-1}(K)$.

Dimostrare che la proiezione π_1 : $\mathrm{Bl}_K X \to X$ è surgettiva ed induce una bigezione tra le rispettive famiglie di componenti irriducibili. Provare inoltre che $\dim \mathrm{Bl}_K X = \dim X$ e $\dim(\pi_1^{-1}(K) \cap \mathrm{Bl}_K X) < \dim X$.

- 4) Provare che $\pi_2 \operatorname{Bl}_K X = \overline{\pi_K(X K)}$, dove π_K indica la proiezione di centro K.
- **2.48 (Varietà secante).** Si considerino due spazi proiettivi \mathbb{P}^{2n+1} e \mathbb{P}^n aventi rispettivamente coordinate omogenee $x_0,\ldots,x_n,y_0,\ldots,y_n$ e t_0,\ldots,t_n . Dati due chiusi irriducibili non vuoti $X,Y\subset\mathbb{P}^n$, sia \tilde{V} l'insieme delle coppie $([t],[x,y])\in\mathbb{P}^n\times\mathbb{P}^{2n+1}$ tali che $x\in C(X),\ y\in C(Y)$ e $t_i(x_j-y_j)=t_j(x_i-y_i)$ per ogni i,j. Siano $p\colon \tilde{V}\to\mathbb{P}^n,$ $q\colon \tilde{V}\to\mathbb{P}^{2n+1}$ le proiezioni sui fattori. Mostrare che \tilde{V} è un chiuso ed esiste una unica componente irriducibile $V\subset \tilde{V}$ tale che q(V) non è contenuta in $H=\{x_i=y_i\,\forall i\}$. Detti $S(X,Y)=p(V),\ J(X,Y)=q(V),\$ mostrare che $J(X,Y),\ S(X,Y)$ sono chiusi irriducibili, dim $S(X,Y)\leq \dim J(X,Y)=\dim V=\dim X+\dim Y+1$ e che S(X,Y) contiene come sottoinsieme denso l'unione di tutte le rette \overline{ab} al variare di $a\in X,\ b\in Y,\ a\neq b$.

I chiusi S(X,Y) e J(X,Y) sono detti rispettivamente **join** e **join astratto** di X e Y, mentre S(X,X) è detto **varietà secante** di X. Descrivere la varietà secante dell'immagine della seconda immersione di Veronese $v_2 : \mathbb{P}^2 \to \mathbb{P}^5$.

date/time: 5-Apr-2011/17:03

Page: 38 job: Geometria Algebrica light author: Marco Manetti date/time: 5-Apr-2011/17:03