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Q-GORENSTEIN SMOOTHINGS OF QUOTIENT SINGULARITIES.

MARCO MANETTI

We give a topological proof of the following theorem:

Theorem. Let (X0, 0) be a two dimensional quotient singularity, if (X0, 0) admits
a Q-Gorenstein smoothing over the disk, then either (X0, 0) is a rational double

point or it is a cyclic singularity of type
1
dn2

(1, dna− 1) for some integers a, n, d
with a and n relatively prime.

We give also an explicit classification of such smoothings and we study their Milnor
fibres.

§0 . Introduction

The goal of this paper is to study some particular classes of deformations of
quotient singularities of dimension 2.

Let G ⊂ Aut(Cn, 0) be a finite subgroup of germs of holomorphic automorphisms
of Cn in 0, according to a classical result due to H.Cartan [C] there exists a new
coordinates system where the action of G linearizes, i.e. G ⊂ GL(n,C). A quotient
singularity is the germ (X, 0) where X = Cn/G and 0 ∈ X is the representative
of the G-orbit {0}.
By a well known theorem of Schlessinger every quotient singularity of dimension
n 6= 2 is rigid, so it makes sense to study deformations only in the two dimensional
case.

We recall that a quotient singularity C2/G is said to be a rational double point
(R.D.P. for short) if G ⊂ SL(2,C). Given G ⊂ GL(2,C) if G′ = G∩SL(2,C) then
H = G/G′ is a finite subgroup of C∗ thus it is cyclic, in particular every quotient
singularity of dimension two is the quotient of a R.D.P. by an automorphism of
finite order.
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This simple remark is the idea which has been inspirating this work. In fact we
show here that some deformations of two dimensional quotient singularities are the
quotient, by an automorphism of finite order, of some deformations of R.D.P.’s and
we consequently use this information in order to give a classification result.

Roughly speaking a deformation of a normal singularity is called a Q-Gorenstein
smoothing if some multiple of the canonical divisor is locally principal and the
generic fibre is smooth (see §1 and §2 for a precise definition). The main result
stated here is the following:

Main Theorem. Let (X, 0) → (C, 0) be a Q-Gorenstein smoothing of a two
dimensional quotient singularity (X0, 0). Then either (X0, 0) is a rational double
point or there exists an integer n > 1 such that (X, 0) is analytically isomorphic
to (Y, 0)/G where:

a) (Y, 0) ⊂ (C4, 0) is an isolated hypersurface singularity defined by

F = uv + ydn − tb − ϕ1(t)yn − . . .− ϕd−1(t)y(d−1)n = 0

for some positive integers d, b.

The ϕi’s are convergent power series satisfying ϕi ∈ C{t}, ϕi(0) = 0 and such
that the projection on the t-axis (Y, 0) π−→(C, 0) is a smoothing of (Y0, 0).

b) G ' µn acts on C4 in the following way

µn 3 ξ: (u, v, y, t)→ (ξu, ξ−1v, ξay, t) with (a, n) = 1

c) π′ is obtained from π by passing to the quotient.

Conversely all such smoothings are Q-Gorenstein.

A proof of this theorem can be obtained by joining Cor. 3.6 and Prop. 3.10
of [K-S]. Kollar and Shepherd-Barron’s proof relies over some recent advances
in three dimensional geometry and their applications to deformations of surface
singularities.

We note that a weaker version of the main theorem (valid in the hypothesis that
(X0, 0) is a cyclic quotient singularity) can be easily proved by studying the self-
intersection K2 of the canonical divisor in the minimal resolution of (X0, 0). This
study is essentially contained in [Wa] and we refer to ([L-W] Prop 5.9) for a detailed
exposition.

In this paper, following the previously described idea, we give a new proof of
the main theorem which is essentially different from the other ones and which we
believe to be easier and more elementary.
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The paper is organized as follows:

In §1 we recall some definitions and some basic facts about smoothing of normal
singularities.

In §2 we prove some preparatory material and some fact which we believe to be of
independent interest. We prove that the torsion part of the Picard group of the
Milnor fibre of a Q-Gorenstein smoothing of a quotient singularity is cyclic and
that it is generated by the canonical bundle.

Finally §3 is entirely dedicated to the proof of the main theorem.

This work is essentially contained in [Ma2] where the results proved here find
application in the study of degenerations of algebraic surfaces. We refer to [Ma1]
for an useful application to investigation of normal degenerations of the projective
plane.

I would like to thank Prof. Fabrizio Catanese for his precious help during my
thesis work.

§1 . Generalities about Milnor fibre and analytic singularities

We shall always work over the field of the complex numbers C. By a surface
singularity we shall mean a two dimensional irreducible germ (V0, 0) of analytic
space which has 0 as an isolated singular point. A smoothing of (V0, 0) is a flat
map f :V → ∆ where V is a reduced complex space, ∆ ⊂ C is a small open disk
centered at 0, f−1(0) ' V0 and for every t ∈ ∆∗ = ∆− {0} the fibre Vt = f−1(t)
is nonsingular.

Let’s suppose (V0, 0) embedded in (Cn, 0), then there exists a closed embedding
of (V, 0) in (Cn ×∆, 0) such that the map f is induced by the projection on the
second factor Cn ×∆→ ∆.

Let’s fix now some further notation: if r > 0 we denote by Br = {z ∈ CN | ‖z‖ < r}
and let Sr = ∂Br. We shall call Sr a Milnor sphere for V0 if for every 0 < r′ ≤ r

the sphere Sr′ intersects V0 transversally : according to a basic result ([Mi] Cor
2.9) every isolated embedded singularity admits a Milnor sphere.

Let Sr be a Milnor sphere for V0, then (shrinking ∆ if necessary) we can assume
that Sr ×∆ intersects Vt transversally ∀t ∈ ∆. In this set-up we denote

X = V ∩ (Br ×∆) Xt = Vt ∩X Kt = ∂Xt = Vt ∩ (Sr ×∆)

By the Ehresmann’s fibration theorem we have ∂X = ∪t∈∆Kt ' K0 ×∆ and the
map f :X\X0 → ∆∗ is a locally trivial C∞ fibre bundle with fibre F diffeomorphic
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to Xt for t 6= 0.We call F (resp. F ) the Milnor fibre (resp. compact Milnor fibre)
of the smoothing f .

The basic theory about Milnor fibres shows that the diffeomorphism class of F is
independent of the embedding of V , in particular topological invariants of F are
invariants of the smoothing.

Since F is Stein, it has the homotopy type of a two dimensional CW complex and
F is obtained from ∂F up to homotopy by attaching a finite number of cells of
dimension ≥ 2. This implies that the inclusion ∂F ⊂ F induces a surjection of
the respective fundamental groups, moreover, it is rather easy to prove, by using
the exact homotopy sequence of the fibration f :X\X0 → ∆∗, that the inclusion
F ⊂ X − {0} induces an isomorphism of the π1’s (cf. [L-W] Lemma 5.1).

Let’s consider now homology and cohomology: we have Hi(F, ZZ ) = 0 for i > 2
and H2(F, ZZ ) is a finitely generated free abelian group.

Definition. The integer µ = rankH2(F, ZZ ) is called the Milnor number of the
smoothing.

The Lefschetz and Poincaré duality theorems give the following isomorphisms (in
every ring of coefficients)

Hq
c (F ) = H4−q(F ) = Hq(F , ∂F )

With the real coefficients the cup product induces a perfect pairing

H2(F )×H2(F , ∂F ) ∪−→H4(F , ∂F ) = R

which composed with the natural map H2(F , ∂F ) → H2(F ) gives a symmetric
bilinear form

H2(F , ∂F )×H2(F , ∂F )
q−→R

We can thus write µ = µ0 + µ+ + µ− where µ0 (resp.: µ+, µ−) is the number of
zero (resp.: positive,negative) eigenvalues of q.

Definition. Let X0 be a Stein representative of the surface singularity (X0, 0)
and let π:Z → X0 be a resolution of singularities. The geometric genus of (X0, 0)
is the integer pg(X0) = h1(OZ)− δ(X0) where δ(X0) = h0(π∗OZ/OX0).

An important result of Steenbrink ([St] Th. 2.24) is the following: given a smooth-
ing of a two dimensional isolated surface singularity (X0, 0) we have µ0+µ+ = 2pg;
in particular if the singularity is rational, that is normal with geometric genus 0,
then it follows that µ = µ−.
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For later use we recall also the following result of Greuel and Steenbrink ([G-S]
Th. 2): if F is the Milnor fibre of a smoothing of a normal surface singularity then
b1(F ) = 0.

We conclude this brief review by describing the homotopy type and the intersection
form q of the Milnor fibre of a smoothing of a rational double pointX0. This is easy,
in fact by Brieskorn-Tyurina’s result on simultaneous resolution (Tyurina [Ty] Th.
1) the Milnor fibre is diffeomorphic to a neighbourhood of the exceptional curve
in the minimal resolution of X0, in particular if X0 is a rational double point of
type Ar, Dr or Er then the Milnor fibre has the homotopy type of a bouquet of r
spheres.

Let now (Y, 0) π−→(C, 0) be a smoothing of an isolated surface singularity (Y0, 0)
and let G be a finite group acting on (Y, 0), freely on Y − {0}, and such that
πg(y) = π(y) for every g ∈ G and y ∈ Y . In this way the map π is a G-map where
the action of G in (C, 0) is the trivial one.

Let X = Y/G be the quotient singularity, we have a commutative diagram

Y
π−→ Cyp ∥∥

X
π′−→ C

where p is the natural projection.

If t 6= 0, G acts freely on Yt, thus π′ is a smoothing of the singularity X0 = Y0/G.
In order to study the Milnor fibres of π and π′ we give a G-embedding of (Y, 0)
using the following simple lemma which generalizes the well known Cartan lemma
([C] pag. 97).

Lemma 1. Let (Y, 0) be an analytic singularity and let G ⊂ Aut(Y, 0) be a finite
group of holomorphic automorphisms of (Y, 0). Let us suppose moreover that the
same group G acts linearly on a finite dimensional C-vector space E.

If π: (Y, 0) → (E, 0) is a G-map with respect to the above actions such that the
tangent map π∗:T → E on the corresponding tangent spaces is surjective, then
there exists a G-embedding (Y, 0)

φ−→(T, 0) where G acts on T in the natural way,
such that the diagram

(Y, 0)
φ−→ (T, 0)yπ yπ∗

(E, 0) == (E, 0)

is commutative.
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Proof. Let R = O(Y,0) be the analytic algebra of (Y, 0) and let M ⊂ R be the
maximal ideal. Choosing a basis z1, . . . , zr of E∨, we have a G-equivariant homo-
morphism of analytic algebras π∗: C{z1, . . . , zr} → R.

Let U ⊂M be the vector space generated by π∗(z1), . . . , π∗(zr), by hypothesis U
is G-stable and its image on M/M2 is a vector space of dimension r.

Let us observe now that for giving an embedding (Y, 0)
φ−→(T, 0) it suffices to give

a vector space V ⊂ M such that M =M2 ⊕ V , moreover φ is a G-embedding if
and only if V is G-stable. Since G is finite and the characteristic of C is zero there
exists a G-stable vector space V ⊂M such that M =M2 ⊕ V , on the other side
U ∩M2 = 0, we can then choose U ⊂ V and the conclusion follows immediately.ut
If n is the dimension of the tangent space of Y0 at 0, by Lemma 1 we can choose
a G-embedding (Y, 0)

ϕ−→(Cn ×∆, 0) where G acts linearly on Cn and trivially on
∆.

Choosing a proper embedding Cn/G ⊂ Cm we have a commutative diagram

∆ π←− Y
ϕ−→ Cn ×∆ = Cn ×∆∥∥∥ yp yp1

yp2

∆ π′←− X
ϕ′−→ (Cn/G)×∆ ⊂ Cm ×∆

If Sr ⊂ Cn is a Milnor sphere for Y0, then there exists a Milnor sphere Sε ⊂ Cm

for X0 and 0 < r′ < r such that (possibly shrinking ∆)

Y ∩ (Br′ ×∆) ⊂ Y ∩ p−1
2 (Bε ×∆) ⊂ Y ∩ (Br ×∆)

hence the Milnor fibre F ′ of π′ is diffeomorphic to the quotient, by G, of the
Milnor fibre F of π (see [Lo] Chapter 2). In particular π1(F ′)/π1(F ) ' G and
χ(F ) = |G|χ(F ′) where χ denotes the topological Euler Poincaré characteristic.

If Y0 is a normal surface singularity we have b2(F ) + 1 = |G|(b2(F ′) + 1), in fact
X0 = Y0/G is also normal and b1(F ) = b1(F ′) = 0.

In the following example we shall study a particular class of smoothings which will
be the main object of interest in this paper. To this purpose we first need some
definitions.

Definition. Let µn be the cyclic multiplicative group of nth roots of unity and
suppose that µn acts linearly on C2. After a linear base change we can assume
that µn acts diagonally, i.e.

µn 3 ξ: (z1, z2)−→(ξaz1, ξ
bz2)
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where 0 ≤ a, b < n. The couple of rational numbers
1
n

(a, b) is called the type of

the cyclic quotient singularity X = C2/µn.

Remark. The type determines completely, up to isomorphism, the singularity but
not conversely: for example, every two dimensional cyclic singularity is isomorphic

to one of type
1
n

(1, q) whit g.c.d.(n, q) = 1.

Example 1. Fixing relatively prime integers 0 < a < n we have the following action
of µn on C4

µn 3 ξ: (u, v, y, t)→ (ξu, ξ−1v, ξay, t)

Let (Y, 0) ⊂ (C4, 0) be a G-stable hypersurface singularity defined by the equation

uv + ydn = tϕ(u, v, y, t) d > 0

where ϕ is a G-invariant holomorphic germ at 0 ∈ C4.

Suppose that the map π: (Y, 0)→ (C, 0) induced from projection on the t-axis by
restriction is a smoothing of the surface singularity (Y0, 0) = {uv+ydn = 0}. This
is a rational double point of type Adn−1 and the Milnor fibre of π has therefore
the homotopy type of a bouquet of dn− 1 sphere S2.

Let’s suppose moreover that G acts freely on Y − {0}, in this case we have a
quotient smoothing

Y
p−→X = Y/G

π′−→∆

Proposition. 2. In the above situation (X0, 0) is a cyclic quotient singularity of

type
1
dn2

(1, dna− 1).

Proof. Let Z0 = C2/µdn2 be the quotient by the action

µdn2 3 ξ : (z1, z2)→ (ξz1, ξ
dna−1z2)

and let 0−→µdn−→µdn2−→µn−→0 be the natural exact sequence of abelian groups.

We can write Z0 = (C2/µdn)/µn and a simple calculation gives C2/µdn ' Y0.

The analytic algebra of (Y0, 0) is

C{zdn1 , zdn2 , z1z2} = C{u, v, y}/(uv + ydn)

where u = zdn1 , v = −zdn2 , y = z1z2. The action of µdn2 on OY0,0 is

µdn2 3 ξ : (u, v, y)→ (ξdnu, ξ−dnv, ξdnay)
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The proof follows by considering this as a µn-action. ut
The topological invariants of the smoothing π′ are now of immediate computation.

Proposition. 3. If F is the Milnor fibre of the smoothing X π′−→∆ of Example 1
we have:

1) π1(X − {0}) = π1(F ) = ZZ n

2) b2(F ) = d− 1

Proof. It follows trivially from the fact that F has an unramified covering of degree
n which has the homotopy type of a bouquet of dn− 1 spheres S2. ut

§2 . Canonical coverings of singularities

It is well known that a normal hypersurface singularity is Gorenstein, that is
Cohen-Macaulay with locally principal canonical divisor. If V ⊂ Cn+1 is a normal

hypersurface defined by F (x0, .., xn) = 0, then, supposing
∂F

∂x0
6≡ 0, we have a

meromorphic n-form on V by setting

s =
dx1 ∧ . . . ∧ dxn

∂F

∂x0

and the divisor (s) is canonical.

The properties normal and Cohen Macaulay are stable by passing to quotient by
finite group action, the same does not hold in general for the Gorenstein property:
for example a two dimensional quotient singularity is Gorenstein if and only if it
is a rational double point.

Definition. A normal Cohen Macaulay singularity (V, 0) is called Q-Gorenstein if
some nonzero power of the canonical divisor KV is principal. The smallest positive
integer n such that nKV is principal is called the index of the singularity.

The singularity (X, 0) of Example 1 is Q-Gorenstein of index n. In fact, since it is
a quotient by a finite group of a hypersurface singularity, it is normal and C.M..
A meromorphic 3-form on Y is

s =
du ∧ dv ∧ dy

∂F

∂t

F = uv + ydn − tϕ(u, v, y, t)

we have µn 3 ξ: s→ ξas and, since (a, n) = 1, the index of X is exactly n.
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Let V be a connected complex space and let µn ⊂ Aut(V ) be a finite cyclic
subgroup of holomorphic automorphisms of V which acts freely .

Let V π−→U = V/µn be the projection to the quotient, then µn acts on the direct
image sheaf π∗OV

µn 3 g: f−→f ◦ g−1 = g(f) ∀f ∈ π∗OV

and we have a decomposition

π∗OV = ⊕
α∈ ZZ n

Lα

where Lα = {f ∈ π∗OV | g(f) = g−αf ∀g ∈ µn} is the invertible sheaf associated
to the character α.

The sheaves Lα have the following properties:
- L0 ' OU
- Lα ⊗ Lβ ' Lα ·Lβ = Lα+β

- Lα 6= Lβ if α 6= β

- π∗Lα ' OV
Conversely, given an invertible OU -module L belonging to the torsion subgroup
of Pic(U), if n is the order of L then there exists a cyclic connected unramified
covering V π−→U of degree n such that π∗OV '

n−1
⊕
i=0
L−i as a OU -module.

Let now (V, p) be a normal singularity, a Weil divisor D on V is said to be Q-
Cartier if some nonzero power nD is locally principal at p and the smallest positive
n with this property is called the index of D at p.

Possibly shrinking V we can assume that nD is principal, so that the divisorial
sheaf OV (nD) is the trivial sheaf OV .

Choosing a section s:OV ∼−→OV (nD), for every integer r it is defined an isomor-
phism OV (rD) s−→OV ((r+n)D) and we have a structure of a coherent OV -algebra
on

A =
n−1
⊕
i=0
OV (−iD) by extending the natural products

OX(−iD)×OX(−jD)→OX(−(i+ j)D) i+ j < n

OX(−iD)×OX(−jD)→OX(−(i+ j)D) s−→OX(−(i+ j − n)D) i+ j ≥ n

There exists a µn-action on A given by µr 3 ξ: fi → ξ−ifi for fi ∈ OX(−iD).

The µn-invariant subalgebra of A is exactly OV , thus the analytic spectrum of A

V ′ = SpecanOVA
π−→V
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is a cyclic covering ramified over the locus where D is not principal.

π−1(Reg(V )) is connected, hence π−1(p) consists of one point. A is reflexive and
the morphism π is finite, this implies that V ′ is normal. Moreover π∗O(−D)|π−1(Reg(V ))

is the trivial sheaf and the divisor π∗D is principal.

V ′ is called the cyclic covering associated to divisor D. The cyclic covering as-
sociated to canonical divisor of a Q-Gorenstein singularity is usually called the
canonical covering.

Caution: The canonical covering of a Q-Gorenstein singularity is a normal sin-
gularity with principal canonical divisor but, if the dimension is ≥ 3, in general it
is not Cohen Macaulay (see for example [L-W] 5.11)

Lemma 4. With the above notation (V, p) is a quotient singularity if and only if
(V ′, 0) it is.

Proof. Suppose first (V, p) is quotient, we can write (V, p) = (Cn, 0)/G where G is a
finite subgroup of GL(n,C) and, according to Chevalley theorem, we can assume
that the locus E ⊂ Cn where G does not act freely is a finite union of linear
subspaces of codimension ≥ 2.

Let B be a small ball of centre 0 in some G-invariant norm and let B δ−→V be
the projection, then δ:B − E → δ(B − E) ⊂ V is the universal covering and
by Riemann-Hartogs extension theorem there exists a subgroup G′ ⊂ G and a
commutative diagram

B/G′
f−→ V ′xp yπ

B
δ−→ V

where f is a biholomorphism on p(B − E). Both B/G and V ′ are normal, this
implies that f is biholomorphic on p(B). The converse is easy. ut

Corollary. 5. The canonical covering of a two dimensional quotient singularity
is a rational double point.

Proof. It follows from the fact that the R.D.P.’s are quotient Gorenstein and they
are the only surface singularities with this property. ut

The next step is to show that a cyclic covering of a smoothing of a two dimensional
quotient singularity is again a smoothing of a quotient singularity. In order to show
this we first need some preparatory material that we think to be of independent
interest.
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Let f :X → ∆ be a smoothing of a normal surface singularity (X0, 0) and let D
be a Weil divisor on X which is Q-Cartier of index n.

Let’s denote by Y = SpecanOXA, where A =
n−1
⊕
i=0
OX(−iD), the cyclic covering

associated to D. We have seen that Y is a normal singularity and, by the base
change property of analytic spectrum, Y is a smoothing of Y0 = SpecanOX0

(A⊗OX
OX0).

Lemma 6. In the above notation (Y0, 0) is isolated, reduced and irreducible.

Proof. Y0 is a generically reduced Cartier divisor on the normal space Y and this
proves that it is reduced. To prove that Y0 is irreducible is the same as to prove that
Y0 − {0} is connected. We have a commutative diagram of continuous mappings

Y0 − {0}
j−→ Y − {0}yp0

yp
X0 − {0} i−→ X − {0}

p is a regular covering of degree n and Y0−{0} is the fibred product of Y0−{0} and
X0−{0}. Since the immersion i induces a surjection of the respective fundamental
groups, the index of π1(Y0 − {0}) in π1(X0 − {0}) is exactly n. The proof follows
by an elementary argument of algebraic topology. ut
Choosing possibly a linearly equivalent divisor we can assume that the support of
D does not contain X0. Setting D0 the restriction of D to the normal singularity
X0 we have

A0 =
n−1
⊕
i=0
OX0(−iD0) = (A⊗OX0)∨∨

and we infer from the following lemma that the natural map A ⊗ OX0 → A0 is
injective.

Lemma 7. Let X be a normal complex space and let f :X → C be a holomor-
phic map such that X0 = f−1(0) is normal and the closed set X0 ∩ Sing(X) has
codimension ≥ 2 in X0.

If F is a coherent reflexive sheaf on X, locally free on Reg(X), then F0 = F⊗OX0

is torsion free.

Proof. This is a well known result, we give a proof for completeness’ sake.

Denoting by i:Reg(X) → X the inclusion and by i0:Reg(X) ∩ X0 → X0 its
restriction we have three exact sequences

F(−X0) = F ⊗OX(−X0)−→F−→F0−→0
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0−→i∗F(−X0)−→i∗F−→i∗0F0−→0

0−→i∗i∗F(−X0)−→i∗i∗F−→i0∗i∗0F0

The exactness of the second follows from the flatness of F on Reg(X) and the
third is obtained from the previous sequence by applying the left exact functor i∗.

Reflexivity is a local property, therefore the tensor product of a reflexive sheaf by
an invertible sheaf is again reflexive and the last sequence becomes

0−→F(−X0)−→F−→i0∗i∗0F0

Comparing this sequence with the first one we get finally F0 ⊂ i0∗i∗0F0. ut
It is clear that the mapA⊗OX0 → A0 is an isomorphism if and only if Y0 is normal,
or equivalently if and only if Y is Cohen-Macaulay. In general Y ′0 = SpecanOX0

A0

is the normalization of Y0.

We also observe that D0 is a Q-Cartier divisor on X0 of index n, in fact it is
obvious that nD0 is principal and if rD0 is principal for some 0 < r < n then
Y ′0 − {0} = Y0 − {0} will be not connected.

Theorem 8. Let X → ∆ be a smoothing of a two dimensional quotient singularity
X0 and let Y → X be the cyclic covering associated to some Q-Cartier divisor,
then Y0 is a quotient singularity.

Proof. It suffices to show that Y0 is normal, let Y ′0 be its normalization and Z a
resolution of Y ′0

Z
π−→Y ′0−→Y0

The geometric genus of Y0 is by definition pg(Y0) = h1(OZ) − h0(OY ′0 /OY0) and,
since Y0 is smoothable, by using Steenbrink’s formula we get 2pg(Y0) = µ0 +
µ+ ≥ 0. Now Y ′0 is a quotient singularity hence h1(OZ) = 0 and then h1(OZ) =
h0(OY ′0 /OY0) = 0. ut

Corollary. 9. Let X
f−→∆ be a Q-Gorenstein smoothing of index n of a quotient

singularity.

Then the torsion part of the Picard group of the Milnor fibre is finite cyclic of
order n and it is generated by the canonical sheaf.

Proof. Let Y π−→X be the canonical covering of X, by Theorem 8 Y is a smoothing
of a rational double point and the Milnor fibre of the smoothing f ◦ π is simply
connected.
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If we denote by F the Milnor fibre of X and by Pic(F )0, H
i(F )0 the torsion part

of the respective groups then, since F is Stein

Pic(F )0 = H2(F )0 = H1(F )0 = π1(F ) = ZZ n

In order to prove the assertion about KF , by adjunction formula, it is sufficient
to show that the restriction map Pic(X − {0})0 → Pic(F )0 is an isomorphism.

X is Cohen Macaulay, by using local cohomology and exponential exact sequence
we get

0 = H1(OX−{0})−→Pic(X − {0})−→H2(X − {0})−→H2(OX−{0})

and since the group on the right is torsion free

Pic(X − {0})0 = H2(X − {0})0 = H1(X − {0})0 = π1(X − {0}) = ZZ n

We observe that the elements of Pic(X − {0})0 (resp Pic(F )0) are exactly the
eigensheaves of π∗OY−{0} (resp π∗Oπ−1(F )) and the conclusion is now trivial. ut

Remark. In some situation the Corollary 9 gives a necessary condition to have the
Milnor fibre F of a Q-Gorenstein smoothing of a quotient singularity contained as
an open set in a smooth surface S.

In fact, ifKS = rD for some r > 0 andD ∈ Pic(S), sinceKS|F generate Pic(F )0, r
must be relatively prime to the index of the smoothing (see [Ma1] for applications).

§3 . Statement and proof of the main theorem

Let (X, 0) π′−→(C, 0) be a Q-Gorenstein smoothing of index n of a two dimen-
sional quotient singularity (X0, 0). If n = 1, that is X Gorenstein, then also
(X0, 0) is Gorenstein and hence a rational double point. Since for every R.D.P. its
semiuniversal deformation is well known, we fix our attention to the case n > 1.

Theorem 10. In the notation above if n > 1 then (X, 0) is analytically isomorphic
to (Y, 0)/G where:

a) (Y, 0) ⊂ (C4, 0) is an isolated hypersurface singularity defined by

F = uv + ydn − tb − ϕ1(t)yn − . . .− ϕd−1(t)y(d−1)n = 0

for some integers d, b.

13
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The ϕi’s are convergent power series satisfying ϕi ∈ C{t}, ϕi(0) = 0 and such
that the projection on the t-axis (Y, 0) π−→(C, 0) is a smoothing of (Y0, 0).

b) G ' µn acts on C4 in the following way

µn 3 ξ: (u, v, y, t)→ (ξu, ξ−1v, ξay, t) with (a, n) = 1

c) π′ is obtained from π by passing to the quotient.

Remark. If (Y, 0) and the G-action are defined as in a) and b), then G acts, locally
around 0, freely on Y − {0}, hence π′ defines a smoothing of (X0, 0) = (Y0, 0)/G

which, as we have seen, is a cyclic singularity of type
1
dn2

(1, dna− 1).

Proof. Define (Y, 0) as the canonical covering of (X, 0), if d > 0 is the topological
Euler Poincaré characteristic of the Milnor fibre of π′ then (Y0, 0) is a R.D.P. of
type Adn−1, Ddn−1 or Edn−1.

By Lemma 1 we can assume that (Y, 0) ⊂ (C3×C, 0) is a hypersurface singularity
defined by

F = f(x, y, z) + tϕ(x, y, z, t) = 0

where f is the equation of the R.D.P. (Y0, 0) and the group G ' µn acts linearly
on C3 × C, diagonally on C3 and trivially on C.

We now are going to determine all the possible µn-actions on (Y, 0) which satisfy
this condition. The main tool necessary for such computation is the classification
of finite groups of automorphisms of R.D.P’s.

Let X = C2/G, G ⊂ SL(2,C) be a rational double point and let τ be an auto-
morphism of (X, 0). Since C2−{0} → X−{0} is a regular covering with group G,
τ|X−{0} lifts to exactly |G| automorphisms of C2−{0} which, by Riemann-Hartogs
extension theorem, extend to automorphisms of (C2, 0).

If H ⊂ Aut(X, 0) is a finite subgroup and Γ ⊂ Aut(C2, 0) is the set of lifted
automorphisms, we have an exact sequence of groups

0−→G−→Γ−→H−→0

By Lemma 1 we can assume that Γ ⊂ GL(2,C) and we can study the action of Γ
in the polynomial ring C[w1, w2].

The group Γ/G ' H acts faithfully on C[w1, w2]G, moreover every γ ∈ Γ defines
a graded automorphism of C[w1, w2]. Thus H is contained in the group, which
we denote by Âut(X, 0), of graded automorphisms of C[w1, w2]G. (see [Ca] for
details).

14
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We see in particular that Âut(X, 0) is the quotient, by G, of the normalizer of G
in GL(2,C). The computation of Âut(X, 0) is elementary and not difficult, but
very useful in the study of quotient singularities. In ([Ca] Th 1.2) Catanese has
computed the groups Âut(X, 0) for every R.D.P. (X, 0).

In order to describe these groups and to make our classification we shall consider
every R.D.P. in the form f = 0 where f ∈ C[x, y, z] is the equation given in the
following list

Table.
Type Equation
E6 z2 + x3 + y4

E7 z2 + x(y3 + x2)
E8 z2 + x3 + y5

Dn z2 + x(y2 + xn−2) n ≥ 4
An−1 z2 + x2 + yn n ≥ 2
An−1 uv + yn n ≥ 2

The second equation for An−1 is obtained from the first after the linear coordinates
change {

u = z + ix
v = z − ix

Let us consider now the following problem.

Problem 11: Let (Y0, 0) ⊂ (C3, 0) be a fixed rational double point defined by
the equation f(x, y, z) = 0 and let g be an automorphism of (Y0, 0) induced by an
element g ∈ GL(3,C) of finite order.

Does it exist a holomorphic germ ϕ(x, y, z, t) such that the automorphism g, ex-
tended by gt = t, acts on the hypersurface singularity (Y, 0) ⊂ (C3×∆, 0) defined
by

F (x, y, z, t) = f(x, y, z) + tϕ(x, y, z, t) = 0

and gives, locally around 0, a free action on Y − {0} ?

Let us suppose to have the following µn-action

µn 3 ξ: (x, y, z, t, f)→ (ξax, ξby, ξcz, t, ξef)

then we have two necessary conditions to extend this action freely on Y − {0}.
i) e must be equal to 0 modulo n.

In fact (Y, 0) is µn-stable: moreover the line R = {x = y = z = 0} is µn-invariant,
thus R ∩ Y = 0 and F (0, 0, 0, t) 6≡ 0.

15
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ii) a, b, c must be invertible in ZZ n.

In fact, if E ⊂ C4 denotes the locus where the action is not free, then E ∩ Y = 0
implies, for dimensional reasons, that E is the union of a finite number of lines.

Consider now the various cases separately. In each case (Y0, 0) denotes the R.D.P.
of corresponding type defined as in the previous list.

1) Type E8 = Edn−1

f = z2 + x3 + y5 dn = 8 + 1 = 9

Âut(Y0, 0) = C∗ where

C∗ 3 λ: (x, y, z, f)→ (λ10x, λ6y, λ15z, λ30f)

If µn ⊂ Âut(Y0, 0) then there are two subcases

d = 1 µ9 3 ξ: (x, y, z, f)→ (ξx, ξ6y, ξ6z, ξ3f)

d = 3 µ3 3 ξ: (x, y, z, f)→ (ξx, y, z, f)

Both of them don’t satisfy i) and ii).

2) Type E7

f = z2 + x(y3 + x2) dn = 8

Âut(Y0, 0) = C∗ where

C∗ 3 λ: (x, y, z, f)→ (λ6x, λ4y, λ9z, λ18f)

We have three subcases

d = 1 µ8 3 ξ: (x, y, z, f)→ (ξ6x, ξ4y, ξz, ξ2f)

d = 2 µ4 3 ξ: (x, y, z, f)→ (ξ2x, y, ξz, ξ2f)

d = 4 µ2 3 ξ: (x, y, z, f)→ (x, y, ξz, f)

Both of them don’t satisfy i) and ii).

3) Type E6

f = z2 + x3 + y4 dn = 7

Âut(Y0, 0) = C∗ × ZZ 2 where

C∗ 3 λ: (x, y, z, f)→ (λ4x, λ3y, λ6z, λ12f)

and ZZ 2 is generated by the involution τ : (x, y, z)→ (x, y,−z).

16
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the only subcase is

d = 1 µ7 3 ξ: (x, y, z, f)→ (ξ4x, ξ3y, ξ6z, ξ5f)

which does not satisfy i).

4) Type D4

f = z2 + x(y2 + x2) dn = 5

Âut(Y0, 0) is the subgroup of GL(2,C)× C∗ of all the elements (γ, λ) such that

γ∗(x(y2 + x2)) = λ2(x(y2 + x2))

where γ acts on
(
x

y

)
and λ on z.

If we denote H ' C∗ ⊂ Âut(Y0, 0) the subgroup of elements((
t2 0
0 t2

)
, t3

)
t ∈ C∗

then Âut(Y0, 0)/H '
∑

3 = symmetric group on three elements.

Since |
∑

3 | = 6, it must then be µ5 ⊂ H, and the action is

µ5 3 ξ: (x, y, z, f)→ (ξ2x, ξ2y, ξ3z, ξf)

which does not satisfy i).

5) Type Dr r ≥ 5

f = z2 + x(y2 + xr−2) dn = r + 1

Âut(Y0, 0) = C∗ × ZZ 2 where

C∗ 3 λ: (x, y, z, f)→ (λ2x, λr−2y, λr−1z, λ2r−2f)

and ZZ 2 is generated by the involution τ : (x, y, z)→ (x, y,−z).
In every case the action is diagonal and we have

µn 3 ξ: (x, f)→ (ξ2x, ξ−4f)

We must distinguish two subcases:

i) n 6= 2, 4 : i) is not satisfied.

ii) n = 2, 4 : ii) is not satisfied.
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6) Type A1 n = 2

If f is a quadratic form defining (Y0, 0) we have

Âut(Y0, 0) = {g ∈ GL(3,C)|g∗f = ±f}

The only diagonal automorphism of C3 satisfying ii) is −Id and we can choose as
f every nondegenerate quadratic form, for example f = uv + y2.

7) Type Ar r ≥ 2

f = uv + yr+1 dn = r + 1

Âut(Y0, 0) = (C∗)2
∏

ZZ 2 where

(C∗)2 3 (λ1, λ2): (u, v, y)→ (λ2u, λ
r+1
1 λ−1

2 v, λ1y)

and ZZ 2 is generated by the involution τ which exchanges u and v.

The product of (C∗)2 and ZZ 2 is semidirect and the composition law is the following

τ · (λ1, λ2) · τ = (λ1, λ
r+1
1 λ−1

2 )

If µn ⊂ Âut(Y0, 0) and ε is a generator of µn then either ε = (ξ1, ξ2) or ε =
(ξ1, ξ2) · τ .

In the first subcase ξ1 and ξ2 are nth roots of unity and the action is diagonal

ε: (u, v, y)→ (ξ2u, ξ−1
2 v, ξ1y)

according to condition ii) ξ2 must be primitive and we can write

µn 3 ξ: (u, v, y)→ (ξu, ξ−1v, ξay)

where a is an integer relatively prime to n.

In the second subcase, by composition law it follows immediately that ξ1 is a nth

root of 1. By making the linear base change{
x = v + ξ2u
z = −ξ−1

2 v + u

we have in the new system f =
1

4ξ2
(x2−ξ2

2z
2)+yr+1, and ε: (x, y, z)→ (x,−z, ξ1y)

which does not satisfy ii).
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Summarizing, we have shown that F = uv+ydn+tϕ(u, v, y, t) with ϕ(0, 0, 0, t) 6≡ 0
and G ' µn acts as in b). The conclusion of the proof follows now from some
standard manipulation in singularity theory which we omit.

For example, by generalised Morse lemma there exists a new system of coordinates
of C4 such that F becomes uv + ydn + tϕ(y, t) and the coordinate change can be
taken in a G-equivariant way (see [Ma2] for details).
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