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Persistent homology

• A general mathematical framework to encode the evolution of the topology
(homology) of families of nested spaces (filtered complex, sublevel sets,...).

• Formalized by H. Edelsbrunner (2002) et al and G. Carlsson et al (2005) - wide
development during the last decade.

• Multiscale topological information.

• Barcodes/persistence diagrams can be efficiently computed.

• Stability properties
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• Nested family (filtration) of sublevel-sets f−1((−∞, α]) for α = −∞ to +∞.

• Track evolution of topology throughout the family.
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• Nested family (filtration) of sublevel-sets f−1((−∞, α]) for α = −∞ to +∞.

• Track evolution of topology throughout the family.

• Finite set of intervals (barcode) encodes births/deaths of topological features.

Persistent homology for functions
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• Nested family (filtration) of sublevel-sets f−1((−∞, α]) for α = −∞ to +∞.

• Track evolution of topology throughout the family.

• Finite set of intervals (barcode) encodes births/deaths of topological features.
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Persistent homology of filtered complexes

Let ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K be a filtration of a simplicial complex K s. t.
Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.



Persistent homology of filtered complexes

Let ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K be a filtration of a simplicial complex K s. t.
Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

• ∀t ≤ t′ ∈ R, f−1((−∞, t]) ⊆ f−1((−∞, t′]) → filtration of X by the sublevel
sets of f .

• If f is defined at the vertices of a simplicial complex K , the sublevel sets filtration
is a filtration of the simplicial complex K.

Relation between sublevel sets filtrations and filtered simplicial complexes:

• For σ = [v0, · · · , vk] ∈ K, f(σ) =
maxi=0,··· ,k f(vi)

• The simplices of K are ordered according in-
creasing f values (and dimension in case of
equal values on different simplices).



Persistent homology of filtered complexes

Let ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K be a filtration of a simplicial complex K s. t.
Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Algorithm to compute the Betti numbers β0, β1, · · · , βd of K:

β0 = β1 = · · · = βd = 0;
for i = 1 to m
k = dimσi − 1;
if σi is contained in a (k + 1)-cycle in Ki

then βk+1 = βk+1 + 1;
else βk = βk − 1;

end if;
end for;
output (β0, β1, · · · , βd);

Goal: adapt the algorithm to keep track of
an homology basis and pairs positive sim-
plices (birth of a new homological class)
to negative simplices (death of an existing
homology class).

Notation: Hi
k = Hk(Ki)



Cycle associated to a positive simplex

Lemma: If σi is a positive k-cycle, then there exists a k-cycle cσ s.t.:
- cσ is not a boundary in Ki,
- cσ contains σi but no other positive k-simplex.
The cycle cσ is unique.

Proof:
By induction on the order of appearence of the simplices in the filtration.



Homology basis

• At the beginning: the basis of H0
k is empty.

• If a basis of Hi−1
k has been built and σi is a positive k-simplex then one adds

the homology class of the cycle ci associated to σi to the basis of Hi−1
k ⇒

basis of Hi
k.

• If a basis of Hj−1
k has been built and σj is a negative (k + 1)-simplex:

– let ci1 , · · · , cip be the cycles associated to the positive simplices
σi1 , · · · , σip that form a basis of Hj−1

k

– d = ∂σj =
∑p
k=1 εkc

ik + b

– l(j) = max{ik : εk = 1}
– Remove the homology class of cl(j) from the basis of Hj−1

k ⇒ basis of
Hj
k.



Pairing simplices

If a basis of Hj−1
k has been built and σj is a negative (k + 1)-simplex:

• let ci1 , · · · , cip be the cycles associated to the positive simplices σi1 , · · · , σip
that form a basis of Hj−1

k

• d = ∂σj =
∑p
k=1 εkc

ik + b

• l(j) = max{ik : εk = 1}
• Remove the homology class of cl(j) from the basis of Hj−1

k ⇒ basis of Hj
k.

The simplices σl(j) and σj are paired to form a persistent pair (σl(j), σj).
→ The homology class created by σl(j) in Kl(j) is killed by σj in Kj . The persistence
(or life-time) of this cycle is : j − l(j)− 1.

Remark: filtrations of K can be indexed by increasing sequences αi of real numbers
(useful when working with a function defined on the vertices of a simplicial complex).



The persistence algorithm: first version

Input: ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K a d-dimensional filtration of a simplicial
complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

L0 = L1 = · · · = Ld−1 = ∅
For j = 0 to m
k = dimσj − 1;
if σj is a negative simplex
l(j) = highest index of the positive simplices associated to ∂σj ;
Lk = Lk ∪ {(σl(j), σj)};

end if
end for

Output: L0, L1, · · · , Ld−1 ;



The persistence algorithm: first version

Input: ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K a d-dimensional filtration of a simplicial
complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

L0 = L1 = · · · = Ld−1 = ∅
For j = 0 to m
k = dimσj − 1;
if σj is a negative simplex
l(j) = highest index of the positive simplices associated to ∂σj ;
Lk = Lk ∪ {(σl(j), σj)};

end if
end for

Output: L0, L1, · · · , Ld−1 ;

How to test this condition?



The persistence algorithm: second version

The matrix of the boundary operator:

• M = (mij)i,j=1,··· ,m with coefficient in Z/2 defined by

mij = 1 if σi is a face of σj and mij = 0 otherwise

• For any column Cj , l(j) is defined by

(i = l(j))⇔ (mij = 1 and mi′j = 0 ∀i′ > i)



The persistence algorithm: second version

Compute the matrix of the boundary operator M
For j = 0 to m

While (there exists j′ < j such that l(j′) == l(j))
Cj = Cj + Cj′ mod(2);

End while
End for
Output the pairs (l(j), j);

Input: ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K a d-dimensional filtration of a simplicial
complex K s. t. Ki+1 = Ki ∪ σi+1 where σi+1 is a simplex of K.

Remark: The worst case complexity of the algorithm is O(m3) but much lower in
most practical cases.



The persistence algorithm: second version

A simple example:



Persistence diagram

• each pair (σl(j), σj) is represented by (l(j), j) or (f(σl(j)), f(σj)) ∈ R2 when
considering filtrations induced by functions, or (αl(j), αj) if the filtration is in-
dexed by a real valued sequence (αi)i∈I .

• The diagonal {y = x} is added to the persistence diagram.

• Unpaired positive simplex σi → (i,+∞).



Persistence diagram

• each pair (σl(j), σj) is represented by (l(j), j) or (f(σl(j)), f(σj)) ∈ R2 when
considering filtrations induced by functions, or (αl(j), αj) if the filtration is in-
dexed by a real valued sequence (αi)i∈I .

• The diagonal {y = x} is added to the persistence diagram.

• Unpaired positive simplex σi → (i,+∞).

Points may have multiplicity



Persistence diagram

• each pair (σl(j), σj) is represented by (l(j), j) or (f(σl(j)), f(σj)) ∈ R2 when
considering filtrations induced by functions, or (αl(j), αj) if the filtration is in-
dexed by a real valued sequence (αi)i∈I .

• The diagonal {y = x} is added to the persistence diagram.

• Unpaired positive simplex σi → (i,+∞).

Barcodes: an alternative (equivalent) representation where each pair (i, j) is repre-
sented by the interval [i, j]

2 4 6



The bottleneck distance between two diagrams D1 and D2 is

dB(D1, D2) = inf
γ∈Γ

sup
p∈D1

‖p− γ(p)‖∞

where Γ is the set of all the bijections between D1 and D2 and ‖p − q‖∞ =
max(|xp − xq|, |yp − yq|).

Distance between persistence diagrams

birth

death

∞

0

Multiplicity: 2

Add the diagonal

D1

D2
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What if f is slightly perturbed?

Stability properties
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What if f is slightly perturbed?

Theorem (Stability):
For any tame functions f, g : X→ R, d∞

B (Df ,Dg) ≤ ‖f − g‖∞.

Stability properties

[Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG
09], [C., de Silva, Glisse, Oudot 12]



Persistence-based clustering
Combine a mode seeking approach with (0-dim) persistence computation.

Input:
1. A finite set X of observations (point cloud with coordinates or pairwise distance
matrix),
2. A real valued function f defined on the observations (e.g. density estimate).

Goal: Partition the data according to the basins of attraction of the peaks of f

[C.,Guibas,Oudot,Skraba - J. ACM 2013]



Persistence-based clustering
Combine a mode seeking approach with (0-dim) persistence computation.

[C.,Guibas,Oudot,Skraba - J. ACM 2013]

1. Build a neighborhing graph G on top of X.

2. Compute the (0-dim) persistence of f to identify prominent peaks → number of
clusters (union-find algorithm).
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Persistence-based clustering
Combine a mode seeking approach with (0-dim) persistence computation.

[C.,Guibas,Oudot,Skraba - J. ACM 2013]

1. Build a neighborhing graph G on top of X.

2. Compute the (0-dim) persistence of f to identify prominent peaks → number of
clusters (union-find algorithm).

3. Chose a threshold τ > 0 and use the persistence algorithm to merge components
with prominence less than τ .

τ
τ = 0



Persistence-based clustering
Combine a mode seeking approach with (0-dim) persistence computation.

[C.,Guibas,Oudot,Skraba - J. ACM 2013]

τ
τ = 0

Complexity of the algorithm: O(n logn)

Theoretical guarantees:

- Stability of the number of clusters (w.r.t. perturbations of X and f).

- Partial stability of clusters: well identified stable parts in each cluster.

“soft ” clustering



Application to non-rigid shape segmentation
[Skraba, Ovsjanikov, C.,Guibas, NORDIA 10]

X : a 3D shape
f = HKS function on X

5 prominent
peaks/clusters

Problem: some part of clusters are unstable → dirty segments



Application to non-rigid shape segmentation
[Skraba, Ovsjanikov, C.,Guibas, NORDIA 10]

Problem: some part of clusters are unstable → dirty segments

Idea:
- Run the persistence based algorithm several times on random perturbations of f
(size bounded by the “persistence” gap).
- Partial stability of clusters allows to establish correspondences between clusters
across the different runs → for any x ∈ X, a vector giving the probability for x to
belong to each cluster.



Application to non-rigid shape segmentation
[Skraba, Ovsjanikov, C.,Guibas, NORDIA 10]



Other applications: classification, object recognition

[Li, Ovsjanikov, C. - CVPR’14]

Examples:

- Hand gesture recognition

- Persistence-based pooling for shape recognition [Bonis, Ovsjanikov, Oudot, C. 2015]



Persistent homology for (point cloud) data

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

Build topol.
structure

Persistent
homology

• Challenges and goals:
→ no direct access to topological/geometric information: need of intermediate
constructions (simplicial complexes);
→ distinguish topological “signal” from noise;
→ topological information may be multiscale;
→ statistical analysis of topological information.



Persistent homology for (point cloud) data

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

Build topol.
structure

Persistent
homology

• Build a geometric filtered simplicial complex on top of X̂m → multiscale topol.
structure.

• Compute the persistent homology of the complex → multiscale topol. signature.

• Compare the signatures of “close” data sets → robustness and stability results.

• Statistical properties of signatures



Filtered complexes and filtrations

A filtered simplicial complex S built on top of a set X is a family (Sa | a ∈ R) of
subcomplexes of some fixed simplicial complex S with vertex set X s. t. Sa ⊆ Sb
for any a ≤ b.

A filtration F of a space X is a nested family (Fa | a ∈ R) of subspaces of X
such that Fa ⊆ Fb for any a ≤ b.

Example: If f : X → R is a function, then the sublevelsets of f ,
Fa = f−1((−∞, a]) define the sublevel set filtration associated to f .

Example: Rips and Cech filtrations



Persistent homology of filtered complexes

• An efficient way to encode the evolution of
the topology (homology) of families of nested
spaces (filtered complex, sublevel sets,...).

• Multiscale topological information.

• Barcodes/persistence diagrams can be effi-
ciently computed.

• Stability properties

Rips parameter
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Persistent homology of filtered complexes

• An efficient way to encode the evolution of
the topology (homology) of families of nested
spaces (filtered complex, sublevel sets,...).

• Multiscale topological information.

• Barcodes/persistence diagrams can be effi-
ciently computed.

• Stability properties

birth

death

∞

0
Multiplicity: 14

Persistence diagram

Add the diagonal

Persistence barcode

Rips parameter



Stability properties

“Stability theorem”: Close spaces/data sets have close persistence diagrams!

If X and Y are pre-compact metric spaces, then

db(dgm(Rips(X)), dgm(Rips(Y))) ≤ dGH(X,Y).

Bottleneck distance Gromov-Hausdorff distance

Rem: This result also holds for other families of filtrations (particular case of a more general
theorem).

[C., de Silva, Oudot - Geom. Dedicata 2013].

dGH(X,Y) := inf
Z,γ1,γ2

dH(γ1(X), γ2(X))

Z metric space, γ1 : X→ Z and γ2 : Y→ Z
isometric embeddings.



Application: non rigid shape classification

camel
cat
elephant
face
head
horse

∞

0
0

1
∞

0
0

1
∞

0
0

1
∞

0
0

1

MDS using bottleneck distance.

[C., Cohen-Steiner, Guibas, Mémoli, Oudot - SGP ’09]

• Non rigid shapes in a same class are almost isometric, but computing Gromov-
Hausdorff distance between shapes is extremely expensive.

• Compare diagrams of sampled shapes instead of shapes themselves.



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Examples:

• Let S be a filtered simplicial complex. If Va = H(Sa) and vba : H(Sa)→ H(Sb)
is the linear map induced by the inclusion Sa ↪→ Sb then (H(Sa) | a ∈ R) is
a persistence module.

• Given a metric space (X, dX) , H(Rips(X)) is a persistence module.

• If f : X → R is a function, then the filtration defined by the sublevel sets of
f , Fa = f−1((−∞, a]), induces a persistence module at homology level.



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Definition: A persistence module V is q-tame if for any a < b, vba has a finite rank.

Theorem:

q-tame persistence modules have well-defined persistence diagrams.

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG’09], [C., de Silva, Glisse,
Oudot 12]



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

An idea about the definition of persistence diagrams:

a b
c

d
Number of points in any rectangle [a, b] × [c, d]
above the diagonal:

rk(vcb)− rk(vdb ) + rk(vda)− rk(vca)

Measures on rectangles:

a b c d



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Definition: A persistence module V is q-tame if for any a < b, vba has a finite rank.

Theorem:

q-tame persistence modules have well-defined persistence diagrams.

Exercise: Let X be a precompact metric space. Then H(Rips(X)) and H(Čech(X))
are q-tame.

Recall that a metric space (X, ρ) is precompact if for any ε > 0 there exists a finite subset Fε ⊂ X such that dH (X, Fε) < ε (i.e.
∀x ∈ X, ∃p ∈ Fε s.t. ρ(x, p) < ε).

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG’09], [C., de Silva, Glisse,
Oudot 12]



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

A homomorphism of degree ε between two persis-
tence modules U and V is a collection Φ of linear
maps

(φa : Ua → Va+ε | a ∈ R)

such that vb+εa+ε ◦ φa = φb ◦ uba for all a ≤ b.

Ua U b

V a+ε V b+ε

An ε-interleaving between U and V is specified by two homomorphisms of degree ε
Φ : U → V and Ψ : V → U s.t. Φ ◦ Ψ and Ψ ◦ Φ are the “shifts” of degree 2ε
between U and V.

Ua

V a+ε

Ua+2ε

V a+3ε· · ·

· · ·
φa

ψa+ε

ua+2ε
a

va+3ε
a+ε

· · ·

· · ·



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Stability Thm:

If U and V are q-tame and ε-interleaved for some ε ≥ 0 then

dB(dgm(U), dgm(V)) ≤ ε

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG ’09], [C., de Silva, Glisse,
Oudot 12]



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Stability Thm:

If U and V are q-tame and ε-interleaved for some ε ≥ 0 then

dB(dgm(U), dgm(V)) ≤ ε

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG ’09], [C., de Silva, Glisse,
Oudot 12]

Exercise: Show the stability theorem for (tame) functions :
let X be a topological space and let f, g : X→ R be two tame functions. Then

dB(Df ,Dg) ≤ ‖f − g‖∞.



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Stability Thm:

If U and V are q-tame and ε-interleaved for some ε ≥ 0 then

dB(dgm(U), dgm(V)) ≤ ε

Strategy: build filtrations that induce q-tame homology persistence modules
and that turn out to be ε-interleaved when the considered spaces/functions are
O(ε)-close.

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG ’09], [C., de Silva, Glisse,
Oudot 12]



Multivalued maps and correspondences

A multivalued map C : X ⇒ Y from a set X to a set Y is a subset of X × Y,
also denoted C, that projects surjectively onto X through the canonical projection
πX : X × Y → X. The image C(σ) of a subset σ of X is the canonical projection
onto Y of the preimage of σ through πX.

X

Y C

Y

X CT



Multivalued maps and correspondences

A multivalued map C : X ⇒ Y from a set X to a set Y is a subset of X × Y,
also denoted C, that projects surjectively onto X through the canonical projection
πX : X × Y → X. The image C(σ) of a subset σ of X is the canonical projection
onto Y of the preimage of σ through πX.

X

Y C

Y

X CT

The transpose of C, denoted CT , is the image of C through the symmetry map
(x, y) 7→ (y, x).

A multivalued map C : X⇒ Y is a correspondence if CT is also a multivalued map.



Multivalued maps and correspondences

A multivalued map C : X ⇒ Y from a set X to a set Y is a subset of X × Y,
also denoted C, that projects surjectively onto X through the canonical projection
πX : X × Y → X. The image C(σ) of a subset σ of X is the canonical projection
onto Y of the preimage of σ through πX.

X

Y C

Y

X CT

Example: ε-correspondence and Gromov-Hausdorff distance.

Let (X, ρX) and (Y, ρY) be compact metric spaces.
A correspondence C : X ⇒ Y is an ε-correspondence if
∀(x, y), (x′, y′) ∈ C, |ρX(x, x′)− ρY(y, y′)| ≤ ε.

dGH(X,Y) =
1

2
inf{ε ≥ 0 : there exists an ε-correspondence between Xand Y}

Y

X

C

x x′

y

y′



Multivalued simplicial maps

Let S and T be two filtered simplicial complexes with vertex sets X and Y respectively.
A multivalued map C : X⇒ Y is ε-simplicial from S to T if for any a ∈ R and any
simplex σ ∈ Sa, every finite subset of C(σ) is a simplex of Ta+ε.

X

Y
C

Y

X CT



Multivalued simplicial maps

Let S and T be two filtered simplicial complexes with vertex sets X and Y respectively.
A multivalued map C : X⇒ Y is ε-simplicial from S to T if for any a ∈ R and any
simplex σ ∈ Sa, every finite subset of C(σ) is a simplex of Ta+ε.

X

Y
C

Y

X CT

Proposition: Let S, T be filtered complexes with vertex sets X, Y respectively. If
C : X ⇒ Y is a correspondence such that C and CT are both ε-simplicial, then
together they induce a canonical ε-interleaving between H(S) and H(T).



The example of the Rips and Čech filtrations

Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are ε-interleaved.



The example of the Rips and Čech filtrations

Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are ε-interleaved.

Proof: Let C : X⇒ Y be a correspondence with distortion at most ε.
If σ ∈ Rips(X, a) then ρX(x, x′) ≤ a for all x, x′ ∈ σ.
Let τ ⊆ C(σ) be any finite subset.
For any y, y′ ∈ τ there exist x, x′ ∈ σ s. t. y ∈ C(x), y′ ∈ C(x′) so

ρY(y, y′) ≤ ρX(x, x′) + ε ≤ a+ ε and τ ∈ Rips(Y, a+ ε)

⇒ C is ε-simplicial from Rips(X) to Rips(Y).
Symetrically, CT is ε-simplicial from Rips(Y) to Rips(X).



The example of the Rips and Čech filtrations

Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are ε-interleaved.

Proof: Let C : X⇒ Y be a correspondence with distortion at most ε.
If σ ∈ Rips(X, a) then ρX(x, x′) ≤ a for all x, x′ ∈ σ.
Let τ ⊆ C(σ) be any finite subset.
For any y, y′ ∈ τ there exist x, x′ ∈ σ s. t. y ∈ C(x), y′ ∈ C(x′) so

ρY(y, y′) ≤ ρX(x, x′) + ε ≤ a+ ε and τ ∈ Rips(Y, a+ ε)

⇒ C is ε-simplicial from Rips(X) to Rips(Y).
Symetrically, CT is ε-simplicial from Rips(Y) to Rips(X).

Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Čech(X)) and H(Čech(Y)) are ε-interleaved.



The example of the Rips and Čech filtrations

Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are ε-interleaved.

Proof: Let C : X⇒ Y be a correspondence with distortion at most ε.
If σ ∈ Rips(X, a) then ρX(x, x′) ≤ a for all x, x′ ∈ σ.
Let τ ⊆ C(σ) be any finite subset.
For any y, y′ ∈ τ there exist x, x′ ∈ σ s. t. y ∈ C(x), y′ ∈ C(x′) so

ρY(y, y′) ≤ ρX(x, x′) + ε ≤ a+ ε and τ ∈ Rips(Y, a+ ε)

⇒ C is ε-simplicial from Rips(X) to Rips(Y).
Symetrically, CT is ε-simplicial from Rips(Y) to Rips(X).

Proposition: Let (X, ρX), (Y, ρY) be metric spaces. For any ε > 2dGH(X,Y) the
persistence modules H(Čech(X)) and H(Čech(Y)) are ε-interleaved.

Remark: Similar results for witness complexes (fixed landmarks)



Tameness of the Rips and Čech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Čech(X))
are q-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Čech(X))) are well-defined!



Tameness of the Rips and Čech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Čech(X))
are q-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Čech(X))) are well-defined!

Proof: show that Iba : H(Rips(X, a))→ H(Rips(X, b)) has
finite rank whenever a < b.

Let ε = (b − a)/2 and let F ⊂ X be finite s. t.
dH(X,F ) ≤ ε/2.

Then C = {(x, f) ∈ X × F |d(x, f) ≤ ε/2} is
an ε-correspondence.

Using the interleaving map, Iba factorizes as

HRips(X, a)→ HRips(F, a+ ε)→ HRips(X, a+ 2ε) = HRips(X, b)

finite dimensional

X

F
C



Tameness of the Rips and Čech filtrations

Theorem: Let X be a compact metric space. Then H(Rips(X)) and H(Čech(X))
are q-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Čech(X))) are well-defined!

Theorem: Let X,Y be compact metric spaces. Then

db(dgm(H(Čech(X))), dgm(H(Čech(Y)))) ≤ 2dGH(X,Y),

db(dgm(H(Rips(X))), dgm(H(Rips(Y)))) ≤ 2dGH(X,Y).

Remark: The proofs never use the triangle inequality! The previous approch and results
easily extend to other settings like, e.g. spaces endowed with a similarity measure.



Why persistence

• Even when X is compact, Hp(Rips(X, a)), p ≥ 1, might be infinite dimen-
sional for some value of a:

aX

It is also possible to build such an example with the open Rips
complex:

[x0, x1, · · · , xk] ∈ Rips(X, a−)⇔ dX(xi, xj) < a, for all i, j



Why persistence

• Even when X is compact, Hp(Rips(X, a)), p ≥ 1, might be infinite dimen-
sional for some value of a:

aX

It is also possible to build such an example with the open Rips
complex:

[x0, x1, · · · , xk] ∈ Rips(X, a−)⇔ dX(xi, xj) < a, for all i, j

• For any α, β ∈ R such that 0 < α ≤ β and any integer k there exists a
compact metric space X such that for any a ∈ [α, β], Hk(Rips(X, a)) has a
non countable infinite dimension (can be embedded in R4 [Droz 2013]).



Why persistence

• Even when X is compact, Hp(Rips(X, a)), p ≥ 1, might be infinite dimen-
sional for some value of a:

aX

It is also possible to build such an example with the open Rips
complex:

[x0, x1, · · · , xk] ∈ Rips(X, a−)⇔ dX(xi, xj) < a, for all i, j

• If X is geodesic, then dim H1(Rips(X, a)) < +∞ for all a > 0 and
Dgm(H1(Rips(X))) is contained in the vertical line x = 0.

• For any α, β ∈ R such that 0 < α ≤ β and any integer k there exists a
compact metric space X such that for any a ∈ [α, β], Hk(Rips(X, a)) has a
non countable infinite dimension (can be embedded in R4 [Droz 2013]).

• If X is compact, then dim H1(Čech(X, a)) < +∞ for all a ([Smale-Smale,
C.-de Silva]).

• If X is a geodesic δ-hyperbolic space then Dgm(H2(Rips(X))) is contained
in a vertical band of width O(δ).



Some weaknesses

If X and Y are pre-compact metric spaces, then

db(dgm(Rips(X)), dgm(Rips(Y))) ≤ dGH(X,Y).

→ Vietoris-Rips (or Cech, witness) filtrations quickly become prohibitively large as
the size of the data increases ( O(|X|d) ), making the computation of persistence
practically almost impossible.

→ Persistence diagrams of Rips-Vietoris (and Cěch, witness,..) filtrations and
Gromov-Hausdorff distance are very sensitive to noise and outliers.



Statistical setting

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

(M, ρ) metric space

µ a probability measure with compact support Xµ.

Sample m points
according to µ.

Examples:
- Filt(X̂m) = Ripsα(X̂m)

- Filt(X̂m) = Čechα(X̂m)

- Filt(X̂m) = sublevelset filtration of ρ(.,Xµ).

Questions:

• Statistical properties of dgm(Filt(X̂m)) ? dgm(Filt(X̂m))→? as m→ +∞?
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∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

(M, ρ) metric space

µ a probability measure with compact support Xµ.

Sample m points
according to µ.

Examples:
- Filt(X̂m) = Ripsα(X̂m)

- Filt(X̂m) = Čechα(X̂m)

- Filt(X̂m) = sublevelset filtration of ρ(.,Xµ).

Questions:

• Statistical properties of dgm(Filt(X̂m)) ? dgm(Filt(X̂m))→? as m→ +∞?

• Can we do more statistics with persistence diagrams?



Statistical setting

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))

(M, ρ) metric space

µ a probability measure with compact support Xµ.

Sample m points
according to µ.

Examples:
- Filt(X̂m) = Ripsα(X̂m)

- Filt(X̂m) = Čechα(X̂m)

- Filt(X̂m) = sublevelset filtration of ρ(.,Xµ).

Stability thm: db(dgm(Filt(Xµ)), dgm(Filt(X̂m))) ≤ 2dGH(Xµ, X̂m)

P
(

db

(
dgm(Filt(Xµ)), dgm(Filt(X̂m))

)
> ε
)
≤ P

(
dGH(Xµ, X̂m) >

ε

2

)So, for any ε > 0,



Deviation inequality

X̂m Filt(X̂m)

(M, ρ, µ)

X1, X2, · · · , Xm
i.i.d. sampled

according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Xµ compact

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Deviation inequality

X̂m Filt(X̂m)

(M, ρ, µ)

X1, X2, · · · , Xm
i.i.d. sampled

according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Theorem: If µ satisfies the (a, b)-standard assumption, then for any ε > 0:

P
(

db

(
dgm(Filt(Xµ)), dgm(Filt(X̂m))

)
> ε
)
≤ min(

8b

aεb
exp(−maεb), 1).

Moreover lim
n→∞

P

(
db

(
dgm(Filt(Xµ)), dgm(Filt(X̂m))

)
≤ C1

(
logm

m

)1/b
)

= 1.

where C1 is a constant only depending on a and b.

Xµ compact

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Deviation inequality

X̂m Filt(X̂m)

(M, ρ, µ)

X1, X2, · · · , Xm
i.i.d. sampled

according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Sketch of proof:

1. Upperbound P
(
dH(Xµ, X̂m) > ε

2

)
.

2. (a, b) standard assumption⇒ an explicit upperbound for the covering number
of Xµ (by balls of radius ε/2).

3. Apply “union bound” argument.

Xµ compact

C(ε) ≤ P (ε/2)

+ µ(B(x, ε/2)) ≥ a(ε/2)b

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Minimax rate of convergence

Let P(a, b,M) be the set of all the probability measures on the metric space (M, ρ)
satisfying the (a, b)-standard assumption on M:

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Minimax rate of convergence

Let P(a, b,M) be the set of all the probability measures on the metric space (M, ρ)
satisfying the (a, b)-standard assumption on M:

Remark: we can obtain slightly better bounds if Xµ is a submanifold of RD - see [Genovese,
Perone-Pacifico,Verdinelli, Wasserman 2011, 2012]

Theorem: Let P(a, b,M) be the set of (a, b)-standard proba measures on M. Then:

sup
µ∈P(a,b,M)

E
[
db(dgm(Filt(Xµ)), dgm(Filt(X̂m)))

]
≤ C

(
lnm

m

)1/b

where the constant C only depends on a and b (not on M!). Assume moreover that
there exists a non isolated point x in M and let xm be a sequence in M \ {x} such

that ρ(x, xm) ≤ (am)−1/b . Then for any estimator d̂gmm of dgm(Filt(Xµ)):

lim inf
m→∞

ρ(x, xm)−1 sup
µ∈P(a,b,M)

E
[
db(dgm(Filt(Xµ)), d̂gmm)

]
≥ C′

where C′ is an absolute constant.

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Numerical illustrations

- µ: unif. measure on Lissajous curve Xµ.
- Filt: distance to Xµ in R2.
- sample k = 300 sets of m points for m =
[2100 : 100 : 3000].
- compute

Êm = Ê[dB(dgm(Filt(Xµ)), dgm(Filt(X̂n)))].

- plot log(Êm) as a function of
log(log(m)/m).



Numerical illustrations

- µ: unif. measure on a torus Xµ.
- Filt: distance to Xµ in R3.
- sample k = 300 sets of n points for m =
[12000 : 1000 : 21000].
- compute

Êm = Ê[dB(dgm(Filt(Xµ)), dgm(Filt(X̂m)))].

- plot log(Êm) as a function of
log(log(m)/m).



Persistence landscapes

b

d
d+b

2

d+b
2

d−b
2

D = {( di+bi
2

, di+bi
2

)}i ∈ I For p = ( b+d
2
, d−b

2
) ∈ D,

Λp(t) =


t− b t ∈ [b, b+d

2
]

d− t t ∈ ( b+d
2
, d]

0 otherwise.

Persistence landscape [Bubenik 2012]:

λD(k, t) = kmax
p∈dgm

Λp(t), t ∈ R, k ∈ N,

where kmax is the kth largest value in the set.



Persistence landscapes

b

d
d+b

2

d+b
2

d−b
2

Persistence landscape [Bubenik 2012]:

λD(k, t) = kmax
p∈dgm

Λp(t), t ∈ R, k ∈ N,

Properties

• For any t ∈ R and any k ∈ N, 0 ≤ λD(k, t) ≤ λD(k + 1, t).

• For any t ∈ R and any k ∈ N, |λD(k, t) − λD′(k, t)| ≤ dB(D,D′) where
dB(D,D′) denotes the bottleneck distance between D and D′.

stability properties of persistence landscapes



Persistence landscapes

b

d
d+b

2

d+b
2

d−b
2

• Persistence encoded as an element of a functional space (vector space!).

• Expectation of distribution of landscapes is well-defined and can be approximated
from average of sampled landscapes.

• process point of view: convergence results and convergence rates → confidence
intervals can be computed using bootstrap.

[C., Fasy, Lecci, Rinaldo, Wasserman SoCG 2014]



Weak convergence of landscapes

Let P be a probability distribution on LT , and let λ1, . . . , λn ∼ P . Let µ be the
mean landscape:

µ(t) = E[λi(t)], t ∈ [0, T ].

We estimate µ with the sample average

λn(t) =
1

n

n∑
i=1

λi(t), t ∈ [0, T ].

Since E(λn(t)) = µ(t), λn is a point-wise unbiased estimator of µ.

Let LT be the space of landscapes with support contained in [0, T ].

For fixed t: pointwise convergence of λn(t) to µ(t) + CLT

Here, convergence of the process{√
n
(
λn(t)− µ(t)

)}
t∈[0,T ]



Weak convergence of landscapes

Let
F = {ft}0≤t≤T

where ft : LT → R is defined by ft(λ) = λ(t).

Empirical process indexed by ft ∈ F :

Gn(t) = Gn(ft) :=
√
n
(
λn(t)− µ(t)

)
=

1√
n

n∑
i=1

(ft(λi)− µ(t)) =
√
n(Pn−P )(ft)

Theorem [Weak convergence of landscapes]. Let G be a Brownian bridge with
covariance function κ(t, s) =

∫
ft(λ)fs(λ)dP (λ)−

∫
ft(λ)dP (λ)

∫
fs(λ)dP (λ), for

t, s ∈ [0, T ]. Then Gn  G.



Weak convergence of landscapes

Let
F = {ft}0≤t≤T

where ft : LT → R is defined by ft(λ) = λ(t).

Empirical process indexed by ft ∈ F :

Gn(t) = Gn(ft) :=
√
n
(
λn(t)− µ(t)

)
=

1√
n

n∑
i=1

(ft(λi)− µ(t)) =
√
n(Pn−P )(ft)

For t ∈ [0, T ], let σ(t) be the standard deviation of
√
nλn(t), i.e. σ(t) =√

nVar(λn(t)) =
√

Var(ft(λ1)).

Theorem [Uniform CLT]. Suppose that σ(t) > c > 0 in an interval [t∗ , t
∗] ⊂ [0, T ],

for some constant c. Then there exists a random variable W
d
= supt∈[t∗ ,t∗] |G(ft)|

such that

sup
z∈R

∣∣∣∣∣P
(

sup
t∈[t∗ ,t∗]

|Gn(t)| ≤ z

)
− P (W ≤ z)

∣∣∣∣∣ = O

(
(logn)7/8

n1/8

)
.



Some consequences

Theorem. Suppose that σ(t) > c > 0 in an interval [t∗ , t
∗] ⊂ [0, T ], for some

constant c. Then, given a confidence level 1 − α, one can construct confidence
functions `n(t) and un(t) such that

P
(
`n(t) ≤ µ(t) ≤ un(t) for all t ∈ [t∗ , t

∗]
)
≥ 1− α−O

(
(logn)7/8

n1/8

)
.

Also, supt (un(t)− `n(t)) = OP
(√

1
n

)
.

Bootstrap for landscapes → confidence bands for landscapes.
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∗] ⊂ [0, T ], for some

constant c. Then, given a confidence level 1 − α, one can construct confidence
functions `n(t) and un(t) such that

P
(
`n(t) ≤ µ(t) ≤ un(t) for all t ∈ [t∗ , t

∗]
)
≥ 1− α−O

(
(logn)7/8

n1/8

)
.

Also, supt (un(t)− `n(t)) = OP
(√

1
n

)
.

Bootstrap for landscapes → confidence bands for landscapes.



To summarize

X̂m Rips(X̂m)

(M, ρ, µ)

X1, X2, · · · , Xm
i.i.d. sampled

according to µ.

Xµ compact

Repeat n times: λ1(t), · · · , λn(t) → λn(t) ΛP (t) = E[λi(t)]

λXµ(t)

|λn(t) −
ΛP (t)|

Bootstrap

|λXP
(t)− ΛP (t)| →

0 as m
→∞

Stability w.r.t. µ?

m→∞



Wasserstein distance
Let (M, ρ) be a metric space and let µ, ν be probability measures on M with finite
p-moments (p ≥ 1).

“The” Wasserstein distance Wp(µ, ν) quantifies the optimal cost of pushing µ onto
ν, the cost of moving a small mass dx from x to y being ρ(x, y)pdx.

• Transport plan: Π a proba measure on
M ×M such that Π(A × Rd) = µ(A)
and Π(Rd × B) = ν(B) for any borelian
sets A,B ⊂M .

• Cost of a transport plan:

C(Π) =

(∫
M×M

ρ(x, y)pdΠ(x, y)

) 1
p

• Wp(µ, ν) = infΠ C(Π)



(Sub)sampling and stability of expected landscapes

X̂m Rips(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λRips(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Remarks:
- similar results by Blumberg et al (2014) in the (Gromov-)Prokhorov metric (for distribu-
tions, not for expectations) ;
- also work with “Gromov-Wasserstein” metric;

- m
1
p cannot be replaced by a constant.



(Sub)sampling and stability of expected landscapes

X̂m Rips(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λRips(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

Consequences:
• Subsampling: efficient and easy to parallelize algorithm to infer topol. information

from huge data sets.

• Robustness to outliers.

• R package TDA +Gudhi library: https://project.inria.fr/gudhi/software/

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes

X̂m Rips(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λRips(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

Proof:

1. Wp(µ
⊗m, ν⊗m) ≤ m

1
pWp(µ, ν)

2. Wp(Pµ, Pν) ≤Wp(µ
⊗m, ν⊗m) (stability of persistence!)

3. ‖Λµ,m − Λν,m‖∞ ≤Wp(Pµ, Pν) (Jensen’s inequality)

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes

Example: Circle with one outlier.

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes
[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Example: 3D shapes

From n = 100 subsamples of size m = 300



(Sub)sampling and stability of expected landscapes

(Toy) Example: Accelerometer data from smartphone.

- spatial time series (accelerometer data from the smarphone of users).
- no registration/calibration preprocessing step needed to compare!

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]
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