Corso di Geometria 2

Docenti: Marco Manetti, Francesco Meazzini, Guido Pezzini

a.a. 2023/2024

Foglio di esercizi n.1, canale L-Z

1.3.2024

In alcuni esercizi si chiede di dimostrare alcune cose viste a lezione, a beneficio dei pochi assenti.

Esercizio 1. Elencare tutte le topologie possibili su un insieme di cardinalità 3.

Esercizio 2. (da sapere) Per ogni intero positivo n sia \mathcal{B}_n la famiglia degli intervalli aperti di \mathbb{R} di ampiezza minore o uguale a 1/n. Dimostrare che ogni \mathcal{B}_n è una base della topologia classica.

Esercizio 3. Poniamo

$$Z = \left\{ \frac{1}{n} \mid n \in \mathbb{Z}_{>0} \right\},\,$$

e definiamo la famiglia $\mathcal{B} \subseteq \mathscr{P}(\mathbb{R})$ nel modo seguente: $A \in \mathcal{B}$ se e solo se A è un intervallo aperto, oppure esiste un intervallo aperto $B \subseteq \mathbb{R}$ tale che $A = B \setminus Z$. Dimostrare che \mathcal{B} è base di una topologia \mathcal{T} su \mathbb{R} , e trovare un aperto di \mathcal{T} che non è aperto in topologia euclidea.

Esercizio 4. (da sapere) Sia X un insieme qualsiasi, e consideriamo la famiglia $\mathcal{T} \subseteq \mathscr{P}(X)$ definita nel modo seguente: un sottoinsieme $A \subseteq X$ è in \mathcal{T} se e solo se $A = \emptyset$ oppure $X \setminus A$ è un insieme finito. Dimostrare che \mathcal{T} è una topologia, è detta topologia *cofinita*. Per quali insiemi X la topologia \mathcal{T} coincide con la topologia discreta?

Esercizio 5. Consideriamo la topologia cofinita su \mathbb{R} .

- (1) Dato $A\subseteq X$ aperto in questa topologia, dimostrare che A è aperto anche in topologia euclidea.
- (2) Dati $p, q \in \mathbb{R}$ qualsiasi con $p \neq q$, dimostrare che non esistono due aperti (in topologia cofinita) disgiunti A, B tali che $p \in A$ e $q \in B$.
- (3) Dimostrare che invece in topologia euclidea due aperti del genere esistono per qualsiasi scelta di $p \in q$.

Esercizio 6. Sia X un insieme dotato della topologia discreta, e sia \mathcal{B} una base della topologia. Dimostrare che $\{x\} \in \mathcal{B}$ per ogni $x \in X$.

Esercizio 7. (da sapere) Sia $X = \mathbb{R}$ e consideriamo

$$\mathcal{B} = \{ [a, b[\mid a, b \in \mathbb{R}, \ a < b \}.$$

- (1) Dimostrare che \mathcal{B} è base di una topologia su \mathbb{R} , detta topologia di Sorgenfrey.
- (2) Dimostrare che un qualsiasi intervallo aperto]a, b[con a < b (entrambi numeri reali) è aperto anche in topologia di Sorgenfrey.
- (3) Dimostrare che la topologia di Sorgenfrey è strettamente più fine della topologia euclidea.
- (4) Dimostrare che per ogni $a, b \in \mathbb{R}$ con a < b, l'intervallo [a, b[è aperto e anche chiuso in topologia di Sorgenfrey.

Esercizio 8. Sia (X, \leq) un insieme ordinato, e per ogni $a \in X$ si consideri

$$M_a = \{ x \in X \mid a \le x \}.$$

Dimostrare che la famiglia di sottoinsiemi

$$\{M_a \mid a \in X\}$$

è base di una topologia.

Esercizio 9. (da sapere) Siano X spazio topologico e $D \subseteq X$. Dimostrare che D è denso se e solo se D interseca ogni aperto non vuoto di X.

Esercizio 10. Siano $X = \mathbb{R}$ e

$$\mathcal{B} = \{ |a, b[\mid a, b \in \mathbb{Z}, \ a < b \} .$$

(1) Dimostrare che \mathcal{B} è base di una topologia su X.

(2) Determinare parte interna e chiusura dei sottoinsiemi [0,1[e]1/2,5/2[rispetto a questa topologia.

Esercizio 11. Consideriamo $X = \mathbb{R}$ con topologia cofinita. Determinare la chiusura di [0,1] rispetto a questa topologia.

Esercizio 12. In topologia cofinita, ogni sottoinsieme dello spazio topologico è denso: vero o falso?

Esercizio 13. (<u>da sapere</u>) Dimostrare che, in uno spazio topologico, un sottoinsieme è aperto se e solo se è intorno di ogni suo punto.

Esercizio 14. Sia X uno spazio topologico, sia $x \in X$, e sia $U \subseteq X$ un intorno di x.

- (1) Dato V un sottoinsieme di X contenente U, dimostrare che anche V è un intorno di x.
- (2) Dato U' un altro intorno di x, dimostrare che $U \cup U'$ e $U \cap U'$ sono anch'essi intorni di x.

Esercizio 15. Sia ∞ un punto non appartenente ad \mathbb{R} , e consideriamo la famiglia $\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2$ di sottoinsiemi di $X = \mathbb{R} \cup \{\infty\}$, dove \mathcal{T}_1 sono tutti gli aperti di \mathbb{R} e $A \in \mathcal{T}_2$ se e solo se $\infty \in A$ e $\mathbb{R} - A$ è un chiuso limitato.

Dire se \mathcal{T} è una topologia su X.