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Preface

This paper is based on a course given at the “Dottorato di Ricerca in Matematica”
of the University of Rome “La Sapienza” in the Academic year 2000/2001.
The intended aim of the course was to rapidly introduce, although not in an exhaus-
tive way, the non-expert PhD student to deformations of compact complex manifolds,
from the very beginning to some recent (i.e. at that time not yet published) results.

With the term ”deformation theory”, the mathematicians usually intend a set of
deformation theories, each one of which studies small parametric variation of a spe-
cific mathematical structure, for example: deformation theory of complex manifolds,
deformation theory of associative algebras, deformations of schemes, deformations of
representations and much more.

Every mathematician which tries to explain and investigate deformation theory has
to deal with two opposite features: order and chaos.

CHAOS: the various deformation theories often rely on theorems which are proved
using very different tools, from families of elliptic differential operators of Kodaira
and Spencer [41] to ringed toposes of Illusie [32].

ORDER: all the deformation theories have lots of common features; for instance they
have a vector space of first order deformations (usually the H! of some complex) and
they have an obstruction space (usually an H?).

Another unifying aspect of all deformation theories is summarized in the slogan “In
characteristic 0 every deformation problem is governed by a differential graded Lie
algebra”, which underlie some ideas given, mostly in private communications, by
Quillen, Deligne, Drinfeld and other about 20 years ago. More recently (especially in
[42] and [44]) these ideas have shown a great utility and possibility of development.
Nowadays this approach to deformation theory is a very active area of research which
is usually called deformation theory via DGLA or extended deformation theory.

The goal of these notes is to give a soft introduction to extended deformation the-
ory; with the aim (and the hope) of keeping this material selfcontained, user friendly
and with a tolerating number of pages, we consider only deformations of compact
complex manifolds. Anyhow, most part of the formalism and theorems that we prove
here will apply to many other deformation problems.

The first part of the paper (Chapters I, II and III) is a classical introduction to
deformations of compact complex manifolds; the expert reader can skip this part,
while the beginners can find here the main definitions, the statements of the theo-
rems of Kodaira and Kodaira-Nirenberg-Spencer, an elementary description of the
semiuniversal deformations of Segre-Hirzebruch surfaces and a micro-course in com-
plex analytic singularity theory.

In the second part (From Chapter IV to Chapter VII) we begin to study deforma-
tions in the context of dg-objects, where by dg-objects we intend algebraic structures
supported on differential Z-graded vector spaces.

Most of this part is devoted to introduce some new objects and to prove some results
which play a fundamental role in extended deformation theory, such as for instance:
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deformation functors associated to a differential graded Lie algebra and their homo-
topy invariance, extended deformation functors and Gerstenhaber-Batalin-Vilkoviski
algebras. The reader of this part can also find satisfaction in the proof of the unob-
structness of Calabi-Yau manifolds (theorem of Bogomolov-Tian-Todorov).

Chapter VI is a basic introduction to Kahler manifold which follows essentially Weil’s
book [80]: some modification in the presentation and simplification in the proofs are
made by using the formalism of dg-vector spaces; this partially explain the reason
why this Chapter is contained in part II of these notes.

The third part of the notes (Chapters VIII and IX) is a basic course in L.-algebras
and their use in deformation theory: a nontrivial application of L.-algebras in made
in the last section where we give (following [54]) an algebraic proof of Clemens-Ran
theorem “obstructions to deformations annihilate ambient cohomology”.

Each Chapter contains: a brief introduction, the main matter, some exercises and a
survey section. The main matter is organized like a book, while the survey sections
contain bibliographical annotations and theorems for which the proof it is not given
here.

Roma, February 26, 2004 Marco Manetti
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CHAPTER 1

Smooth families of compact complex manifolds

In this chapter we introduce the notion of a family f: X — B of compact complex
manifolds as a proper holomorphic submersion of complex manifolds. Easy examples
(L4, 1.6) will show that in general the fibres X; := f~!(¢) are not biholomorphic
each other. Using integration of vector fields we prove that the family is locally
trivial if and only if a certain morphism /S of sheaves over B is trivial, while the
restriction of XS at a point b € B is a linear map KS: T, 5 — H(X}, T, ), called
the Kodaira-Spencer map, which can interpreted as the first derivative at the point b
of the map

B — {isomorphism classes of complex manifolds}, ¢+— Xj.

Then, according to Kodaira, Nirenberg and Spencer we define a deformation of a
complex manifolds X as the data of a family X — B, of a base point 0 € B and of
an isomorphism X ~ X3. The isomorphism class of a deformation involves only the
structure of f in a neighbourhood of Xj.

In the last section we state, without proof, the principal pioneer theorems about
deformations proved using hard analysis by Kodaira, Nirenberg and Spencer in the
period 1956-58.

1. Dictionary

For every complex manifold M we denote by:

e Oy (U) the C-algebra of holomorphic functions f: U — C defined on an open
subset U C M.

e Oy the trivial complex line bundle C x M — M.

e T the holomorphic tangent bundle to M. The fibre of T)s at a point x € M,
i.e. the complex tangent space at x, is denoted by T; /.

If x € M is a point we denote by Oy, the C-algebra of germs of holomorphic
functions at a point x € M; a choice of local holomorphic coordinates z1,... , 2y,
zi(x) = 0, gives an isomorphism Oy, = C{z1,..., 2,}, being C{z1,...,2,} the C-
algebra of convergent power series.

In order to avoid a too heavy notation we sometimes omit the subscript M, when
the underlying complex manifold is clear from the context.

DEFINITION LI.1. A smooth family of compact complex manifolds is a proper holo-
morphic map f: M — B such that:

1. M, B are nonempty complex manifolds and B is connected.
2. The differential of f, fi: Ty mr — T(p),p 1s surjective at every point p € M.

Two families f: M — B, g: N — B over the same base are isomorphic if there exists
a holomorphic isomorphism N — M commuting with f and g.

MARCO MANETTI: Lectures on deformations of complexr manifolds
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2 I. SMOOTH FAMILIES OF COMPACT COMPLEX MANIFOLDS

From now on, when there is no risk of confusion, we shall simply say smooth family
instead of smooth family of compact complex manifolds.

Note that if f: M — B is a smooth family then f is open, closed and surjective. If
V C B is an open subset then f: f~1(V) — V is a smooth family; more generally
for every holomorphic map of connected complex manifolds C — B, the pull-back
M xp C — C is a smooth family.

For every b € B we denote My, = f~1(b): M, is a regular submanifold of M.

DEFINITION 1.2. A smooth family f: M — B is called trivial if it is isomorphic to
the product My, x B — B for some (and hence all) b € B. It is called locally trivial if
there exists an open covering B = UU, such that every restriction f: f~1(U,) — U,
is trivial.

LEmMMA 1.3. Let f: M — B be a smooth family, b € B. The normal bundle Ny, /n
of My in M is trivial.

Proor. Let E = T, p x My — My be the trivial bundle with fibre T3 . The
differential f.: T pr — T B, © € My induces a surjective morphism of vector bundles
(Ta)m, — E whose kernel is exactly Ty, -

By definition Ny, s = (Tos) a1,/ Tha, and then Nyyonp = Th g X M. O

By a classical result (Ehresmann’s theorem, [37, Thm. 2.4]), if f: M — B is a
family, then for every b € B there exists an open neighbourhood b € U C B and a
diffeomorphism ¢: f~1(U) — M, x U making the following diagram commutative

M,

¢

f_l(U) My x U
U

being i: My — M the inclusion. In particular the diffeomorphism type of the fibre
My, is independent from b. Later on (Theorem IV.30) we will prove a result that
implies Ehresmann’s theorem.

The following examples of families show that, in general, if a,b € B, a # b, then M,
is not biholomorphic to Mj.

ExaMpPLE I.4. Consider B =C —{0,1},
M = {([xo,z1, 2], A) € P? x B ] x%xo =z1(z1 — x0) (21 — Az0) }

and f: M — B the projection. Then f is a family and the fibre M), is a smooth
plane cubic with j-invariant
A —A+1)3
s
.7( )\) )\2(}\ _ 1)2

(Recall that two elliptic curves are biholomorphic if and only if they have the same
j-invariant.)

EXAMPLE 1.5. (Universal family of hypersurfaces)

For fixed integers n,d > 0, consider the projective space PV, N = ( d : " > -1,
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with homogeneous coordinates a;,... i,, i; >0, > ¢ ij = d, and denote
X =< ([z],]a]) € P* x PV > iy =0

X is a smooth hypersurface of P* x PV, the differential of the projection X — P¥ is
not surjective at a point ([z], [a]) if and only if [z] is a singular point of X,.

Let B = {[a] € PV|X, is smooth }, M = f~1(B): then B is open (exercise),
f: M — B is a family and every smooth hypersurface of degree d of P™ is isomorphic
to a fibre of f.

EXAMPLE 1.6. (Hopf surfaces)

Let A € GL(2,C) be a matrix with eigenvalues of norm > 1 and let (A) ~ Z C
GL(2,C) be the subgroup generated by A. The action of (4) on X = C? — {0} is
free and properly discontinuous: in fact a linear change of coordinates C': C2 — C?
changes the action of (A) into the action of (C~*AC) and therefore it is not restrictive
to assume A is a lower triangular matrix.

Therefore the quotient Sy = X/(A) is a compact complex manifold called Hopf
surface: the holomorphic map X — S4 is the universal cover and then for every
point & € Sy there exists a natural isomorphism 7 (S4,x) ~ (A). We have already
seen that if A, B are conjugated matrix then S4 is biholomorphic to Sg. Conversely
if f: S4 — Sp is a biholomorphism then f lifts to a biholomorphism g: X — X such
that gA = B¥g; since f induces an isomorphism of fundamental groups k = +1.

By Hartogs’ theorem g extends to a biholomorphism g: C? — C? such that g(0) = 0;
since for every x # 0 hrgo A"(x) = 400 and hm B™"(x) = 0 it must be gA = Byg.

Taking the differential at 0 of gA = Bg we get that A is conjugated to B.

EXERCISE L.7. If A = e*™7[ € GL(2,C), 7 = a +1ib, b < 0, then the Hopf surface
S 4 is the total space of a holomorphic G-principal bundle Sy — P!, where G =
C/(Z+ 7). A

ExaMPLE 1.8. (Complete family of Hopf surfaces)
Denote B = {(a,b,c) € C?||a| > 1, |¢| > 1}, X = B x (C? —{0}) and let Z ~ G C
Aut(X) be the subgroup generated by

(a,b,c,z1,22) — (a,b,c,az1,bz1 + cz2)

The action of G on X is free and properly discontinuous, let M = X /G be its quotient
and f: M — B the projection on the first coordinates: f is a family whose fibres
are Hopf surfaces. Every Hopf surface is isomorphic to a fibre of f, this motivate the
adjective “complete”.

In particular all the Hopf surfaces are diffeomorphic to S! x S (to see this look at
the fibre over (2,0, 2)).

NoTATION 1.9. For every pair of pointed manifolds (M,z), (INV,y) we denote by
Morger((M,x), (N,y)) the set of germs of holomorphic maps f: (M,z) — (N,y).
Every element of Morger((M, z), (N,y)) is an equivalence class of pairs (U, f), where
x € U C M is an open neighbourhood of z, f: U — N is a holomorphic map
such that f(z) = y and (U, f) ~ (V,g) if and only if there exists an open subset
z € W CUNYV such that fi = gw-.

The category Ger®™ of germs of complex manifolds is the category whose object are
the pointed complex manifold (M, z) and the morphisms are the Morger ((M, z), (N, y))
defined above. A germ of complex manifold is nothing else that an object of GerS™
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In Chapter III we will consider Ger®™ as a full subcategory of the category of an-
alytic singularities Ger.

EXERCISE 1.10. Ger®™ is equivalent to its full subcategory whose objects are (C",0),
n € N. A

Roughly speaking a deformation is a “framed germ” of family; more precisely
DEFINITION I.11. Let (B, by) be a pointed manifold, a deformation MOLML(B, bo)
of a compact complex manifold My over (B, by) is a pair of holomorphic maps
Moy—M-L.B
such that:
1. fi(My) = by.
2. There exists an open neighbourhood by € U C B such that f: f~(U) — U is

a proper smooth family.
3. i: My — f~'(bo) is an isomorphism of complex manifolds.

M is called the total space of the deformation and (B, by) the base germ space.
DEFINITION 1.12. Two deformations of My over the same base
My—M-L(B,bg), My N—(B, o)

are isomorphic if there exists an open neighbourhood by € U C B, and a commutative
diagram of holomorphic maps

My f1(U)
i lf
9~ '(U) U

with the diagonal arrow a holomorphic isomorphism.

For every pointed complex manifold (B,by) we denote by Def s, (B, by) the set of
isomorphism classes of deformations of My with base (B,by). It is clear from the
definition that if by € U C B is open, then Def s, (B, bg) = Defpr, (U, bo).

EXERCISE 1.13. There exists an action of the group Aut(Mj) of holomorphic isomor-
phisms of My on the set Defyg, (B, bo): if g € Aut(Mp) and & : MOLML(B, bo)
is a deformation we define

i —1
€9 My ML (B, by).
Prove that ¢9 = ¢ if and only if g: f~!(by) — f~1(bo) can be extended to an isomor-
phism g: f=1(V) — f~Y(V), by € V open neighbourhood, such that f§ = f. YA\

If¢: MOLML»(B, bo) is a deformation and g: (C, cp) — (B, bp) is a holomorphic
map of pointed complex manifolds then

g€ MBI x5 C2(C, o)

is a deformation with base point cg. It is clear that the isomorphism class of g*¢
depends only by the class of g in Morger((C, co), (B, bp))-

Therefore every g € Morger((C,cp), (B,by)) induces a well defined pull-back mor-
phism

g": Defp, (B, bo) — Defpy, (C, co).
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2. Dolbeault cohomology

If M is a complex manifold and E is a holomorphic vector bundle on M, we denote:

e EY the dual bundle of E.

I'(U, E) the space of holomorphic sections s: U — E on an open subset U C M.
Ql,; = Ty, the holomorphic cotangent bundle of M.

OfF, = AP T, the bundle of holomorphic differential p-forms.

For every open subset U C M we denote by I'(U, Af) the C-vector space of dif-

ferential (p,q)-forms on U. If z,...,z, are local holomorphic coordinates, then
¢ € T(U, AYf) is written locally as ¢ = Y ¢ ydzr A dzy, where I = (i1,...,ip),
J=(j1,..- ,jq), dzr =dzi, N ... /\dzip, dzy =dzj N... /\dzjq and the ¢ j are (Ohed
functions.
Similarly, if E — M is a holomorphic vector bundle we denote by I'(U, AP4(E)) the
space of differential (p, ¢)-forms on U with value in F; locally, if eq, ... ,e, is a local
frame for F, an element of T'(U, AP9(E)) is written as ) ;_, ¢;e;, with ¢; € T'(U, AP7).
Note that there exist natural isomorphisms I'(U, AP4(E)) ~ T'(U, A%(Qh @ E)).

We begin recalling the well known

LEMMA 1.14 (Dolbeault’s lemma). Let
AL ={(z1,...,2n) €C"||z1] < R,...,|zn] < R}
be a polydisk of radius R < 400 (Al = C") and let ¢ € T'(A}, AP9), ¢ > 0, such
that O¢ = 0. Then there exists 1) € D(A%, AP9=1Y) such that o = ¢.
Proor. [37, Thm. 3.3], [26, pag. 25]. O

If E is a holomorphic vector bundle, the 0 operator extends naturally to the Dol-
beault operator 9: T'(U, AP4(E)) — L'(U, AP9TL(E)) by the rule (3", die;) = >.(0¢i)e;.
If hq,..., hy is another local frame of E then there exists a matrix (a;;) of holomor-
phic functions such that h; = > ; Gij€j and then

d (Z @m) = > dwaiej | =Y ddiaij)e; =Y _(0di)aie; = Y (0¢i)hi.
i i, 1]

(3 K3

It is obvious that 52 =0.

DEFINITION 1.15. The Dolbeault’s cohomology of E, Hg’*(U, E) is the cohomology
of the complex

0—T(U, APO(E)) 2T (U, AP (E) -2 . 21U, AP (E) -2 . .

Note that Hg’O(U, E) =T(U,Q%, ® E) is the space of holomorphic sections.

The Dolbeault cohomology has several functorial properties; the most relevant are:

1. Every holomorphic morphism of holomorphic vector bundles £ — F' induces
a morphism of complexes I'(U, AP*(E)) — IT'(U, AP*(F')) and then morphisms
of cohomology groups Hg’*(U, E)— Hg’*(U, F).

2. The wedge product

T(U, AP4(E)) @ T(U, A™ (F)) =T (U, A9 (E © F)),

<Z gbiei) ® (Z 1/1jfj) — Z o Nje; ® ej.

commutes with Dolbeault differentials and then induces a cup product

U: H2(U, E) @ Hy*(U, F) — He ™™ (U, E@ F).
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3. The composition of the wedge product with the trace map EF ® EV — Oy
gives bilinear morphisms of cohomology groups

U: H2U(U, B) x Hy*(U, EV) — HE™™ (U, Op).

THEOREM 1.16. If M is a compact complex manifold of dimension n and £ — M
is a holomorphic vector bundle then for every p,q > 0:

1. dim¢ Hg’q(M, E) < occ.
2. (Serre’s duality) The bilinear map T'(M, AP4(E)) x T'(M, A"~ P"=4(EV)) — C,

<¢,w>H/M¢w

induces a perfect pairing Hg’q(M, E) x I-Ig_p’”_q(M7 EY) — C and then an
isomorphism Hg’q(M7 E)V ~ Hgfp’nfq(M, EY).

ProOOF. [37]. O

From now on we denote for simplicity H1(M, E) = Hg’q(M, E), hi(M,E) =dimc HY(M, E),
HY(M,QP(E)) = Hg’q(M, E).

DEFINITION 1.17. If M is a complex manifold of dimension n, the holomorphic line
bundle Ky = A" T}, = QY is called the canonical bundle of M.

Since QF, = Ky @ (Q},7)Y, an equivalent statement of the Serre’s duality is
HP(M,E)V ~ H" (M, K); ® E) for every holomorphic vector bundle F and every
p=20,...,n.

The Hodge numbers of a fixed compact complex manifold M are by definition
WPt = dime H2(M, 0) = dime Hy(M, 7).
The Betti numbers of M are the dimensions of the spaces of the De Rham cohomology
of M, i.e.

Ll f
b, = dime H?(M,C), HP(M,C) = d-closed p-forms

d-exact p-forms

EXERCISE 1.18. Let p > 0 be a fixed integer and, for every 0 < g < p, denote by
F,c H 5 (M, C) the subspace of cohomology classes represented by a d-closed form
N € @i<ql'(M, AP7""). Prove that there exist injective linear morphisms F,/F,_1 —
HZ~"9(M, O). Deduce that b, < 3>°, hP~91. A

EXERCISE 1.19. Let f: C* — C be a holomorphic function and assume that X =
f71(0) is a regular smooth submanifold; denote i: X — C" the embedding.
Let ¢ € T'(C", AP9), ¢ > 0, be a differential form such that d¢ = 0 in an open
neighbourhood of X. Prove that i*¢ is d-exact in X. (Hint: prove that there exists
Y € T(C", AP4) such that d¢ = I(f).) A

EXERCISE 1.20. Let h: C" — C be holomorphic and let U = {z € C" | h(z) # 0}.
Prove that H1(U, Oy) = 0 for every ¢ > 0. (Hint: consider the open disk A = {t €
C||t| < 1} and the holomorphic maps ¢: U x A — C""1 (2,t) — (2, (1 +t)h1(2)),
f:C" — C, f(z,u) = h(2)u—1; ¢ is a biholomorphism onto the open set {(z,u) €
C" 1 luh(z) — 1] < 1}; use Exercise 1.19.) A

EXERCISE 1.21. Prove that the following facts are equivalent:

1. For every holomorphic function f: C — C there exists a holomorphic function
h: C — C such that f(z) = h(z + 1) — h(z) for every z.
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2. HY(C - {0},0¢) = 0.
(Hint: Denote p: C — C — {0} the universal covering p(z) = e“™*. Given f, use a
partition of unity to find a C* function g such that f(z) = g(z+ 1) — g(2); then dg
is the pull back of a d-closed form on C — {0}.) A

2miz

3. Cech cohomology

Let E be a holomorphic vector bundle on a complex manifold M. Let U = {U,},
a €I, M = U,U, be an open covering. For every k > 0 let C*(U, E) be the set of
skewsymmetric sequences { foy.a1.....ax }» G0, .- sax € Z, where foo a1, ap: UggN...N
U,, — FE is a holomorphic section. skewsymmetric means that for every permutation

o€ Ek+17 fag(o),ag(1>,...,a(,(k) = (_1)Ufa0,a1,...,ak

The Cech differential d: C*¥(U, E) — C* (U, E) is defined as

k+1

(df)a07---7ak+1 = Z( 1) fao, NN PERE
i=0
Since d> = 0 (exercise) we may define cocycles Z*(U,E) = kerd C CKU, E),
coboundaries B*¥(U,E) = Imd C Z*(U,E) and cohomology groups H*(U, E) =
Z*U,E)/B*U, E).

PROPOSITION 1.22. For every holomorphic vector bundle E and every locally fi-
nite covering U = {U,}, a € I, there exists a natural morphism of C-vector spaces

0: H*U, E) — Hy"(M, E).

PRrOOF. Let t,: M — C, a € Z, be a partition of unity subordinate to the
covering {U, }: supp( a) CUagy Youta=1,30t, =0.
Given f € C*(U, F) and a € T we consider

3" fucrOte Ao At € DU, A% (E)),

Ztm € [(M, A™*(E)).

Since every fac,.,... . 15 holomorphic, it is clear that O¢o = 0 and then

sCk
=Y MaNGa(f) = D fepcrObcy N A,
a COyeer ,Che
We claim that ¢ is a morphism of complexes; in fact

Zta Z Afacoos crObcg N oo N Ot =

0yeee

—

> ta ZZ&&CZA Z Facom G crOteg Ao N, Ao A, | =

a =0 ¢ €05+ 1Cis--- 5sCk

= 3" 1,36(f) = Do (f).
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Setting 6 as the morphism induced by ¢ in cohomology, we need to prove that 8 is
independent from the choice of the partition of unity. We first note that, if df = 0
then, over U, N Uy, we have

¢a(f) - ¢b(f) = ch,... Ck (fa701,... K fb,cl,.“ ,ck)gtcl ARERWA 8tck
= ch,... Ch Zf:l(*l)i_lfayb,qv--- N 7Ck5tcl ARERNA 5tck

k . _ —
=2 (DT e faber i enOte N N Ot

k
=N 0o, A D faperin ficnOtey Ao ANt AL A Dt
—~

i=1 ¢ Clyeee sCiyen s
=0.
Let v, be another partition of 1, n, = t, — va, and denote, for f € Z*(U, E),
éa = Z fa,cl,...,ckgvcl ANR /\gvcka
Clyeen ,Ch

Yl = Z facrn cxOtes N ... /\57563;1 /\vcjgvcj+1 Aoi N0V, j=1,... k.
Cly ,Ck

The same argument as above shows that qga = q;b and w{; = wg for every a,b,j.
Therefore all the ¥, come from a global section Y € T(M, A%~1(E)); moreover
o—¢= Zj(—l)j_15¢j and then ¢, ¢ determine the same cohomology class. O

EXERCISE 1.23. In the same situation of Proposition 1.22 define, for every k > 0,
D¥(U, E) as the set of sequences {fav,ar,..ants @05 - - ,ak € I, where fog a1, ap: UayN
...NU,, — E is a holomorphic section. Denote by i: C*(U, E) — D*(U, E) the
natural inclusion. The same definition of the Cech differential gives a differential
d: D*(U, E) — D**(U, E) making i a morphism of complexes. Moreover, it is pos-
sible to prove (see e.g. [73, p. 214]) that ¢ induce isomorphisms between cohomology
groups. Prove:

1. Given two holomorphic vector bundles E, F' consider the linear maps
DU E)® D" MU F)—D*UESF),  (fUQa..ap = Jao,...r @ Gu..

Prove that U is associative and d(f U g) = df U g 4+ (=1)¥f U dg, where f €
DFU,E).
2. The antisymmetrizer p: D*(U, E) — C*(U, E),

1
(pf)a0,~-- an — m Z(_l)afaa(O)"'- Ao (n)? o€ ZnJrl’
g

is a morphism of complexes and then induce a morphism p: H*(D*(U, E)) —
H*U, E) such that pi = Id (Hint: the readers who are frightened by combi-
natorics may use linearity and compatibility with restriction to open subsets
N C M of d, p to reduce the verification of dp(f) = pd(f) in the case U = {U,},
a=1,...,m finite cover and f,, . 4, 7# 0 only if a; = 7).

3. The same definition of ¢ given in the proof of 1.22 gives a morphism of com-
plexes ¢p: D*(U,E) — T'(M, A%*(E)) which is equal to the composition of
¢ and p. In particular ¢z induces 0: H*(D*(U, E)) — H*(M, E) such that
Op = 0.

4. Prove that, if dg = 0 then ¢per(f Ug) = ¢r(f) A ¢r(g). (Hint: write
0= Zb tbdgb,ak,... ,ap')
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5. If E,F are holomorphic vector bundles on M then there exists a functorial
cup product

U: HY(U,E) ® HYU,F) — HY (U, E ® F)

commuting with 6 and the wedge product in Dolbeault cohomology.

A

THEOREM 1.24 (Leray). Let U = {Ua} be a locally finite covering of a complex
manifold M, E a holomorphic vector bundle on M : if Hg_q(Uao N...NUs, E)=0
for every ¢ < k and ay, ... ,a,, then 0: H*(U, E) — Hg(M,E) is an isomorphism.

PROOF. The complete proof requires sheaf theory and spectral sequences; here
we prove “by hand” only the cases k = 0, 1: this will be sufficient for our applications.
For k = 0 the theorem is trivial, in fact Hg(M ,E) and H°(U, E) are both isomorphic
to the space of holomorphic sections of £ over M. Consider thus the case k = 1; by
assumption H%(Ua, E) =0 for every a.

Let ¢ € T(M, A% (E)) be a O-closed form, then for every a there exists v, €
['(U,, A%°(E)) such that d1, = ¢. The section fap = Yo —Up: Uy, NU, — E is
holomorphic and then f = {f,,} € CY(U, E); since fop — fep + fea = 0 for every
a,b,c we have f € Z1(U, E); define o(¢) € H (U, E) as the cohomology class of f.
It is easy to see that o(¢) is independent from the choice of the sections 1,; we want
to prove that o = #~1. Let t, be a fixed partition of unity.

Let f € ZY(U, E), then 0(f) = [¢], ¢ = >} fasOtp; we can choose 1, = > fapty and
then

0(ae =D (fab = for)to = faer = 00 =1Id.

b

Conversely, if ¢, = 0, then 0o ([¢]) is the cohomology class of
Y (o~ ) =0 Yats — 0> s =0—0 Y it
b b b b
]

REMARK 1.25. The theory of Stein manifolds (see e.g. [28]) says that the hypotheses
of Theorem 1.24 are satisfied for every k whenever every U, is biholomorphic to an
open convex subset of C".

EXAMPLE 1.26. Let T — P! be the holomorphic tangent bundle, x¢,z; homoge-
neous coordinates on P!, U; = {x; # 0}. Since the tangent bundle of U; = C is
trivial, by Dolbeault’s lemma, H'(U;,T) = 0 and by Leray’s theorem H'(P',T) =
H'({Up, U1}, T), i =0,1.

Consider the affine coordinates s = x1/xg, t = xo/z1, then the holomorphic sections
of T" over Uy, Uy and Up,; = UgN Uy are given respectively by convergent power series

ZaiS a, Z blt a, Z C;S %
=0 =0 1=—00
. _1 0 20 : L
Since, over Up 1, t = s~ and i —s R the Cech differential is given by
s

+o00 28 +o00 Za 400 Za 2 la
d (gais %’;bit a) = Z;ais % + _Z bo_;s %’



10 I. SMOOTH FAMILIES OF COMPACT COMPLEX MANIFOLDS

and then H'({Uy,U1},T) = 0 and
%) %) o 0 o 0
0 _ Y _p2Y 42 2Z
a ({UO’Ul}’T)_«as’ ! m)’(sas’ tm)’(“" ds’ at)>'

EXAMPLE 1.27. If X = P! x C? then HY(X,Tx) = 0. If C C P! is an affine open
subset with affine coordinate s, then H%(X, Tx) is the free O(C")-module generated
by

0 o o0 0 40

55 Bt 08’ 55575 Ba"
The proof is essentially the same (replacing the constant terms a;, b;, ¢; with holo-
morphic functions over C") of Example 1.26.

4. The Kodaira-Spencer map

NoOTATION [.28. Given a holomorphic map f: X — Y of complex manifolds and
complexified vector fields n € T'(X, A*0(Tx)), v € T(Y, A%(Ty)) we write v = f.n
if for every x € X we have f.n(z) = v(f(z)), where f.: Ty x — Ty(y)y is the
differential of f.

Let f: M — B be a fixed smooth family of compact complex manifolds, dim B = n,
dim M = m + n; for every b € B we let My, = f~1(b).

DEFINITION 1.29. A holomorphic coordinate chart (z1,...,2m,t1,... ,tn): U —
C™n U C M open, is called admissible if f(U) is contained in a coordinate chart
(v1,...,0,): V= C" V C B, such that t; = v; 0 f for every i = 1,... ,n.

Since the differential of f has everywhere maximal rank, by the implicit function
theorem, M admits a locally finite covering of admissible coordinate charts.

LEmMA 1.30. Let f: M — B be a smooth family of compact complex manifolds. For
every v € I'(B, A%9(Tg)) there exists n € T'(M, A% (Ty)) such that fin = .

Proor. Let M = UU, be a locally finite covering of admissible charts; on every
U, there exists 1, € I'(Uy, A%°(Ty)) such that f.n, = 7.
It is then sufficient to take n = > panqe, being p,: U, — C a partition of unity
subordinate to the covering {U,}. O

Let Ty C Ty be the holomorphic vector subbundle of tangent vectors v such that
fsv=0. If z21,...,zm,t1,... ,t, is an admissible system of local coordinates then
0

..., = is a local frame of T;. Note that the restriction of Ty to M is equal
021 O0zm
to TM{,'

For every open subset V' C B let I'(V, 1) be the space of holomorphic vector fields
onV.
For every v € I'(V,Tp) take n € T'(f~1(V), A% (Ty)) such that f,n = +. In an

d 0
admissible system of local coordinates z;,t; we have n =Y. n;(2,t) F —1—2 'yi(t)%,
i j J

with 7;(¢) holomorphic, 9n = >, dni(z, t);)_z and then on € T(f~H(V), A%H(T})).

Obviously 97 is O-closed and then we can define the Kodaira-Spencer map

KS(V)p: D(V.Tg) — H'(F71(V), Ty),  KS(V)s(~) = [0n).
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LEMMA L31. The map KKS(V)s is a well-defined homomorphism of O(V')-modules.

Proor. If § € T(f~4(V), A% (Tw)), f«i = 7, then n — 7} € (ffl(V),.AO’O(Tf))
and [07)] = [9n] € H'(f~1(V),Ty). B
If g € O(V) then f.(f*g)n = gv, O(f*g)n = (f*9)0n

U
If V4 C Vo C B then the Kodaira-Spencer maps KS(V;)s: I'(Vi, Tg) — H'(f~*(Vi), TY),
i = 1,2, commute with the restriction maps I'(Va, Tg) — I'(V1, 1), H' (f~1(Va), Tf) —
H(f~1(V1),T¥). Therefore we get a well defined Op p-linear map

ICSfZ ®B,b — (le*Tf)ba

where ©p; and (R! f«Tf)p are by definition the direct limits, over the set of open
neighbourhood V of b, of I'(V, Tg) and H'(f~1(V), Tf) respectively.

If b € B, then there exists a linear map KSy: Ty p — HY(My, Tyy,) such that for
every open subset b € V C B there exists a commutative diagram

rv,Tp) 20 (v, Ty

! &

Tos L HY(My Tap,)
where the vertical arrows are the natural restriction maps.
In fact, if V' is a polydisk then T} p is the quotient of the complex vector space
['(V,Tg) by the subspace I = {y € I'(V,Tg)|~v(b) = 0}; by O(V)-linearity I is
contained in the kernel of r o ICS(V);.

The Kodaira-Spencer map has at least two geometric interpretations: obstruction to
the holomorphic lifting of vector fields and first-order variation of complex structures
(this is a concrete feature of the general philosophy that deformations are a derived
construction of automorphisms).

PropPOSITION 1.32. Let f: M — B be a family of compact complex manifolds and
v € T(V,Tg), then KS(V) () = 0 if and only if there existsn € T(f~2(V), Tar) such
that fim = .

PROOF. One implication is trivial; conversely let n € T'(f~1(V), A*9(Tys)) such
that fun = ~. If [On] = O then there exists 7 € T'(f~*(V), A%*(T})) such that
n—7)=0,n—7el(f~H(V),Tns) and fu(n —7) ="1. O

To compute the Kodaira-Spencer map in terms of Cech cocycles we assume that V
is a polydisk with coordinates ¢1, ... ,t, and we fix a locally finite covering U = {U,}
of admissible holomorphic coordinates z{,... , 2%, t{,... ,t2: U, — C, t§ = f*t;.

On U, N U, we have the transition functions

a
m

b _ b S

2] —giva(z“,ta), 1=1,...,m
b .
t; =17, 1=1,...,n

Consider a fixed integer h =1,... ,n and n € D(f~1(V), A*0(T))) such that f.n =

a—; in local coordinates we have
oty
w9 9 N by 99
n= an z t 8ta’ n_;nl(zvt)azg—i_atz
Since, for every a, n— 0 € T(Uy, A°(T)) and 0 | n — 9 _ an, KS(V) 9 €
: ot @ / ots ’ I\ o1y,

HYU,Ty) is represented by the cocycle
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ForMmuLA 1.33.

9 ) 9 9 0 gt 9
Oth )y 4 oth otq oty ot — 0t} 0z}

The above formula allows to prove easily the invariance of the Kodaira-Spencer
maps under base change; more precisely if f: M — B is a smooth family, ¢: C' — B
a holomorphic map, ¢, f the pullbacks of ¢ and f,

MxpC - M

ls lf

C %, B

ceC, b= f(c).

THEOREM 1.34. In the above notation, via the natural isomorphism M, = f_l(c),
we have

KS _KSf¢* cC’_>H (Mb7TMb)

PROOF. It is not restrictive to assume B C C?, C' C C{ polydisks, ¢ = {u; = 0}
and b = {ti == 0}, ti == gbz(u)
If 2%,t*: U, — C, 2°,t*: U, — C are admissible local coordinate sets with transition
functions z¢ = gga(za,ta), then 2%,u%: U, xg C — C, 20,t": U, xp C — C are
admissible with transition functions 2 = g¥ (2%, ¢(u?)).
Therefore 7

) dg? 9%, 0¢; O 0
K 1,a o 1,a Jg Y _ K — ]
i <8uh> Z du az 0t duf, 02 51 <¢ Buh>b7a

O

It is clear that the Kodaira-Spencer map KS¢: Ty, p — H' (Mo, Thy,) is defined for

every isomorphism class of deformation My — ML(B, bo): The map KSf: Opp, —
(R f.T¢)p, is defined up to isomorphisms of the Opp, module (R! . T})p, .

DEFINITION L.35. Consider a deformation ¢ : Mo——M (B, by), fi(Mo) = bo,
with Kodaira-Spencer map KS¢: Ty, p — HY (Mg, Th,)- € is called:
1. Versal if KS¢ is surjective and for every germ of complex manifold (C, ¢o) the
morphism

MOI‘Ger((C, CO)? (37 bO)) - DefMo (Ca CO)a g — g*g

is surjective.

2. Semiuniversal if it is versal and KS¢ is bijective.

3. Universal if KS¢ is bijective and for every pointed complex manifolds (C, co)
the morphism

MOI'Ger((C, CO)7 (37 bO)) - DefMo (07 CO)a g — g*g
is bijective.
Versal deformations are also called complete; semiuniversal deformations are also
called miniversal or Kuranishi deformations.

Note that if £ is semiuniversal, g1, g2 € MorGer((C co), (B, bo)) and g;& = g5¢ then,
according to Theorem 1.34, dg = dg2: T¢,.c — Thy,B
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EXERCISE 1.36. A universal deformation ¢ : My—M i>(B,b0) induces a repre-
sentation (i.e. a homomorphism of groups)

p: Aut(My) — Auter(B,bo)),  pl9)'€ = €% g € Aut(My).

Every other universal deformation over the germ (B, by) gives a conjugate represen-
tation. A

5. Rigid varieties

DEFINITION 1.37. A deformation My — M — (B, by) is called trivial if it is isomor-
phic to
dx{b
MOI i>0}]\40 X BK(B, b@)
LEMMA 1.38. Let f: M — A} be a smooth family of compact complex manifolds,
t1,...,t, coordinates in the polydisk A'y. If there ewist holomorphic vector fields

0
X1;--- ,Xn On M such that fixn = . then there exists 0 < r < R such that
h

f: YA — A" is the trivial family.

PRrOOF. For every » < R, h < n denote

Al ={(z1,...,20) €C"||z1| <7y lzn] <7 zha1 =0, , 2, = 0} C AR,
We prove by induction on h that there exists R > rj, > 0 such that the restriction of
the family f over Af}h is trivial. Taking rg = R the statement is obvious for h = 0.

Assume that the family is trivial over Aﬁh, h < n; shrinking A% if necessary it is not
restrictive to assume R = r;, and the family trivial over A’}%.
The integration of the vector field yp41 gives an open neighbourhood M x {0} C
U C M x C and a holomorphic map H: U — M with the following properties (see
e.g. [8, Ch. VII]):

1. For every x € M, {z} x CNU = {z} x A(z) with A(z) a disk.

2. For every x € M the map H, = H(z,—): A(x) — M is the solution of the

Cauchy problem

R I A0)

H,(0) ==z

In particular if H(z,t) is defined then f(H(z,t)) = f(x)+(0,... ,t,...,0) (¢
in the (h + 1)-th coordinate).

3. If V. C M isopen and V x A C U then for every ¢t € A the map H(—,t): V —
M is an open embedding.

Since f is proper there exists 7 < R such that f~!'(A") x A, C U; then the
holomorphic map H: f~1(Al) x A, — f~1(Al*1) is a biholomorphism (exercise)
giving a trivialization of the family over APF1. O

ExAMPLE 1.39. Lemma 1.38 is generally false if f is not proper (cf. the exercise in
Lecture 1 of [43]).
Consider for instance an irreducible polynomial F' € Clzy,...,zy,t]; denote by
f: Cl x Cy — C; the projection on the second factor and

V= {(m,t) )F(w,t) = g—i(x,t) =0,i=1,... n}
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Assume that f(V) is a finite set of points and set B = C — f(V), X = {(z,t) €
C" x B|F(z,t) = 0}. Then X is a regular hypersurface, the restriction f: X — B
is surjective and its differential is surjective everywhere.

X is closed in the affine variety C" x B, by Hilbert’s Nullstellensatz there exist regular
functions g1, ... , g, € O(C" x B) such that

n

OF
g::Zgia—xizl (mod F).
i=1

On the open subset U = {g # 0} the algebraic vector field

(SN0 (PFO OO 9 §ngidF
—~yg Ox; Ot Ot Ox; ot —~yg ot 0x;

is tangent to X and lifts %

In general the fibres of f: X — B are not biholomorphic: consider for example the
case F(z,y,\) = y*> —z(z — 1)(z — A). Then B = C — {0,1} and f: X — B is the
restriction to the affine subspace xg # 0 of the family M — B of Example 1.4.

The fibre X = f~(\) is My —{point}, where M) is an elliptic curve with j-invariant
F(A) = 28(A2 = A+1)3A"2(A—1)72. If X, is biholomorphic to X} then, by Riemann’s
extension theorem, also M, is biholomorphic to M, and then j(a) = j(b).

0
EXERCISE 1.40. Find a holomorphic vector field x lifting — and tangent to {F =

1))
0} C C? x C, where F(z,y,\) = y*> — z(z — 1)(z — A\) (Hint: use the Euclidean
F F
algorithm to find a,b € C[z] such that aya— +b— =1+2aF). A

oy Ox

THEOREM 1.41. A deformation My — ML(B, bo) of a compact manifold is trivial
if and only if KSf: ©pp, — (R Ty)p, is trivial.

PROOF. One implication is clear; conversely assume Sy = 0, it is not restrictive
to assume B a polydisk with coordinates ¢1,... ,t, and f a smooth family. After a

possible shrinking of B we have ICS(B) ¢ (5 =0 foreveryi=1,...,n. According

)

to 1.32 there exist holomorphic vector fields &; such that f.& = %; by 1.38 the family

is trivial over a smaller polydisk A C B. O

Note that if a smooth family f: M — B is locally trivial, then for every b € B the
Kodaira-Spencer map KSy: Ty, p — H (M, Ty,) is trivial for every b € B.

THEOREM 1.42. (Semicontinuity and base change)

Let E — M be a holomorphic vector bundle on the total space of a smooth family
f: M — B. Then, for everyi > 0:

1. b h'(My, E) is upper semicontinuous.
2. If b+ hi(My, E) is constant, then for every b € B there exists an open neigh-
bourhood b € U and elements ey, ... ,e, € H(f~1(U), E) such that:
(a) H{(f~1(U), E) is the free O(U)-module generated by e1, ... ,en.
(b) e1,... e induce a basis of H'(M,, E) for every c € U.
3. If b h'=Y(My, E) and b+ hi*t1(My, E) are constant then also b h'(My, E)
18 constant.

PROOF. [4, Ch. 3, Thm. 4.12], [41, I, Thm. 2.2], [37]. O
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COROLLARY 1.43. Let X be a compact complex manifold. If H*(X,Tx) = 0 then
every deformation of X 1is trivial.

DEFINITION 1.44. A compact complex manifold X is called rigid if H'(X,Tx) = 0.

COROLLARY 1.45. Let f: M — B a smooth family of compact complex manifolds.
If b hY(My, Thy,) is constant and KSy = 0 at every point b € B then the family is
locally trivial.

PROOF. (cf. Example 1.49) Easy consequence of Theorems 1.41 and 1.42. O

ExAMPLE 1.46. Consider the following family of Hopf surfaces f: M — C, M =
X /G where X = B x (C?—{0}) and G ~ Z is generated by (b, 21, 20) + (b, 221, %21 +
222).

The fibre M is the Hopf surface Sy, where A(b) = ( b22 g ) and then Mj is not
biholomorphic to M, for every b # 0.

This family is isomorphic to N x¢ B, where B — C is the map b +— b? and N is the
quotient of C x (C2 —{0}) by the group generated by (s, 21, 22) — (s, 221, 821 + 222).
By base-change property, the Kodaira-Spencer map KSs: To. g — H' (Mo, Tar,) is
trivial.

On the other hand the family is trivial over B — {0}, in fact the map

(B —{0}) x (C* = {0}) = (B—{0}) x (C* = {0}),  (b,21,22) = (b,bz1, 22)
induces to the quotient an isomorphism (B — {0}) x My ~ (M — f~%(0)). Therefore
the Kodaira-Spencer map KSy¢: Ty, p — H Y(My, Ty,) is trivial for every b.
According to the base-change theorem the dimension of H!(M,, Ty, ) cannot be con-
stant: in fact it is proved in [41] that h'(My, Th,) = 4 and h'(My, Tyy,) = 2 for
b#0.

EXAMPLE L.47. Let M C Cp x P3 x PL be the subset defined by the equations
upx = ui(x2 — bxo), UT2 = UL L3,
f: M — C the projection onto the first factor and f*: M* = (M — f~1(0)) —
(C — {0}) its restriction.
Assume already proved that f is a family (this will be done in the next chapter); we
want to prove that:

1. f* is a trivial family.
2. f is not locally trivial at b = 0.

PROOF OF 1. After the linear change of coordinates xo — bxg — xg the equations
of M* C C— {0} x P3 x P! become
UL = ULQ, UL = UITL3
and there exists an isomorphism of families C — {0} x P x PL — M*, given by
(b, [to, t1], [uo, u1]) — (b, [tous, touo, t1u1, t1ugl, [ug, u1l).
O
PROOF OF 2. Let Y ~ P! C M be the subvariety of equation b = 1 = x9 =

x3 = 0. Assume f locally trivial, then there exist an open neighbourhood 0 € U C C
and a commutative diagram of holomorphic maps

Y xU -1

IS

U <4oc
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where 7 is the inclusion, j is injective and extends the identity Y x {0} — Y C M.
Possibly shrinking U it is not restrictive to assume that the image of j is contained
in the open subset Vy = {xg # 0}. For b # 0 the holomorphic map 6: Vo N M}, — C3,

T1 Ty T3
5(b7 [.%'0,.%'1, xo, .’133], [U(), Ul]) == <_7 N _) )
o o Xo
is injective; therefore for b € U, b # 0, the holomorphic map 65(—,b): Y ~ P! — C3
is injective. This contradicts the maximum principle of holomorphic functions. [

ExAaMPLE 1.48. In the notation of Example [.47, the deformation My — ML((C, 0)
is not universal: in order to see this it is sufficient to prove that M is isomorphic to
the deformation g* M, where g: (C,0) — (C,0) is the holomorphic map g(b) = b+ b>.
The equation of g*M is

uox1 = up(xe — (b+ b2)$0), ULy = ULX3,
and the isomorphism of deformations g* M — M is given by
(b, [w0, 21, T2, 23], [U0, u1]) = (b, [(1 + b)x0, 1, T2, 23], [U0, U1]).

EXAMPLE 1.49. Applying the base change C — C, b ~ b%, to the family M — C
of Example 1.47 we get a family with trivial KS at every point of the base but not
locally trivial at 0.

We will prove in I1.5 that H'(Mj, Thy,) = 0 for b # 0 and H* (Mo, Tas,) = C.

6. Historical survey, 1

The deformation theory of complex manifolds began in the years 1957-1960 by a
series of papers of Kodaira-Spencer [39], [40], [41] and Kodaira-Nirenberg-Spencer
[38].

The main results of these papers were the completeness and existence theorem for
versal deformations.

THEOREM [.50. (Completeness theorem, [40])
A deformation & over a smooth germ (B,0) of a compact complex manifold My is
versal if and only if the Kodaira-Spencer map KS¢: Tp p — HY (Mo, Tyy,) is surjective.

Note that if a deformation My— M i>(B,0) is versal then we can take a linear
subspace 0 € C' C B making the Kodaira-Spencer map Ty c — H'(Mo, Th,) bijec-
tive; by completeness theorem My — M xp C — (C,0) is semiuniversal.

In general, a compact complex manifold does not have a versal deformation over a
smooth germ. The problem of determining when such a deformation exists is one of
the most difficult in deformation theory.

A partial answer is given by

THEOREM L.51. (Existence theorem, [38])
Let My be a compact complex manifold. If H?(My,Ty,) = 0 then My admits a
semiuniversal deformation over a smooth base.

The condition H2(My, Ths,) = 0 is sufficient but it is quite far from being necessary.
The “majority” of manifolds having a versal deformation over a smooth germ has the
above cohomology group different from 0.

The next problem is to determine when a semiuniversal deformation is universal: a
sufficient (and almost necessary) condition is given by the following theorem.
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THEOREM L1.52. ([67], [79]) Let £ : My—M—(B,0) be a semiuniversal defor-
mation of a compact complex manifold My. If b — h®(My, Ty,) is constant (e.g. if
H®(My, Tr,) = 0) then & is universal.

REMARK 1.53. If a compact complex manifold M has finite holomorphic automor-
phisms then HY(M, Tys) = 0, while the converse is generally false (take as an example
the Fermat quartic surface in P3, cf. [71]).

ExXaMPLE 1.54. Let M — B be a smooth family of compact complex tori of dimen-
sion n, then Ty, = ®; O, and then hO( My, T,) = n for every b.

EXAMPLE 1.55. If Ky, is ample then, by a theorem of Matsumura [55], H°(My, Ty, ) =
0.

EXERCISE 1.56. The deformation M0—>ML>(C, where f is the family of Exam-
ple 1.47, is not universal. A
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CHAPTER II

Deformations of Segre-Hirzebruch surfaces

In this chapter we compute the Kodaira-Spencer map of some particular deforma-

tions and, using the completeness theorem 1.50, we give a concrete description of the
semiuniversal deformations of the Segre-Hirzebruch surfaces Fj, (Theorem I11.28).
As a by-product we get examples of deformation-unstable submanifolds (Defini-
tion I1.29). A sufficient condition for stability of submanifolds is the well known
Kodaira stability theorem (Thm. I1.30) which is stated without proof in the last sec-
tion.

1. Segre-Hirzebruch surfaces

We consider the following description of the Segre-Hirzebruch surface Fy, ¢ > 0.

Fq = (C* —{0}) x (C* = {0})/ ~,
where the equivalence relation ~ is given by the (C*)?-action
(l05l17t07t1) = ()\ZO,)\lla)\thO,ﬂtl)a )\,,U, e C.

The projection F, — P, [ly, l1,t0,t1] — [lo, 1] is well defined and it is a P!-bundle
(cf. Example I1.13).
Note that Fg = P! x P, F, is covered by four affine planes C? ~ Uij = {lit; # 0}.
In this affine covering we define local coordinates according to the following table

l1 tllq ll to
U z=—, =20 Upr: 2=-—, §=—2
0.0 lo to 0.1 lo tllg
U lo , tlf U lo to
: w = — —= — . w = — -
1,0 I Yy to 1,1 I Y tllf

We also denote
Vo = {lo # 0} = Upo U Up,1, Vi={Lh#0}=U10UU1,.

We shall call z, s principal affine coordinates and Uy o principal affine subset. Since
the changes of coordinates are holomorphic, the above affine covering gives a struc-
ture of complex manifold of dimension 2 on [F.

EXERCISE IL.1. If we consider the analogous construction of F, with R instead of
C we get Fy=torus for q even and F,=Klein bottle for g odd. A

DEFINITION I1.2. For ¢ > 0 we set 0o = {t; = 0}. Clearly o is isomorphic to P,
ProposiTioN I1.3. Fy is not homeomorphic to Fy.

MARCO MANETTI: Lectures on deformations of complexr manifolds
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PRrOOF. Topologically Fy = S? x S? and therefore Ho(Fo,Z) = Z[S? x {p}] @
Z[{p} x S?], where p € S? and [V] € Hj denotes the homology class of a closed
subvariety V C S2? x S? of real dimension 2.

The matrix of the intersection form q: Ho X Hy — Hy = Z is

0 1

10
and therefore ¢(a, a) is even for every a € Ho(Fo,Z).
Consider the following subvarieties of [Fy:

o = {ty = 0}, o ={ty = lot1}.

o and ¢’ intersect transversely at the point tg = [y = 0 and therefore their intersection

product is equal to ¢([o],[0']) = £1. On the other hand the continuous map
r:(F1 — o) X [0,1] = (F1 — 0c0),

T‘((lo, l1, to, tl), a) = (lo, l1, aty, tl)
shows that o is a deformation retract of (F1—04). Since r1: ¢/ — o is an isomorphism

we have [o] = [0/] € Ha(F1 — 000, Z) and then a fortiori [o] = [0/] € Ha(Fy1,7Z).
Therefore ¢([o], [0]) = £1 is not even and Fy cannot be homeomorphic to Fy.

O
It is easy to find projective embeddings of the surfaces Fy;
ExAMPLE I1.4. The Segre-Hirzebruch surface I, is isomorphic to the subvariety
X C Pat! x P! of equation

uo(x1, 22, ... ,xq) = w1 (z2, 23, ... ,Tqt1),
where xg,

,Zg+1 and ug,u; are homogeneous coordinates in P?*! and P! respec-
tively.

An isomorphism F, — X is given by:

ug=lg, w =1, x9=1tg, x; Ztllé_ll‘lﬁ_l_i, 1=1,...q+ 1.

Denote by T' — F, the holomorphic tangent bundle, in order to compute the spaces

HO(F,,T) and H*(F,,T) we first notice that the open subsets Vj, V; are isomorphic
to C x P!. Explicit isomorphisms are given by

l
‘/()HCZXP% (l07llat07t1)'_> <Z_i7[t07tl]> y

I’
According to Example 1.27 H*(V;,T) = 0, i = 0,1, and then H%(F,, T') and H(F,, T)
are isomorphic, respectively, to the kernel and the cokernel of the Cech differential

HO(Vo, T) & HO(Vi, T) -5 HO (Vo N VA, T)

In the affine coordinates (z, s), (w,y) we have that:
1.

l
Vl - (Cw X ]P>17 (l07l17t07t1) — <w = _0 [t()atl]) .

d(x,n) =x—n-

H°(Vp, T) is the free O(C,)-module generated by 9 9 90 0

2. H(V4,T) is the free O(C,,)-module generated by 90’ 9y’ ya—y, yQa—y.
o o9 0
0 - _ ) g 9 9
H°(Vo N4, T) is the free O(C, — {0})-module generated by % 95’ S5’
0
ds’
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The change of coordinates is given by

-1 -1

Z=Ww w =z
s = y‘lwq Yy = sz
and then
0 B 50 1 _q_la B 50 0
ow Z@z+qy v ds Z@z+qzsas
0 5 .0 0
- _ _ q — _9¢27
oy Y8 7 9s

(0 9 V) _
d> 2 <azaz (b + cis + d;is”) )Zw (az ﬂz+%y+5zy)a—y> =

1>0
_ i 9 ;0 9 20
—Zz <azaz—f-bzas—4—cZ s + d;s 85)

i>0
0 0 0 0 0
E g i q 2 L—qY
+ z- ( <z 5 qzs(a)—l-ﬁzsza +%883+622 83)

>0

An easy computation gives the following

LEMMA IL.5.
- 0 0 0 0
ai— +bi— + o d;s? HVonWn,T
Zz(aaz+ s " “hs T Sa)e oW, T)
1€EZL
belongs to the image of the Cech differential if and only ifb_1 =b_y = ... = b_g+1 =

0. In particular the vector fields
0
h— e HOVon' Wy, T), h=1,...,q—1

0s
represent a basis of H'(F,,T) and then h'(F,, T) = max(0,q — 1).
EXERCISE 11.6. Prove that h'(F,,T) = max(6,q + 5). A

THEOREM 11.7. If a # b then F, is not biholomorphic to Fy.

PROOF. Assume a > b. If a > 2 then the dimension of H'(F,, Tk, ) is bigger than
the dimension of H!(Fy, Tf,). If a = 1, b = 0 we apply Proposition I1.3. O

We will show in I1.24 that F, is diffeomorphic to Iy if and only if a — b is even.

2. Decomposable bundles on projective spaces
For n > 0, a € Z we define
Opn(a) = (C"T' —0) x C/C*,
where the action of the multiplicative group C* = C — 0 is
Moy - s lnst) = (Mo, - ooy N, A, AeCr.

The projection Opn(a) — P", [lo, ... ,In,t] — [lo, ... ,I], is a holomorphic line bun-
dle. Notice that Opn = Opn(0) — P™ is the trivial vector bundle of rank 1.
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The obvious projection maps give a commutative diagram

(CHL—0)xC —s Opn(a)

| l

((Cn—i-l _ 0) SN P
inducing an isomorphism between (C"*! —0) x C and the fibred product of p and 7;
in particular for every open subset U C P" the space H°(U, Opn(a)) is naturally iso-
morphic to the space of holomorphic maps f: 7=1(U) — C such that f(A\z) = \f(z)
for every z € n1(U), A € C*.
If U = P then, by Hartogs’ theorem, every holomorphic map f: 7~1(U) — C can be
extended to a function f: C"*! — C. Considering the power series expansion of f we
get a natural isomorphism between H?(P", Opn(a)) and the space of homogeneous
polynomials of degree a in the homogeneous coordinates Iy, ... , [,.

EXERCISE IL.8. Prove that h®(P", Opn(a)) = ("/%). A
EXERCISE I1.9. Under the isomorphism o, = P! we have Noo/p, = Opi(—q). A
On the open set U; = {l; # 0} the section (¢ € H°(U;, Opr(a)) is nowhere 0 and

then gives a trivialization of Opn(a) over U;. The multiplication maps
HO(Uy, Opn () @ HO(Us, On (b)) — HO(U;, Opn(a + 1)), f &g fg,
give natural isomorphisms of line bundles
Opn(a) @ Opn(b) = Opn(a +b), Hom(Opn(a), Opn (b)) = Opr (b — a)
(In particular Opn(a)¥ = Opn(—a).)
DEFINITION I1.10. A holomorphic vector bundle £ — P™ is called decomposable if

it is isomorphic to a direct sum of line bundles of the form Opn(a).
Equivalently a vector bundle is decomposable if it is isomorphic to

(C**! —0) x C"/C* — (C"* —0)/C* =P,
where the action is A(lo, ... ,ln,t1, ... 5 tr) = (Mo, ooy Alpy A%y, .0, A% E).

LEMMA II.11. Two decomposable bundles of rankr, E = ®I_;Opn(a;), F = ®_;Opn(b;),
a1 < ao,..., < ap, by < by, ..., < b, are isomorphic if and only if a; = b; for every
1=1,...,7r.

ProOOF. Immediate from the formula
", (000 (@) © Oen () = LW Omfas + o) = 30 (“F2F7),
i {i| a;+s>0} n
L]

ExaMpLE I1.12. If n > 2 not every holomorphic vector bundle is decomposable.
Consider for example the surjective morphism

¢ ®i_g Opn(l)e; — Opn(2), Zfiei = Z fili.

We leave it as an exercise to show that the kernel of ¢ is not decomposable (Hint:
first prove that ker ¢ is generated by the global sections l;e; — [je;).

For every holomorphic vector bundle £ — X on a complex manifold X we denote
by P(E) — X the projective bundle whose fibre over z € X is P(E), = P(E;). If
E — X is trivial over an open subset U C X then also P(FE) is trivial over U; this
proves that P(E) is a complex manifold and the projection P(F) — X is proper.
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ExXAMPLE I1.13. For every a,b € Z, P(Op1(a) ® Op1 (b)) = Fjq_y|-
To see this it is not restrictive to assume a > b; we have

P(Op1(a) ® Op1 (b)) = (C* - 0) x (C? —0)/C* x C*,

where the action is (X, 1)(lo, 11, to,t1) = (Mo, M1, Anto, APnt1). Setting p = \bn we
recover the definition of F,_p.
More generally if F — X is a vector bundle and L — X is a line bundle then

P(E ® L) = P(E).

ExAMPLE I1.14. The tangent bundle Tp:1 is isomorphic to Opi1(2). Let ly,l; be

l

homogeneous coordinates on P!; s = l_l t = l—o are coordinates on Uy = {ly # 0},
0 1

Uy ={li # 0} respectively. The sections of Tp:1 over an open set U correspond to

pairs <f0( )— 7fl( ) — ) fi € O(UNU;), such that fi(t) = —t2fo(t71).

S2—aa_ _taa_
ds’ ot )’

THEOREM II.15 (Euler exact sequence). On the projective space P" there exists an
exact sequence of vector bundles
Sl

0

The isomorphism ¢: Op1(2) — Tp1 is given by ¢(l8l%7“)

L.
where on the affine open subset I, # 0, with coordinates s; = l_l’ 1% h,
h

,

0 0
0 0 . ) - o2 ;
¢<li—> :Siﬁ—sj i,j#h ‘b(lzazh) 2818]85]- i7h

ol; j#h
0 0 , 0 0
¢<lh8_lj>_3—sj J#h ¢<lh8_lh>__j§];8]8_5j

0
PRrOOF. The surjectivity of ¢ is clear. Assume ¢ <Z” aijliﬁ> =0, looking at

J
the quadratic terms in the set [, # 0 we get a;;, = 0 for every ¢ # h. In the open set
lop # 0 we have

’L

d’(Zaiili%) Zausz ZaOOSz - =0

and then the matrix a;; is a multlple of the 1dent1ty. O

REMARK I1.16. It is possible to prove that the map ¢ in the FEuler exact sequence
is surjective at the level of global sections, this gives an isomorphism

HO(P" Tpn) = gl(n+1,C) 014 = pgl(n + 1,C) = TrgPGL(n + 1,C).

Moreover it is possible to prove that every biholomorphism of P” is a projectivity
and the integration of holomorphic vector fields corresponds to the exponential map
in the complex Lie group PGL(n + 1,C).

EXERCISE I1.17. Use the Euler exact sequence and the surjectivity of ¢ on global

sections to prove that for every n > 2 the tangent bundle of P" is not decomposable.
A

COROLLARY II.18. The canonical bundle of P" is Kpn = Opn(—n — 1).
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ProoOF. From the Euler exact sequence we have
N'Ten © Opn = N (@]Opn (1)) = Opn(n + 1)
and then K]Pm = (/\nT]Pm)v = O]Pm(—n — 1)

-1
EXERCISE I1.19. Prove that A" (P", Opn(—a)) = (a ) A

n

LEMMA I1.20. Let E — P! be a holomorphic vector bundle of rank r. If:

1. HO(P', E(s)) =0 for s << 0, and

2. There erists a constant ¢ € N such that h°(P!, E(s)) > rs — ¢ for s >> 0.
Then E is decomposable.

ProoF. Using the assumptions 1 and 2 we may construct recursively a sequence
ai,...,ar € Z and sections o; € HO(P!, E(a;)) such that:
1. ap41 is the minimum hinteger s such that the map
@i QH (P, Opi (s — a;)) — HO(P', E(s))

. S i=1
1s not surjective.

2. apy1 does not belhong to the image of
@?:1041'1 P H (P, Op1 (ant1 — ai)) — H(P', E(ant1)).
i=1
Notice that a1 < a9 < I < a.
We prove now by induction on A that ‘Elhe morphism of vector bundles
ooy DOpi(—ai) = E

is injective on every fibre; this impliels_tlhat @ _ ;i @._; Opi(—a;) — E is an iso-
morphism.
For h = 0 it is trivial. Assume @?:lai injective on fibres and let p € P'. Choose
homogeneous coordinates Iy, l; such that p = {l; = 0} and set s = I /lo.

Assume that there exist ci,...,cp, € C such that ap1(p) = Y. (lg"™ “ai)(p) €
E(ap+1)p- Ifer,... e is alocal frame for E at p we have locally
h r
anpr = Y ely™ e =Y fi()lg" e
i=1 j=1

with f;(s) holomorphic functions such that f;(0) = 0.
Therefore f;(s)/s is still holomorphic and Iy * (ap+ 1= cilg" ™ “ay) € HO(PY, E(ap1—
1)), in contradiction with the minimality of apy. O

THEOREM I1.21. Let 0—FE—F—G—0 be an exact sequence of holomorphic
vector bundles on P'.
1. If F,G are decomposable then also E is decomposable.
2. If E = ®Op1(—a;) then min(a;) is the minimum integer s such that H°(P', F(s)) —
HO(PL,G(s)) is not injective.

PROOF. The kernel of HO(P!, F(s)) — H°(P', G(s)) is exactly H°(P!, E(s)).
If F =®!_,0p(b;), G = &_Opi(c;) then for s >> 0 hO(PY, F(s)) = r(s+1)+ > b;,
RO(PL,G(s)) = p(s + 1) + > ¢; and then the rank of E is r — p and h°(P!, E(s)) >
(r—p)(s+1) 4> b; — > ci. According to Lemma II1.20, the vector bundle E is
decomposable. O

We also state, without proof, the following

THEOREM I1.22. 1. FEvery holomorphic line bundle on P" is decomposable.
2. (Serre) Let E be a holomorphic vector bundle on P™, then:



3. SEMIUNIVERSAL FAMILIES OF SEGRE-HIRZEBRUCH SURFACES 25

(a) HO(P", E(s)) =0 for s << 0.
(b) E(s) is generated by global sections and HP(P™ E(s)) = 0 for p > 0,
5 >> 0.
3. (Bott vanishing theorem) For every 0 < p < n:

C ifp=¢q, a=0
HP(P",Q(a)) =

0 otherwise
Moreover H(P",Q4(a)) = H™(P", Q" 9(—a))V = 0 whenever a < q.
PrOOF. [37] O

3. Semiuniversal families of Segre-Hirzebruch surfaces

Let ¢ > 0 be a fixed integer, define M C (Cgi1 X IPll x P4 as the set of points

of homogeneous coordinates (ta, ... ,tq,[lo, l1], [z0, ... ,2¢+1]) satisfying the vectorial
equation
(1) lo(xl,xg, ce ,.%'q) = 11(1'2 — tQJZ(), cee sy Lg — tq$0, xq+1).

We denote by f: M — C47 1 p: M — C471 x P} the projections.

LEMMA I1.23. There exists a holomorphic vector bundle of rank 2, E — CI~! x IP’ll
such that the map p: M — CI71 x ]P’ll is a smooth family isomorphic to P(E) —
ci1 x Pl

PROOF. Let m: CI~1 x IP’ll — ]P’l1 be the projection; define E as the kernel of the
morphism of vector bundles over CZ~1 x IP’ll

q+1 4 4
W*Opl —)GBW*OIP’I (1),
=0 =1

o lozr1 — l1(xg — taxg)
1 lozg — l1(x3 — t3xo)
A(ta, ... ,tg, [lo, l1]) : = .
Tg+1 lorg — liwgs1
We first note that A is surjective on every fibre, in fact for fixed ta,... ,t4,lo,l1 € C,

A(ti, ;) is represented by the matrix

t2[1 lo —ll ... 0 0
tgll 0 lo ... 0 0
0O 0 0 ... Iy -l

Since either [y £ 0 or [1 # 0 the above matrix has maximal rank.
By definition we have that M is the set of points of x € P(@g;rg 7*Op1) such that
A(x) =0 and then M =P(E). O

For every k > 0 denote by T}, C (Cg_l the subset of points of coordinates (g, ... ,t4)
such that there exists a nonzero (g + 2)-uple of homogeneous polynomials of degree k

(:UO(Z()? l1)7 cee axq—i-l(lOa ll))
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which satisfy identically (¢ being fixed) the Equation 1. Note that ¢ € T}, if and only
if there exists a nontrivial morphism Opi(—k) — E; and then ¢ € T}, if and only if
—k < —a. Therefore t € T, — T4 if and only if a = k.

LEMMA I1.24. In the notation above:
1. Ty = {0}.
2. Tk C Tk+1.
3. If 2k +1 > q then Ty, = CI71.
4. If 2k < q andt € Ty, — Ty._1 then M; = quQk-

PrOOF. 1 and 2 are trivial.

Denoting by Sy C C[l, l1] the space of homogeneous polynomials of degree k, dimc Sy, =
k + 1; interpreting Equation 1 as a linear map (depending on the parameter t)
Ap(t): SIT% — Sii1, we have that t € T}, if and only if ker A (t) # 0.
Since (q + 2)(k + 1) > q(k + 2) whenever 2k > g — 2, item 3 follows immediately.
Let E; be the restriction of the vector bundle E to {t} x P!, E; is the kernel of the
surjective morphism A(t): @713 Op — @ Op1(1). According to Theorem 11.21, E;
is decomposable. Since \? E; = Opi(—q) we have E; = Opi(—a) & Opi(a — ¢) with
—a<a—qand My =P(E;) =F,_2,.

]

LEMMA I1.25. In the notation above (ta,... ,tq) € T} if and only if there exists a
nonzero triple (zo, x1,xq4+1) € BC[s| of polynomials of degree < k such that

q
L
Tgr1 = stz + 20 (Z 189t Z) .

i=2
PROOF. Setting s = lp/l; we have by definition that (o, ... ,t;) € T} if and only
if there exists a nontrivial sequence o, ... , 2441 € Cls] of polynomials of degree < k
such that z;41 = sx; +t; 120 for every i = 1,... ,q (tq+1 = 0 by convention). Clearly
this set of equation is equivalent to x;,1 = s'z1 + g 22':1 tj+1si_j.
Given wg, 1, Z¢+1 as in the statement, we can define recursively x; = S_l(ﬂfi+1 —
ti+120) and the sequence o, ... , x4 satisfies the defining equation of T. O

COROLLARY 1I1.26. (to,...,ty) € Ty if and only if the (¢ — k — 1) x (k + 1) matriz
By(t)ij = (tg—k—i+j) has rank < k.

PROOF. If 2k +1 < ¢ then T}, = C?7!, ¢ — k — 1 < k and the result is trivial:
thus it is not restrictive to assume k + 1 < ¢ — k — 1 and then rankBy(¢t) < k if and
only if ker By(t) # 0.

We note that if xg,z1,z441 satisfy the equation xgy1 = s%z1 + z0(3L, tis1H1=1)
then 1, 2441 are uniquely determined by zg; conversely a polynomial zo(s) of degree
< k can be extended to a solution of the equation if and only if all the coefficients
of sh"1 k2 . 5971 in the polynomial xo(Y 7, ¢;s717%) vanish. Writing 2o =
ap+ais+ ...+ aps®, this last condition is equivalent to (ag, ... ,ax) € ker By(t). [

k+1
one of which is a homogeneous polynomial of degree k41 in to,... ,¢,. In particular
T}, is an algebraic cone.

Therefore T}, is defined by the vanishing of the e > minors of Bi(t), each

As an immediate consequence of Corollary I1.26 we have that for ¢ > 2, 0 < 2k < ¢,
the subset {11 # 0,tp42 = tiys = ... = ty = 0} is contained in Ty — Tj—;. In
particular I, is diffeomorphic to F,_oj for every k£ < ¢/2.
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ProrposriTioN 11.27. If 2k < q then T} is an irreducible affine variety of dimension
2k.

PROOF. Denote
Z, = {([v],t) € P* x CI7 v € CF+1 — 0, By(t)v = 0}

and by p: Zy — T} the projection on the second factor. p is surjective and if tx11 = 1,
t; = 0 for i # k + 1, then By (t) has rank k and p~!(t) is one point. Therefore it is
sufficient to prove that Zj is an irreducible variety of dimension 2k.

Let m: Z), — P* be the projection. We have ([ao, ... ,a], (t2, ... ,t4)) € Z if and
only if for every i =1,... ,q—k—1

k q
0= Z liv14ja5 = Ztlal—z‘—la
j=0 1=2

where @ = 0 for [ < 0, [ > k and then the fibre over [ag, ... ,ax] is the kernel of
the matrix A;; = (aj—i—1) i =1,... ,¢ —k—1, 5 =2,...,¢. Since at least one q;
is # 0 the rank of A;; is exactly ¢ — k — 1 and then the fibre is a vector subspace of
dimension k. By a general result in algebraic geometry [72],[51] Z is an irreducible
variety of dimension 2k. O

THEOREM I1.28. In the above notation the Kodaira-Spencer map KSy: T ca-1 —
HY (Mo, Tyy,) is bijective for every q > 1 and therefore, by completeness theorem I.50,
deformation F, — M — (C971,0) is semiuniversal.

Proor. We have seen that My = F,. Let Vp, V1 C Fy be the open subset defined
in Section 1. Denote M; C M the open subset {l; # 0}, i =0, 1.
We have an isomorphism ¢q: CI~! x Vj — My, commuting with the projections onto
C971, given in the affine coordinates (z, s) by:

q—h
—h+1 j
lo=1, L=z z9=1, x=27""ls— g thej?’ = z(xhg1 — the120), h > 0.
Jj=1

Similarly there exists an isomorphism ¢1: CI~1 x Vi — M,

h
lo=w, L1=1 x=vy, xp= wh=! 4 th‘jwh*j =wxp_1 +tpxrg, h>0.
Jj=2
In the intersection My N M; we have:
z=w"!
Tga1 1 <
5= ?_ =y tw? + Z tjwtT,
0 -
=2

According to Formula 1.33, for every h =2,... ,q

s, (D) _outo O e S0 0
I\ ot oty 0z oty ds ds’
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4. Historical survey, II

One of the most famous theorems in deformation theory (at least in algebraic ge-
ometry) is the stability theorem of submanifolds proved by Kodaira in 1963.

DEFINITION I1.29. Let Y be a closed submanifold of a compact complex manifold X.
Y is called stable if for every deformation X ——X i>(B, 0) there exists a deformation

YLJ)L(B ,0) and a commutative diagram of holomorphic maps

y —1sy

ol

X—0B

The same argument used in Example 1.46 shows that o, C F, is not stable for
every q > 2, while o, C 1 is stable because [y is rigid.

THEOREM I1.30. (Kodaira stability theorem for submanifolds, [36])
LetY be a closed submanifold of a compact complex manifold X . If H' (Y, Ny/X) =0
then Y is stable.

Just to check Theorem I1.30 in a concrete case, note that hl (o, N,__ /r,) = max (0, g—

1).

Theorem I1.30 has been generalized to arbitrary holomorphic maps of compact com-
plex manifolds in a series of papers by Horikawa [30].

DEFINITION I1.31. Let a: Y — X be a holomorphic map of compact complex mani-
folds. A deformation of a over a germ (B, 0) is a commutative diagram of holomorphic
maps

y -y L, B
[« ] =
x . x % B

S

where Y~ Y-75(B,0) and X-Zox -
tively.

,0) are deformations of ¥ and X respec-

DEFINITION I1.32. In the notation of I1.31, the map « is called:

1. Stable if every deformation of X can be extended to a deformation of a.
2. Costable if every deformation of Y can be extended to a deformation of a.

Consider two locally finite coveringsd = {U,}, V ={V,},a € Z,Y = UU,, X = UV,
such that U,, V, are biholomorphic to polydisks and a(U,) C V, for every a (U, is
allowed to be the empty set).

Given a € 7 and local coordinate systems (z1, ... ,zm): Uy — C™, (u1,... ,un): Vo —
C™ we have linear morphisms of vector spaces

0 0
a*: TV, Tx) — F(Ua7a*TX)7 a* (Zl gza_u> = EZ a*@i)au

9 Ou;
. D(U,, T T (Ua, o*Tx), A X hi=— ) =3 himt——
0 TULTY) = T T), au (Sihig ) =Sy G2 5
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Define H*(cv,) as the cohomology of the complex
0—COU, Ty) 20 U, Ty) @ COU, o T )2 . ..
where d;(f,g) = (df,dg + (—1)*a.f), being d the usual Cech differential.

Similarly define H*(a*) as the cohomology of the complex
0—CO(V, Ty )20 (V, T ) & COU, a* Ty )2 . ..
where d;(f,g) = (df,dg + (—1)'a* f).

TuEOREM 11.33 (Horikawa). The groups H*(aw) and H*(a*) do not depend on the
choice of the coverings U,V. Moreover:

1. If H?*(a) = 0 then « is stable.
2. If H?(a*) = 0 then « is costable.

EXERCISE 11.34. Give a Dolbeault-type definition of the groups HF(a), HF(a*).
A

EXERCISE 11.35. Ifa: Y — X is a regular embedding then H* (o) = H*1(Y, Ny/x)-
(Hint: take U, = V, NY, and local systems of coordinates ui,... ,u, such that
Y = {tms1 = ... = up, = 0}. Then prove that the projection maps C*T1(U, Ty) @
CkU,a*Tx) — C*(U, Ny x) give a quasiisomorphism of complexes. AN

The following (non trivial) exercise is reserved to experts in algebraic geometry:

EXERCISE 11.36. Let a: Y — Alb(Y') be the Albanese map of a complex projective
manifold Y. If X = «a(Y) is a curve then a: Y — X is costable. A
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CHAPTER III
Analytic singularities

Historically, a major step in deformation theory has been the introduction of defor-
mations of complex manifolds over (possibly non reduced) analytic singularities.
This chapter is a short introductory course on analytic algebras and analytic sin-
gularities; moreover we give an elementary proof of the Nullstellenstaz for the ring
C{z1,...,2n} of convergent complex power series.

Quite important in deformation theory are the smoothness criterion II1.7 and the
two dimension bounds I11.40 and III.41.

1. Analytic algebras

Let C{z1,...,2,} be the ring of convergent power series with complex coefficient.
Every f € C{z1,...,2,} defines a holomorphic function in a nonempty open neigh-
bourhood U of 0 € C"; for notational simplicity we still denote by f: U — C this
function.

If f is a holomorphic function in a neighbourhood of 0 and f(0) # 0 then 1/f is
holomorphic in a (possibly smaller) neighbourhood of 0. This implies that f is in-
vertible in C{z1,... ,z,} if and only if f(0) # 0 and therefore C{z1,... ,2,} is a local
ring with maximal ideal m = {f | f(0) = 0}. The ideal m is generated by z1,... , zp.

DEFINITION III.1. The multiplicity of a power series f € C{z1,...,2,} is defined
as

p(f) =sup{s e N| f e m*} € NU {+00}.
The valuation v(S) of a nonempty subset S C C{z1,...,2,} is
v(S)=sup{s e N|S Cm’} =inf{u(f)|f e S} eNU{+oo}.

We note that v(S) = 4o if and only if S = {0} and pu(f) is the smallest integer d
such that the power series expansion of f contains a nontrivial homogeneous part of
degree d.

The local ring C{z1,...,2,} has the following important properties:

C{z1,...,2n} is Noetherian ([28, I1.B.9], [24]).

C{z1,...,2n} is a unique factorization domain ([28, I.B.7], [24]).
C{z1,...,2n} is a Henselian ring ([51], [23], [24]).

C{z1,...,2n} is a regular local ring of dimension n (see e.g. [3], [24], [56] for
the basics about dimension theory of local Noetherian ring).

We recall, for the reader’s convenience, that the dimension of a local Noetherian ring
A with maximal ideal m is the minimum integer d such that there exist f1,...,fg €m

with the property \/(f1,... , f4) = m. In particular dim A = 0 if and only if /0 = m,
i.e. if and only if m is nilpotent.

MARCO MANETTI: Lectures on deformations of complexr manifolds
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We also recall that a morphism of local rings f: (A,m) — (B,n) is called local if
f(m) Cn.

DEFINITION III.2. A local C-algebra is called an analytic algebra if it is isomorphic
to C{z1,...,2n}/1, for some n > 0 and some ideal I C (z1,...,2p).
We denote by An the category with objects the analytic algebras and morphisms the
local morphisms of C-algebras.

Every analytic algebra is a local Noetherian ring. Every local Artinian C-algebra
with residue field C is an analytic algebra.

The ring C{z1,...,2,} is, in some sense, a free object in the category An as ex-
plained in the following lemma

LEMMA IIL1.3. Let (R,m) be an analytic algebra. Then the map
Moran(C{z1,... ,2n}, R Loxom, o (o
Otan(Clat, o zah R) mmxoxm fer (f()se e F(n)
n factors
is bijective.
PRrOOF. We first note that, by the lemma of Artin-Rees ([3, 10.19]), N,m™ = 0

and then every local homomorphism f: C{z,...,2,} — R is uniquely determined
by its factorizations

fs: Clz1, ... yzn}/ (21, -0y 20)° — R/m®.

Since C{z1,...,2n}/(21,... ,2n)® is a C-algebra generated by z1,... , 2y, every fs is
uniquely determined by f(z;); this proves the injectivity.

For the surjectivity it is not restrictive to assume R = C{uy,... ,un}; given ¢ =
(1, y¢n), ¢i € m, let U be an open subset 0 € U C C]' where the ¢; =
¢i(u1, ... ,uy) are convergent power series. The map ¢ = (¢1,...,¢,): U — C"
is holomorphic, ¢(0) = 0 and ¢*(z;) = ¢;. O

Another important and useful tool is the following

THEOREM II1.4 (Riickert’s nullstellensatz). LetI,J C C{z1,...,zn} be proper ideals,
then

Moran(C{z1, ..., zn}/,C{t}) = Moran(C{21, ... ,2n}/7,C{t}) <= VI=VJ,
where the left equality is intended as equality of subsets of Moran(C{z1,... ,z,}, C{t})
A proof of Theorem II1.4 will be given in Section 4.

LeEMMA IIL5. Every analytic algebra is isomorphic to C{z1,... ,zi}/1 for some k >
0 and some ideal I C (z1,. .., z,)>%.

PrROOF. Let A = C{zy,...,2,}/I be an analytic algebra such that I is not

ou

5(0) 7 0.
(2

Up to permutation of indices we may suppose ¢ = n and then, by inverse function

theorem z1,...,z,_1,u is a system of local holomorphic coordinates. Therefore A is
isomorphic to C{z1,... ,2,—1}/I¢ where I is the kernel of the surjective morphism

C{z1,..-,zn1} = C{z1,... ,zn_1,u}/I = A.

The conclusion follows by induction on n. O

contained in (21, ... , z,)?; then there exists u € I and an index i such that

DEeFINITION II1.6. An analytic algebra is called smooth if it is isomorphic to the
power series algebra C{z1,...,z;} for some k > 0.
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PROPOSITION IIL.7. Let R = C{z,... ,2z}/I, I C (z1,...,21)2, be an analytic
algebra.
The following conditions are equivalent:

1. I=0.

2. R s smooth.

3. for every surjective morphism of analytic algebras B — A, the morphism

Moran(R, B) — Moran(R, A)

18 surjective.
4. for every n > 2 the morphism

Moran (R, C{t}/n)) — Moran(R, C{t}/2))
18 surjective.

PRrROOF. [1 = 2] and [3 = 4] are trivial, while [2 = 3] is an immediate conse-
quence of the Lemma II1.3.
To prove [4 = 1], assume [ # 0 and let s = v(I) > 2 be the valuation of I, i.e. the
greatest integer s such that I C (z1,... , z)%: we claim that Mora, (R, C[t]/(t511)) —
Moran (R, C[t]/(t?)) is not surjective.
Choosing f € I — (21,...,2,)%"!, after a possible generic linear change of coordi-
nates of the form z; — z; + a;z1, a9, ... ,ar € C, we may assume that f contains the
monomial 2z with a nonzero coefficient, say f = czj +...; let a: R — C[t]/(t?) be
the morphism defined by a(z1) =t, a(z;) =0 for i > 1.
Assume that there exists 3: R — C[t]/(+*T!) that lifts o, then 3(z1) — t,8(22),. ..,
B(zx) € (%) and therefore B(f) = ct® (mod t5+1). O

LeMmMA II1.8. For every analytic algebra R with maximal ideal m there exist natural
isomorphisms

Hom¢ (m/y2, C) = Derc (R, C) = Moran(R, (C[t]/(tZ)).
PRrROOF. Exercise. O

EXERCISE II1.9. The ring of entire holomorphic functions f: C — C is an integral
domain but it is not factorial (Hint: consider the sine function sin(z)).
For every connected open subset U C C", the ring O(U) is integrally closed in its
field of fractions (Hint: Riemann extension theorem). A

2. Analytic singularities and fat points

Let M be a complex manifold, as in Chapter I we denote by O, the ring of germs
of holomorphic functions at a point € M. The elements of Oy, are the equivalence
classes of pairs (U, g), where U is open, z € U C M, g: U — C is holomorphic and
(U, g) ~ (V, h) if there exists an open subset W, x € W C UNV such that gy = hy .
By definition of holomorphic function and the identity principle we have that Oc» g
is isomorphic to the ring of convergent power series C{z1,... ,z,}.

Let f: M — N be a holomorphic map of complex manifolds, for every open subset
V C N we have a homomorphism of C-algebras

[ D(V,0n) = T(f71(V),0m),  flg=gof
If © € M then the limit above maps f*, for V' varying over all the open neighbour-
hood of y = f(x), gives a local homomorphism of local C-algebras f*: Oy, — Oz

It is clear that f*: Ony — O, depends only on the behavior of f in a neighbour-
hood of z and then depends only on the class of f in the space Morger((M, x), (N, y)).
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A choice of local holomorphic coordinates z1,...,z, on M such that z;(z) = 0,
gives an invertible morphism in Morger((M, z), (C™,0)) and then an isomorphism

Omz =Clz,..., 2}

EXERCISE II1.10. Given f,g € Morger((M,x), (N,y)), prove that f = g if and only
if f* = g*. A
DEFINITION III.11. An analytic singularity is a triple (M, x, ) where M is a com-
plex manifold, z € M is a point and I C Oy, is a proper ideal.
The germ morphisms Morge,((M, z,I), (N,y,J)) are the equivalence classes of mor-
phisms f € Morger((M, ), (N,y)) such that f*(J) C I and f ~ g if and only if
[*=9":Ony/J — Opz/l.
We denote by Ger the category of analytic singularities (also called germs of complex
spaces).

LEMMA II1.12. The contravariant functor Ger — An,

Ob(Ger) — Ob(An), (M,2,I) — On /1
MOYGer((M,.Z',I), (Nayv J)) — Moran (Oy’y7 %) ) f = f*;

is an equivalence of categories. Its “inverse” An — Ger (cf. [49, 1.4]) is called
Spec (sometimes Specan ).

Proor. Since C{z,...,2,}/I is isomorphic to Ogn /I the above functor is
surjective on isomorphism classes.
We only need to prove that Morger((M, z, 1), (N,y,J)) — Moran(On,y/J, Orn /1)
is surjective, being injective by definition of Morger. To see this it is not restrictive
to assume (M, x) = (C],0), (N,y) = (CZ,0).
Let g*: C{z1,...,2n}/J — C{ui,... ,un}/I be alocal homomorphism and choose,
for every i = 1,...,n, a convergent power series f; € C{uy,...,u,} such that
fi=9*(zi) (mod I). Note that f;(0) = 0.
If U is an open set, 0 € U C C™, such that f; are convergent in U, then we may define
a holomorphic map f = (f1,...,fn): U — C™. By construction f*(z;) = ¢g*(zi) €
C{ut,...,um}/r and then by Lemma IIL.3 f* = g*. O

DEFINITION III1.13. Given an analytic singularity (X,x) = (M, z,I), the analytic
algebra Ox ; := O, /1 is called the algebra of germs of analytic functions of (X, x).
The dimension of (X, z) is by definition the dimension of the analytic algebra Ox ;.

DEerINITION II1.14. A fat point is an analytic singularity of dimension 0.

LEMMA II1.15. Let X = (M, z,I) be an analytic singularity; the following condi-
tions are equivalent.

1. The maximal ideal of Ox . is nilpotent.

2. X is a fat point.

3. The ideal I contains a power of the maximal ideal of Ops .

4. If V is open, x € V. C M, and f1,..., fn: V — C are holomorphic functions
generating the ideal I, then there exists an open neighbourhood U C 'V of x
such that

Un{fi=...=frn=0}={a}.
5. Moran(Ox 4, C{t}) contains only the trivial morphism f — f(0) € C C C{t}.

PROOF. [1 & 2 & 3] are trivial.
[3 = 4] It is not restrictive to assume that V is contained in a coordinate chart;
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let z1,...,2,: V — C be holomorphic coordinates with z;(x) = 0 for every i. If
3 holds then there exists s > 0 such that z; € I and then there exists an open
subset x € U C V and holomorphic functions a;;: U — C such that z} = Zj ai; fj.
Therefore UNV N{fi=...=fr=0CcUn{zf=... =2 =0} ={z}.

[4 = 5] Let ¢: (C,0) — (M, z) be a germ of holomorphic map such that ¢*(I) = 0.
If ¢ is defined in an open subset W C C and ¢(W) C U then ¢*(I) = 0 implies

o(W)cUNn{fi =...= fn =0} and therefore Morger((C,0,0), (M, x,I)) contains
only the constant morphism.
[5 = 1] is a consequence of Theorem II1.4 (with J = mj ). O

EXERCISE II1.16. If f € Morger((M,z,1I),(N,y,J)) we define the schematic fibre
f71(y) as the singularity (M, z,I + f*mpy,).
Prove that the dimension of a singularity (M, z,I) is the minimum integer d such
that there exists a morphism f € Morger((M,z,1),(C%0,0)) such that f~1(0) is a
fat point. A

DEFINITION III.17. The Zariski tangent space T, x of an analytic singularity (X, )
is the C-vector space Derc(Ox 4, C).

Note that every morphism of singularities (X, x) — (Y, y) induces a linear morphism
of Zariski tangent spaces T, x — T}, y.

EXERCISE II1.18. (Cartan’s Lemma)
Let (R, m) be an analytic algebra and G C Aut(R) a finite group of automorphisms.
Denote n = dimg M/,2.
Prove that there exists an injective homomorphism of groups G — GL(C") and a
G-isomorphism of analytic algebras R ~ Ocn /1 for some G-stable ideal I C Ocn .
(Hint: there exists a direct sum decomposition m = V @ m? such that gV C V for
every g € G.) A

3. The resultant

Let A be a commutative unitary ring and p € A[t] a monic polynomial of degree d.
It is easy to see that A[t]/(p) is a free A-module of rank d with basis 1,¢,... ¢4,
For every f € A[t] we denote by R(p, f) € A the determinant of the multiplication

map f: Aft]/(p) — Alt]/(p)-

DEFINITION II1.19. In the notation above, the element R(p, f) is called the resultant
of p and f.

If ¢: A — B is a morphism of unitary rings then we can extend it to a morphism
¢: Alt] — BIJt], ¢(t) = t, and it is clear from the definition that R(¢(p),o(f)) =
P(R(p, f))-

By Binet’s theorem R(p, fg) = R(p, f)R(p, g)-

LEMMA II1.20. In the notation above there exist «, 3 € A[t] with dega < deg f,
deg 8 < degp such that R(p, f) = Bf — ap. In particular R(p, f) belongs to the ideal
generated by p and f.

PRrROOF. For every i,j =0,...,d — 1 there exist h; € A[t] and ¢;; € A such that

d—1
t'f = hip + Z cit?, deg h; < deg f.
=0
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By definition R(p, f) = det(c;;); if (C%) is the adjoint matrix of (c;;) we have, by
Laplace formula, for every j =0,... ,d—1

> " C%ij = b0;R(p, f)

and then

d—1
R(p, f) =Y CO%(t'f — hip) = Bf — ap.
1=0
]

LEMMA IIL1.21. In the notation above, if A is an integral domain and p, f have a
common factor of positive degree then R(p, f) = 0. The converse hold if A is a unique
factorization domain.

PROOF. Since A injects into its fraction field, the multiplication f: A[t]/(p) —
Alt]/(p) is injective if and only if R(p, f) # 0.
If p = qr with degr < degp, then the multiplication ¢: A[t]/(p) — A[t]/(p) is not
injective and then its determinant is trivial. If ¢ also divides f then, by the theorem
of Binet also R(p, f) = 0.
Assume now that A is a unique factorization domain and R(p, f) = 0. There exists
q & (p) such that fq € (p); by Gauss’ lemma A[t] is a UFD and then there exists a
irreducible factor p; of p dividing f. Since p is a monic polynomial the degree of p;
is positive. ]

LEMMA II1.22. Let A be an integral domain and 0 # p C A[t] a prime ideal such
that pN A = 0. Denote by K the fraction field of A and by p¢ C Klzx] the ideal
generated by p.

Then:
1. p€ is a prime ideal.
2. p°NA[z] =p.
3. There exists f € p such that for every monic polynomial p & p we have
R(p, f) # 0.
PROOF. [1] We have p¢ = {g ‘ peEp,acA— {O}} If%i—z € p® with p; € Alz],

a; € A; then there exists a € A — {0} such that ap;ps € p. Since p N A = 0 it must
be p1 € p or po € p. This shows that p® is prime.

[2] If ¢ € p® N Alz], then there exists a € A, a # 0 such that ag € p and therefore
qep.

[3] Let f € p— {0} be of minimal degree, since K[t] is an Euclidean ring, p¢ = fK]|t]
and, since p® is prime, f is irreducible in K[t]. If p € AJt] \ p is a monic polynomial
then p ¢ p¢ = fK|t] and then, according to Lemma II1.21, R(p, f) # 0. O

THEOREM I1I1.23. Let A be a unitary ring, p C Alt] a prime ideal, ¢ = AN p.
If p # qt] (e.g. if p is proper and contains a monic polynomial) then there exists
f € p such that for every monic polynomial p & p we have R(p, f) € q.
If moreover A is a unique factorization domain we can choose f irreducible.

PROOF. q is prime and q[t] C p, therefore the image of p in (A4/q)[t] = A[t]/q]t]
is still a prime ideal satisfying the hypothesis of Lemma I11.22.
It is therefore sufficient to take f as any lifting of the element described in Lemma I11.22
and use the functorial properties of the resultant. If A is UFD and f is not irreducible
we can write f = hg with g € p irreducible; but R(p, f) = R(p,h)R(p,g) and then

also R(p,g) ¢ 4. 0
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EXERCISE 111.24. If p,q € A[t] are monic polynomials of degrees d,l > 0 then for
every f € A[t] we have R(pq, f) = R(p, f)R(q, f). (Hint: write the matrix of the
multiplication f: A[t]/(pq) — A[t]/(pq) in the basis 1,t,... ,t p,tp,... ,t71p))

A

4. Ruckert’s Nullstellensatz

The aim of this section is to prove the following theorem, also called Curve selection
lemma, which is easily seen to be equivalent to Theorem III.4. The proof given here
is a particular case of the one sketched in [51].

THEOREM II1.25. Let p C C{z1,...,2,} be a proper prime ideal and h & p. Then
there exists a homomorphism of local C-algebras ¢: C{z1,... ,zn} — C{t} such that

$(p) = 0 and $(h) # 0.

COROLLARY II1.26. Let I C C{zy,...,z,} be a proper ideal and h ¢ vI. Then
there exists a homomorphism of local C-algebras ¢: C{z1,... ,z,} — C{t} such that

¢(I) =0 and ¢(h) # 0.

PROOF. If h ¢ /T there exists (cf. [3]) a prime ideal p such that I C p and
hép. O

Before proving Theorem II1.25 we need a series of results that are of independent
interest. We recall the following

DEFINITION II1.27. A power series p € C{z1,... , 2z, t} is called a Weierstrass poly-
nomaal in t of degree d > 0 if
d—1
p—td—i-zpi(Zl, 7271)#7 p’L(O) =0
=0
In particular if p(z1,...,2n,t) is a Weierstrass polynomial in ¢ of degree d then
p(0,...,0,t) =t
THEOREM II1.28 (Preparation theorem). Let f € C{z1,... ,z2,,t} be a power series

such that f(0,...,0,t) # 0. Then there exists a unique e € C{z1,... ,2,,t} such that
e(0) # 0 and ef is a Weierstrass polynomial in t.

PROOF. For the proof we refer to [23], [24], [26], [37], [28], [51]. We note that
the condition that the power series pu(t) = f(0,...,0,t) is not trivial is also necessary
and that the degree of ef in t is equal to the multiplicity at 0 of p. O

COROLLARY II1.29. Let f € C{z1,...,2,} be a power series of multiplicity d. Then,
after a possible generic linear change of coordinates there exists e € C{z1,... ,2zp}
such that e(0) # 0 and ef is a Weierstrass polynomial of degree d in z,.

PROOF. After a generic change of coordinates of the form z; — z; + a;2z,, a; € C,
the series f(0,...,0,z,) has multiplicity d. O

LEMMA II1.30. Let f,g € C{x1,... ,z,}[t] be polynomials in t with g in Weierstrass’
form. if f = hg for some h € C{x1,... ,zpn,t} then h € C{z1,... ,zn}[t].

We note that if g is not a Weierstrass polynomial then the above result is false;
consider for instance the case n =0, f =3, g =t + t2.
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PROOF. Write g = t5+3" gi(2)t*%, g;(0) = 0, f =Y 1_o fila)t""  h =Y, hi(z)t,
we need to prove that h; = 0 for every ¢ > r — s.
Assume the contrary and choose an index j > r — s such that the multiplicity of h;
takes the minimum among all the multiplicities of the power series h;, i > r — s.
From the equality 0 = h; + ;. gihj+i we get a contradiction. ]

LEMMA II1.31. Let f € C{x1,... ,xn}[t] be an irreducible monic polynomial of de-
gree d. Then the polynomial fo(t) = f(0,...,0,t) € C[t] has a root of multiplicity
d.

PROOF. Let ¢ € Cbe aroot of fy(t). If the multiplicity of cis ! < d then the multi-
plicity of the power series fo(t+c) € C{t} is exactly [ and therefore f(x1,... ,2n,t+c)
is divided in C{zy,... ,x,}[t] by a Weierstrass polynomial of degree . O

LEMMA II1.32. Let p € C{z}[y] be a monic polynomial of positive degree d in y.
Then there exists a homomorphism ¢: C{z}ly] — C{t} such that ¢(p) = 0 and

0# ¢(x) € (t).

PROOF. If d = 1 then p(z,y) = y — p1(z) and we can consider the morphism ¢
given by ¢(x) = t, ¢(y) = p1(t). By induction we can assume the theorem true for
monic polynomials of degree < d.

If p is reducible we have done, otherwise, writing p = y® + p1(z)y* " + ... + pa(x),
after the coordinate change = — z, y — y — p1(z)/d we can assume p; = 0.

For every i > 2 denote by pu(p;) = a; > 0 the multiplicity of p; (we set a; = +oo if
n=0) o

Let j > 2 be a fixed index such that a—,] < % for every i. Setting m = «;, we want

J
to prove that the monic polynomial p(&7,y) is not irreducible.

In fact p(&7,y) = y* + X5 hi(§)y? ™", where hi(€) = gi(&7).
For every i the multiplicity of h; is jo; > im and then

. hz " .
q(&,y) = p(&, &My =td+2%yd =yt m©y

is a well defined element of C{¢, y}. Since 1 = 0 and 7;(0) # 0 the polynomial ¢ is not
irreducible and then, by induction there exists a nontrivial morphism ¢ : C{{}[y] —

C{t} such that ¥(q) = 0, 0 # ¥(£) € (t) and we can take ¢(x) = (&) and ¢(y) =

P(E™Y). O
THEOREM II1.33 (Division theorem). Let p € C{z1,...,2n,t}, p # 0, be a Weier-
strass polynomial of degree d > 0 int. Then for every f € C{z1,... ,zn,t} there exist

a unique h € C{z1,... ,2zpn,t} such that f —hp € C{z1,... ,z,}[t] is a polynomial of
degree < d in t.

PRrOOF. For the proof we refer to [23], [24], [26], [37], [28], [51]. O
We note that an equivalent statement for the division theorem is the following:

COROLLARY IIL.34. If p € C{z1,... ,2n,t}, p # 0, is a Weierstrass polynomial of
degree d > 0 in t, then C{z1,... ,zn,t}/(p) is a free C{z1,... , zn}-module with basis
1,t,...,t%L

Proor. Clear. O

THEOREM II1.35 (Newton-Puiseux). Let f € C{z,y} be a power series of positive

multiplicity. Then there exists a nontrivial local homomorphism ¢: C{z,y} — C{t}
such that ¢(f) = 0.
Moreover if f is irreducible then ker ¢ = (f).
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In the above statement nontrivial means that ¢(z) # 0 or ¢(y) # 0.

PROOF. After a linear change of coordinates we can assume f(0,y) a non zero
power series of multiplicity d > 0; by Preparation theorem there exists an invertible
power series e such that p = ef is a Weierstrass polynomial of degree d in y.
According to Lemma II1.32 there exists a homomorphism ¢: C{z}[y] — C{t} such
that ¢(p) = 0 and 0 # ¢(x) € (t). Therefore ¢(p(0,y)) € () and, being p a
Weierstrass polynomial we have ¢(y) € (t) and then ¢ extends to a local morphism
¢: C{x,y} — C{t}.

Assume now f irreducible, up to a possible change of coordinates and multiplication
for an invertible element we may assume that f € C{z}[y] is an irreducible Weier-
strass polynomial of degree d > 0.

Let ¢: C{z,y} — C{t} be a nontrivial morphism such that ¢(f) = 0, then ¢(z) # 0
(otherwise ¢(y)? = ¢(f) = 0) and therefore the restricted morphism ¢: C{z} — C{t}
is injective.

Let g € ker(¢), by division theorem there exists r € C{x}[y] such that ¢ = hf + r
and then r € ker(¢), R(f,r) € ker(¢) N C{z} = 0. This implies that f divides r. O

The division theorem allows to extend the definition of the resultant to power series.

In fact if p € C{z1,...,2,}[t] is a Weierstrass polynomial in ¢ of degree d, for every
f € C{z1,...,zn,t} we can define the resultant R(p, f) € C{z1,...,2,} as the
determinant of the morphism of free C{z,... , 2, }-module

I C{z1,...,2n,t} _ C{z1,...,2zn,t}
' (p) (p)

induced by the multiplication with f.
It is clear that R(p, f) = R(p,r) whenever f —r € (p).

LEMMA II1.36. Let p € C{z1,...,zn,t} be a Weierstrass polynomial of positive de-
gree int and V C C{z1,... ,zn,t} a C-vector subspace.
Then R(p, f) = 0 for every f € V if and only if there exists a Weierstrass polynomial
q of positive degree such that:
1. q divides p in C{z1, ..., zn}[t]
2. VCqC{z,..., 2z, t}

PROOF. One implication is clear, in fact if p = ¢r then the multiplication by ¢
in not injective in C{z1,... , zn,t}/(p); therefore R(p,q) = 0 and by Binet’s theorem
R(p, f) =0 for every f € (q).

For the converse let p = p1ps ... ps be the irreducible decomposition of p in the UFD
C{z1,...,zn}t]- U R(p,f) =0and r = f — hp € C{z1,..., 2, }[t] is the rest of the
division then R(p,r) = 0 and by Lemma III.21 there exists a factor p; dividing r and
therefore also dividing f.

In particular, setting V; = V N (p;), we have V = U;V; and therefore V =V} for at
least one index ¢ and we can take g = p;. O

PRrOOF OF II1.25. We first consider the easy cases n =1 and p=0. If p =0
then, after a possible change of coordinates, we may assume h(0,...,0,t) # 0 and
therefore we can take ¢(z;) =0fori=1,... ,n— 1 and ¢(z,) =t.

If n = 1 the only prime nontrivial ideal is (z1) and therefore the trivial morphism
¢: C{z1} — C C C{t} satisfies the statement of the theorem.
Assume then n > 1, p # 0 and fix a nonzero element g € p. After a possible linear
change of coordinates and multiplication by invertible elements we may assume both
h and g Weierstrass polynomials in the variable z,. Denoting

t=pNC{z1,...,2n-1}[2n], q=pNC{z1,... ,zn_1} =tNC{z1,... ,2n-1},
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according to Theorem I11.23, there exists f € t such that R(h, f) ¢ q. On the other
hand, by Lemma I11.20, R(g, f) € q for every f € p.

By induction on n there exists a morphism ¢: C{z1,...,2, 1} — C{z} such that
¥(q) = 0 and (R(h, f)) # 0. Denoting by ¥: C{z1,... ,z,} — C{z, z,} the natural
extension of ¢ we have R((h),¥(f)) # 0 and R(1(g),%(f)) = 0 for every f € p.
Applying Lemma II1.36 to the Weierstrass polynomial ¢ (g) and the vector space
V =4 (p) we prove the existence of an irreducible factor p of 1(g) such that ¥ (p) C
pC{x, z,, }.

In particular p divides 9(f), therefore R(¢(h),p) # 0 and ¢(h) & pC{z, z,}.

By Newton-Puiseux’ theorem there exists n: C{z, z,} — C{t} such that n(p) = 0
and n(¢(h)) # 0. It is therefore sufficient to take ¢ as the composition of ¥ and
7. ]

EXERCISE II1.37. Prove that f,g € C{z,y} have a common factor of positive mul-
tiplicity if and only if the C-vector space C{x,y}/(f, g) is infinite dimensional. =~ A

5. Dimension bounds

As an application of Theorem III.25 we give some bounds for the dimension of an
analytic algebra; this bounds will be very useful in deformation and moduli theory.
The first bound (Lemma I11.40) is completely standard and the proof is reproduced
here for completeness; the second bound (Theorem III.41, communicated to the au-
thor by H. Flenner) finds application in the “T'l-lifting” approach to deformation
problems.

We need the following two results of commutative algebra.

LeEMMA II1.38. Let (A,m) be a local Noetherian ring and J C I C A two ideals. If
J+ml=1then J=1.

PRrOOF. This a special case of Nakayama’s lemma [3], [51]. O
>

LeEMMA II1.39. Let (A,m) be a local Noetherian ring and f € m, then dim A/(f)
dimA —1.
Moreover, if f is nilpotent then dim A/(f) = dim A, while if f is not a zerodivisor
then dim A/(f) = dim A — 1.
PRrROOF. [3]. O

LEMMA II1.40. Let R be an analytic algebra with maximal ideal m, then dim R <
dim¢ % and equality holds if and only if R is smooth.

m

(fi,..., fa) by assumption J +m? = m and then by Lemma II1.38 J =m, R/J = C
and 0 =dim R/J > dim R — n.

PROOF. Let n = dim¢ — and f1,..., fn, € m inducing a basis of
m

According to Lemma II1.5 we can write R = C{z1, ... , z,}/I for some ideal contained
in (z1,...,2,)2 Since C{z1,...,2,} is an integral domain, according to Lemma II1.39
dim R = n if and only if I = 0. U

THEOREM II1.41. Let R = P/I be an analytic algebra, where P = C{z1,... ,zn},
n > 0 is a fixed integer, and I C P is a proper ideal.
Denoting by m = (z1,... ,z,) the mazimal ideal of P and by J C P the ideal

J:{fel ge[,Vizl,...,n}
azi
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we have dim R > n — dimg Timl

PROOF. (taken from [14]) We first introduce the curvilinear obstruction map

~vr: Moran (P, C{t}) — Hom¢ (m,c> .

Given ¢: P — C{t}, if ¢(I) = 0 we define y7(¢) = 0; if ¢(I) # 0 and s is the biggest
integer such that ¢(I) C (¢°) we define, for every f € I, v7(¢)f as the coefficient of
t* in the power series expansion of ¢(f).

It is clear that v7(¢)(mI) = 0, while if ¢(I) C (¢t°) and f € J we have ¢(f) =

f(@(21),- -5 d(zn)),

and therefore ¢(f) € (t**!) (this is the point where the characteristic of the field
plays an essential role).

The ideal I is finitely generated, say I = (f1,..., f4), according to Nakayama’s lemma
we can assume fi,..., fq a basis of I/ml.

By repeated application of Corollary I11.26 (and possibly reordering the f;’s) we can
assume that there exists an A < d such that the following holds:

L. fl¢ V (fla“'vfi—l) fOI'ZSh,

2. for every i < h there exists a morphism of analytic algebras ¢; : P — C{t}
such that ¢;(fi) # 0, ¢;(f;) = 0if j < i and the multiplicity of ¢;(f;)) is bigger
than or equal to the multiplicity of ¢;(f;)) for every j > i.

3. 1C/(fi,-.-, ).

Condition 3) implies that dim R = dim P/(fi,..., fn) > n — h, hence it is enough to

I
prove that vyr(é1),...,vr(¢p) are linearly independent in Homg (J —|—mI’(C) and

this follows immediately from the fact that the matrix a;; = vr(¢i)f;, i, =1,... , h,
has rank h, being triangular with nonzero elements on the diagonal. O

EXERCISE II1.42. In the notation of Theorem II1.41 prove that I? C J. Prove
moreover that I = J + m/ if and only if I = 0. A

EXERCISE I11.43. Let I C C{z,y} be the ideal generated by the polynomial f =
x® 4+ y° + 23y% and by its partial derivatives f, = 5z + 322y3, fy = 5yt 4 3a32.
Prove that J is not contained in m/, compute the dimension of the analytic algebra

I I
C{x,y}/I and of th t - —. A
{z,y}/I and of the vector spaces Trml ml

EXERCISE I11.44. (easy, but for experts) In the notation of I11.41, if I C m? then

Hom¢ ( <c> = Extk(Qg, C).

J+mI’
(Qp is the R-module of separated differentials) A

EXERCISE I11.45. In the notation of Theorem I11.41, prove that for every short exact
sequence 0 — F — F — G — 0 of R-modules of finite length (i.e. annihilated by
some power of the maximal ideal) it is defined a map

I
ob: Derc(R,G) — Homp <3,E>
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with the property that ob(¢) = 0 if and only if ¢ lifts to a derivation R — F.

I I
Moreover, if mpFE = 0 then Homp <j’E> = Homc <J+ mI’E)' A

REMARK II1.46. (T'-lifting for prorepresentable functors.)
For every morphism of analytic algebras f: R — A and every A-module of finite
length M there exists a bijection between Derc(R, M) and the liftings of f to mor-
phisms R — A& M.

In the notation of Theorem II1.41, if I C m?, then Homc <

s th i
J—i—m]’c) is the sub

I
space of Hom¢ <nﬁ’ (C> of obstructions (see [13, Section 5]) of the functor hp arising
from all the small extensions of the form 0 - C — A® M (Id—’p>)A @& N — 0, where

p: M — N is a morphism of A-modules and A M — A, Ad N — A are the trivial
extensions.

6. Historical survey, III

According to [24], the preparation theorem was proved by Weierstrass in 1860, while
division theorem was proved by Stickelberger in 1887.
The factoriality of C{z1,...,z,} was proved by E. Lasker in a, long time ignored,
paper published in 1905. The same result was rediscovered by W. Riickert (a student
of W. Krull) together the Noetherianity in 1931. In the same paper of Riickert it is
implicitly contained the Nullstellensatz. The ideas of Riickert’s proof are essentially
the same used in the proof given in [28]. The proof given here is different.

All the algebraic results of this chapter that make sense also for the ring of formal
power series C[[z1, ... , z,]] and their quotients, remain true. In many cases, especially
in deformation theory, we seek for solutions of systems of analytic equations but we
are able to solve these equation only formally; in this situation a great help comes
from the following theorem, proved by M. Artin in 1968.

THEOREM I11.47. Consider two arbitrary morphisms of analytic algebras f: S — R,

g: S — C{z1,...,2z,} and a positive integer s > O.CThe inclusion C{z1,...,2z,} C
Cl[z1,...,2a]] and the projection C{z1,... ,zp} — Cln, ook give structures o
( )®
Zlye-- 3 2n
C{z,...
S-algebras also on C[[z1,... ,zy]] and M
Crv s on)’

Assume it is given a morphism of analytic S-algebras

o R C{z1,...,2n} _ Cl[z1,- - - ,zn]]'
iz (oo zn)®
If ¢ lifts to a S-algebra morphism R — Cl[z1,. .. , z4]] then ¢ lifts also to a S-algebra
morphism R — C{z1,...,z,}.

Beware. Theorem I11.47 does not imply that every lifting R — C[[z1,... ,2,]] is
“convergent”.

PRrOOF. This is an equivalent statement of the main theorem of [1]. We leave as
as an exercise to the reader to proof of the equivalence of the two statements. O

EXERCISE II1.48. Use Theorem II1.47 to prove:
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1. Every irreducible convergent power series f € C{z1,...,z,} is also irreducible
in C[[z1,..., 2]l
2. C{z1,...,2n} is integrally closed in C[[z1,... , zn]].
A

REMARK I11.49. It is possible to give also an elementary proof of item 2 of Exer-
cise I11.48 (e.g. [51]), while I don’t know any proof of item 1 which does not involve
Artin’s theorem.
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CHAPTER 1V

Infinitesimal deformations of complex manifolds

In this chapter we pass from the classical language of deformation theory to the for-
malism of differential graded objects. After a brief introduction of dg-vector spaces
and dg-algebras, we associate to every deformation Xg — {X;}her — (T,0) its alge-
braic data (Definition IV.27), which is a pair of morphisms of sheaves of dg-algebras
on Xy. This algebraic data encodes the Kodaira-Spencer map and also all the “Tay-
lor coefficients” of t — Xj.

We introduce the notion of infinitesimal deformation as an infinitesimal variation of
integrable complex structures; this definition will be more useful for our purposes.
The infinitesimal Newlander-Nirenberg theorem, i.e. the equivalence of this definition
with the more standard definition involving flatness, although not difficult to prove,
would require a considerable amount of preliminaries in commutative and homologi-
cal algebra and it is not given in this notes.

In Section 7 we state without proof the Kuranishi’s theorem of existence of semiuni-
versal deformations of compact complex manifolds. In order to keep this notes short
and selfcontained, we avoid the use of complex analytic spaces and we state only the
”infinitesimal” version of Kuranishi’s theorem. This is not a great gap for us since we
are mainly interested in infinitesimal deformations. The interested reader can find
sufficient material to filling this gap in the papers [59], [60] and references therein.

From now on we assume that the reader is familiar with the notion of sheaf, sheaf
of algebras, ideal and quotient sheaves, morphisms of sheaves.
If F is a sheaf on a topological space Y we denote by F,, y € Y, the stalk at the
point y. If G is another sheaf on Y we denote by Hom(F,G) the sheaf of morphisms
from F to G and by Hom(F,G) = I'(Y, Hom(F,G)).

For every complex manifold X we denote by A% the sheaf of differential forms of
type (p,q) and A} = @) AR, The sheaf of holomorphic functions on X is denoted
by Ox; Q% (resp.: V) is the sheaf of holomorphic (resp.: antiholomorphic) differ-
ential forms. By definition Q% = ker(d: A0 — A*1), QY = ker(9: A% — AL*);
note that ¢ € Q% if and only if ¢ € ﬁ}

If E — X is a holomorphic vector bundle we denote by Ox (E) the sheaf of holomor-
phic sections of E.

1. Differential graded vector spaces

This section is purely algebraic and every vector space is considered over a fixed
field K ; unless otherwise specified, by the symbol ® we mean the tensor product Qg
over the field K.

MARCO MANETTI: Lectures on deformations of complexr manifolds
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NoTATION IV.1. We denote by G the category of Z-graded K-vector space. The
objects of G are the K-vector spaces V endowed with a Z-graded direct sum decom-
position V' = @;czV;. The elements of V; are called homogeneous of degree i. The
morphisms in G are the degree-preserving linear maps.

IV = ®pezVin € G we write deg(a; V) =i € Z if a € V; if there is no possibility
of confusion about V' we simply denote @ = deg(a; V).

Given two graded vector spaces V,W € G we denote by Homg (V, W) the vector
space of K-linear maps f: V — W such that f(V;) C Wy, for every i € Z. Observe
that HomY (V, W) = Homg(V, W) is the space of morphisms in the category G.

The tensor product, ®: G x G — G, and the graded Hom, Hom": G x G — G,
are defined in the following way: given V,W € G we set

VoW = (VeW), where (Vo W), = PV; @ W;_;,
i€7Z JEL

Hom™(V, W) = @Homg (V, W).
We denote by "
(,) :Hom"(V,W)xV - W, (f,v) = f(v)

the natural pairing.

DEerINITION IV.2. If VW € G, the twisting map T: V@W — W @V is the linear
map defined by the rule T(v ® w) = (—1)""w ® v, for every pair of homogeneous
elements v e V, w e W.

Unless otherwise specified we shall use the Koszul signs convention. This means

that we choose as natural isomorphism between V@ W and W ® V the twisting map
T and we make every commutation rule compatible with 1. More informally, to “get
the signs right”, whenever an “object of degree d passes on the other side of an object
of degree h, a sign (—1)% must be inserted”.
As an example, the natural map (,) : V x Hom*(V, W) — W must be defined as
(v, f) = (=1)/7f(v) for homogeneous f,v. Similarly, if f,g € Hom*(V, W), their
tensor product f ® ¢ € Hom*(V @ V,W ® W) must be defined on bihomogeneous
tensors as (f @ g)(u @ v) = (—=1)9%f(u) @ g(v).

NoTATION IV.3. We denote by DG the category of Z-graded differential K-vector
spaces (also called complexes of vector spaces). The objects of DG are the pairs
(V,d) where V. = @V, is an object of G and d: V — V is a linear map, called
differential such that d(V;) C Viy1 and d> = d od = 0. The morphisms in DG are
the degree-preserving linear maps commuting with the differentials.

For simplicity we will often consider G as the full subcategory of DG whose objects
are the complexes (V,0) with trivial differential.

If (V,d),(W,d) € DG then also (V@ W,d®Id+1d®0) € DG; according to Koszul
signs convention, since § € Homk (W, W), we have (Id ® 0)(v ® w) = (—1)%v ® 6(w).
There exists also a natural differential p on Hom*(V, W) given by the formula

5<f7 U) = <pf7 U) + (_1)f<f7 dU>
Given (V,d) in DG we denote as usual by Z(V) = kerd the space of cycles, by
B(V)) = d(V) the space of boundaries and by H (V) = Z(V)/B(V) the homology of
V. Note that Z, B and H are all functors from DG to G.
A morphism in DG is called a quasiisomorphism if it induces an isomorphism in
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homology.
A differential graded vector space (V,d) is called acyclic if H(V) = 0.

DEFINITION IV.4. Two morphisms f,¢g € Homg (V, W) are said to be homotopic if
their difference f — g is a boundary in the complex Hom*(V, W).

EXERCISE IV.5. Let V, W be differential graded vector spaces, then:

1. Hompg(V, W) = Z°(Hom*(V, W)).

2. If f € B°(Hom*(V,W)) C Hompg(V, W) then the induced morphism f: H(V)
H(W) is trivial.

3. If f,g € Hompg(V,W) are homotopic then they induce the same morphism
in homology.

4. V is acyclic if and only if the identity Id: V' — V is homotopic to 0. (Hint: if
C C V is a complement of Z(V), i.e. V =Z(V)® C, then V is acyclic if and
only if d: C; — Z(V');4+1 is an isomorphism for every i.)

A

The fiber product of two morphisms BLD and C—~D in the category DG is
defined as the complex

CxpB=@(C xpB),, (CxpB),={(c,b)€CpnxBy,|h(c)= f(b)}
with differential d(c,b) = (dc, db).

A commutative diagram in DG
A——B

g f
h
C——D
is called cartesian if the induced morphism A — C xp B is an isomorphism; it is an
easy exercise in homological algebra to prove that if f is a surjective (resp.: injective)
quasiisomorphism, then ¢ is a surjective (resp.: injective) quasiisomorphism. (Hint:
if f is a surjective quasiisomorphism then ker f = ker g is acyclic.)

For every integer n € 7Z let’s choose a formal symbol 1[n]| of degree —n and denote
by K [n] the graded vector space generated by 1[n]. In other terms, the homogeneous
components of K[n] € G C DG are

_J K ifi+n=0
K [ni _{ 0 otherwise

For every pair of integers n,m € Z there exists a canonical linear isomorphism
S € Homy (K |[n],K[m]); it is described by the property S;'(1[n]|) = 1[m].

Given n € Z, the shift functor [n]: DG — DG is defined by setting V[n] = K[n]®V,
V € DG, f[n| = Idg [n] ® f, f € Morpg.
More informally, the complex V[n] is the complex V' with degrees shifted by n, i.e.
Vin]; = Vitn, and differential multiplied by (—1)". The shift functors preserve the
subcategory G and commute with the homology functor H. If v € V' we also write
v[n] = 1[n] ® v € Vin].

EXERCISE IV.6. There exist natural isomorphisms
Homg (V, W) = Homg(V[—n|, W) = Homg (V, W[n|).
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ExAMPLE IV.7. Among the interesting objects in DG there are the acyclic com-
plexes Q[n] = K[n] ® Q, where Q = (Qp ® Q1,d), Q = K, ©; = K[-1] and
d: Qo — 1 is the canonical linear isomorphism d(1[0]) = 1[—1]. The projection
p: 0 — Qo =K and the inclusion 2 —  are morphisms in DG.

EXERCISE IV.8. Let V, W be differential graded vector spaces, then:

1. In the notation of Example IV.7, two morphisms of complexes f,g: V — W
are homotopic if and only if there exists h € Hompg(V,2 ® W) such that
f—9g=@®Idy)oh.

2. If f,g: V — W are homotopic then f ® h is homotopic to g ® h for every
h: V' — W'

3. (Kiinneth) If V' is acyclic then V ® U is acyclic for every U € DG.

2. Review of terminology about algebras

Let R be a commutative ring, by a nonassociative (= not necessarily associative)
R-algebra we mean a R-module M endowed with a R-bilinear map M x M — M.
The nonassociative algebra M is called unitary if there exist a “unity” 1 € M such
that 1m = ml = m for every m € M.

A left ideal (resp.: right ideal) of M is a submodule I C M such that MI C I (resp.:
IM C I). A submodule is called an ideal if it is both a left and right ideal.

A homomorphism of R-modules d: M — M is called a derivation if satisfies the Leib-
nitz rule d(ab) = d(a)b+ad(b). A derivation d is called a differential if d*> = dod = 0.
A R-algebra is associative if (ab)ec = a(bc) for every a,b,c € M. Unless otherwise
specified, we reserve the simple term algebra only to associative algebra (almost all
the algebras considered in these notes are either associative or Lie).

If M is unitary, a left inverse of m € M is an element a € M such that am = 1. A
right inverse of m is an element b € M such that mb = 1.

If M is unitary and associative, an element m is called invertible if has left and
right inverses. It is easy to see that if m is invertible then every left inverse of m is
equal to every right inverse, in particular there exists a unique m~!' € M such that
mm~t=m~im=1.

EXERCISE IV.9. Let g be a Riemannian metric on an open connected subset U C R"
and let ¢: U — R be a differentiable function (called potential).
Denote by R = C*°(U,R) and by M the (free of rank n) R-module of vector fields
onU. If x1,... ,x, is a system of linear coordinates on R"™ denote by:

0
1. 9, = oz, €M, ¢jji. = 0;0;019 € R.

2. gij = 9(9;,0;) € R and g% the coefficients of the inverse matrix of g;;.

3. 0; % 8j = Z ¢ijlglkak
k,l

Prove that the R-linear extension M x M — M of the product * is independent from
the choice of the linear coordinates and write down the (differential) equation that
¢ must satisfy in order to have the product * associative. This equation is called
WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equation and it is very important in
mathematics since 1990. JAN
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3. dg-algebras and dg-modules

DEFINITION IV.10. A graded (associative, Z-commutative) algebra is a graded vec-
tor space A = ®A; € G endowed with a product A; x A; — A;;; satisfying the
properties:

1. a(bec) = (ab)e.
2. a(b+c) =ab+ ac, (a+ b)c = ac+ be.
3. (Koszul sign convention) ab = (—1)55ba for a, b homogeneous.
The algebra A is unitary if there exists 1 € Ay such that 1a = al = a for every a € A.

Let A be a graded algebra, then Ag is a commutative K -algebra in the usual sense;
conversely every commutative K -algebra can be considered as a graded algebra con-
centrated in degree 0. If I C A is a homogeneous left (resp.: right) ideal then I is
also a right (resp.: left) ideal and the quotient A/I has a natural structure of graded
algebra.

ExAMPLE IV.11. The exterior algebra A = A"V of ‘a K-vector space V', endowed
with wedge product, is a graded algebra with A; = A\'V.

ExXAMPLE IV.12. (Polynomial algebras.) Given a set {x;}, ¢ € I, of homogeneous
indeterminates of integral degree T; € Z we can consider the graded algebra K [{z;}].
As a K-vector space K [{z;}] is generated by monomials in the indeterminates x;
subjected to the relations z;xz; = (—1)% iz x;.

In some cases, in order to avoid confusion about terminology, for a monomial :cf‘ll . :cf‘n”
it is defined:

e The internal degree ), T, o,
e The external degree ), ay.

In a similar way it is defined A[{x;}] for every graded algebra A.

EXERCISE IV.13. Let A be a graded algebra: if every a # 0 is invertible then A = Ag
and therefore A is a field.
Give an example of graded algebra where every homogeneous a # 0 is invertible but

A+ Ap. A

DEFINITION IV.14. A dg-algebra (differential graded algebra) is the data of a graded
algebra A and a K-linear map s: A — A, called differential, with the properties:
1. 5(An) C Apya, 2 =0.
2. (graded Leibnitz rule) s(ab) = s(a)b+ (—1)%as(b).
A morphism of dg-algebras is a morphism of graded algebras commuting with differ-
entials; the category of dg-algebras is denoted by DGA.

ExXAMPLE IV.15. Let U be an open subset of a complex variety and denote by
Ai = Bpig=il (U, ALT). Then I'(U, AY") = @ A; admits infinitely many structures of
differential graded algebras where the differential of each one of is a linear combination
ad + b0, a,b € C.

EXERCISE IV.16. Let (A4, s) be a unitary dg-algebra; prove:
1. 1€ Z(A).
2. Z(A) is a graded subalgebra of A and B(A) is a homogeneous ideal of Z(A).
In particular 1 € B(A) if and only if H(A) = 0.
A
A differential ideal of a dg-algebra (A, s) is a homogeneous ideal I of A such that

s(I) C I; there exists an obvious bijection between differential ideals and kernels of
morphisms of dg-algebras.
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On a polynomial algebra K [{z;}| a differential s is uniquely determined by the
values s(z;).

EXAMPLE IV.17. Let t,dt be indeterminates of degrees = 0, dt = 1; on the poly-
nomial algebra K[t,dt] = K[t] @ K[t]dt there exists an obvious differential d such
that d(t) = dt, d(dt) = 0. Since K has characteristic 0, we have H(K[t,dt]) = K.
More generally if (A, s) is a dg-algebra then A[t,dt] is a dg-algebra with differential
s(a®@p(t)) = s(a) @ p(t) + (=1)%a ® p'(t)dt, s(a @ q(t)dt) = s(a) @ q(t)dt.

DEFINITION TV.18. A morphism of dg-algebras B — A is called a quasiisomorphism
if the induced morphism H(B) — H(A) is an isomorphism.

Given a morphism of dg-algebras B — A the space Der’;(A, A) of B-derivations of
degree n is by definition

Der(A, A) = {¢ € Homg (4, A) | p(ab) =d(a)b + (~1)"ag(b), $(B)=0}.
We also consider the graded vector space
Derp (A, A) = @ Der'y(A4, A) € G.

nez
There exist a natural differential d and a natural bracket [—,—] on Derg(A, A)
defined as

d: Der'y(A, A) — Der'5tH(A, A),  do=dagp— (—1)"¢da
and
[f,9] = fg = (=1)! 9g7.
EXERCISE IV.19. Verify that, if f € Der’}(A, A) and g € Der§(A, A) then [f,g] €
Derly (A, A) and d[f, g] = [df, g] + (~=1)?[f, dg]. A

Let (A, s) be a fixed dg-algebra, by an A-dg-module we mean a differential graded
vector space (M, s) together two associative distributive multiplication maps A X
M — M, M x A— M with the properties:

1. AlM] C Mi+j> MzAJ_E MiJrj.
2. (Koszul) am = (—1)*™ma, for homogeneous a € A, m € M.
3. (Leibnitz) s(am) = s(a)m + (—1)%as(m).

If A= Ay we recover the usual notion of complex of A-modules.

ExXAMPLE IV.20. For every morphism of dg-algebras B — A the space Derj(A, A) =
@®pDerk; (A, A) has a natural structure of A-dg-module, with left multiplication (af)(b) =

a(f(b))-

If M is an A-dg-module then M[n| = K[n] ®k M has a natural structure of A-dg-
module with multiplication maps

(e @m)a = e ® ma, ale®@m) = (=1)"e ® am, ec€Kin],me M, ac A

The tensor product N ®4 M is defined as the quotient of N ®x M by the graded
submodules generated by all the elements na ® m — n ® am.
Given two A-dg-modules (M, dys), (N,dyn) we denote by

Hom'y(M,N) = {f € Homg (M,N)| f(ma) = f(m)a, m € M,a € A}

Hom’ (M, N) = € Hom"j (M, N).

neZ
The graded vector space Hom¥ (M, N) has a natural structure of A-dg-module with
left multiplication (af)(m) = af(m) and differential

d: Hom'j(M, N) — HomS"™ (M, N),  df =[d, fl=dnof—(-1)"foduy.



4. KODAIRA-SPENCER’S MAPS IN DG-LAND 51

Note that f € Hom% (M, N) is a morphism of A-dg-modules if and only if df = 0. A
homotopy between two morphism of dg-modules f,g: M — Nisah € HomATl(M, N)
such that f—g = dh = dyh+ hdy;. Homotopically equivalent morphisms induce the
same morphism in homology.

Morphisms of A-dg-modules f: L — M, h: N — P induce, by composition, mor-
phisms f*: Hom* (M, N) — Hom¥ (L, N), h,: Hom% (M, N) — Hom’ (M, P);

LEMMA IV.21. In the above notation if f is homotopic to g and h is homotopic to
l then f* is homotopic to g* and l, is homotopic to hs.

PROOF. Let p € Hom;‘l(L, M) be a homotopy between f and g, It is a straight-
forward verification to see that the composition with p is a homotopy between f*
and ¢g*. Similarly we prove that h, is homotopic to [,. O

LEMMA IV.22. (Base change) Let A — B be a morphism of unitary dg-algebras,
M an A-dg-module, N a B-dg-modules. Then there exists a natural isomorphism of
B-dg-modules

Hom® (M, N) ~ Homp(M ®4 B, N).

ProoF. Consider the natural maps:

L
Hom’ (M, N) <1R>H0mj§(M ®a B,N),

Lf(m®b) = f(m)b,  Rg(m)=g(me1).
We left as exercise the easy verification that L, R are isomorphisms of B-dg-modules
and R = L% 0
Given a morphism of dg-algebras B — A and an A-dg-module M we set:
Derg(A, M) = {¢ € Homg (4, M) | p(ad)=¢(a)b + (~1)"ag(b), ¢(B) =0}

Dergp(A, M) = @ Der'z(A, M).
nez
As in the case of Hom™, there exists a structure of A-dg-module on Der; (A, M) with
product (a¢)(b) = a¢(b) and differential
d: Derg(A, M) — Derit' (A, M), d = [d,¢] = dar¢p — (—1)"dda.

Given ¢ € Dery(A, M) and f € Hom'j(M, N) their composition f¢ belongs to
Der’y (A, N).

4. Kodaira-Spencer’s maps in dg-land

In this section, we define on the central fibre of a deformation a sheaf of differential
graded algebras B which contains (well hidden) the “Taylor coefficients” of the vari-
ation of the complex structures given by the deformation (the first derivative being
the Kodaira-Spencer map).

LEMMA IV.23. Let U be a differential manifold (not necessarily compact), A C C"
a polydisk with coordinates tq,... ,t, and f(x,t) € C°(U x A, C).
Then there exist fi,..., fu, f1,--., fa € C®(U x A,C) such that
of of

fi(z,0) = 8—7%(1,‘,0), fi(x,0) = ﬁ(az,O) and

fla,t) = f(z,00+ > tifilz,t)+ Y tifi(x,1).
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Proor. The first 2 equalities follow from the third. Writing ¢; = wu; + ivj,
t; = uj — tv;, with u;, v; real coordinates on C" = R?" we have

f(z,u,v) = f(x,0,0) + /01 %f(:c,su, sv)ds =

f(z,0,0) —i—Zu]/ acsusvds—i—Zv]/ —fa:susv)

Rearranging in the coordinates ¢;, t; we get the proof. O
Let X be a fixed complex manifold; denote by Der%} (A%, Agé*) C Hom (A%, Ag}*)
the sheaf of ﬁ}—derivations of the sheaf of graded algebras Agé*; we have the following

PROPOSITION 1V.24. In the notation above there exists a natural isomorphism of
sheaves

0: AL (Tx )= Derly. (AL, AY).
In local holomorphic coordinates zy, ... , Zm,

0: AV (Tx) — Der%;( (A%, A% Derg. (A%, A%

is given by 0 <¢§_z> (fdzr) = N %dﬁ.

The Dolbeault dzﬁerential in A[))(’—*(TX) corresponds, via the isomorphism 6, to the
restriction to Der—* (.A Ag(’—*) of the adjoint operator

0, ]: Derg(AY, AY) — Dergt (AL, AY).

PRrROOF. The morphism 6 is injective and well defined. Let U C X be an open
polydisk with coordinates z1, ..., z,. Take & € T'(U, Der%* (A%*,Ag}*)) and denote

o = &(z) € T(U, .A()]gp). We want to prove that £ =6 (Zl @88_2)

Since, over U, Agg* is generated by .Agéo and ﬁ}, it is sufficient to prove that for
every open subset V C U, every point € V and every C*°-function f € I'(V, Ag&o)

the equality £(f)(z) =), qbl ( ) holds.
If zi(z) = x; € C, then by Lemma IV.23 we can write

Fz1yee s zm) = f(x1,. .. 2m +Z r)fi(z1, s zm) + Y (F = Ti) (21 2m)

for suitable C'°° functions f;, f;; therefore

Zf fz Tly.-. s & ZﬁbzaZZ

In particular, for £, € T'(U, Derﬁ* (Agé*, Agé*)), we have £ = 7 if and only if £(2;) =
X

n(z) for i = 1,...,m. Since 55} - ﬁ}, the adjoint operator [0, —] preserves
Derf (.A Agé*), moreover

0 (5%—%) 25 = @015 = 0(68,) - (-1 (9 ) (02) = 2.0 (07 )| 5
and then 60 = [0, —]6. O
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According to Proposition IV.24, the standard bracket on Der%;{ (A%, Agg*) induces
a bracket on the sheaf .Agé* (T'x) given in local coordinates by
f%dzl,g%ﬁj] - ( g_ia% - 93—2%> a2 A dzy.
Note that for f,g € T'(U, Ag&O(TX)), [f,g] is the usual bracket on vector fields on a
differentiable manifolds.

Let B C C" be an open subset, 0 € B, and let MOLML(B, 0) be a deformation
of a compact complex manifold My; let ¢1,... ,t, be a set of holomorphic coordinates
on B.

It is not restrictive to assume My C M and ¢ the inclusion map.

DEFINITION IV.25. In the notation above, denote by Iy C AT\’; the graded ideal
sheaf generated by %;,dt;, dt;. Denote by B}, the quotient sheaf A%, /Ips.!

If z1,...,2m,t1,... ,t, are admissible (Defn. 1.29) local holomorphic coordinates
on an admissible chart W ¢ M, W ~ (W N M) x A, 0 € A C B polydisk, then
every ¢ € I'(W,B};) has a representative in I'(W, A};) of the form

do(2) + Y tigi(z,0),  do(z) eT(W N My, Ayp), ¢ € T(W, Ayy).

By a recursive use of Lemma IV.23 we have that, for every s > 0, ¢ is represented by

> ter(z) + Y tei(zt).

|T|<s [I|=s

The ideal sheaf I; is preserved by the differential operators d,d,0 and therefore
we have the corresponding induced operators on the sheaf of graded algebras BX’;.
Denoting by B?\’; C Bj; the image of A(J)\’f we have that B?\}[* is a sheaf of dg-algebras
with respect to the differential 0.

LEMMA 1V.26. In the notation above, let U,V C M be open subsets; if U N My =
V N My then T(U,By) =T(V,By;) and therefore By is a sheaf of dg-algebras over
M,.

PROOF. It is not restrictive to assume V' C U, then U = VU(U — M) and by the
sheaf properties it is sufficient to show that T'(U — My, By;) =T'(V — Moy, By;) = 0.
More generally if U C M is open and U N My = 0 then I'(U, B};") = 0; in fact there
exists an open covering U = UU; such that ¢; is invertible in Us;.

If W C My is open we define T'(W, By;) = T'(U, By} ), where U is any open subset of
M such that UN My =W. [

The pull-back *: Aj\’; — Am factors to a surjective morphism 7*: B;’[* — *MT) of

sheaves of differential graded algebras over Mj.

Note also that the image in B}, of the sheaf of antiholomorphic differential forms
ﬁ}k\/[ is naturally isomorphic to the sheaf ﬁ}k\/fo. In fa(i if 21,...,2m,t1,... ,tpn are local
admissible coordinates at a point p € My and ¢ € Q?M then

V=Y W4, (2)dZ A AdZ,  (mod T, dE), Oy, = 0.

Tt is also possible to define B as the quotient of A by the ideal generated by %, dt;, d%; and
the C'°° functions on B with vanishing Taylor series at 0: the results of this chapter will remain
essentially unchanged
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Therefore to every deformation My M i>(B ,0) we can associate an injective mor-
phism of sheaves of dg-algebras on Mj:

oF f 0,% * %

DEFINITION IV.27. The algebraic data of a deformation Mo—i>ML>(B,O) is the
pair of morphisms of sheaves of dg-algebras on Mj:

oF f wx 1F *, %
Qp,—— By —>.AM0.

We note that f injective, ¢* surjective and ¢* f the natural inclusion. Moreover f
and 7* commute with both differentials 9, 0.

If Mog—>N i>(B ,0) is an isomorphic deformation then there exists an isomorphism
of sheaves of dg-algebras By, — By which makes commutative the diagram

—* f *,%
QMO BM

Ql / lz*
*7* *,%k
BN * AM()

Similarly if (C,0) — (B,0) is a germ of holomorphic map, then the pull-back of
differential forms induces a commutative diagram
ﬁ}k\/lo By

e

*, % *,%
BMXBC AMO

Before going further in the theory, we will show that the Kodaira-Spencer map

of a deformation Mo——M L(B ,0) of a compact connected manifold My can be
recovered from its algebraic data ﬁ?uo LBX; LAM)

LEMMA 1V.28. In the notation above, consider .A?\Z) as a sheaf of B?\}[*-modules with
the structure induced by i* and denote for every j > 0.

Deré* (BY, A[J)\Z))
y j 07 07 ’
i* Dery. (A Ang)
Then there exists a natural linear isomorphism
To.p = ker(T'(My, Ty)) — T'(Mo, Tpy), h — O4h — hdp).

Ti =

Proor. We consider T g as the C-vector space of C-derivations Opg — C.
* 0,* 07 A q »k 07 07* .
Let h € F(M()_,Derﬁ*(BM ,AJ\/;;)) be such that d4h — hop € i Der%*(AMZ,AMO),
in particular Oh(t;) = 0 for every i, the function A(t;) is holomorphic and then
constant. Moreover, h(t;) = 0 for every i if and only if h(keri*) = 0 if and only if
»k 07* 07*
hei Der%* (Ayn s Anr)-
This gives a linear injective morphism

ker(['(My, Tyy) — T'(Mo, Tpy)) — To.5-

To prove the surjectivity, consider a derivation d: Opg — C and let My = UU,,
a € I, be a locally finite covering with every U, open polydisk with coordinate
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systems 2{,...,z%: U, — C. Let t1,... ,t, be coordinates on B.

Over U,, every ¢ € B?\/’[* can be written as ¢o(z) + D> tidi(z) + > tit;..., with
o; € A(])\Z). Setting hq(¢) = >, 0(t;)¢; we see immediately that h, is a Q*Ua—derivation
lifting §. Taking a partition of unity p, subordinate to the covering {U,}, we can
take h =) poha. O

Let h € T'(Mo, Ders. (By;', Ayh)) be such that v = 9 4h—hdg € i* Derk. (A, AV
and let : Op o — C be the corresponding derivation, 6(t;) = h(t;).
According to the isomorphism (Proposition IV.24) Derjﬁ* (A(])\}IZ,A?\};;) = Ag}[jo (Thy)
we have 1 € T'(Mo, A% (Tyy,))-
Moreol/er, being 1) exact in the complex Der%* (B?\’;, A?\’j;), it is closed in Der%* (A?(j; ) A?\Z)),
1 is a d-closed form of I'( My, A% (T, )) and the cohomology class [¢)] € HY (Mg, Tas,)
is depends only on the class of h in I'( Mo, Tz\04)~ It is now easy to prove the following

PROPOSITION IV.29. In the above notation, [1] = [0h — hd] = KS{ ().

PROOF. (sketch) Let n € I'(M, A(])\’;)(TM)) be a complexified vector field such that
(f«n)(0) = 6. We may interpret 0 as a Q/-derivation of degree 0 7: A(J)\}[* — AV
passing to the quotient we get a ), -derivation h: Bg’; — Ag’g. The condition
(f«n)(0) = § means that h lifts 6 and therefore ¢/ corresponds to the restriction of dn
to the fibre M. O

5. Transversely holomorphic trivializations

DEFINITION IV.30. A transversely holomorphic trivialization of a deformation M LML(B, 0)
is a diffeomorphism ¢: My x A — f~1(A) such that:
1. A C B is an open neighbourhood of the base point 0 € B
2. ¢(x,0) =i(z) and f¢ is the projection on the second factor.
3. For every x € My, ¢: {x} x A — M is a holomorphic function.

THEOREM 1V.31. FEwvery deformation of a compact complex manifold admits a trans-
versely holomorphic trivialization.

PROOF. (cf. also [10], [78]) Let f: M — B be a deformation of My; it is not
restrictive to assume B C C" a polydisk with coordinates ¢,... ,t, and 0 € B the
base point of the deformation. We identify My with the central fibre f~1(0).

After a possible shrinking of B there exist a finite open covering M = UW,, a =
1,...,r, and holomorphic projections p,: W, — U, = W,NMg such that (pg, f): W, —
U, x B is a biholomorphism for every a and U, is a local chart with coordinates
28U, —Coi=1,...,m.

Let p,: My — [0, 1] be a C* partition of unity subordinate to the covering {U,} and
denote V, = p,1(]0,1]); we note that {V,} is a covering of My and V, C U,. After a
possible shrinking of B we may assume p, (V,) closed in M.

For every subset C' C {1,... ,r} and every = € Mj we denote

Ho= | (\Wo= Jpa'(Va) | x | (N UVa= U Va | €M x My,
acC agC acC agC

Cy={alreV,}, H:UHC.
C



56 IV. INFINITESIMAL DEFORMATIONS

Clearly (z,x) € He, and then H is an open subset of M x Mj containing the graph
G of the inclusion My — M. Since the projection pr: M x My — M is open and M
is compact, after a possible shrinking of B we may assume pr(H) = M.

Moreover if (y,) € H and x € V, then (y,x) € H¢ for some C containing a and
therefore y € W,.

For every a consider the C* function ¢,: H N (M x U,) — C™,

0 7) = 3 o) oy () (o) — ().
b

By the properties of H, q, is well defined and separately holomorphic in the variable
y. If (y,z) € HN (M x (U, NU.)) then

0z¢
0z%

qe(y, ) = (2)qa(y, )

and then
I'={(y,z) € H|qq(y,x) =0 whenever x € U,}

is a well defined closed subset of H. -
If y € V, C My and = is sufficiently near to y then x € (ﬂbecy Uy — Ubgc Vp) and, for
every b € Cy,

Dzb
0z

y) = 2(x) +

(@)(2“(y) — 2*(2)) + o([[z"(y) — z*(@)]]).
Therefore

Ga(y, x) = 2*(y) — 2"(x) + o([|z*(y) — 2*(2)|)-

In particular the map x — ¢,(y, z) is a local diffecomorphism at = = y.

Denote K C H the open subset of points (y,z) such that, if y € p; (V) then
u — qq(y,u) has maximal rank at u = x; note that K contains G.

Let I'g be the connected component of I'M K that contains G; I'y is a C'°°-subvariety
of K and the projection pr: I'o — M is a local diffeomorphism. Possibly shrinking
B we may assume that pr: I'o — M is a diffeomorphism.

By implicit function theorem I’y is the graph of a C*° projection v: M — Mj.
After a possible shrinking of B, the map (v, f): M — My x B is a diffeomorphism,
take ¢ = (’yvf)_l'

To prove that, for every = € My, the map t — ¢(x,t) is holomorphic we note that
f: ¢({z} x B) — B is bijective and therefore ¢(x, —) = f~lpr: {x}xB — ¢({z}xB).
The map f~': B — ¢({x} x B) is holomorphic if and only if ¢({z} x B) = v~ !(z) is
a holomorphic subvariety and this is true because for z fixed every map y — q,(y, x)

is holomorphic. O
Let z1,...,2m,t1,...,t, be an admissible system of local coordinates at a point
peEMyC M. z1,...,2Zm,t1,... ,t, is also a system of local coordinates over My x B.

In these systems, a transversely holomorphic trivialization ¢: My x B — M is written
as

d)(Z,t) = (@1(2,1‘:), cee aqsm(zvt)atla s 7tn)7

where every ¢;, being holomorphic in ¢1,... ,t,, can be written as

di(zt) =z + Y t'oir(z),  IT=(ir,...,in), ¢i1€C™.

>0
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In a neighbourhood of p,
¢dz =dz+» t1Y (8@%2. + a‘@ dz_j> . (mod Ingxp),

0z; 7 0z
>0 j=1 J J

¢*dz = dz, (mod Insyxp).

LEMMA IV.32. Ewvery transversely holomorphic trivialization ¢: My X B — M in-
duces isomorphisms of sheaves of graded algebras over My

%, g%,k *, % %, 120,% 0,%
" By — BMOXB’ " By — BMOXB

making commutative the diagrams

R . T

A R
* % 0,% 0,
BMOXB—>AM0 BMOXB—)AMO

Beware: It is not true in general that, for p > 0, ¢*(BP?) C BP.
PROOF. For every open subset U C M, the pull-back

¢*: T(U, Ay/) = T(¢~ ' (U), Ay )

is an isomorphism preserving the ideals Iy and Iy, x . Since UNMy = ¢~ (U) N Mo,
the pull back ¢* induces to the quotient an isomorphism of sheaves of graded algebras
¢* BMO xXB*

From the above formulas follows that ¢*(BY; k) @q<pl’>’}1\}[ 1> and ¢* is the identity
on ) M,- This shows that gb*(Bg/I*) = B?ng p and proves the commutativity of the
diagrams. O

The O operator on Ay factors to B?M and therefore induces operators

. g0 0,%41 _ —1. 130,% 0,%+1
0: By — By, Dy = ¢*0(¢") ~BMO><B Byyx s
If z1,... ,2zm,t1,... ,t, are admissible local coordinates at p € My, we have

(%) 'dzi = dz; + Z a;jdz; + bijdz;, (mod Ipy),
j=1
where a;;, b;; are C°° functions vanishing on My and
(¢*)~dz = d=, (mod Iyy).

Thus we get immediately that 9s(dz;) = 0. Let’s now f be a C* function in a
neighbourhood of p € U C My x B and let 7: A}/ — A(J]\}[* be the projection. By
definition 5¢ f is the class in B?\’f «p of

¢*Td(¢") " f = ¢*T(") N df = Z )"tz + Z )z
and then

Dy f = (‘3f+Zb dzj

7,]6

If : My x B — M is another transversely holomorphic trivialization and 6 =
¢*(1*)~! then 9, = 09,0,
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6. Infinitesimal deformations

Let Mo——M i>(B ,0) be a deformation of a compact complex manifold and J C
OB, a proper ideal such that VI = mp; after a possible shrinking of B we can
assume that:

1. B ¢ C" is a polydisk with coordinates 1, ... ,t, and J is generated by a finite
number of holomorphic functions on B.

2. f: M — B is a family admitting a transversely holomorphic trivialization
(;5: Myx B— M.

Denote by (X, 0) the fat point (B, 0, J) and by Ox o = Opo/J its associated analytic
algebra. If mf, C J then the holomorphic functions th, I = (i1,...,in), |I| < s,
generate Ox o as a C-vector space.

Denote by In;; C A}/ the graded ideal sheaf generated by Iy and J, By, =

Ay /v, = By /(J), Owm,g = On/(J). The same argument used in Lemma IV.26
shows that BX}[* ;7 and Oy g are sheaves over My. In the same manner we define

B;’JZXB,J
LEMMA IV.33. Let U C My be an open subset, then there exist isomorphisms
T(U,OmyxB,7) = T(U,00,) ©@c Oxo,  T(U, By . p.s) = T(U, Ayp) ©c Ox .

The same holds for M instead of Myx B provided that U is contained in an admissible
coordinate chart.

ProOF. We have seen that every ¢ € I'(U, By p ;) is represented by a form
Zu|<s tlor, with ¢; € T(U, A%). Writing every t! as a linear combination of the
elements of a fixed basis of Ox  and rearranging the terms we get the desired result.
The same argument applies to O« p,s and, if U is sufficiently small, to B}k\; 7>

Oum,J.
COROLLARY 1V.34. Oy ; = ker(9: B?\fJ — BR/’[l,J)'

Proor. If U C My is a sufficiently small open subset, we have I'(U, BX’ZJ) =
(U, A}Z)) ®c Ox 0 and then

ker (5: INQOR B?\’;?J) — I'(U, B?\Z])) =

— ker (5: T(U,A3) © Ox 0 — T(U, A% ) & OX,O) = I(U, Oar.).
0

The transversely holomorphic trivialization ¢ gives a commutative diagram of mor-
phisms of sheaves of graded algebras

a* 0,%
QM()@OX,O 981\47‘]

LA

with ¢* an isomorphism. The operator 95 = ¢*9(¢*)! is a Ox o-derivation of de-
gree 1 such that 52 = 1[04, 0p] = 0 and then n, = 0y — O: Bg/’;;xB = B?\}IZQB,J is a

ﬁ}% ® Ox o-derivation.
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According to Lemma IV.33 we have Bg/;;x BJ = A(])\Z) ® Ox,0; moreover, if go =

Lgi(t),...,gr(t) is a basis of Ox o with g; € mx g for i > 0, then we can write g =
> is0 9i(t)mi, with every n; a ﬁ*Mo—derivation of degree 1 of .A?\Z). By Proposition IV.24
1y € T(Mo, A% (Ths,)) @ mx .

In local holomorphic coordinates z1,... , z; we have g(b(dz_i) =0 and
5 5 i of
Z7J7

for every C'°° function f. The b; . are C°° functions on M.

A different choice of transversely holomorphic trivialization ¢: My x B — M gives
a conjugate operator 0y, = 09501, where 6 = ¢*(¢p*) L.

This discussion leads naturally to the definition of deformations of a compact com-
plex manifolds over a fat points.

DEFINITION IV.35. A deformation of My over a fat point (X,0) is a section

0,% 0,%
n S F(Mo,.AO’l(TMO)) X mX70 = Derlﬁ*MO (AMO’AMO) ® mX’O

such that the operator 0 +1n € Der%g)g0 (A(J)\’j; ® Ox 0, Ag’j; ® Oxp) is a differential,
ie. [0+mn,0+n =0.
Two deformations 7, u € T'(Mo, A% (Th,)) ® mx o are isomorphic if and only if there
exists an automorphism of sheaves of graded algebras 6: A?\Z) ®0Ox,0 — .Ag};) ®Ox,0
commutin_g with the projection_A?\Z) ® Oigo — A(])\Z) and leaving point fixed the
subsheaf QLO ® Ox o such that 9 + pu = 6(0 + n)0~L.

According to IV.24 the adjoint operator [0, —| corresponds to the Dolbeault dif-

ferential in the complex A%*(T)y,) and therefore (0 + 1)? = 0 if and only if n €
['(My, A% (Th,)) ® mx o satisfies the Maurer-Cartan equation

— 1
on + 5[77777] =0 € I'(Mp, A?*(Tn,)) @ mx .

We denote with both Defy, (X,0) and Defyr, (Ox ) the set of isomorphism classes
of deformations of My over (X,0). By an infinitesimal deformation we mean a de-
formation over a fat point; by a first order deformation we mean a deformation over
a fat point (X,0) such that mx o # 0 and m?X,O =0.

The Proposition 1V.29 allows to extend naturally the definition of the Kodaira-
Spencer map KS: Ty x — H' (Mo, Ty,) to every infinitesimal deformation over (X, 0).
Consider in fact 0 € Derc(Ox o, C) = Tp x, then

0,% 0,%
h=1d®§: Ay ® Oxo— Ay
is a Q*Mo—derivation lifting 0. Since
(Oh = h(D +m)(f © 1) = h(-n(f))
we may define KS(0) as the cohomology class of the derivation
Ay, =A™ e (=),
which corresponds, via the isomorphism of Proposition 1V.24, to

(1d ® 6)(—n) € T(Mo, A (Tay)),
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where Id ® 6: T'(My, A% (Thy,)) ® mx . According to the Maurer-Cartan equation
On = —3[n,n) € T(Mo, A%*(Tyg,)) ® m% o and then

(14 8)(—n)) = (Id® 5)(~3n) = 0.

A morphism of fat points (Y,0) — (X,0) is the same of a morphism of local C-
algebras a: Ox g — Oyp; It is natural to set Id ® a(n) € T'(My, A% (Thy,)) @ my g
as the pull-back of the deformation 7. It is immediate to see that the Kodaira-
Spencer map of Id ® a(n) is the composition of the Kodaira-Spencer map of n and
the differential a: Ty,o — T'x 0.

7. Historical survey, IV

The importance of infinitesimal deformations increased considerably after the proof

(in the period 1965-1975) of several ineffective existence results of semiuniversal de-
formations of manifolds, of maps etc.., over singular bases.
The archetype of these results is the well known theorem of Kuranishi (1965) [45], as-
serting the existence of the semiuniversal deformation of a compact complex manifold
over a base which is an analytic singularity. An essentially equivalent formulation of
Kuranishi theorem is the following

THEOREM 1V.36. Let My be a compact complex manifold with n = hl(Mo,TMO),
r= hQ(Mo,TMO).

Then there exist a polydisk A C C", a sectionn € I'(M, A% (Ty)), being M = Myx A
and f: M — A the projection, and ¢ = (q1,...,¢): A — C" a holomorphic map
such that:

da:
1. ¢(0) =0 and 8—?(0) =0 for every i, j, being t1, ... ,t, holomorphic coordinates
J
on A.
2. n vanishes on My and it is holomorphic in ty,... ,t,; this means that it is

possible to write
n= Ztlm, I=(i1,...,in), nr € (Mo, A% (Tag,)).
>0
3. n satisfies the Maurer-Cartan equation to modulus qq, ... ,qs, i.e.

on + %[na n € qT (M, A% (Ty)).
4. Given a fat point (X,0) the natural map
n: Moran(Oao/(q1,--.,4s), Ox,0) — Defp, (X, 0), a— a(n)
is surjective for every (X,0) and bijective whenever Ox o = C[t]/(t2>.
It is now clear that the study of infinitesimal deformations can be used to deduce

the structure of the holomorphic map ¢ and the existence of the semiuniversal defor-
mation over a smooth base. For example we have the following

COROLLARY IV.37. Let My be a compact compler manifolds such that for every
n > 2 the natural map Def g, (C[t]/(t")) — Defny, (C[t] /(%)) is surjective. Then My
has a semiuniversal deformation Mo— M —(H'(My, Tyz,),0).

PROOF. (sketch) In the notation of Theorem IV.36 we have (q1,...,qs) C miD
and then, according to Proposition II1.7, ¢ = ... = ¢s = 0. In particular 7 satisfies
the Maurer-Cartan equation and by the Newlander-Nirenberg’s theorem (cf. [9, 1.4],
[78]) the small variation of almost complex structure [9, 2.1, 2.5], [78]

. 240 0,1 t . 70,1 1,0
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is integrable and gives a complex structure on M with structure sheaf Oy, = ker(0+
0,0 0,1

no: Ay, — Ay )-

The projection map (M, Or,y) — A is a family with bijective Kodaira-Spencer map,

by completeness theorem 1.50 it is a semiuniversal deformation. O

It is useful to remind here the following result proved by Malgrange [50]

THEOREM IV.38. Let q1,... ,qm: (C",0) — C be germs of holomorphic functions
and f: (C",0) — C a germ of C*® function. If 0f = 0, (mod qi,...,qm) then
there exists a germ of holomorphic function g: (C",0) — C such that f = g,
(mod q1,... ,Gm)-
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CHAPTER V

Differential graded Lie algebras (DGLA)

The classical formalism (Grothendieck-Mumford-Schlessinger) of infinitesimal de-
formation theory is described by the procedure (see e.g [2], [66])

Deformation problem ~»  Deformation functor/groupoid

The above picture is rather easy and suffices for many applications; unfortunately in
this way we forget information which can be useful.

It has been suggested by several people (Deligne, Drinfeld, Quillen, Kontsevich [43],
Schlessinger-Stasheff (68, 69], Goldman-Millson [20, 21] and many others) that a
possible and useful way to preserve information is to consider a factorization

Deformation problem ~» DGLA ~» Deformation functor/groupoid

where by DGLA we mean a differential graded Lie algebra depending from the data
of the deformation problem and the construction

DGLA ~ Deformation functor, L ~ Def,

is a well defined, functorial procedure explained in this Chapter.

More precisely, we introduce (as in [44]) the deformation functor associated to a dif-
ferential graded Lie algebra and we prove in particular (Corollary V.52) that quasiiso-
morphic differential graded Lie algebras give isomorphic deformation functors: this
is done in the framework of Schlessinger’s theory and extended deformation functors.
We refer to [20] for a similar construction which associate to every DGLA a defor-
mation groupoid.

Some additional comments on this procedure will be done in Section 9; for the mo-
ment we only point out that, for most deformation problems, the correct DGLA is
only defined up to quasiisomorphism and then the results of this Chapter are the
necessary background for the whole theory.

In this chapter K will be a fixed field of characteristic 0. We assume that the
reader is familiar with basic concepts about Lie algebras and their representations
[31], [33]; unless otherwise stated we allow the Lie algebras to be infinite dimensional.

1. Exponential and logarithm

For every associative K-algebra R we denote by R the associated Lie algebra with
bracket [a,b] = ad(a)b = ab — ba; the linear operator ad(a) € End(R) is called the
adjoint of a, the morphism ad: Ry, — End(R) is a morphism of Lie algebras. If I C R
is an ideal then I is also a Lie ideal of Ry,

EXERCISE V.1. Let R be an associative K-algebra, a,b € R, prove:

MARCO MANETTI: Lectures on deformations of complexr manifolds
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ad(a)b = zn:(—w' (’;) a"bal.

=0
2. If a is nilpotent in R then also ad(a) is nilpotent in End(R) and

ety . — Z ad(c'z) b=e%be .
n!
n>0

Let V be a fixed K-vector space and denote

P(V) = {Zvn Un € ®"V} o~ H R"V.
n=0 n=0

With the natural notion of sum and Cauchy product P(V) becomes an associative
K -algebra; the vector subspace

m(V) = {ivn Un € ®”V} c P(V)

is an ideal, m(V)* = {377 v, } for every s and P(V) is complete for the m(V')-adic

topology: this means that a series Z x; is convergent whenever z; € m(V)? for every
i=0

i.

In particular, it is well defined the exponential

em(V) > E(V)=14m(V)={1+> va|on € @V} CP(V), e =) %
n=1 n=0 "~
and and the logarithm
log: E(V 1% log(1 — S ()t
og: E(V) — m(V), og(l+z) ;( .

We note that E(V) is a multiplicative subgroup of the set of invertible elements of
P(V) (being >~>° ;2" the inverse of 1 —x, € m(V)). It is well known that exponen-
tial and logarithm are one the inverse of the other. Moreover if [z,y] = zy —yz =0
then e ¥ = e%e¥ and log((1+ z)(1 +y)) = log(1 + z) + log(1 + y).

Every linear morphism of K -vector spaces fi: V — W induces a natural, homoge-
neous and continuous homomorphism of K-algebras f: P(V) — P(W). It is clear
that f(m(V)) C m(W), f: E(V) — E(W) is a group homomorphism and f com-
mutes with the exponential and the logarithm.

Consider for instance the three homomorphisms

Ap,q: P(V)— P(VaV)

induced respectively by the diagonal A;(v) = (v,v), by p1(v) = (v,0) and by ¢;(v) =

(0,v).
We define

V) ={z € P(V)|Alz) = p(@) +q(@)},  L(V)={z € P(V)| A(z) = p(x)g()}.
It is immediate to observe that V C (V) € m(V) and 1 € L(V) C E(V).

THEOREM V.2. In the above notation we have:

~

1. I(V) is a Lie subalgebra of P(V)p,.



1. EXPONENTIAL AND LOGARITHM 65

2. E(V) is a multiplicative subgroup of E(V').
3. Let f1: V. — W be a linear map and f: P(V ) P(W) the induced algebra

homomorphism. Then f(I(V)) C (W) and f(L(V )) € L(W).
4. The exponential gives a bijection between 1(V') and L(V).

PROOF. We first note that for every n > 0 and every pair of vector spaces U, W
we have a canonical isomorphism

R UeoW)= @)(@iU ®R" W)
and therefore

PUaW)= ] QUae QW
i,j=0
In particular for every x € P(U)®K C P(UsW),y € KQP(W) C P(U&W) we have
xy = yzx. In our case, i.e. when U = W =V this implies that p(x)q(y) = q(y)p(z)
for every x,y € P(V).
Let z,y € (V) then

A([z,y]) = A(z)A(y) — A(y)A(x)
= (p(z) + () (p(v) + q(v)) — (p(¥) + q(v)) (p(x) + q(x))
= p([z, y]) + q([z, y]).

If z,y € L(V) then
Alyz™") = A)A(z) ! = p(y)g(z)g(x) " p(z) ™" = plyz~g(yz™")

and therefore yz—! € L(V).

Ifg: PVeV)— P(Wa&W) is the algebra homomorphism induced by f1 @ fi: V&
V. —- W& W it is clear that Af = gA, pf = gp and ¢f = gq. This implies
immediately item 3.

If # € [(V) then the equalities

A(e”) = e2®) = gP@)ta(@) — op(@)a(®) — p(e®)g(e®)

A~

prove that e({(V)) C L/(17) Similarly if y € L(V) then
A(log(y)) = log(A(y)) = log(p(y)a(y)) = log(p(y)) + log(q(y)) = p(log(y)) + q(log(y))

~

and therefore log(L(V)) C L(V). O

COROLLARY V.3. For every vector space V' the binary operation

~ ~

«: 1(V) x 1(V) = 1(V), x xy = log(e®e?)

induces a group structure on the Lie algebra ZA(V)
Moreover for every linear map f1: V. — W the induced morphism of Lie algebras
f: l( ) — (W) is also a homomorphism of groups.

PRrOOF. Clear. O

In the next sections we will give an explicit formula for the product * which involves
only the bracket of the Lie algebra I(V).
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2. Free Lie algebras and the Baker-Campbell-Hausdorff formula

Let V be a vector space over K, we denote by
(V)= €]>90®"V, (V)= €]>91®”V CT(V).
The tensor product induce on T(V) a structure of unital associative algebra, the
natural embedding 7'(V') C P(V) is a morphism of unitary algebras and T'(V) is the
ideal T(V) Nm(V).
The algebra T'(V') is called tensor algebra generated by V and T'(V') is called the
reduced tensor algebra generated by V.

LEMMA V.4. Let V be a K-vector space and 1: V = @'V — T(V) the natural
inclusion. For every associative K -algebra R and every linear map f: V — R there
exists a unique homomorphism of K -algebras ¢: T(V') — R such that f = ¢u.

ProoF. Clear. [l

DEFINITION V.5. Let V be a K-vector space; the free Lie algebra generated by V'

is the smallest Lie subalgebra [(V)) C T'(V'), which contains V.

Equivalently {(V) is the intersection of all the Lie subalgebras of T'(V')1, containing
V.
For every integer n > 0 we denote by I[(V),, C @"V the linear subspace generated
by all the elements

[v1, [va, [+« s [vn=1,0n]].]]s n>0, v,...,op €V.

By definition [(V'),, = [V,I(V),_1] and therefore @,~ol(V), C (V). On the other
hand the Jacobi identity [[x,y], z] = [, [y, 2]] — [y, [z, z]] implies that

LV )y L(V)m] C [V, LV )1, V)] LV )1, [V LV )]

and therefore, by induction on n, [[(V)n, {(V)m] C UV )ntm.
As a consequence @,0l(V), is a Lie subalgebra of [(V') and then &,~0l(V), = (V),
(V) =1(V)NR"V.

Every morphism of vector spaces V' — W induce a morphism of algebras m —
T (W) which restricts to a morphism of Lie algebras [(V) — [(W).

The name free Lie algebra of (V') is motivated by the following universal property:
Let V' be a vector space, H a Lie algebra and f: V — H a linear map. Then there
exists a unique homomorphism of Lie algebras ¢: (V) — H which extends f.

We will prove this property in Theorem V.6.

Let H be a Lie algebra with bracket [,] and o1: V' — H a linear map.

Define recursively, for every n > 2, the linear map

on: @"V — H, on(11 ®@...0v,) = [o1(v1),0n-1(v2 @ ... @ vy)].
For example, if V' = H and o7 is the identity then o, (v1®. . .®@vy,) = [v1, [v2, [ - . , [Vn—1, vn]].]]-

THEOREM V.6 (Dynkyn-Sprecht-Wever). In the notation above, the linear map
g’
o ; (V) =

is the unique homomorphism of Lie algebras extending o1.
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PrOOF. The adjoint representation #: V' — End(H), 6(v)x = [o1(v), x] extends
to a unique morphism of associative algebras 6: T(V') — End(H) by the composition
rule

0(v1 ®@...0vs)x = 0(v1)0(v2) ...0(vs)x.
We note that, if vy,... ,v,, w1,... ,w, € V then
Ontm(V1 @ ... QU QW1 ® ... QW) =011 ® ... Uy )om(w1 @ ... R wpy).

Since every element of [(V') is a linear combination of homogeneous elements it is
sufficient to prove, by induction on n > 1, the following properties

Ap: If m <n, x € I(V)y, and y € [(V),, then o(zy — yx) = [o(x), o (y)].

B,: fm<n,yel(V), and h € H then 8(y)h = [0(y), h].

The initial step n = 1 is straightforward, assume therefore n > 2.
[Ap—1+ Bn—1 = B,] We can consider only the case m = n. The element y is a linear
combination of elements of the form ab—ba, a € V, b € I(V),—_1 and, using B,_1 we
get

H(y)h = [O’(CL), 9<b)h] - 0(1)) [U(a)7 h‘] = [U(a)a [U<b)7 h]] - [O'(b)7 [0’(@), h]

Using A,,—1 we get therefore
0(y)h = [[o(a),o(b)], h] = [o(y), h].
[B,, = A,)]

Tnm 2y — ya) = 0(x)on(y) — 0(y)om(z) = [0(2), on(y)] — [0(y), om(2)]
=nlo(z),0(y)] —mlo(y), o(x)] = (n+m)[o(z),0(y)].

Since (V') is generated by V as a Lie algebra, the unicity of o follows. O
COROLLARY V.7. For every vector space V' the linear map
— 1
o:T(V)—1(V), o ®...Qv,) = E[Ul’ [va, [+ s [Un—1, vn]]-]]

18 a projection.

PROOF. The identity on [(V') is the unique Lie homomorphism extending the
natural inclusion V' — (V). O

The linear map o defined in Corollary V.7 extends naturally to a projector o: P(V) —
P(V). We have the following theorem

THEOREM V.8 (Friedrichs). In the notation above

~

WV)={zeP(V)|o(x) =2} and I(V)=T(V)NIV).

PRrROOF. The two equalities are equivalent, we will prove the second. We have

~

already seen that T'(V) and [(V) are Lie subalgebras of P(V) containing V and

then 1(V) € T(V) N 1(V).
Define the linear map

0:T(V)=T(VeaV), d(z) = Ax) — p(x) — q(x).

By definition T'(V) N I(V) = kerd and we need to prove that if j(z) = 0 for some
homogeneous x then = € [(V'). For later computation we point out that, under the
identification T(V @ V) = T(V) @ T(V'), for every monomial [[, z; with z; € kerd
we have

]

5(H$i) :H(xi®1+1®ﬂzi)—(Hxi)@)l—l@(nxi).
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In particular if 2 € T(V)) then §(x) is the natural projection of A(z) onto the sub-
space P RV e R’V.
i,j>1

Let {y;|i € T} be a fixed homogeneous basis of I(V). We can find a total ordering
on the set Z such that if y; € I(V)y, y; € (V) and n < m then i < j. For every
index h € 7 we denote by Jy, C T'(V) the ideal generated by y}% and the y;’s for every
i > h, then Jj, is a homogeneous ideal and yp & Jj.
A standard monomial is a monomial of the form y = vy;,yi, ... ¥4, with i1 < ... <14y,
The external degree of the above standard monomial y is by definition the positive
integer h.
Since yiy; = y;¥i + Y, @hYn, an € K, the standard monomials generate T( ) as
vector space and the standard monomlals of external degree 1 are a basis of [(V )

Cram V.9. For every n > 0 the following hold:

1. The image under § of the standard monomials of external degree h with 2 <
h <n are linearly independent.
2. The standard monomials of external degree < n are linearly independent.

PrROOF OF CLAIM. Since the standard monomials of external degree 1 are lin-
early independent and contained in the kernel of § it is immediate to see the impli-
cation [1 = 2].

We prove [1] by induction on n, being the statement true for n = 1.

Consider a nontrivial, finite linear combination [.c. of standard monomials of ex-
ternal degree > 2 and < n. There exists an index h € Z such that we can write
le.=z+3 0, y}ilwi, where z, w; are linear combination of standard monomials in
Y;j, J > h and at least one of the w; is non trivial. If we consider the composition
pof §:T(V) - T(VeaV)=TV)xT(V) with the projection T'(V) @ T'(V) —
T(V)/J, @ T(V) we have

n n
o(le) = Z Wh ® yz_lwi =y ® Z iy}flwz-.
=1 =1

Since Y, iyﬁ;lwi is a nontrivial linear combination of standard monomials of ex-
ternal degrees < n — 1, by inductive assumption, it is different from 0 on 7'(V). O

From the claim follows immediately that the kernel of § is generated by the standard
monomials of degree 1 and therefore ker d = [(V). O

EXERCISE V.10. Let z1,... ,xy,y be linearly independent vectors in a vector space
V. Prove that the n! vectors

Ont1(Tr) - Tr)y), T € B,

are linearly independent in the free Lie algebra [(V).

(Hint: Let W be a vector space with basis eg,... ,e, and consider the subalgebra
A C End(W) generated by the endomorphisms ¢1, ..., ¢n, ¢i(ej) = dije;—1. Take a
suitable morphisms of Lie algebras [((V) — A@® W) A

Our main use of the projection o: P( ) — ( ) consists in the proof of the an
explicit description of the product *: l( ) x U(V) = U(V).
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~

THEOREM V.11 (Baker-Campbell-Hausdorff formula). For everya,b € (V') we have

(Z(pi + %’))

=1
pilai!. . pnlan!

71n—1
axp=y

ad(a)Prad(b)® ... ad(b)i1b.
n>0 " P1 +t.11 >0

Pntgn>0

~

In particular a « b — a — b belongs to the Lie ideal of I(V') generated by [a, b).

PROOF. Use the formula of the statement to define momentarily a binary operator

~

e on [(V); we want to prove that e = x.
Consider first the case a,b € V, in this situation

—1)n-1 Phd
axb=oclog(e’) =0 ZL Z ¢ =

n
n>0 pt+g>0

aPlpdl | gPnpin

_lnfl
= |5 X

lgq ! lg., |
>0 p1tar>0 P1:q1: .. -Pn-Gn:

Pntqn>0

ZZ(_%M 5 Lom(@ b abi) m::i(pﬁqi).

m 'q1!. .. pnlan!
n>0 p1tqr>0 p1:q1 Pn-dn i1

Pntgn>0

The elimination of the operators o, gives

(Z(pi + %’))

=1
pilgr!. .. pnlgn!

_1n—1
axp=3 U5

n
n>0 p1+q1>0

ad(a)Prad(b)® ... ad(b)i1b.

Pn+aqn>0

~

Choose a vector space H and a surjective linear map H — [(V), its composition with

~

the inclusion (V') C m(V) C P(V) extends to a continuous morphism of associative

algebras q: P(H) — P(V); since ZA(V) is a Lie subalgebra of P(V') we have q(I(H),) C
(V) for every n and then g(I{(H)) C 1(V). Being ¢: [(H) — I(V) a morphism of Lie
algebras, we have that ¢ commutes with e.

On the other hand ¢ also commutes with exponential and logarithms and therefore

~

q commutes with the product . Since * = e: H x H — [(H) the proof is done. [J

The first terms of the Baker-Campbell-Hausdorff formula are:

1 1 1
a*b_a+b+§[a,b]—|—E[a,[a,b]]—E[b,[b,a]]+...
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3. Nilpotent Lie algebras

We recall that every Lie algebra L has a universal enveloping algebra U characterized
by the properties [31, 17.2], [33, Ch. V]:

1. U is an associative algebra and there exists an injective morphism of Lie alge-
bras i: L — Uy,

2. For every associative algebra R and every morphism f: L — Ry, of Lie algebras
there exists a unique morphism of associative algebras g: U — R such that
=g

A concrete exhibition of the universal enveloping algebra is given by U = ﬁ/ 1,
where I is the ideal generated by all the elements a ® b —b® a — [a,b], a,b € L. The
only non trivial condition to check is the injectivity of the natural map L — U. This
is usually proved using the well known Poincaré-Birkhoff-Witt’s theorem [33, Ch. V].

EXERCISE V.12. Prove that, for every vector space V, T(V) is the universal en-
veloping algebra of [(V). A

DEFINITION V.13. The lower central series of a Lie algebra L is defined recursively
by L' = L, L™ = [L, L"].
A Lie algebra L is called nilpotent if L™ = 0 for n >> 0.

It is clear that if L is a nilpotent Lie algebra then the adjoint operator ad(a) =
[a,—]: L — L is nilpotent for every a € L. According to Engel’s theorem [31, 3.2]
the converse is true if L is finite dimensional.

ExAMPLE V.14. It is immediate from the construction that the lower central series
of the free Lie algebra [(V) c T(V) is (V)" = DIV )i =L (V)N PR'V.
i>n i>n

If V is a nilpotent Lie algebra, then the Baker-Campbell-Hausdorff formula defines
a product V x V-5V,

n —1
(et (Z(pi + Qi)>
axb= Z — Z pzlz!;! AT ad(a)Prad(b)® ... ad(a)P ad(b)? b,
n>0 P1+t?1>0

Pntqn>0

It is clear from the definition that the product * commutes with every morphism
of nilpotent Lie algebra. The identity on V induce a morphism of Lie algebras
m: (V) — V such that 7(I(V),) = 0 for n >> 0; this implies that 7 can be extended

to a morphism of Lie algebras 7: [(V) — V.

PROPOSITION V.15. The Baker-Campbell-Hausdorff product * induces a group struc-
ture on every nilpotent Lie algebras V.

~

PROOF. The morphism of Lie algebras m: (V) — V is surjective and commutes
with . ]

It is customary to denote by exp(V') the group (V,x). Equivalently it is possible
to define exp(V') as the set of formal symbols e¥, v € V, endowed with the group
structure e’e"” = e"*".

EXAMPLE V.16. Assume that V' C M = M (n,n,K) is the Lie subalgebra of strictly
upper triangular matrices. Since the product of n matrices of V' is always equal to 0,
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the inclusion V' — M extends to a morphism of associative algebras ¢: P(V) — M
and the morphism

i

¢: exp(V) — GL(n,K), p(e?) = Z % € GL(n,K).
i=0

is a homomorphism of groups.
The above example can be generalized in the following way

ExaMPLE V.17. Let R be an associative unitary K-algebra, R* C R the multiplica-
tive group of invertible elements and N C R a nilpotent subalgebra (i.e. N™ = 0 for
n >>0).

Let V' be a nilpotent Lie algebra and £: V' — N C R a representation. This means
that £: V — Np, is a morphism of Lie algebras.

Denoting by 2: V<—U the universal enveloping algebra, we have a commutative dia-
gram

w) =~ v % N

1ol
TWV) - v % R

where 7, £ are morphisms of Lie algebras and 7, ¥ homomorphisms of algebras. Since
the image of the composition ¢ = 11 is contained in the nilpotent subalgebra N the
above diagram extends to

(V) — P(V)
K |
v 5 R

with ¢ homomorphism of associative algebras. If f € N it makes sense its exponential
el € R. For every v € V we have e£(") = ¢(e?) and for every z,y € V

@) = ¢(e®)p(e¥) = p(e%eY) = p(e™*Y) = @),

The same assertion can be stated by saying that the exponential map ef: (V,*) =
exp(V) — R* is a homomorphism of groups.

4. Differential graded Lie algebras

DEFINITION V.18. A differential graded Lie algebra (DGLA ) (L, [, ], d) is the data
of a Z-graded vector space L = @®;czL" together a bilinear bracket [,]: L x L — L
and a linear map d € Hom!(L, L) satisfying the following condition:

1. [, ] is homogeneous skewsymmetric: this means [L', L] C L**/ and [a,b] +
(—1)[b, a] = 0 for every a,b homogeneous.

2. Every triple of homogeneous elements a, b, ¢ satisfies the (graded) Jacobi iden-
tity

[a7 [ba CH = [[CL, b]a C] + (_1)ab[b7 [a7 CH

3. d(L%) c L't dod = 0 and da, b] = [da, b] + (—1)%[a, db]. The map d is called

the differential of L.
EXERCISE V.19. Let L = ®L’ be a DGLA and a € L
1. If i is even then [a, a] = 0.
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1
. If 7 is odd then |a, |a, b]] = =||a, al, b] for every b € L and ||a, a],a] = 0.
2. If 7 is odd th b 5 b] f be L and 0
A

EXAMPLE V.20. If L = ®L% is a DGLA then L° is a Lie algebra in the usual sense.
Conversely, every Lie algebra can be considered as a DGLA concentrated in degree
0.

EXAMPLE V.21. Let (A4,da), A = ©A;, be a dg-algebra over K and (L,dr), L =
@L', a DGLA.
Then L ®g A has a natural structure of DGLA by setting:

(Leg A)" = &(L @k An_i),

dz®a)=drzr®a+ (—~1)"r®@daa, [rRa,y®b=(-1)"Yx,y @ ab.

ExamMpLE V.22. Let E be a holomorphic vector bundle on a complex manifold M.
We may define a DGLA L = @LP, LP = T'(M, A°P(&nd(E))) with the Dolbeault
differential and the natural bracket. More precisely if e,g are local holomorphic
sections of &nd(FE) and ¢, differential forms we define d(¢e) = (0¢)e, [pe,1g] =

¢ Nle, gl.

EXAMPLE V.23. Let (F*,d) be a sheaf of dg-algebras on a topological space; the
space Der*(F*, F*) is a DGLA with bracket [f,g] = fg — (—1)/9gf and differential
6(f) = [d, f].

DEFINITION V.24. We shall say that a DGLA L is ady-nilpotent if for every ¢ the
image of the adjoint action ad : L® — End(L?) is contained in a nilpotent (associative)
subalgebra.

EXERCISE V.25.

1) Every nilpotent DGLA (i.e. a DGLA whose descending central series is definitively
trivial) is adp-nilpotent.

2) If L is adg-nilpotent then LC is a nilpotent Lie algebra.

3) The converses of 1) and 2) are generally false. A

DEFINITION V.26. A linear map f: L — L is called a derivation of degree n if
f(LY) € L' and satisfies the graded Leibnitz rule f([a,b]) = [f(a), b]+(—1)"%[a, f(b)].

We note that the Jacobi identity is equivalent to the assertion that, if @ € L’ then
ad(a): L — L, ad(a)(b) = [a,b], is a derivation of degree i. The differential d is a
derivation of degree 1.

By following the standard notation we denote by Z!(L) = ker(d: L* — L'*1),
Bi(L) = Im(d: LI~ — L¥), H'(L) = Z(L)/B'(L).

DEFINITION V.27. The Maurer-Cartan equation (also called the deformation equa-
tion) of a DGLA L is

1
da+§[a,a]:0, ac L.

The solutions MC(L) C L' of the Maurer-Cartan equation are called the Maurer-
Cartan elements of the DGLA L.

There is an obvious notion of morphisms of DGLAs; we denote by DGLA the
category of differential graded Lie algebras.
Every morphism of DGLAs induces a morphism between cohomology groups. It is
moreover clear that morphisms of DGLAS preserve the solutions of the Maurer-Cartan
equation.
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A quasiisomorphism of DGLASs is a morphism inducing isomorphisms in cohomology.
Two DGLA’s are quasiisomorphic if they are equivalent under the equivalence relation
generated by quasiisomorphisms.

The cohomology of a DGLA is itself a differential graded Lie algebra with the
induced bracket and zero differential:

DEeFINITION V.28. A DGLA L is called Formal if it is quasiisomorphic to its coho-
mology DGLA H*(L).

EXERCISE V.29. Let D: L — L be a derivation, then the kernel of D is a graded
Lie subalgebra. A

ExAMPLE V.30. Let (L,d) be a DGLA and denote Deri(Lz L) the space of deriva-
tions f: L — L of degree i. The space Der*(L, L) = @;Der'(L, L) is a DGLA with
bracket [f,g] = fg — (—1)79gf and differential §(f) = [d, f].

For a better understanding of some of next topics it is useful to consider the following
functorial construction. Given a DGLA (L,[,],d) we can construct a new DGLA
(L',[,),d") by setting (L") = L’ for every i # 1, (L')! = L'@K d (here d is considered
as a formal symbol of degree 1) with the bracket and the differential

[a +vd, b+ wd]' = [a,b] + vd(b) + (—1)"wd(a), d'(a+vd) =[d,a+vd] = d(a).

The natural inclusion L C L’ is a morphism of DGLA; for a better understanding
of the Maurer-Cartan equation it is convenient to consider the affine embedding
¢: L' — (L"), ¢(a) = a + d. For an element a € L' we have

Aa) + glaa =0 = [6(a) dla)] =0,

Let’s now introduce the notion of gauge action on the Maurer-Cartan elements of an
adg-nilpotent DGLA. Note that [L°, L' ®K d] C L'; in particular if L is adp-nilpotent
then also L' is adg-nilpotent.

Given an adp-nilpotent DGLA N, the exponential of the adjoint action gives homo-
morphisms of groups

exp(N°) = (N°, %) — GL(N?), e 24, €L

where * is the product given by the Baker-Campbell-Hausdorff formula.
These homomorphisms induce actions of the group exp(N®) onto the vector spaces
N' given by

e = e2U)p = g i'ad(a)"(b).
n!
n>0

LEMMA V.31. In the above notation, if W is a linear subspace of N* and [N°, N*] C
W then the exponential adjoint action preserves the affine subspaces v+ W, v € N;.

PROOF. Let a € N°, v € N*, w € W, then
1 _ 1
vtw)=v+ Y —ad(a)" Ha o)+ —ad(a)" (w).
n>1 n>0
O
LEMMA V.32. In the above notation the exponential adjoint action preserves the

quadratic cone Z = {v € N1 |[v,v] = 0}.
For every v € Z and u € N~1 the element exp([u,v]) belongs to the stabilizer of v.
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PROOF. By Jacobi identity 2[v, [a,v]] = —2[v, [v, a]] = [a, [v,]] for every a € N?,
veNL
Let a € NY be a fixed element, for every u € N! define the polynomial function
F,: K — N? by
Fu(t) _ e—ad(ta) [ead(ta)u7 ead(ta)u]‘
For every s,t € K, if v = ¢?@(5®)y then

0F,
ot

Fu(t + S) = 6ad(_sa)Fv(t)v (0) = —[CL, [Ua UH + 2[7}7 [a’ UH =0

oF, _ OF,

W(S) = €ad( Sa)UW(O) =0.
Since the field K has characteristic 0 every function F, is constant, proving the
invariance of Z.
If u € N~! and v € Z, then by Jacobi identity [[u,v],v] = ad([u,v])v = 0 and then
exp([u,v])v = wv. O

If L is an adg-nilpotent DGLA then V.31 and V.32 can be applied to N = L'. Via the
affine embedding ¢: L' — (L')!, the exponential of the adjoint action on L’ induces
the so called Gauge action of exp(L") over the set of solution of the Maurer-Cartan
equation, given explicitly by

cap(a)(w) = 67 (1 g(w) = 3 ~ad(a)"(w) = 3 ~ad(a)" " (do)
n>0 n>1
ad(a)™
w + nz;o nt 1)'([a,w] —da)

REMARK V.33. If w is a solution of the Maurer-Cartan equation and u € L™ then
[w,u] + du = [w + d,u] € L° belongs to the stabilizer of w under the gauge action.
For every a € L%, w € L', the polynomial v(t) = exp(ta)(w) € L' ® K[t] is the
solution of the “Cauchy problem”

D _ (a,4(1)] - da

5. Functors of Artin rings

5-A. Basic definitions. We denote by:

e Set the category of sets in a fixed universe; we also make the choice of a fixed
set {0} € Set of cardinality 1.

e Grp the category of groups.

e Artg the category of local Artinian K-algebras with residue field K (with as
morphisms the local homomorphisms). If A € Artk, we will denote by m4 its
maximal ideal.

A small extension e in Artg is an exact sequence of abelian groups
e: 0—M-BLA—0

such that B-254 is a morphism in Artx and kerp = i(M) is annihilated by the
maximal ideal of B (that is, as a B-module it is a K-vector space).
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Given a surjective morphism B — A in Artg with kernel J, there exists a sequence
of small extensions

O—>m%J/m%+1J—>B/m%+1j—>B/m%J—>0, n > 0.

Since, by Nakayama’s lemma, there exists ng € N such that m%.J = 0 for every n > ng
we get that every surjective morphism is Artg is the composition of a finite number
of small extensions.

DEFINITION V.34. A Functor of Artin rings is a covariant functor F': Artg — Set
such that F(K) ~ {0}.

ExAMPLE V.35. If V is a K-vector space we may interpret V as a functor of Artin
rings V: Artg — Set, V(A) = V @ my. If V = 0 we get the trivial functor
0: Artg — Set.

The functors of Artin rings are the object of a new category whose morphisms are
the natural transformation of functors. A natural transformation n: FF — G is an
isomorphism if and only if n(A): F(A) — G(A) is bijective for every A € Artk.

DEFINITION V.36. Let F,G: Artg — Set be two functors of Artin rings and
n: F — G a natural transformation; n is called smooth if for every small extension

0—M—B-2.4—0
the map
(n,p): F(B) — G(B) Xg(a) F'(4)

is surjective.
A functor of Artin rings F' is called smooth if the morphism F' — 0 is smooth.

EXERCISE V.37. F': Artgx — Set is smooth if and only if for every surjective mor-
phism B — A is Artg, the map F(B) — F(A) is also surjective.
If V is a vector space then V is smooth as a functor of Artin rings (cf. Exam-
ple V.35). A

EXERCISE V.38. Let R be an analytic algebra and let hr: Artc — Set be the
functor of Artin rings defined by hr(A) = Moran (R, A).

Prove that hpr is smooth if and only if R is smooth. A

ExXAMPLE V.39. Let My be a compact complex manifold and define for every A €
AI’t(C

DefMO (A) = DefMO (O}Qo) = Def]\/[0 (X, 0)

where (X, 0) = Spec(A) is a fat point such that Ox o = A; since it is always possible
to write A as a quotient of C{z1,...,z2,} for some n > 0, such a fat point (X,0)
always exists. According to II1.12 the isomorphism class of (X,0) depends only on
A.

Every morphism Ox oy — Oy, in Artc is induced by a unique morphism (Y,0) —
(X,0). The pull-back of infinitesimal deformations gives a morphism Def;, (X, 0) —
Def s, (Y, 0). Therefore Defyy, : Artc — Set is a functor of Artin rings.

DEFINITION V.40. The tangent space to a functor of Artin rings F': Artgx — Set
is by definition

tF:F<H(<t—2[t)]> =FK ®Ke), =0
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EXERCISE V.41. Prove that, for every analytic algebra R there exists a natural
isomorphism t5,,, = Derc (R, C) (see Exercise V.38). A

5-B. Automorphisms functor. In this section every tensor product is in-
tended over K, i.e ® = ®x. Let S—>R be a morphism of graded K -algebras,
for every A € Artg we have natural morphisms S ® A——R ® A and R ®x ALR,
p(x ® a) = za, where @ € K is the class of a in the residue field of A.

LEMMA V.42. Given A € Artg and a commutative diagram of morphisms of graded
K -algebras

S®A—>R®A
2
[ p
Ro AR
we have that f is an isomorphism and f(R® J) C R® J for every ideal J C A.

PROOF. fis a morphism of graded A-algebras, in particular for every ideal J C A,
f(R®J) C Jf(R®A) C R®J. In particular, if B = A/J, then f induces a morphism
of graded B-algebras f: R® B — R® B.

We claim that if m4J = 0 then f is the identity on R ® J; in fact for every z € R,
flz®l)—2x®1 ckerp=R®my4 and then if j € J, z € R.

feej)=jf@Eel)=r2j+j(frel)-r01)=2].

Now we prove the lemma by induction on n = dimg A, being f the identity for n = 1.
Let

0—J—A—B—0

be a small extension with J # 0. Then we have a commutative diagram with exact
rows

0 — R®J — R®A — R®B — 0

b

0 — R®J — R®A — R®B — 0
By induction f is an isomorphism and by snake lemma also f is an isomorphism. [J

DEFINITION V.43. For every A € Artyg let Autgp,g(A) be the set of commutative
diagrams of graded K -algebra morphisms

SRA—R®A

|

R® A R

According to Lemma V.42 Autg/g is a functor from the category Artk to the
category of groups Grp. Here we consider Autg/g as a functor of Artin rings (just
forgetting the group structure).

Let Der(R, R) be the space of S-derivations R — R of degree 0. If A € Artg and
J C my is an ideal then, since dimg J < oo there exist natural isomorphisms

Derd(R,R) ® J = Der%(R, R® J) = Derdy s(R® A, R® J),
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where d = ", d; ® j; € Der%(R, R) ® J corresponds to the S ® A-derivation

d:RRA—R®JCR®A,  dz®a)=) dz)® ja.

For every d € Der, ,(R® A, R® A) denote d" = do...od the iterated composition
of d with itself n times. The generalized Leibnitz rule gives
n
n .
d"(w) = d'(u)d"! R® A.
(w) =) (l) (wd"*(v), w,veER®

1=0

Note in particular that if d € Der2(R, R) ® m4 then d is a nilpotent endomorphism
of R® A and

dm
€d:ZH

n>0
is a morphism of K-algebras belonging to Autg,g(A).
PROPOSITION V.44. For every A € Artg the exponential
exp: Derd(R,R) ® my — Autr/g(A)

s a bijection.

PRrROOF. This is obvious if A = K; by induction on the dimension of A we may
assume that there exists a nontrivial small extension

0—J—A—B—0

such that exp: Derd(R, R) ® mp — Autg/s(B) is bijective.

We first note that if d € Der2(R, R) @ ma, h € Derd(R, R) ® J then d’'h/ = hid' = 0
whenever j > 0, j + ¢ > 2 and then et = ¢ + h; this easily implies that exp is
injective.

Conversely take a f € Autg/g(A); by the inductive assumption there exists d €

Derl(R, R) @ my4 such that f = ed € Autp/s(B); denote h = f—e: R®A— R®.J.
Since h(ab) = f(a)f(b) — e%(a)e?(b) = h(a)f(b) + e4(a)h(b) = h(a)b + @h(b) we have
that h € Der2(R, R) ® J and then f = edt". O

The same argument works also if S — R is a morphism of sheaves of graded K-
algebras over a topological space and Derl(R, R), Aut r/s(A) are respectively the
vector space of S-derivations of degree 0 of R and the S ® A-algebra automorphisms
of R ® A lifting the identity on R.

EXAMPLE V.45. Let M be a complex manifold, R = AO’*, S = ﬁ}k\/l According
to Proposition 1V.24 Der(R, R) = T'(M, A%?(Tyr)) and then the exponential gives
isomorphisms

exp: T(M, A" (Ty)) @ my — Autp/s(A).

Since exp is clearly functorial in A, interpreting the vector space I'(M, A%°(Tyy)) as a
functor ( Example V.35), we have an isomorphism of functors exp: T'(M, A%9(Ty;)) —
AlltR/S .
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5-C. The exponential functor. Let L be a Lie algebra over K, V a K-vector
space and §: L — End(V) a representation of L.
For every A € Artg the morphism & can be extended naturally to a morphism of Lie
algebras £: L ® A — Endy(V ® A). Taking the exponential we get a functorial map

cap(€): Lomy — CLAV ®A),  eap(©)(a) = =3 S
i=0

where GL 4 denotes the group of A-linear invertible morphisms.
Note that exp(&)(—z) = (exp(€)(x))~!. If £ is injective then also exp(€) is injective
(easy exercise).

THEOREM V.46. In the notation above the image of exp(§) is a subgroup. More
precisely for every a,b € L @ my there exists ¢ € L @ my such that e$(@ef(0) = ¢£(©)
and a + b — ¢ belong to the Lie ideal of L ® my generated by [a,b].

ProoF. This is an immediate consequence of the Campbell-Baker-Hausdorff for-
mula. O

In the above notation denote P = End(V) and let ad(¢): L — End(P) be the
adjoint representation of &,
ad(§)(x) f = [§(x), [] = &£(@)f — f&(x).

Then for every a € L@my, f € Enda(V ® A) = P ® A we have (cf. Exercise V.1,
(31, 2.3])

(9@ f _ (€(@) po—t(a)

6. Deformation functors associated to a DGLA

Let L = @L! be a DGLA over K, we can define the following three functors:

1. The Gauge functor G : Artg — Grp, defined by G (A) = exp(L’ @ m4). It
is immediate to see that G, is smooth.
2. The Maurer-Cartan functor MCp: Artg — Set defined by

MCL(A) = MC(L®my) = {l‘ € L1®mA

1
d:v+§[x,:c] :0}.

3. The gauge action of the group exp(L’ ® m4) on the set MC(L ® my) is
functorial in A and gives an action of the group functor G over MCpr. We
call Def;, = MCp /G|, the corresponding quotient. By definition Def(A) =
MCL(A)/GL(A) for every A € Artk .

The functor Defy, is called the deformation functor associated to the DGLA
L.
The reader should make attention to the difference between the deformation functor
Def, associated to a DGLA L and the functor of deformations of a DGLA L.

PROPOSITION V.47. Let L = ®L' be a DGLA. If [L', LY N Z%(L) C B*(L) (e.g. if
H?(L) =0) then MCy, and Defy, are smooth functors.

PRrOOF. It is sufficient to prove that for every small extension
0—J—AB—0

the map MC(L ® my)——MC(L ® mp) is surjective.
Given y € L' ® mp such that dy + %[y, y] = 0 we first choose z € L' ® m4 such that
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a(x) = y; we need to prove that there exists z € L'®.J such that z—z € MC(L®my).
1
Denote h = dx + 5[30,:10] € L?> ® J; we have

dh = Px + [dz, 2] = [h, 2] — %[[m,x],m].

Since [L? ® J, L' ® m4] = 0 we have [h, 2] = 0, by Jacobi identity [[z, ], 2] = 0 and
then dh = 0, h € Z%(L) ® J.

On the other hand h € ([L', L'] + B?(L)) ® m4, using the assumption of the Propo-
sition h € (B?(L)®m4)NL?® J and then there exist z € L' ® m4 such that dz = h.
Since Z'(L) ® my — Z'(L) ® mp is surjective it is possible to take z € L' ® J: it is
now immediate to observe that z —z € MC(L ® my). O

EXERCISE V.48. Prove that if MC}, is smooth then [Z1, Z1] C B2 A

PROPOSITION V.49. If L&m4 is abelian then Defp(A) = HY(L)®m4. In particular
tpet, = HY(L) ® K¢, €2 = 0.

PrROOF. The Maurer-Cartan equation reduces to dr = 0 and then MCp(A) =
ZHL)®@ma. Ifa € L’ @my and 2 € L' @ ma we have

d n
expla)r = x + 7;) (C; _(:L)l)! ([a,z] —da) =z — da
and then Def; (4) = Z{)ema _ HYL)®m 0
B = a0 @my) A
EXERCISE V.50. If [Z1, Z1] = 0 then MC(A) = Z! ® m4 for every A. A

It is clear that every morphism «: L — N of DGLA induces morphisms of functors
G — Gy, MCp, — MCpy. These morphisms are compatible with the gauge actions
and therefore induce a morphism between the deformation functors Def,: Def; —
DefN.

The following Theorem V.51 (together its Corollary V.52) is sometimes called the
basic theorem of deformation theory. For the clarity of exposition the (nontrivial)
proof of V.51 is postponed at the end of Section 8.

THEOREM V.51. Let ¢: L — N be a morphism of differential graded Lie algebras
and denote by H'(¢): H'(L) — H"(N) the induced maps in cohomology.

1. If H'(¢) is surjective and H*(¢) injective then the morphism Defy: Defy —
Defn is smooth.

2. If HO(¢) is surjective, H' () is bijective and H*(¢) is injective then Defs: Def,
Defy is an isomorphism.

COROLLARY V.52. Let L — N be a quasiisomorphism of DGLA. Then the induced
morphism Def;, — Defy is an isomorphism.

EXERCISE V.53. Let L be a formal DGLA, then Defy, is smooth if and only if the
induced bracket [, ]: H' x H' — H? is zero. A

EXAMPLE V.54. Let L = @L* be a DGLA and choose a vector space decomposition
N'e BY(L) =L
Consider the DGLA N = @©N® where N* = 0if i < 1 and N* = L' if i > 1
with the differential and bracket induced by L. The natural inclusion N — L gives
isomorphisms H*(N) — H'(L) for every i > 1. In particular the morphism Defy —
Def, is smooth and induce an isomorphism on tangent spaces tpefy = tDef; -
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Beware. One of the most frequent wrong interpretations of Corollary V.52 asserts
that if L — N is a quasiisomorphism of nilpotent DGLA then MC(L)/exp(L°) —
MC(N)/exp(N°) is a bijection. This is false in general: consider for instance L = 0
and N = @N? with N =C fori=1,2, N' =0fori # 1,2, d: N' — N? the identity
and [a, b] = ab for a,b € N* = C.

Let T be the holomorphic tangent bundle of a complex manifold M. The Kodaira-
Spencer DGLA is defined as
KS(M)=oKS(M)?,  KS(M)? =T(M, A% (Ty))
with the Dolbeault differential and the bracket (cf. Proposition IV.24)

[¢dz1,pdzs] = (¢, ¢)dzr N dz;
for ¢, € A% (Twy), I,J C {1,....,n} and 21, ..., 2, local holomorphic coordinates.

THEOREM V.55. Let L = KS(My) be the Kodaira-Spencer differential graded Lie
algebra of a compact complexr manifold My. Then there exists an isomorphism of
functors

Def ys, = Defy.
PRrROOF. Fix A € Artc, according to Propositions IV.24 and V.44 the exponential
exp: LY @ my = I'(My, A% (Thy,)) @ myg — AutA()’*/ﬁ* (A)

is an isomorphism.
Therefore Def )y, is the quotient of

= 1
MCL(4) = {n € Do, ATy ) @ | B+ 5l =0},
by the equivalence relation ~, given by n ~ pu if and only if there exists a € LY @ m4
such that

T+ p=c(@+n)e = D@4 n)

or, equivalently, if and only if ¢(p) = e ¥ ¢(n), where ¢ is the affine embedding
defined above.

Keeping in mind the definition of the gauge action on the Maurer-Cartan elements we
get immediately that this equivalence relation on M C(A) is exactly the one induced
by the gauge action of exp(L? @ my4). O

COROLLARY V.56. Let My be a compact complex manifold. If either H*(Mo, Tny,) =
0 or its Kodaira-Spencer DGLA KS(My) is quasiisomorphic to an abelian DGLA,
then Def s, is smooth.

7. Extended deformation functors (EDF)

We will always work over a fixed field K of characteristic 0. All vector spaces,
linear maps, algebras, tensor products etc. are understood of being over K, unless
otherwise specified.

We denote by:

e NA the category of all differential Z-graded associative (graded)-commutative
nilpotent finite dimensional K -algebras.

e By NA N DG we denote the full subcategory of A € NA with trivial multi-
plication, i.e. A2 =0.
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In other words an object in NA is a finite dimensional complex A = ®A; € DG
endowed with a structure of dg-algebra such that A" = AA...A =0 for n >> 0.
Note that if A = Ag is concentrated in degree 0, then A € NA if and only if A is the
maximal ideal of a local artinian K -algebra with residue field K.

If A e NA and I C A is a differential ideal, then also I € NA and the inclusion
I — A is a morphism of dg-algebras.

DEFINITION V.57. A small extension in NA is a short exact sequence in DG
0—I—A-2B—0

such that « is a morphism in N A and [ is an ideal of A such that AI = 0; in addition
it is called acyclicif I is an acyclic complex, or equivalently if « is a quasiisomorphism.

EXERCISE V.58.
e Every surjective morphism A-"»B in the category NA is the composition of
a finite number of small extensions.
o If A-"5B is a surjective quasiisomorphism in NA and A; = 0 for every i > 0
then « is the composition of a finite number of acyclic small extensions. This
is generally false if A; # 0 for some i > 0.

A

DEFINITION V.59. A covariant functor F': NA — Set is called a predeformation
functor if the following conditions are satisfied:

1. F(0) = 0 is the one-point set.
2. For every pair of morphisms a: A — C, 6: B — C in NA consider the map
n: F(A X B) — F(A) XF(C) F(B)

Then:
(a) 7 is surjective when « is surjective.
(b) n is bijective when « is surjective and C' € NA N DG is an acyclic
complex.
3. For every acyclic small extension

0—I—A—B—0
the induced map : F(A) — F(B) is surjective.

If we consider the above definition for a functor defined only for algebras concen-
trated in degree 0, then condition 3 is empty, while conditions 1 and 2 are essentially
the classical Schlessinger’s conditions [67], [13], [52].

LEMMA V.60. For a covariant functor F': NA — Set with F'(0) = 0 it is sufficient
to check condition 2b of definition V.59 when C' =0 and when B = 0 separately.

PRrROOF. Follows immediately from the equality

AxcB=(AxB)xc0

where A—-C, BLC are as in 2b of V.59 and the fibred product on the right comes
from the morphism A x B — C, (a,b) — a(a) — B(b). O

DEFINITION V.61. A predeformation functor F': NA — Set is called a deformation
functor if F(I) = 0 for every acyclic complex I € NANDG.

The predeformation functors (resp.: deformation functors) together their natural
transformations form a category which we denote by PreDef (resp.: Def).
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LEMMA V.62. Let F': NA — Set be a deformation functor. Then:

1. For every acyclic small extension
0—I—A—B—0

the induced map : F(A) — F(B) is bijective.
2. For every pair of complexes I,J € NA N DG and every pair of homotopic
morphisms f,g: I — J, we have F(f) = F(g): F(I) — F(J).

PrROOF. We need to prove that for every acyclic small extension
0—TI—AB—0

the diagonal map F(A) — F(A) Xppy F'(A) is surjective; in order to prove this it
is sufficient to prove that the diagonal map A — A xpg A induces a surjective map
F(A) - F(AxpA). We have a canonical isomorphism 6: AxI — AxpgA, 0(a,x) =
(a, a+x) which sends Ax {0} onto the diagonal; since F(AxI) = F(A)xF(I) = F(A)
the proof of item 1 is concluded.

For item 2, we can write I = I9 x I', J = J% x J!, with d(I°) = d(J°) = 0 and I', J!
acyclic. Then the inclusion I°—=I and the projection .J 2,J9 induce bijections
F(I% = F(I), F(J°) = F(J). It is now sufficient to note that pfi = pgi: I —
JO. O

A standard argument in Schlessinger’s theory [67, 2.10] shows that for every pre-
deformation functor F' and every A € NA N DG there exists a natural structure of
vector space on F'(A), where the sum and the scalar multiplication are described by
the maps

Ax ATSA = F(Ax A) = F(A) x F(A)-%F(A)

seK, A-5A = F(A)-2F(A)

We left as an exercise to check that the vector space axioms are satisfied; if A — B
is a morphism in NA N DG then the commutativity of the diagrams

AxA 5 A A A
[ I et
BxB —— B B % B

shows that F'(A) — F(B) is K-linear. Similarly if F — G is a natural transfor-
mations of predeformation functors, the map F(A) — G(A) is K-linear for every
A e NANDG.

In particular, for every predeformation functor F' and for every integer n the sets
F(Q[n]) (see Example IV.7) and F (K [n]) are vector spaces and the projection p: Q[n] —
K [n] induce a linear map F(Q[n]) — F(K[n])

DEFINITION V.63. Let F be a predeformation functor, the tangent space of F' is the
graded vector space T'F[1], where

TF = @T"F, T""'F=TF[]" = coker(F(Q[n])2>F(K[n])), ne€Z.
nez
A natural transformation F — G of predeformation functors is called a quasiisomor-

phism if induces an isomorphism on tangent spaces, i.e. if T"F ~ T"(G for every
n.
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We note that if ' is a deformation functor then F(Q[n]) = 0 for every n and
therefore TF[1]" = T"T'F = F(Ke), where € is an indeterminate of degree —n € Z
such that €2 = 0.

In particular T*F = tpo, where FU: Artx — Set, FY(A) = F(my), is the truncation
of F' in degree 0.

One of the most important examples of deformation functors is the deformation
functor associated to a differential graded Lie algebra.

Given a DGLA L and A € NA, the tensor product L ® A has a natural structure
of nilpotent DGLA with

(LA =B A,
JEL

dx®a) =dz®a+ (—1)"r ®da

[z ®a,y®b] = (-1)""[z,y] © ab

Every morphism of DGLA, L — N and every morphism A — B in NA give a natural
commutative diagram of morphisms of differential graded Lie algebras

LA — N®A

| |

LB — N®B
The Maurer-Cartan functor MCr: NA — Set of a DGLA L is by definition

MCp(A) = MC(L® A) = {1: € (L A)t

1
dm+§[x,:c] :O}.

LEMMA V.64. For every differential graded Lie algebra L, MC, is a predeformation
functor.

PROOF. It is evident that M Cp(0) = 0 and for every pair of morphisms a: A —
C, 3: B— Cin NA we have

MCL(A Xc B) = MCL(A) XMCL(C) MCL(B)

Let 0——I—A-%>B——0 be an acyclic small extension and z € MC(B). Since «
is surjective there exists y € (L ® A)! such that a(y) = x. Setting

1
h=dy+3ly.y € (Lel)

we have

dh = %d[yvy] = [dy,y] = [h,y] - %[[y,y],y]-

By Jacobi identity [[y,y],y] = 0 and, since AI = 0 also [h,y] = 0; thus dh = 0 and,
being L ® I acyclic by Kiinneth formula, there exists s € (L ® I)! such that ds = h.
The element y — s lifts x and satisfies the Maurer-Cartan equation. We have therefore
proved that MCj, is a predeformation functor. O

EXERCISE V.65. Prove that MC: DGLA — PreDef is a faithful functor and
every differential graded Lie algebra can be recovered, up to isomorphism, from its
Maurer-Cartan functor. A
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It is interesting to point out that, if A — B is a surjective quasiisomorphism in NA,
then in general M CL(A) — MCL(B) is not surjective. As an example take L a finite-
dimensional non-nilpotent complex Lie algebra, considered as a DGLA concentrated
in degree 0 and fix a € L such that ad(a): L — L has an eigenvalue A # 0. Up to
multiplication of @ by —A~! we can assume A\ = —1. Let V C L be the image of
ad(a), the linear map Id+ad(a): V — V is not surjective and then there exists b € L
such that the equation = + [a, 2] 4 [a,b] = 0 has no solution in L.

Let u, v, w be indeterminates of degree 1 and consider the dg-algebras

B = Cu® Cu, B2=0,d=0

A =Cu& Cve Cw e Cdw, uv = uw = dw, vw = 0

The projection A — B is a quasiisomorphism but the element a®u+b®v € MCr(B)
cannot lifted to MCp(A). In fact if there exists { =a@u+bRv+rx@w € MCL(A)
then

0=de + 516, = (o + 2] + [a B]) © duw

in contradiction with the previous choice of a,b.

For every DGLA L and every A € NA we define Def,(A) as the quotient of MC(L®
A) by the gauge action of the group exp((L® A)°?). The gauge action commutes with
morphisms in NA and with morphisms of differential graded Lie algebras; therefore
the above definition gives a functor Defy: NA — Set.

THEOREM V.66. For every DGLA L, Defy,: NA — Set is a deformation functor
with T'Defy, = H*(L).

Proor. If C' € NANDG is a complex then L&C' is an abelian DGLA and accord-
ing to Proposition V.49, MC(C) = Z'(L ® C) and Def;,(C) = H'(L ® C). In par-
ticular T"Def;, = H' (L ® K[i — 1]) = H*(L) and, by Kiinneth formula, Def; (C) = 0
if C' is acyclic.

Since Defy, is the quotient of a predeformation functor, conditions 1 and 3 of V.59
are trivially verified and then it is sufficient to verify condition 2.
Let a: A — C, B: B — C morphism in NA with « surjective. Assume there are
given a € MCp(A), b € MCp(B) such that a(a) and ((b) give the same element in
Def,(C); then there exists u € (L ® C)° such that 3(b) = e“a(a). Let v € (L ® A)°
be a lifting of u, changing if necessary a with its gauge equivalent element e“a, we
may suppose a(a) = (b) and then the pair (a,b) lifts to M CL(A x¢ B): this proves
that the map

DefL(A X B) — DefL(A) XDefL(C) DefL(B)

is surjective.

If C = 0 then the gauge action exp((L® (A x B))?) x MCp(Ax B) — MC(Ax B)
is the direct product of the gauge actions exp((L ® A)°) x MCL(A) — MCL(A),
exp((L ® B)?) x MCp(B) — MCp(B) and therefore Defy (A x B) = Def(A) x
DefL(B).

Finally assume B = 0, C' acyclic complex and denote D = kera ~ A x¢ B. Let
a1,as € MCL(D), u € (L® A)° be such that as = e%ay; we need to prove that there
exists v € (L ® D)° such that ay = €a;.

Since a(a1) = a(az) = 0 and L&C is an abelian DGLA we have 0 = >0 = 0—da(u)
and then da(u) = 0. L ® C is acyclic and then there exists h € (L ® A)~! such
that da(h) = —a(u) and v + dh € (L ® D)°. Setting w = [a1,h] + dh, then,
according to Remark V.33, e”a; = a; and e“e“a; = e’a; = a9, where v = u xw
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is determined by Baker-Campbell-Hausdorff formula. We claim that v € L ® D: in
fact v =uxw =u+w =u+dh (mod [L ® A,L ® A]) and since A2 C D we have
v=uxw=u+dh=0 (mod L® D). O

LEMMA V.67. For every DGLA L, the projection w: MCp — Defy is a quasiiso-
morphism.

PROOF. Let i € Z be fixed; in the notation of V.63 we can write Qi — 1] =
K e @ Kde, where €2 = ede = (de)?> =0 and € = 1 — i, de = 2 — i. We have

MCr(Ke) = {ze € (L®Ke)d(ze) =0} = Z(L) @ Ke

MCL(Ke®Kde) = {ze + yde € (L@ Qi — 1)) | dze + (—1) "*zde + dyde = 0}
= {(—1)'dye + yde|y € L'},

Therefore the image of p: MCp(Ke ®Kde) — MCL(Ke) is exactly B(L) ® K e and
then

MCL(Q[i — 1)) ZMCL(K [i — 1)) —=Def (K [i — 1])—0

is exact. O

8. Obstruction theory and the inverse function theorem for deformation
functors

LEMMA V.68. Let F': NA — Set be a deformation functor; for every complex I €

NA NDG there exists a natural isomorphism

F(I)=@TF1) o H;,(I) = @T'Fe H_;(I)= H(TF ®I).
=/ i€Z

ProoF. Let s: H.(I) — Z.(I) be a linear section of the natural projection,
then the composition of s with the natural embedding Z.(I) — I is unique up to
homotopy and its cokernel is an acyclic complex, therefore it gives a well defined
isomorphism F'(H,.(I)) — F(I). This says that it is not restrictive to prove the
lemma for complexes with zero differential. Moreover since F' commutes with direct
sum of complexes we can reduce to consider the case when I = K *[n] is a vector space
concentrated in degree —n. Every v € I gives a morphism TF[1]" = F(K [n])——F(I)
and we can define a natural map TF[1]" ® I — F(I), x ® v — v(z). It is easy to
verify that this map is an isomorphism of vector spaces. L]

THEOREM V.69. Let 0—I——A-—"5B——0 be an exact sequence of morphisms in
NA and let F: NA — Set be a deformation functor.

1. If AI =0 then there exist natural transitive actions of the abelian group F(I)
on the nonempty fibres of F(A) — F(B).

2. If AI =0 then there exists a natural “obstruction map” F(B)O—b>F(I[1]) with
the property that ob(b) = 0 if and only if b belongs to the image of F(A) —

F(B).
3. If B is a complex, i.e. A?> C I, then there exist natural transitive actions of
the abelian group F(B[—1]) on the nonempty fibres of F(I) — F(A).
Here natural means in particular that commutes with natural transformation of func-
tors.

PROOF. [1] There exists an isomorphism of dg-algebras
AxTI—AxpgA; (a,t) — (a,a+1)
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and then there exists a natural surjective map

The commutativity of the diagram

AxIxI — AxI (a,t,s) +— (a,t+s)
AxI — A (a+t,s) — (a+t+s)

implies in particular that the composition of ¥z with the projection in the second
factor give a natural transitive action of the abelian group F(I) on the fibres of the
map F(A) — F(B).

[2] We introduce the mapping cone of ¢ as the dg-algebra C' = A® I[1] with the prod-
uct (a,m)(b,n) = (ab,0) (note that, as a graded algebra, C is the trivial extension of
A by I[1]) and differential

dC:<dA i ):A@I[l}—uél[l]@lm
0 dpp

We left as exercise the easy verification that C' € NA, the inclusion A — C and the
projections C' — I[1], C'— B are morphisms in NA.

The kernel of C' — B is isomorphic to I @ I[1] with differential

< dr Idpp >
0 dlm ’
Therefore 0— 1@ I[1]—C—B—0 is an acyclic small extension and then F(C) =

F(B).
On the other hand A = €' X;1;) 0 and then the map

F(A) — F(C) XF(I[I]) 0

is surjective. It is sufficient to define ob as the composition of the inverse of F'(C) —
F(B) with F(C) — F(I[1]).

3) The derived inverse mapping cone is the dg-algebra D = A@® B[—1] with product
(x,m)(z,n) = (zy,0) and differential

da 0
dp < N > :Ae B[-1] — A[ll]® B
Here the projection D — A and the inclusions inclusion I — D, B[—1] — D are
morphisms in NA.

Since 0— B[—1]—D—A—0 is a small extension, by Item 1, there exist natural
actions of F'(B[—1]) on the nonempty fibres of F'(D) — F(A). The quotient of I — D
is the acyclic complex B & B[—1], and then, according to 2b of V.59, F'(I) — F (D)
is an isomorphism. O

EXERCISE V.70. Prove that the stabilizers of the actions described in Theorem V.69
are vector subspaces. A

Given two integers p < ¢ we denote by NA} the full subcategory of NA whose
objects are algebras A = @A; such that A; # 0 only if p <i < gq.

THEOREM V.71. Let 0: F — G be a morphism of deformation functors. Assume
that 0: TF[1]" — TG[1]" is surjective for p—1 < i < q and injective forp <i < g+1.
Then:
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1. for every surjective morphism «: A — B in the category NAgf1 the morphism
(,0): F(A) — F(B) xg(5) G(A)

18 surjective.
2. 0: F(A) — G(A) is surjective for every A € NAJ .
3. 0: F(A) — G(A) is a bijection for every A € NAJ.

PROOF. The proof uses the natural generalization to the differential graded case
of some standard techniques in Schlessinger’s theory, cf. [13].

We first note that, according to Lemma V.68, for every complex I € NA} N DG
we have that 0: F(I) — G(I) is bijective, §: F(I[1]) — G(I[1]) is injective and
0: F(I[-1]) — G(I]—-1)) is surjective.

Moreover, since F'(0) = G(0) = 0, we have F'(0) X () G(A) = G(A) and then Item
2 is an immediate consequence of Item 1.
STEP 1: For every small extension in NAg_l,

0—IT—A-2B—0

and every b € F(B) we have either a=(b) = () or 8(a=1(b)) = a~1(0(b)).

In fact we have a commutative diagram

F(A) % F(B)

|7 l7

GA) % G(B)

and compatible transitive actions of the abelian groups F(I), G(I) on the fibres of
the horizontal maps. Since F(I) — G(I) is surjective this proves Step 1.

STEP 2: Let
0—IT—5A-2B—0

be a small extension in NA! ; and b € F(B). Then b lifts to F(A) if and only if
0(b) lifts to G(A).

The only if part is trivial, let’s prove the if part. If (b) lifts to G(A) then 0b(6(b)) =
0 in G(I[1]); since the obstruction maps commute with natural transformation of
functors and F(I[1]) — G(I[1]) is injective, also 0b(b) = 0 in F(I[1]) and then b lifts
to F(A).

STEP 3: For every surjective morphism 3: A — C' in the category NAZ_17 the
morphism

(a,0): F(A) — F(C) x¢(c) G(A)

is surjective.

Let J be the kernel of § and consider the sequence of homogeneous differential
ideals J = Jg D J;1 = AJy D Jo = AJy---. Since A is nilpotent we have J, # 0
and J,4+1 = 0 for some n > 0. Denoting by I = J,, and B = A/I we have a small
extension

0—IT—A-2B—0

By induction on dimg A we can assume that the natural morphism F(B) — F(C)X g ()
G(B) is surjective and therefore it is sufficient to prove that F((A) — F(B)x¢g)G(A)
is surjective.

Let a € G(A) be fixed element and let b € F(B) such that 6(b) = a(a). By Step 2
a~1(b) is not empty and then by Step 1 @ € 0(F(A)).
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STEP 4: For every surjective morphism f: A — B in the category NAJ and every
a € F(A) we define

Sr(a, f) ={§ € F(Axp A)|§ = (a,a) € F(A) xpp) F(A) C F(A) x F(A)}.

By definition, if f is a small extension and I = ker f then Sg(a, f) is naturally
isomorphic to the stabilizer of a under the action of F(I) on the fibre f~1(f(a)). It
is also clear that:
L. G(SF(aa f)) - SG(Q(a)a f)
2. If a: B — C is a surjective morphism if NA, then Sr(a, f) = b=} (Sr(a, af)),
where h: F(Axp A) — F(A x¢ A) is induced by the natural inclusions A x
A C Axc A

STEP 5: For every surjective morphism f: A — B in NA] and every a € F(A) the
map 0: Sp(a, f) — Sa(0(a), f) is surjective.

This is trivially true if B = 0, we prove the general assertion by induction on
dimg B. Let

0—I—B-C—0

be a small extension with I # 0, set ¢ = af and denote by h: A x¢c A — I the
surjective morphism in NAJ defined by h(ai,as) = f(a1) — f(az); we have an exact
sequence

0—Axp A—SAxo A0,
According to 2a of V.59 the maps
F(AxpA) — F(Axc A)Nnh™Y0);  Sg(a, f) — Sr(a,g) N h~1(0)

are surjective.

Let £ € Sq(6(a), f) and let n € Sg(a,g) such that 6(n) = o(€). Since F(I) = G(I)
we have h(n) = 0 and then 7 lifts to some & € Sp(a, f). According to Theorem V.69
there exist surjective maps commuting with 6

F(AxpA) x F(I[-1]))-F(A xp A) X paxca) F(A xp A)

G(A xp A) x GI[-1))-5G(A xp A) Xg(axea) G(A xp A)
Since F(I[—1]) — G(I[—1]) is surjective there exists v € F'(I[—1]) such that o(6(&1), (v))
(0(£1), €); defining € € F(A xg A) by the formula o(¢1,v) = (£1,€) we get 0(€)
and then § € Sp(a, f).
STEP 6: For every A € NAJ the map 0: F(A) — G(A) is injective.
According to Lemma V.68 this is true if A2 = 0; if A?> # 0 we can suppose by
induction that there exists a small extension

0—sI A2 B0

with I # 0 and §: F(B) — G(B) injective.

Let a1,a2 € F(A) be two elements such that 6(a;) = 6(az2); by assumption f(a;) =
f(az) and then there exists ¢t € F(I) such that ¥p(a1,t) = (a1,a2). Since ¥ is a
natural transformation 9¢(6(a1),0(t)) = (6(a1),6(az)) and then 6(t) € Sg(0(a1), ).
By Step 5 there exists s € Sp(a1,a) such that 6(s) = 6(t) and by injectivity of
0: F(I) — G(I) we get s =t and then a; = as.

U

As an immediate consequence we have:

COROLLARY V.72. A morphism of deformation functors 0: F' — G is an isomor-
phism if and only if it is a quasiisomorphism.
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PrROOF OF THEOREM V.51. We apply Theorem V.71 to the morphism of defor-
mation functors 6 = Defy: Def;, — Defy.
According to Theorem V.66, the first item of V.51 is exactly the first item of V.71
for p = 1,q = 0, while the second item of V.51 is exactly the third item of V.71 for
p=q=0. ]

9. Historical survey, V

The material Sections 1, 2 and 3 is standard and well exposed in the literature
about Lie algebras; in Sections 4, 5 and 6 we follows the approach of [52], while the
material of Sections 7 and 8 comes from [53].

Some remarks on the introduction of this Chapter:

A) Given a deformation problem, in general it is not an easy task to find a fac-
torization as in the introduction and in some cases it is still unknown.

B) Even in the simplest examples, the governing DGLA is only defined up to (non
canonical) quasiisomorphism and then the Theorem V.51 is a necessary background
for the whole theory.
For example, there are very good reasons to consider, for the study of deformations
of a compact complex manifold M, the DGLA L = @L?, where L’ is the completion
of T'(M, A% (Ty)) is a suitable Sobolev’s norm. According to elliptic regularity the
inclusion KS(M) C L is a quasiisomorphism of DGLA.
In general a correct procedure gives, for every deformation problem P with associated
deformation functor Defp, a connected subcategory P C DGLA with the following
properties:

1. If L is an object of P then Def;, = Defp.

2. Every morphism in P is a quasiisomorphism of DGLA.

3. If Morp(L, N) # 0 then the induced isomorphism Def,: Def;, — Defy is

independent from the choice of v € Morp (L, N).

C) It may happen that two people, say Circino and Olibri, starting from the same
deformation problem, get two non-quasiisomorphic DGLA governing the problem.
This is possible because the DGLA governs an extended (or derived) deformation
problem. If Circino and Olibri have in mind two different extensions of the problem
then they get different DGLA.

D) Although the interpretation of deformation problems in terms of solutions of
Maurer-Cartan equation is very useful on its own, in many situation it is unavoid-
able to recognize that the category of DGLA is too rigid for a “good” theory. The
appropriate way of extending this category will be the introduction of L..-algebras;
these new objects will be described in Chapter IX.
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CHAPTER VI

Kahler manifolds

This chapter provides a basic introduction to Kéhler manifolds. We first study
the local theory, following essentially Weil’s book [80] and then, assuming harmonic
and elliptic theory, we give a proof of the 00-lemma which is presented both in the
classical version (Theorem VI.37, Item 2) and in the “homological” version (Theo-
rem VI.37, Item 1).

The material of this Chapter is widely present in the literature, with the possible
exception of the homological version of 90-lemma; I only tried to simplify the pre-
sentation and some proofs. The main references are [80], [81] and [11]

1. Covectors on complex vector spaces

Given a complex vector space E of dimension n we denote by:
e EY = Homc(FE,C) its dual.
e Fr = E ®gr C, with the structure of C-vector space induced by the scalar
multiplication a(v ® b) = v ® ab.
e F its complex conjugate.
The conjugate E is defined as the set of formal symbols ¥, v € E with the vector
space structure given by

VH+W =10+ w, av = av.

The conjugation ~: E — E, v — T is a R-linear isomorphism.
There exists a list of natural isomorphisms (details left as exercise)
1. (E¢)Y = (EY)¢ = Homg(E,C)
2. BV =E" given by f@)=f(v), fEEY, vEE.

3. E@F — Ec, (v,0) —v®1—iwv®i+w®1+iw®i, being i a square root
of —1.
4. BV @ BV — B¢ = Homg(E,C), (f,9)(v) = f(v) + g(v).

Under these isomorphisms, the image of EY (resp.: EV) inside EY is the subspace
of f such that f(iv) = if(v) (resp.: f(iv) = —if(v)). Moreover EV = EL, E' = FpL.

For 0 < p,q < n we set A1 = AP EY @ \! E’: this is called the space of (p,q)-
covectors of E. We also set AP = @445, A% (the space of p-covectors) and A =
D pA¥Y. Denote by Pyp: A — A%, P,: A — AP the projections.

If z1,..., 2, is a basis of EV then 71, ... , %, is a basis of E" and therefore

Zig AN N2 AT AT, i< <y 1 <. < g

is a basis of AP?. Since EY = EY & E’, we have N'EY = A.
The complex conjugation is defined in A and gives a R-linear isomorphism —: A — A.

MARCO MANETTI: Lectures on deformations of complexr manifolds
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On the above basis, the conjugation acts as

Zig N Nzg NZp N NZg = (S0P ANz NB NN,
Since A®b = A% we have P, (1) = Pya(n).
DEeFINITION VI.1. The operator C': A — A is defined by the formula

C = Z ’iaimeb.
a,b

Note that C(u) = C(u) (i.e. C is a real operator) and C? = 3 (—1)PP,.

P

2. The exterior algebra of a Hermitian space
Let E be a complex vector space of dimension n. A Hermitian form on F is a
R-bilinear map h: E x E — C satisfying the conditions
1. h(av,w) = ah(v,w), h(v,aw) = ah(v,w), a € C, v,w € E.
2. h(w,v) = h(v,w), v,w € E.
Note that h(v,v) € R for every v. h is called positive definite if h(v,v) > 0 for every
v # 0.

DEFINITION VI.2. A Hermitian space is a pair (E, h) where h is a positive definite
Hermitian form on E.

It is well known that a Hermitian form h on a finite dimensional vector space F is
positive definite if and only if it admits a unitary basis, i.e. a basis e1,... ,e, of F
such that h(e;,e;) = d;;.

Every Hermitian space (E, h) induces canonical Hermitian structures on the asso-
ciated vector spaces. For example

h: ExE— C, h(v,w) = h(v,w)
and
?: NE x NE — C, hP(v1 Ao Avp,wr Ao A wp) = det(h(vg, wj))

are Hermitian forms. If e1,... , e, is a unitary basis of £ then ey,... ,€, is a unitary
basis for h and e;; A... Ae;,, 11 <...<1p, is a unitary basis for h?.

Similarly, if (F, k) is another Hermitian space then we have natural Hermitian struc-
tures on £ ® F and Homg (F, F') given by

hk: EQF —C,  hk(ve® f,w®g)=nh(v,w)k(f,g)

hk: Home(E, F) = C,  hYE(f.9) =Y Kk(f(e:), g(es))
=1

where e; is a unitary basis of E. It is an easy exercise (left to the reader) to prove
that hVk is well defined and positive definite.

In particular the complex dual EV is a Hermitian space and the dual basis of a uni-
tary basis for h is a unitary basis for h".

Let e1,... ,e, be a basis of E, 21,...,2, € EV its dual basis; then

h(v,w) = Z hijzi(v)z;(w)
4.J
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where h;; = h(e;,e;). We have hj = h—” and the basis is unitary if and only if
hij = 0;;. We then write h = Zij hijz; ® Zj; in doing this we also consider h as an
element of EV @ E’ = (E® E)V.

Taking the real and the imaginary part of h we have h = p—iw, with p,w: ExX E —
R. It is immediate to observe that p is symmetric, w is skewsymmetric and

pliv,iw) = p(v,w),  w(iv,iw) = wv,w),  pliv,w) = wlv,w).
Since z; AZj = 2z; ® Zj — Z; @ z;, we can write
w= g(h—h) = §Zhijzi/\2j e A,
ij
Note that w is real, i.e. @ = w, and the Hermitian form is positive definite if and only

if for every v # 0, h(v,v) = p(v,v) = w(v,iv) > 0. The basis e1,... , ¢, is unitary if
. 1 —
and only if w = 3 E zi NZ;.

i

Let now ey, ... ,e, be a fixed unitary basis of a Hermitian space (E,h) with dual
. [ . .
basis z1,... , 2, and denote u; = §zj N7Zj; if z; = xj + 1y; then u; = z; A y; and
An
— =uUN... AU, =1 AL N .. AN A Yn.
n!
Since x1,Y1, ... ,Zn,Yn is a system of coordinates on F, considered as a real oriented

vector space of dimension 2n and the quadratic form p is written in this coordinates

n

pv,v) = (2i(0)* +yi(v)?),

i=1

we get from the above formula that w"\"/n! € A**Homg (E, R) is the volume element
associated to the scalar product p on E. R

For notational simplicity, if A = {a1,... ,a,} C{1,... ,n} and a1 < az <... < ap,
we denote |A| = p and

ZA=Zag N NZayy, ZA=Za; N NZa,, UA=Ugy Ao N\ Ug,.

For every decomposition of {1,... ,n} = AUBU M U N into four disjoint subsets,

we denote

2ANZg Auy € AlAIFIM|BI+M]

1
ZABMN = —F———
v/ 2lAl+|B|

These elements give a basis of A which we call standard basis.
Note that ZA,B,M,N = (—1)|A| ‘BIZB’AM?N.

DEFINITION VI.3. The C-linear operator *: AP? — A"~ %""P ig defined as
s2a,pmN = sgn(A, B)i Bl g v,
where sgn(A, B) = %1 is the sign compatible with the formulas
(2) ZA,B,M,N N *ZABMN = ZABM,N N¥ZABMN = UL A ... A\ Up.

(3)

_1 (JA+[BD(A[+]B|+1)
C™ xzapmnN = (—1) 2

(p+q)(g+q+1) +|M|

zag,NM = (—1) ZA,B,N,M-

EXERCISE VI.4. Verify that Definition VI.3 is well posed. A
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In particular

|Al+[ B | A+ Bl+2[M|

“*zapmn = (1) zagMN = (—1) ZA,B,M,N

and then
(C )2 =1d, =C*=) (-1)FB,
p

If we denote vol: C — A™" the multiplication for the “volume element” w”"/n!,
then vol is an isomorphism and we can consider the R-bilinear maps

(,): A% x A% C, (v, w) = vol (v AFw) = vol ! (v A ).
Clearly (, ) is C-linear on the first member and C-antilinear in the second; since
1 A=A ,B=B M=M N=N

(24,B,M,Ns A", B/ M!,N') =
0 otherwise

we have that (, ) is a positive definite Hermitian form with the z4 g p n's, |A|+| M| =
a, |B| 4+ |M| = b, a unitary basis; since * sends unitary basis into unitary basis we
also get that : A% — A"~b"=4 i an isometry.

LEMMA VL5. The Hermitian form (,) is the Hermitian form associated to the
Hermitian space (E,h/2). In particular (, ) and % are independent from the choice
of the unitary basis e1,... ,ey,.

Proor. The basis \/561, .. ,\/ﬁen is a unitary basis for h/2 and then the stan-
dard basis is a unitary basis for the associated Hermitian structures on A.
From the formula (v, w)w" = n!(v A ¥w) and from the fact that the wedge product
is nondegenerate follows that x depends only by w and (, ). ]

Consider now, for every j = 1,... ,n, the linear operators

Lj: AP? — Ap+1,q+17 Lj(n) =1 Auj,

2
Ajt AP APTRL A () = (;e—w > ’

where - denotes the contraction on the right. More concretely, in the standard basis

ZA,B,MU{i},N—{i} ifieN
Liza B MmN =

0 otherwise

ZA,B,M—{i},NU{i} ifieM
NizaBMN =

0 otherwise

It is therefore immediate to observe that L;x = *A; and xL; = A;*. Setting L =
> Li, A=73", A; we have therefore

L(n)=nAw, A=x""Lx=xLx1,

LEMMA VI.6. The operators L and A do not depend from the choice of the unitary
basis.

PROOF. w and * do not depend. ]
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ProrposiTioN VI.7. The following commuting relations hold:

2n
[L,C]1=0, [AC]=0, [C]=0, [AL=) (n—p)P,
p=0
PROOF. Only the last is nontrivial, we have:
Lzp MmN = Z ZA,B,MU{i},N—{i}> AzaBMN = Z ZA,B,M—{i},NU{i}»
€N ieEM

ALza B MmN = Z ZA,B,M,N T Z Z ZA,B,MU{i}—{5},NU{j}—{i}s

ieN jeMicN

LAzaBuN = Z ZA,B,M,N + Z Z ZA,B,MU{i}—{j},NU{j}—{i}"

€M JjEM ieN
Therefore we get
(AL = LA)zamN = (IN| = [M])2a,8,mN = (n — |A| = |B| = 2[M|)24,8,mN-
and then

3. The Lefschetz decomposition

The aim of this section is to study the structure of A** EV as a module over the

algebra ® generated by the linear operators C~'x, L, A.
In the notation of the previous section, it is immediate to see that there exists a direct
sum decomposition of ®-modules A\** EV = @ Va p, where V4 p is the subspace
generated by the 2n=IAI=1Bl glements 2A,B,M,N, being A, B fixed.
It is also clear that every V4 p is isomorphic to one of the ®-modules V' (h,7), h € N,
7 = +1, defined in the following way:

1. V(h,7) is the C-vector space with basis uy;, M C {1,...,h}.

2. The linear operators L, A and C~'x act on V(h,7) as

Lup = ZUMU{i}7 Aupr = ZUM—{i}? C'_l*uM:TuMC,
igM ieM
where M¢ = {1,... ,h} — M denotes the complement of M.

We have a direct sum decomposition

V(h,7) = b Vi
a=h (mod 2)

where V,, is the subspace generated by the uy; with |[M¢| — |[M| = «. An element of
V, is called homogeneous of weight «. Set P,: V(h,7) — V, the projection.

Note that L: Vo, — Via_a, A: Vy — Vo and C71%: V, — Vg,

We have already seen that

A, L] = ZaPa, LC™ % =07 5 A, C'xL=AC""x.
a€Z
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A simple combinatorial argument shows that for every r > 0,
L'upy = ! Z UN.
MCN,|N|=|M|+r
LEMMA VI.8. For every r > 1 we have
AL =Y r(a—r+1) L' P,
o

ProoFr. This has already done for r = 1, we prove the general statement for
induction on r. We have

AL = [A L+ LA L =) rla—r+ DL 'PaL+ > aPa.
(6% «
Since P,L = LP, .2 we have
AL = rla—r+ )L Paya+ Y aPa=)» (rla—r—1)+a)L'P,.
[0

o «

DEeFINITION VI.9. A homogeneous vector v € V,, is called primitive if Av = 0.

ProprosITION VI.10. Let v € V,, be a primitive element, then:

1. L9 =0 for every ¢ > max(a +1,0). In particular if o < 0 then v = L% = 0.
2. If a« > 0, then for everyp >q >0

P
APTILPy = H r(a —r+1)L;
r=q+1

in particular A*L% = a!?v.
ProOOF. We first note that for s, > 1
ASL"v = AS7HA Lo = r(a — r + DAL o,

and then for every p > ¢ >0
p
APTILPy = H r(o—r+1)L%.
r=q+1
If p>q > «then r(aw —r 4+ 1) # 0 for every r > ¢ and then L% = 0 if and only if
APT9[Py = 0: taking p >> 0 we get the required vanishing. O

LEmMMA VLI1. Let o =2 0, m = (h— @) /2 and v = 35—, amup € Vo, aym € C.
If v is primitive, then for every M
apnr = (—l)m Z ay.
NCM¢,|N|=m

PROOF. For m = 0 the above equality becomes ap = ap and therefore we can

assume m > 0. Let M C {1,...,h} be a fixed subset of cardinality m, since
0=Av = Z aHZuH,{i} = Z UNZGNU{Z'}
|H|=m i€eH IN|=m—1 1¢N

we get for every N C {1,...,h} of cardinality m — 1 the equality

Ry : Z anu{i} = — Z aNU{i}-

iEM—N igMUN
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For every 0 < r < m denote by
ST = Z ar.
|H|=m,|HNM |=r

Fixing an integer 1 < r < m and taking the sum of the equalities Ry, for all N such
that [N N M|=r—1 we get

rSy=—(m-—r+1)S,_

and then
Sm—1 25m—2 m/!
=S, =- = =...=(-1)"—=Sy=(-1)™ .
anM " m m(m — 1) (=1) m!”° (=1) Z N
NCMe,|N|=m
]
LEMMA VI.12. Ifv € V,, a > 0, is primitive, then for every 0 <r < «
|
—1 ro. _1\ym T a—r
C 7« L'v=r1(-1) —(a—r)!L v,
where m = (h — «) /2.
ProOOF. Consider first the case r = 0; writing v = > ayuy with |[N| = m,
ay € C, we have:
L%
CU STTED DI SN ST SRV S
|N|=m NCM INJ=m  MCN°® |M|=m NCMe
|[M|=m+a |[M|=m IN|=m

Clyv=r g apupe.
|[M|=m

The equality C~1 v = 7(a!) 71 L% follows immediately from Lemma VI.11. If r > 1
then

_1)ym
ClxLTv=A"C"'xov= gATLO‘U.
ol
Using the formula of VI.10 we get
. DU — !
Cl«L'v= r(=ym jla—j+ 1)L v = T(—l)mTiLo‘_rv.

a!
j=oa—r+1

THEOREM VI.13. (Lefschetz decomposition)
1. Every v € V, can be written in a unique way as
v = Z L v,
r>max(—a,0)
with every vy, € Vyior primitive.

2. For a fized ¢ > h there exist noncommutative polynomials G&,(A, L) with
rational coefficients such that v, = G& (A, L)v for every v € V.

PROOF. Assume first @ > 0, we prove the existence of the decomposition v =
> >0 L™ v, as above by induction on the minimum ¢ such that Ay = 0. If ¢ = 1 then
v is already primitive. If A9y = 0 then w = A% € Va+42¢ is primitive and then,
setting v = [[?_; r(a+ 2¢ — 7+ 1), we have v > 0 and

MOMLﬁﬁzw—Mﬁg:Q
v v
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This prove the existence when o > 0. If o < 0 then C~!xv € V_,, and we can write:
Clsov= ZLTUT, v = Z CYs L., v, €V_gior
r>0 r>0
According to Lemma VI.12
v = Z%L_O‘Mvr = Z Yrtal vy
r>0 r>—o

for suitable rational coefficients ~,.
The unicity of the decomposition and item 2 are proved at the same time. If
q

v = Z L"v,

r=max(—«,0)

is a decomposition with every v, € Vato, primitive, then L*T9y = L2249, and

1 1
vy = (a - 2q)!2 a+2qLa+2qvq — (a m 2q)!2 at2qyatq,,
Therefore v, is uniquely determined by v and we can take G4 = (a+2q)!"2A 2 [oF4,
Since v — L, = (1 — LIGE q)v = Zg;rlnax(foz,O) L"v, we can proceed by decreasing
induction on gq. O

COROLLARY VI.14. v € Vi, a > 0, is primitive if and only if L®T v = 0.

PROOF. Let v =37 -, L v, be the Lefschetz decomposition of v, then 3 Lotr+ly,
is the Lefschetz decomposition of L®Tv. Therefore Loty = 0 if and only if
v = 9. ]

It is clear that Theorem VI.13 and Corollary VI.14 hold also for every finite direct
sum of ®-modules of type V(h, 7).
For later use we reinterpret Lemma VI.12 for the ®-module A: we have

UA[+IBDA[+|B|+1)
A= @Vap, Vap=V(n—lAl=1BL ()" )
A,B

where the sum is taken over all pairs of disjoint subsets A, B of {1,... ,n}. The space
Ao = @(Va,B)a is precisely the space @, AY" "~ of (n — a)-covectors. We then
get the following

LEMMA VIL.15. Ifv € A is a primitive p-covector, p < n, then

p(p+1) 7!
2

! v Wrsn-p
Tl x L = (n—p—r)!

0 ifr>n—p

4. Kahler identities

Let M be a complex manifold of dimension n and denote by A** the sheaf of
differential forms on M. By definition A%? is the sheaf of sections of the complex
vector bundle A\“ Ty, ® /\b mv. The operators P, , P, and C, defined on the fibres
of the above bundles, extend in the obvious way to operators in the sheaf A**.

Ifd: A~* — A** is the De Rham differential we denote:

£ — oo a:dJridC gzd—idc
) 2 ) 2 7

d=cd°c, d=090+0, d® =i(0—0).
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If n is a (p, ¢)-form then we can write dn = ' +n" with ’ € APTL4 5" € AP4FL and
then

Con g T iP—a
4(n) = O ) = - +
Since 0 = d2 = 92 + 00+ 00+ 0 we get 0= 0% =00+00 = & and then (d©)? =0,
dd® = 2i00 = —d®d.

Using the structure of graded Lie algebra on the space of C-linear operators of the
sheaf of graded algebras A** (with the total degree ¥ = a + b if v € A%), the above
relation can be rewritten as

[d,d] = dd + dd = 2d*> = 0, [d¢,d°] = [d,d“] = [8,0] = [9,0] = [0, 8] = 0.

Note finally that d and C' are real operators and then also d© is; moreover 07 = On.
A Hermitian metric on M is a positive definite Hermitian form A on the tan-
gent vector bundle Ths. If z1,...,2, are local holomorphic coordinates then h;; =

ipquln// _ i—ln/ + in//’ on = 77/7 577 _ 77//-

o 0

h (8—’ 8—> is a smooth function and the matrix (h;;) is Hermitian and positive
Z5 Zj

definite. The local expression of h is then h = Zij h;jdz; ® dzj and the differential

form

{ _
w = § Z hl-jdz,- AN Cle € F(M, Al’l)
Z?]
is globally definite and gives the imaginary part of —h; w is called the (real, (1,1))
associated form to h.

The choice of a Hermitian metric on M induces, for every open subset U C M,
linear operators

L: (U, A%) — D(U, AvTL0+), Lv=vAuw,
x: T(U, A%") — T(U, A0,

A:T(U, A% — DU, A2 A =1L = (C7h) 7L«
The commuting relations between them
[L,C] =[A,C] = [*,C] = [L,+*] = 0, A L= rin—p—r+1)PB,
P
are still valid.

A differential form v is primitive if Av = 0; the existence of the polynomials G'__ .(A, L)

n—p,r
(cf. Theorem VI.13) gives the existence and unicity of Lefschetz decomposition for
every differential p-form

v = Z Lv,, Av, = 0.

r>max(p—n,0)
We set:
§=—xdx, “=—xd%=0C"15C,

_i5C .
a*:_*g*zé 21(5 ’ 8:—*@*

_0+i6¢

DEFINITION VI.16. The Hermitian metric h is called a Kdhler metric if dw = 0.

Almost all the good properties of Kahler metrics come from the following



100

THEOREM VI.17. (Kéhler identities) Let h be a Kdhler metric on a complex mani-
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fold, then:
[L,d] =0 [L,d°]=0 |[L,0]=0 |[L,0]=0
[A,d]=—6%|[Ad°] =6 |[A8]=id |[A, 0] =—id*
[L,0) =d® |[L,0°]=—d||L,8*|=1id |[L,d] = —id
[A,0] =0 A6 =0 |[A®]=0 |[AD]=0
PRrOOF. It is sufficient to prove that [L,d] = 0 and [A,d] = —¢¢. In fact, since

A = +"1Lx = xLx~! we have [A, 0] + *[L,d]* = 0 and [L, 6] + *[A, d]* = 0: this will
prove the first column. The second column follows from the first using the fact that
C commutes with L and A. The last two columns are linear combinations of the first

two.

If v is a p-form then, since dw = 0,

Ldv=dvAw—dvAhw)=—(—1)’vAdw = 0.
[

According to the Lefschetz decomposition it is sufficient to prove that [A,d]L"u =
—6CL"u for every r > 0 and every primitive p-form v (p < n). We first note that,
being u primitive, L" Pty = 0 and then L" PHdu = dL"P*1y = 0. This implies
that the Lefschetz decomposition of du is du = ug + Lu;.
Setting a = n — p, we have u € Vi, ug € Vo1, u1 € Var1:

[A,d|L"w = AL"du — dAL™w = AL"ug + AL" " uy —r(a —r + 1)dL"tu =

=r(a—7r)L" rug+ (r+1)(a—r+1)L"u; —r(a—r+ 1)L ug —r(a —r 4+ 1) L"uy

On the other hand we have by VI.15

= —rL" g + (@ — 7+ 1)Ly

Lu=C"t%d+xCLu=C"1%dC?C  x L"u

and then

5O = (—1)Pl—1)/2
L'u=(-1)
0" L= (1) (a—7)!

Again by VI.15,

Cl s LY Ty =

Clw L7y = (1)

(_1)(p+1)(p+2)/2

= C7 % dC?(—1)PPHD/2

r!

(p—1)p/2 (CV —7r 4+ 1)‘L,r

r!

Putting all the terms together we obtain the result.

C Vs Lo

(a B 7’)' r—
G

7!

T(UO + Lul).

Uul.

a—r

O

COROLLARY VL18. If w is the associated form of a Kdihler metric h then dw’P =
dwP =0 for everyp >0 .
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PROOF. The equality dw’? = 0 follows immediately from the Leibnitz rule. Since
w"P is a (p, p) form, we have CwP = w"P and then also d“w"? = 0.
We prove 6w”P = 0 by induction on p, being the result trivial when p = 0. If p > 0
we have

0=d%w"! = Low P~ — §Lw P! = —w/P.

The gang of Laplacians is composed by:
1. Ay =A=1[d,d] = do+ dd.
2. Aye = AY = C71AC = [d9, 6% = d®6¢ + §%dC.
3. Ay =0=10,0%] = 00" + 0%0.
4 A;=0=100,51=37 +7 0.
A straightforward computation shows that A + A® = 200+ 200.

COROLLARY VI.19. In the above notation, if h is a Kahler metric then:
. = 1 1 —
[d,6¢] = [d°,8) = [0,0] = [0,0*] =0, 5= EAC =0=0.
In particular A is bihomogeneous of degree (0,0).

PRrROOF. According to Theorem VI.17 and the Jacobi identity we have

[d,6%] = [d,[d,A]] = =[[d,d], A] = 0.

1
2
The proof of [d€, 8] = [0,0"] = [0,8*] = 0 is similar and left as exercise. For the
equalities among Laplacians it is sufficient to shows that A = A® and O = 0.
According to the Kéahler identities

A = [d, 8] = [d, [A,d°)] = [[d, A],d°] + [A, [d, d°].
Since [d, d®] = dd® + dd = 0 we have
A = [d,8] = [[d, A],d“] = [6¢,d°] = A“.
The proof of [0 = [J is similar and it is left to the reader. O

COROLLARY VI.20. In the above notation, if h is a Kdhler metric, then A commutes

*

with all the operators Py, *, d, L, C, A, d¢, 9, 9, 8, 6¢, 0%, 9.

PROOF. Since A is of type (0,0) it is clear that commutes with the projections
P, . Recalling that § = — * d* we get d = *0* and then

*A =%d) +*x0d = — xdxd*+*x0*x0x = O0d * +do*x = A x .

[L,A] = [L,[d, 0] = [[L,d],d] + [[L,d],d] = [d°,d] = 0.

4, ] = [d, 4,8]) = 5[d, ], 6] = 0.

Now it is sufficient to observe that all the operators in the statement belong to the
C-algebra generated by P, , *, d and L. O

DEFINITION VI.21. A p-form v is called harmonic if Av = 0.

COROLLARY VI.22. Let h be a Kdhler metric and let v =", L"v, be the Lefschetz
decomposition of a p-form.
Then v is harmonic if and only if v, is harmonic for every r.
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PRrROOF. Since A commutes with L, if Av, = 0 for every r then also Av = 0.
Conversely, since v, = Gy (A, L)v for suitable noncommutative polynomials with

rational coefficients G}, ., and A commutes with A, L then v harmonic implies Av, = 0

for every r. ]

COROLLARY VI.23. In the above notation, if h is a Kdahler metric and v is a closed
primitive (p, q)-form then v is harmonic.

Note that if either p = 0 or ¢ = 0 then v is always primitive.

PROOF. It is sufficient to prove that dv = 0, we have
ov = C6¢C 1w =97 PC§% = i7" PC[d, AJv = 0.

5. Kéahler metrics on compact manifolds

In this section we assume M compact complex manifold of dimension n. We denote
b b b
by L% = D(M, A%), [P = @, ,,_, L, L = @, L.
Every Hermitian metric h on M induces a structure of pre-Hilbert space on L%? for
every a,b (and then also on L) given by:

<¢,¢>=/M¢Aw.

We have already seen that the operator *: L%? — L"~%"~b i an isometry commuting
with the complex conjugation and then we also have:

(618) = /¢Aw /¢A*w (- )“*b/ AT = /wwp @.9).

PROPOSITION VI.24. With respect to the above pre-Hilbert structures we have the
following pairs (written in columns) of formally adjoint operator:

operator d| d“| 0 |0 | L

formal adjoint | 6| 6¢ | 0| & | A

In particular, all the four Laplacians are formally self-adjoint operators.

PROOF. We show here only that § is the formal adjoint of d. The proof of the
remaining assertions is essentially the same and it is left as exercise.
Let ¢ be a p-form and ¢ a p 4+ 1-form. By Stokes theorem

0:/ d(qﬁA@):/ do N *tp + (— /qﬁ/\d*z/;
Since dxt) = d* 1 and d* 1) = (—1)2"P*2 d*1p = —(—1)P x 51 we get

o:/de*w—/Mw*éw: (d, ) — (6,60).
]

Let D be any of the operator d,d®, 9, 0; denote D* its formal adjoint and by Ap =
DD* + D*D its Laplacian (i.e. Ay = A, Az = O etc...). The space of D-harmonic
p-forms is denoted by HY, = ker Ap N LP.

LEMMA VI.25. We have ker Ap = ker D N ker D*.
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PRrROOF. The inclusion D is immediate from the definitions of the Laplacian. The
inclusion C comes from

(Apg,¢) = (DD*$,6) + (D* D¢, ¢) = (D*¢, D*¢) + (D¢, D¢) = | D*¢||* + || Do
O
The theory of elliptic self-adjoint operators on compact manifolds gives:

THEOREM VL.26. In the notation above the spaces of D-harmonic forms HY, are
finite dimensional and there exist orthogonal decompositions

LP = HpDé Im Ap.
PROOF. See e.g. [78]. O
COROLLARY VI.27. The natural projection maps
HY — HP(M,C), HE! — HI(M,QP)
are isomorphism.

PROOF. We first note that, according to Lemma VI1.25, every harmonic form is
closed and then the above projection maps makes sense. It is evident that Im A C
Imd+Im§. On the other hand, since d,§ are formally adjoint and d? = §%2 = 0 we
have kerd L Imd, kerd L Imd: this implies that Imd, Imd and H% are pairwise
orthogonal. Therefore InA = Imd @ ImJ and kerd = HZ @ Im d; the conclusion
follows by De Rham theorem.

The isomorphism ’H%”q — Hg(M , Q) is proved in the same way (with Dolbeault’s

theorem instead of De Rham) and it is left as exercise. O
COROLLARY VI.28. The map Ap: ImAp — Im Ap is bijective.
PRrROOF. Trivial consequence of Theorem VI.26. O

We define the harmonic projection Hp: LP — H% as the orthogonal projection and
the Green operator Gp: LP — Im Ap as the composition of

d—H ARt
Gp: LP 14— Hp ImAp —2> ImAp.

Note that ApGp = GpAp =Id— Hp and GpHp = HpGp = 0.

LEMMA VI.29. If K is an operator commuting with Ap then K commutes with Gp.
PrROOF. Exercise (Hint: K preserves image and kernel of Ap). O

If h is a Kahler metric, then the equality A = 200 implies that
1 1
Hd:HdC :HazHg, Gd:GdC :§G8:§G5
In particular, according to Lemma VI.29 and Corollary VI.20, G4 = G ¢ commutes

with d, dC.

COROLLARY VI.30. If h is a Kdhler metric on a compact manifold then: FEvery
holomorphic p-form on M is harmonic.

PROOF. According to Corollary VI.27 the inclusion Hgo C I'(M,QP) is an iso-
morphism and then if 7 is a holomorphic p-form we have A(n) = 200(n) = 0. O
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EXERCISE VI.31. Let v # 0 be a primitive (p, q)-form on a compact manifold M
with Kahler form w. Prove that

/ VAT AWNTPTL AL,
M

6. Compact Kahler manifolds

In this section we will prove that certain good properties concerning the topology and
the complex structure of compact complex manifolds are true whenever we assume
the existence of a Kahler metric. This motivates the following definition:

DEFINITION VI.32. A complex manifold M s called a Kdhler manifolds if there
exists a Kahler metric on M.

We note that, while every complex manifold admits a Hermitian metric (this is
an easy application of partitions of unity, cf. [37, Thm. 3.14]), not every complex
manifold is Kéahlerian. We recall the following

THEOREM VI1.33. 1. C*, P™ and the complex tori are Kdhler manifolds.
2. If M is a Kdhler manifold and N C M is a regular submanifold then also N
is a Kdhler manifolds.

For a proof of Theorem VI.33 we refer to [26].

From now on M is a fixed compact Kahler manifold on dimension n.
For every m < 2n we denote by H™(M,C) = H™(M,R) ®g C the De Rham coho-
mology C-vector spaces. We note that a differential m-form 7 is d-closed if and only
if its conjugate 7 is. In particular the complex conjugation induce an isomorphism
of vector spaces H™(M,C) = H™(M,C).

If p+ ¢ = m we denote by FP4 C H™(M,C) the subspace of cohomology classes
represented by d-closed form of type (p, q) (note that a (p, ¢)-form 7 is d-closed if and

only if it is On = dn = 0). It is clear that FP4 = F9P,

THEOREM VI.34 (Hodge decomposition). In the notation above we have
H™(M,C)= & FP1
and the natural morphisms FP1 — Hg’q(M)IjJrﬁj?’?‘} — Hg’q(M) are isomorphisms.
Proor. Take a Kahler metric on M and use it to define the four Laplacians,

the harmonic projectors and the Green operators. According to Corollary VI.19 the
Laplacian A is bihomogeneous of bidegree (0,0) and we have

ker ANLI = @ kerAn L,

The isomorphism ker ANLY — HI(M, Cz)Jribn:cfuces injective maps ker AN L% — Fab.
this maps are also surjective because every closed form « is cohomologically equivalent
to its harmonic projection Ha and H is bihomogeneous of bidegree (0,0).

The last equalities follow from the isomorphisms

ker AN L* = kerON L™ = H5'(M), ker AN L™ =kerON L™ = HZ*(M).
O

COROLLARY VI1.35. If M is a compact Kdhler manifold then:
1. bl - Za—l—bzz ha7b.
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2. hP1 = pPP  4n particular b; is even if © is odd.

3. hPP > 0, in particular b; > 0 if i is even.

4. Every holomorphic p-form on M is d-closed.
(bi = dime HY(M, C) are the Betti numbers, h?4 = dimc HY(M, QP) the Hodge num-
bers.)

PROOF. Items 1 and 2 are immediate consequence of the Hodge decomposition.
Take a Kéahler metric on M and use it to define the four Laplacians, the harmonic
projectors and the Green operators. Let w be the associated form of the Kahler
metric on M. According to Corollary VI.18, w”P is harmonic and then ker 0N LPP =
ker AN LPP £ Q.

Finally, by Corollary VI.30 the holomorphic forms are A-harmonic and therefore
d-closed. O

ExaMPLE VI.36. The Hopf surfaces (Example 1.6) have by = bs = 1, bs = 0 and
then are not Kahler.

Finally we are in a position to prove the following
THEOREM VIL.37. (09-Lemma) Let M be a compact Kdihler manifold. Then
1. There ezists a linear operator o: L — L of bidegree (0,—1) such that
[0,0] =0, [0,0]0 = [0,00] = 0.
2. Im90 = kerdNIm0O = kerd N ImO.
PROOF. [1] Choose a Kéhler metric and define o = Ggg*. According to VI.19,

VI.20 and VI.29 we have o = E*Gg, [0,0] = 0 and, denoting by H the harmonic
projection,

[2] (cf. Exercise VI.39) We prove only Im 99 = ker d N Im 9, being the other equality

the conjugate of this one. The inclusion C is evident, conversely let * = da be a
0-closed differential form; we can write

r = 0a = [0,0]0a = doda + 000a = —0doa — adx = d(oa).
L]
COROLLARY VI.38. Let M be a compact Kdihler manifold. Then for every p,q the
natural maps
ker @ N ker 9 N LP4 . ker @ N ker 9 N LP4 ker 0 N LP4

—— — — — = = UM P)
DOLP—14 B(ker & N Lpa—1) dLPa

ker @ N ker & N LP4 ker & N ker & N LP4 ker 0 N LP4
— — — —
JoLr—1a-1 O(ker O N Lp—149) oLpr—14q

are isomophisms.

PROOF. The two lines are conjugates each other and then it is sufficient to prove
that the maps on the first row are isomorphisms.
Choose a Kihler metric, every 0-closed form ¢ can be written as ¢ = a + 0¢ with
Oa = 0. Since 0 = O we have da = 0 and then the above maps are surjective.
According to Theorem VI.37 we have

QO(LP~HI7Y) € D(ker N LPI7Y) C kerd NO(LP I~ L) c 9O(LP~ 171

and then all the maps are injective. O
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EXERCISE VI.39. Prove that for a double complex (L**, d, d) of vector spaces (with
d, ¢ differentials of respective bidegrees (1,0) and (0,1)) the following conditions are
equivalent:

1. There exists a linear operator o: L** — L**~! of bidegree (0, —1) such that
[d,o] =0, [0, 0]d = [0, 0d] = d.
2. Imdé = keré NImd.
(Hint: The implication [1 = 2] is the same as in Theorem VI.37. In order to prove
[2 = 1] write L%* = F%b @ C* with F** = dL*~!* and observe that the complexes
(F®*,§) are acyclic. Define first o: F®® — F%b~1 such that [§,0]d = d and then
o: 0% — C%*=1 guch that [d, o] = 0.) A

7. Historical survey, VI

Most of the properties of Kéhler manifolds are stable under deformation. For ex-
ample:

THEOREM VI1.40. Let f: M — B be a family of compact complex manifolds and
assume that My is Kdhlerian for some b € B.

Then there exists an open neighbourhood b € U C B such the functions h?9: U — N,
hP9(u) = dimg HPY(M,,) are constant and ) hP4(u) = dimg H™(M,,C) for
everyu € U.

p+g=m

PrROOF. (Idea) Exercise 1.18 implies > . ., h"9(u) > dimec H™(My, C) and
the equality holds whenever M, is Kéhlerian. On the other side, by semicontinuity
theorem [.42 the functions hP? are semicontinuous and by Ehresmann’s theorem the
function u — dim¢ H™(M,, C) is locally constant. O

Theorem VI.40 is one of the main ingredients for the proof of the following theorem,
proved by Kodaira (cf. [37], [78])

THEOREM VI1.41. Let f: M — B be a family of compact complex manifolds. Then
the subset {b € B| M, is Kdhlerian } is open in B.

The proof of VI.41 requires hard functional and harmonic analysis.

It seems that the name Kdhler manifolds comes from the fact that they were defined
in a note of Erich K&hler (1906-2000) of 1933 but all their (first) good properties were
estabilished by W.V.D. Hodge some years later.



CHAPTER VII

Deformations of manifolds with trivial canonical bundle

In the first part of this chapter we prove, following [21] and assuming Kuranishi
theorem IV.36, the following

THEOREM VIIL.1 (Bogomolov-Tian-Todorov). Let M be a compact Kdihler manifold

with trivial canonical bundle Ky = Opy. Then M admits a semiuniversal deforma-
tion with smooth base (H'(M,Tyy),0).

According to Corollary IV.37, it is sufficient to to show that the natural map

DefM< =y > ~ Defy <<C_W)

(thrl) (tQ)
is surjective for every n > 1. This will be done using Corollary V.52 and the so called
Tian-Todorov’s lemma.
A generalization of this theorem has been given recently by H. Clemens [10]. We will
prove of Clemens’ theorem in Chapter IX.

In the second part we introduce some interesting classes of dg-algebras which arise
naturally both in mathematics and in physics: in particular we introduce the notion of
differential Gerstenhaber algebra and differential Gerstenhaber-Batalin-Vilkovisky al-
gebra. Then we show (Example VII.30) that the algebra of polyvector fields on a man-
ifold with trivial canonical bundle carries the structure of differential Gerstenhaber-
Batalin-Vilkovisky algebra.

1. Contraction on exterior algebras

Let K be a fixed field and E a vector space over K of dimension n; denote by EV its
dual and by (,): E x EV — C the natural pairing. Given v € E, the (left) contraction
by v is the linear operator v F: A’ EY — AP™' EV defined by the formula

b
vE (21 AL A 2) :Z(—l)i_1<v,zi>zl/\.../\?¢/\.../\zb.
i=1

For every a < b the contraction
/\aE % /\bE\/L)/\b—aEV
is the bilinear extension of
(Va Ao AV E (iAo A zp) =vg b (Vg1 Ao Av) B (2L A oo A 2p))
a
= Z(—l)a <H<’UZ', Zg(i)>> Zo(a+1) N - N Zo(b)

oceG i=1
where G C ¥, is the subset of permutations o such that oc(a+1) <o(a+2) <... <
o(b). We note that if a = b then the contraction is a nondegenerate pairing giving
a natural isomorphism (A*E)Y = A*EY. This isomorphism is, up to sign, the same

MARCO MANETTI: Lectures on deformations of complexr manifolds
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considered is Section VI.2.
If a > b we use the convention that F= 0.

LEMMA VII.2. 1. For every v € E the operator v F is a derivation of degree —1
of the graded algebra \'EV .
2. For everyve N"E, we N E, z e \°EY, we have

(wAw)Fz=vkF (wk 2).
In particular the operator w =: \° EY — /\Cfb EV is the adjoint of Aw: /\cjb E—

NE.
3. Ifve N"EY, we N°E, Qe N"EY, where dimE = n, a < b, then:
vA(wk Q)= (v w)kF Q.

PRrooFr. [1] Complete v to a basis v = ey,... ,e, of E and let zy,... ,z, be its
dual basis. Every w € A* EY can be written in a unique way as w = 21 A wy + ws
with wy,we € A\* vt According to the definition of F we have v - w = wy.

If w= 21 Awi + w2, u = 21 A u1 + ue are decompositions as above then

(WhEw)Au+ (=D)%wA (vEu) =w A(z1 Aug +ug) + (—=1)%2(21 Awy + wa) Aug
= w1 Aug + (—=1)2wy A ug.
vE(wAu) =vk ((z1 Awyp +w2) A (21 Aug + uz))
=vbk (21 Awyp Aug +wa A 21 Aug + wa A ug)

= w1 N ug + (—1)“’_2w2 A Uy.

[2] Immediate from the definition.

[3] Induction on a; if @ = 1 then complete v to a basis v = 21,...,2, of EY and
denote ey, ... ,e, € F its dual basis. Writing
w=e; ANwy + wa, w; € Not, w; FQ=vAn;, ni € Net,

we have by Item 2
wEQ=(e1 Aw)FQ+(waFQ)=e1 F (w1 Q)+ (w2 Q) =m +vAn,
and then
vA(wEQ)=vAm=w1FQ=@wFw)FQ.

Ifa>1and v=uv Ave, with vy € EY, 13 € /\a_1 EY then by item 2 and inductive
assumption

VAV A (wkE Q) =v1 A((nuFw)F Q)= (v F (vakw))FQ=((v1 Avg) Fw) Q.

LEMMA VIL.3. For every vector space E of dimension n and every integer a =
0,...,n, the contraction operator defines a natural isomorphism

NE-LNES N, i) =Z6 o 9)
where (Z,Q) € N" E x \" EY is any pair satisfying Z + Q = 1.
PRrooF. Trivial. O

EXERCISE VII4. Let 0— E— F—G—0 be an exact sequence of vector spaces
with dim G = n < co. Use the contraction operator to define, for every a < dim F,
a natural surjective linear map A\*™"F — N°E @ \'G. A
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2. The Tian-Todorov’s lemma

The isomorphism ¢ of Lemma VII.3 can be extended fiberwise to vector bundles;
in particular, if M is a complex manifold of dimension n and T); is its holomorphic
tangent bundle, we have holomorphic isomorphisms

it N'Tv—N"Tonr @ N Ty = Q4 *(Kip)
which extend to isomorphisms between their Dolbeault’s sheaf resolutions

i: (A% (N'Tu), 9)— (A (N'Tnr ® N'™"T3p), 9) = (A" **(K}), D).

If z1, ... , z, are local holomorphic coordinates then a local set of generators of /\aTM
15) 15) 0
is given by the polyvector fields — = A...N—=——, being I = (i1,...,i,) a
0z Oz 0z,

multiindex.
If Q is a local frame of Ky and Z a local frame of K, such that Z - Q = 1, then

0 0 0
| =—dzy | =2 —dz;F Q| =2 —FQ)dzy.
! (82’] zj) ®© <8Z[ = ) ® (82[ > =
Given a fixed Hermitian metric h on the line bundle K}, we denote by D = D’ + 0
the unique hermitian connection on Ky, compatible with the complex structure.

We recall (cf. [35]) that D': A% (KY, ® Q%) — A" (KY, ® Q3!) is defined in local
coordinates as

D(Z®¢)=Z(OA¢+09), e A,

where 0 = dlog(|Z|?) = dlog(h(Z, Z)) is the connection form of the frame Z.
We have moreover (D')? =0 and D'0 + 0D’ = © is the curvature of the metric.

We can now define a C-linear operator (depending on h)?
A A NT) — AN o), Ag) =i D/ (i9)).
LeEMMA VIL5. Locally on M, with Q,Z and 0 as above we have
AlP)FQ=0A(pFQ)+0(p F Q)
for every ¢ € A% (N* Tar).
PRrROOF. By definition
ir¢) =Z @ (Al9) F9Q),

iA(¢) = D'(i(¢)) =D'(Z@ (¢ Q) =Z@ (O A (F Q) + (6 Q).

LEMMA VII.6. In local holomorphic coordinates z1, ... ,z, we have
a 9\ 0,0
Al f=—dz;) = (0f+8f)!—— dzj, feA™,
0z Oz1

0 0
where 0 is the connection form of the frame Z = . A e and the right hand
1 n

side is considered = 0 when I = 0.

!don’t confuse this A with the Laplacian
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PROOF. We first note that if ¢ € A*°(A\*Tys) then i(¢dz;) = i(¢)dz, and
D'i(pdz)) =D'(Z @ (¢F Q) ®dzy) =D (Z2(pF Q) @dzy:
this implies that A(¢dz ;) = A(¢)dz . According to Lemma VIL.5

s(st) n-on (12 0) (s

Since = dz, A ... A dz; we have 0 <88— F Q) = 0 and then, by Item 3 of
Zr
Lemma VII.2,
A2 ra=@r+opa(LZra)=(wr+on- ) ra.
82:] N 821 - 8
O

Setting P%* = A% (AT Tyy) for every a < 0, b > 0, the direct sum P = (Dos Pub 9)
is a sheaf of dg-algebras, where the sections of A%P (A% Tyr) have total degree b — a
and 9: A% (A Tyy) — A%FTL(A® Tyy) is the Dolbeault differential. The product on
P is the ‘obvious’ one:

(€@ o)A Y)=(-1)"TEAN) ® (dAY).

LEMMA VIL7. The C-linear operator A: P — P has degree +1; moreover A2 =0
and [A, 0] = AD + 0A =i~ 10i.

Proor. Evident. O

Consider the bilinear symmetric map of degree 1, Q: P x P — P
Q(a, ) = Ala A ) = A(a) A B — (=1)%a A A(B).

A brutal computation in local coordinates shows that () is independent of the metric.
In fact, for every pair of C* functions f,g

9 0 o 9

% g——dzr | = (—1)/IH] - _
Q (fazldzj,gasz2K> (—1) Q faz 95 dz; A dzg
and

0 0 0 0
Q (fym,g%) = (0fg+0(fg)) - (8—21/\@> -

g ((9f+af) 0 ) a2 (—1)I|f% A ((9g+ag) - 88—) .

0zr 0zH ZH
According to Lemma VII.2, Item 1:

0 0 0 0 0 0
— g (T — 1)1 -
Q(fazj’gazH) f(é? 0z 1) " 0zy +(=1) gazl (8f 0z H)
In particular if [I| =0, [H| =1 then
_ 0 _ of _ -
= = (=)Ilg=L
Q (fdzJ7gazhde> ( 1) gazhdzj/\dzl(a

while, if |I| = [H| =1 then

o 8 g 0 Of o
il il — (—)VI
@ <f 0z; dzr, g&zh dZK) (=1) <f 0z 02, gazh 8zz> dzy Nz

Recalling the definition of the bracket |, ] in the Kodaira-Spencer algebra K Sy, =
D, A% (Tyy) we have:
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LeEMMA VIL8 (Tian-Todorov). If a € A%%(Ty), B € A% (Tw) then
(=1, 8] = A(a A f) = Ala) A B — (=1)*"La AA(D).
In particular the bracket of two A-closed forms is A-exact.
ExAMPLE VIL9. If M is compact Kihler and ¢;(M) = 0 in H?(M, C) then by [35,

2.23] there exists a Hermitian metric on Ky, such that © = 0; in this case [A,d] =0
and ker A is a differential graded subalgebra of KS),.

ExaMPLE VIL10. If M has a nowhere vanishing holomorphic n-form © (n = dim M)
we can set on K, the trivial Hermitian metric induced by the isomorphism Q: Ky, —
Ojs. In this case, according to Lemma VIL.5, the operator A is defined by the rule

(Aa) F Q =0(at Q).

3. A formality theorem

THEOREM VIIL.11. Let M be a compact Kahler manifold with trivial canonical bun-
dle Kyy = Opy. Then the Kodaira-Spencer DGLA

K Sy = @ (M, A% (Tyy))
s quasitsomorphic to an abelian DGL11)4.

PRrOOF. Let Q € I'(M, Kj) be a nowhere vanishing holomorphic n-form (n =
dim M); via the isomorphism Q: K, — Oy, the isomorphism of complexes

i (A% (Tyy), ) — (A" 1+ D)

is given in local holomorphic coordinates by

1 <faa—22dzj) =f <88_ZZ F Q) dzr

and induces a structure of DGLA, isomorphic to K.Sy; on
Lnfl,* — @F(M, Anfl,p).

P
Taking on K, the trivial metric induced by Q: Ky, — Oy, the connection D is
equal to the De Rham differential and then the Tian-Todorov’s lemma implies that
the bracket of two O-closed form of L"~1* is d-exact; in particular

Q* =keron L1+
is a DGL subalgebra of L"__l’*.
Consider the complex (R*,0), where
_keron Lr=te
- oL
endowed with the trivial bracket, again by Lemma VIL.8 the projection @* — R* is

a morphism of DGLA.
It is therefore sufficient to prove that the DGLA morphisms

Rp

Ln—l,* - Q* — R*

are quasiisomorphiims. B B
According to the 00-lemma VI.37, d(ker 0) C Im 0 and then the operator 0 is trivial

on R*: therefore
B kero N Ln—Lp B kero N Ln—1p

D * 14 n—1% - @@
H (R ) - 8Ln_2’p ) H (L ) gLninil )
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ker d Nkero N L™~ 1P
P(O*) —
HQ) = O(kerd N Ln—1p=1)

The conclusion now follows immediately from Corollary VI.38. O

COROLLARY VII.12. Let M be a compact Kdahler manifold with trivial canonical
bundle Ky = Oypy. For every local Artinian C-algebra (A, m4) we have

Defy(A) = HY (M, Tyy) @ my.

DefM< el ) — Defyy (Qﬁ])

(1) (#?)

In particular

is surjective for every n > 2.

PrOOF. According to Theorem V.55 and Corollary V.52 we have Def; = Def g+.
Since R* is an abelian DGLA we have by Proposition V.49

Defgr«(A) = HY(R*) @my = H'(KSy) @ my = HY (M, Ty) @ ma.

4. Gerstenhaber algebras and Schouten brackets

LEMMA VIL13. Let (G,A) be a graded Z-commutative algebra and let [,]: G[—1] x
G[-1] — G[-1] be a skewsymmetric bilinear map of degree 0 such that

ad, = [a,—] € Der®e@C-)(G @),  Vae G[-1].
(Note that this last condition is equivalent to the so-called Odd Poisson identity

[a,b A d] = [a,b] Ac+ (=1)C Db A[a, ],
[anb,d =aAlbd+(—1)FDia,c] Ab,
for every a,b,c € G|—1|, T = deg(z, G|—1]).)
Let G C G be a set of homogeneous generators of the algebra G, then:
1. [,] is uniquely determined by the values [a,b], a,b € G.
2. A derivation d € Der"(G, Q) satisfies [d,ad,] = adgq) for every a € G[-1] if
and only if

dla,b] = [da,b] + (=1)"%[a, db]

for every a,b € G.
3. [,] satisfies the Jacobi condition ad|,p) = [ada, ady) if and only if

[[av b]v C] = [a’ [bv CH - (_1)65[87’ [av CH
for every a,b,c € G.

PROOF. 1) is clear.
If a € G then by 2) the derivations [d, ad,] and ady(,) take the same values in G and
then [d, ad,] = adg(q). The skewsymmetry of [,] implies that for every b € G[—1] the
derivations [d, adp] and adg,) take the same values in G.
The proof of 3) is made by applying twice 2), first with d = ad,, a € G, and then
with d = ady, b € G[-1]. O
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DEFINITION VII.14. A Gerstenhaber algebra is the data of a graded Z-commutative
algebra (G, A) and a morphism of graded vector spaces ad: G[—1] — Der*(G, G) such
that the bracket

[]: GI=1] x GI=1]; = G[=1]igg, e, 0] = ada(D)

induce a structure of graded Lie algebra on G[—1] (cf. [17, p. 267]).
A morphism of Gerstenhaber algebras is a morphism of graded algebras commuting
with the bracket [,].

For every graded vector space G there exists an isomorphism from the space of
bilinear skewsymmetric maps [,]: G[—1] x G[—1] — G[—1] of degree 0 and the space
of bilinear symmetric maps @: G x G — G of degree 1; this isomorphism, called
décalage, is given by the formula?

Q(a,b) = (~1)48@C=Dq, b,

Therefore a Gerstenhaber algebra can be equivalently defined as a graded algebra
(G, A\) endowed with a bilinear symmetric map Q: G x G — G of degree 1 satisfying
the identities

Odd Poisson Q(a,bAc) = Q(a,b) Ac+ (1)@ A Q(a, ),

Jacobi Q(a,Q(b,c)) = (-1)"Q(Q(a,b),c) + (—1)7°Q(b, Q(a, c)),

where @ = deg(a, G), b = deg(b, ).

ExaMPLE VIL.15. (Schouten algebras) A particular class of Gerstenhaber algebras
are the so called Schouten algebras: here the bracket is usually called Schouten
bracket.

Consider a commutative K-algebra Ag and let A_; C Derk (Ao, Ag) be an Ap-
submodule such that [A_1, A_1] C A_;. Define

A=@PA;, A= NA_.
j A
With the wedge product, A is E;Zgoraded algebra of noonpositive degrees.
There exists a unique structure of Gerstenhaber algebra (A, A, [,]) such that for every
a, be A[_l]l = A07 f?g € A[_l]o = A—l
ada(b) =0, adg(a) = f(a), adf(g) = [f,g]-
In fact A is generated by Ap U A_; and, according to Lemma VII.13, the skew-
symmetric bilinear map

n

[Co Ao A& B =Y (—D)" ()& A ANEA L NG,

1=0

EoN...NECQ AN ... ACn] =

ZZ D) GIAEO A ANEA . ANEACA . AGA A

=0 j=0
where h € Ag, &o0,---,&n,C0y--- ,Cmn € A_1 is well defined and it is the unique

extension of the natural bracket such that ad(A[—1]) C Der*(4, A).
We need to show that [, ] satisfies the Jacobi identity

l[a,b], ¢ = [a, [b, ] — (~1)7°[b, [a, c]]-

2The décalage isomorphism is natural up to sign; the choice of deg(a, G[—1]) instead of deg(a, G)
is purely conventional.



114 VII. DEFORMATIONS OF MANIFOLDS WITH TRIVIAL K

Again by Lemma VII.13 we may assume that 0 < @ < b < & There are 5 possible
cases, where the Jacobi identity is satisfied for trivial reasons, as summarized in the
following table:

@|b | ¢ | Jacobi is true because..
1]1(1]all terms are =0
0(1]1]|alltermsare=20
0|0 |1 |definition of [,] on A_;
0|00 | Jacobi identity on A_;

ExXAMPLE VIL.16. Let M be a complex manifold of dimension n, the sheaf of graded
algebras T = ®;<07T;, 7T; = A*°(A\ ™' Ths), admits naturally a Schouten bracket.
In local holomorphic coordinates z1,... , z,, since

o 0 0 0
N il — (—1\HI-1 fhdl
[52/ azj] v [32179} Sch - (ag " 321) ’

the Odd Poisson identity implies that the Schouten bracket takes the simple form

0 0 0 0 0 0
—— g =D (ag of b o—
[f 9217 &zH] o VI ) N e M\ o
DEFINITION VIL.17. A differential Gertstenhaber algebra is a Gerstenhaber algebra

(G, A, [,]) endowed with a differential d € Der! (G, G) making (G, d,[,]) a differential
graded Lie algebra.

ExaMPLE VIL.18. Given any Gertstenhaber algebra G and an element a € Gy =
G[—1]; such that [a,a] = 0 we have that d = ad, gives a structure of differential
Gerstenhaber algebra.

EXERCISE VIL.19. For every f € K|z1,... ,x,]| the Koszul complex of the sequence
0 0
—f of carries a structure of differential Gerstenhaber algebra. A
81‘1 8xn

5. d-Gerstenhaber structure on polyvector fields

Let M be a fixed complex manifold, then the sheaf of dg-algebras P defined in

Section 2, endowed with the Schouten bracket
AP ()10 [ 9 5’_] = Adz
faZIdZJ,ga Hde SCh—( 1) f@z[’gazf[ schdZJAdZK

is a sheaf of differential Gerstenhaber algebras.
We have only to verify that locally 0 is a derivation of the graded Lie algebra (P, [,]):
this follows immediately from Lemma VII.13 and from the fact that locally the
Kodaira-Spencer DGLA generates P as a graded algebra.
Via the décalage isomorphism, the Schouten bracket corresponds to the symmetric
bilinear map of degree 1 Q: P x P — P given in local holomorphic coordinates by
the formulas

0 0 0 0
— (_N\IKIU=-D)+|J| 3% = ~ Y
Q <deJ , 9dZ R — Do > (-1) dzjy N dzZxQ <f821’g€)zH> ,

where

o 9 9 9 9 9
9 9 9N, 9 1, 9 9
Q(‘f@zj’ngH) f<a 9" 5 >/\8zH+( 2 gaz,A<afFazH>
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Notice that, in the notation of Section 2,
Q. 8) = Ala A B) = Aa) A B — (1) A A(B)
and therefore we also have the following
LEMMA VIL.20 (Tian-Todorov). for every a, 8 € P[—1],
(o Blsen = a A AG + (~1)* PN (A0 A B) — Aa A ).

There exists a natural morphism ~: P — Hom(A**, A%*) of sheaves of bigraded
vector spaces on M given in local coordinates by

0 0
¢£( n) =oA <— = 77)
Since, for every ¢ € PO = AP 5 € A** we have
0 d
I — (—1)PHI =
S o nn) = (0o (5 u)

the hat morphism ~ is a morphism of algebras, being the product in Hom(A**, A**)
the composition product. We observe that the composition product is associative and
therefore Hom (A**, A**) has also a natural structure of sheaf of graded Lie algebras.

Since P is graded commutative, [a, 3] = 0 for every a,b € P.

LEmMA VIL.21. For every a,b € P homogeneous,
1. Oa = [0,a).
2. Q(a,b) = [[8,d],b] = —(—=1)%adb — (—1)20* bda + 0ab + bad

PROOF. The proof of the first identity is straightforward and left to the reader.
By Jacobi identity,

0= [87 [/dj;]] = [[876’]73] - (_1)65[[873]’6]

and therefore both s 31des of the equality VII.21 are graded symmetric.
Moreover, since bAc=Dbeand

Qa,b Ac) = Q(a,b) A e+ (—1) D% A Q(a, c),

~

19,a],b¢] = (9@, bje + (=1)@*[(9,d]. 2],

0
it is sufficient to check the equality only when a,b = f, dZ;, o fe POl =490
2

i) If ¢ € PO* then

9,00 = 0(¢ An) — (~1)%6 A9y = 99 An.
In particular [0, dE]] =0, Q(dz;,b) = 0 for every b.
i) If f,g € P*0 then Q(f,g) € P1¥ =0 and
[0, f1,6ln = 0f A gn — g(af An) =0.

IffEPOOthenQ< g—) aa— zg—fand

2

-9 B B )
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where the last equality follows from the Leibnitz rule applied to the derivation o F.
Zi
Finally Q (%’ 88—2]> = 0; since 0, %, 88—2] are derivations of A**, also ”3, %] ; 88—2]]

is a derivation of bidegree (—1,0) and then it is sufficient to check the equality for
n = dz;. This last verification is completely straightforward and it is left to the
reader. O

EXERCISE VIL.22. Prove that Q" = {a € P|[9,a] =0}. A

6. GBV-algebras
In this section K is a fixed field of characteristic 0.

DEFINITION VII.23. A GBV (Gerstenhaber-Batalin- Vilkovisky) algebra is the data
of a graded algebra (G, A) and a linear map A: G — G of degree 1 such that:

1. A2=0
2. The symmetric bilinear map of degree 1

Q(a,b) = A(a Ab) — Ala) Ab— (—1)%a A A(b)
satisfies the odd Poisson identity
Qa,bAc) = Q(a,b) Ac+ (=)@ A Q(a, c).

Note that the second condition on the above definition means that for every homo-
geneous a € G, the linear map Q(a,—) is a derivation of degree @+ 1.

The map @ corresponds, via the décalage isomorphism, to a skewsymmetric bilinear
map of degree 0, [,]: G[—1] x G[—1] — G[—1]; the expression of [,] in terms of A is

[a,b] = a A A®D) + (—1)38@C=D (A(a A b) — Ala) AD).

ExampPLE VIL.24. If A is a differential of a graded algebra (G, A), then @ = 0 and
(G, N, A) is a GBV algebra called abelian.

ExamMpLE VII.25. The sheaf P of polyvector fields on a complex manifold, endowed
with the operator A described in Section 2 is a sheaf of GBV algebra.

EXERCISE VII.26. Let (G, A, A) be a GBV algebra. If G has a unit 1, then A(1) =
0. A

LEmMA VIL.27. For every a,b € G homogeneous
AQ(a,b) + Q(A(a), b) + (=1)"Q(a, A(b)) = 0.
PROOF. It is sufficient to write @ in terms of A and use A? = 0. O

TueorReM VIL.28. If (G,A,A) is a GBV algebra then (G[—1],[,],A) is a DGLA
and therefore (G, A\, Q) is a Gerstenhaber algebra.

Proor. Working in G[—1] (i.e. @ = deg(a, G[—1])) we have from Lemma VII.27
Ala,b] = [A(a),b] + (=1)%[a, A(D)]

and then we only need to prove the Jacobi identity.
Replacing a = «, b = 6 A7y in the above formula we have

[, A(BAY)] = (=1)% (Ao, BAY] = [Aa, B AA])
and then [o, A(G A 7)] is equal to
(—1)7A ([0, 8] A7) + (1) PAB Ao, 7]) = (—1)7[Aa, BIAY +(=1) @A [Aa, 7).
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Writing
[, [8:4)] = o, BA Aq] + (=1) ([ A(B A7) = [or, AB AA)),
[lv, 81, 7] = e, B8] A Ay + (=1)"*P(A([ov, 8] A ) — Al B] A7),
(8, o)) = B A Aler, 3] + (1) (A(B A [, 7]) — AB A [, 4))
we get

[, [8,7]] = [le, 81,7 + (=1)F?[3, [, 1]]-
]

DEFINITION VIL.29. Let (G, A, A) be a GBV-algebra and d a differential of degree
1 of (G,N). If dA+ Ad = 0 then the gadget (G, A, A, d) is called a differential GBV

algebra.

ExaMpPLE VIL.30. Let P be the algebra of polyvector fields on a complex manifold
M. In the notation of Section 2, (P, A, A, d) is a sheaf of differential GBV algebras
if and only if the connection D is integrable.

This happen in particular when M has trivial canonical bundle and D is the trivial
connection.

ExXERrcISE VIL31. If (G, A, A, d) is a differential GBV-algebra then (G[-1],[,],d +
hA) is a DGLA for every h € K. A

7. Historical survey, VII

The Schouten bracket was introduced by Schouten in [70] while the Jacobi identity
was proved 15 years later by Nijenhuis [58].
The now called Gerstenhaber algebras have been first studied in [17] as a structure
on the cohomology of an associative ring.
Concrete examples of GBV algebra arising from string theory were studied in 1981
by Batalin and Vilkovisky, while the abstract definition of GBV algebra given in this
notes was proposed in [48] (cf. also [75]).
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CHAPTER VIII

Graded coalgebras

This Chapter is a basic course on graded coalgebra, with particular emphasis on
symmetric graded coalgebra. The aim is give the main definitions and to give all the
preliminaries for a satisfactory theory of L..-algebras.

Through all the chapter we work over a fixed field K of characteristic 0. Unless
otherwise specified all the tensor products are made over K.
The main references for this Chapter are [61, Appendix B] [22], [6].

1. Koszul sign and unshuffles

Let V,W € G be graded vector spaces over K. We recall (Definition IV.2) that the
twisting map T: V @ W — W @ V is defined by the rule T(v @ w) = (—1)""w ® v,
for every pair of homogeneous elements v € V, w € W.

The tensor algebra generated by V € G is by definition the graded vector space

T<V) = @nzo®nv

endowed with the associative product (v1 ®...®vp)(Vpp1 ® ... QUy) =V1 ... Q Vp.

Let I C T(V) be the homogeneous ideal generated by the elements @y —T(x ®y),
x,y € V; the symmetric algebra generated by V is defined as the quotient

SV)=TV)/1 =@, Q"V, O"V=Q"V/(K®"VnI)
The product in S(V) is denoted by ®. In particular if 7: T(V) — S(V) is the pro-
jection to the quotient then for every vi,... , v, € V, 01 0...0v, =71(11 ®...Qvy).

The exterior algebra generated by V' is the quotient of T'(V') by the homogeneous
ideal J generated by the elements z ® y + T'(z ® y).

NV =T(V)/J =@, >NV, NV=Q"V/(KQ'VNnJ).
Every morphism of graded vector spaces f: V — W induces canonically three ho-
momorphisms of graded algebras

T():T(V)=TW),  S(f): S(V) = SW),  AS): AV — A\W.

The following convention is adopted in force: let V, W be graded vector spaces and
F:T(V)— T(W) a linear map. We denote by

FT(V) - Q'W, Fj: @V — T(W), sz RV - QW
the compositions of F with the inclusion ®’V — T(V) and/or the projection

TW) - Q'W.
Similar terminology is adopted for linear maps S(V) — S(W).

MARCO MANETTI: Lectures on deformations of complexr manifolds
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If v1,... ,v, is an ordered tuple of homogeneous elements of V and o: {1,...,s} —
{1,...,n} is any map, we denote v, = V51 ® Vo2 @ ... O vys € (OD)°V.
If I C {1,...,n} is a subset of cardinality s we define v; as above, considering I as
a strictly increasing map I: {1,...,s} — {1,... ,n}.

If hu...Ul, = J1U...UJy, ={1,... ,n} are decompositions of {1, ... ,n} into disjoint
I,...,

subsets, we define the Koszul sign € (V, 7
Tyeens

I
Ja;{vh}> = 41 by the relation
b

n,... .1
e(v, ! “ Ao} o @O =, O Oy,
9 FT

Similarly, if o is a permutation of {1,... ,n}, e(V,o;v1,... ,v,) = %1 is defined by
V1 O...Ov=e(V,o5v1,. .0, 00)(Ve(1) © -+ - O Vg(n)),
or more explicitly
SN
6(‘/’0-;’017"' ’Un) :H<¥> ’ E:deg(v,V)
izs \|oi —

For notational simplicity we shall write e(o;v1, ... ,vy,) or €(o) when there is no pos-
sible confusion about V and vy, ... ,v,.

The action of the twisting map on ®2V extends naturally, for every n > 0, to an
action of the symmetric group X, on the graded vector space @"V. This action can
be described by the use of Koszul sign, more precisely

o1 @ ... Q) = €(0501, .+, V) (Vg(1) @ -+ ® Vg ()
Denote by N: S(V) — T'(V) the linear map

Nv©...0v,) = Z (o501, -+ ) (Vg(1) @ -+ - @ Vg())

oEY,
= Z o ®...Qv,), vi,...,v, €W
o€,
. L . o Idar
Since K has characteristic 0, a left inverse of 7: T'(V) — S(V) is given by >, — N,
n!

where, according to our convention, Id": T(V) — @"V is the projection.
For every homomorphism of graded vector spaces f: V — W, we have

NoS(f)y=T(f)oN: S(V)—>T(W).
The image of N: "V — @"V is contained in the subspace (®"V)*" of X,-

invariant vectors.

LEMMA VIIL1. In the notation above, let W C Q"V be the subspace generated by
all the vectors v — o (v), 0 € ¥, v € Q"V.
Then Q"V = (Q"V)* @ W and N: O"V — (Q"V)* is an isomorphism with
T

verse —.
n!

PROOF. It is clear from the definition of W that 7(1/') = 0; moreover v —Nllv €
n!

W for every v € @"V, and therefore Im(N) + W = @"V.
On the other side if v is X,,-invariant then

1 1
v=— > o) = —N7(v)
Uezn

and therefore Im(N) = (®"V)*, Im(N)NW C Im(N) Nker(r) = 0. O
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For every 0 < a < n, the multiplication map V& @ V®"~¢ — V®" ig an isomor-
phism of graded vector spaces; we denote its inverse by

Qan—at yen V®G®V®"_a,

Aan—a(V1 ®...QV) = (11 ®...Q V) ® (Vg1 @ ... @ Vp).
The multiplication p: (O*V) @ (O" *V) — (O™ V is surjective but not injective;

a left inverse is given by [a7na< > , where
a

1,1¢
[a7n_a(’01 ®... @Un) = ZE <{1 n};/Ul?”. 7Un> vr ®UIC7
the sum is taken over all subsets I C {1,...,n} of cardinality a and I¢ is the com-
plement of I to {1,... ,n}.

DEFINITION VIIL.2. The set of unshuffles of type (p, q) is the subset S(p, q) C Xp4q
of permutations o such that o(i) < o(i + 1) for every i # p.

Since o € S(p,q) if and only if the restrictions o: {1,...,p} — {1,...,p + q},
o:{p+1,...,p+q} — {1,... ,p+ q}, are increasing maps, it follows easily that
the unshuflles are a set of representatives for the cosets of the canonical embedding
of ¥, x ¥, inside ¥,4,. More precisely for every o € ¥,;, there exists a unique
decomposition o = 7p with 7 € S(p,¢) and p € ¥, x &,.

EXERCISE VIII.3. Prove the formula
[a,nfa(vl ©...0 Un) = Z 6(0‘)(’[}0(1) ©...0 Ua(a)) ® (UU(a—l—l) ©...0 Uo(n))

oeS(a,n—a)
AN
LEMMA VIIL4. In the above notation, for every 0 < a <mn
dan—aN = (N @ N)lgna: O"V = QV " V.
PROOF. Easy exercise. ]

Consider two graded vector spaces V, M and a homogeneous linear map f: RV —
M. The symmetrization f: O™V — M of f is given by the formula

flar®ar®...0an) = Z eV,o5a1,... ,am)f(ag, @ ... R ag,,).

oEYm

If g: ®ZV — V is a homogeneous linear map of degree k, the (non associative)
Gerstenhaber composition product f e g: ®m+l*1V — M is defined as

foeglar®...®amp1-1) =

m—1
= Z (—D)PEH AT £ @ ... © a; ® glaig1 @ ... @ Aig) @ - .. @ Ampi—1)-
1=0

The behavior of e with respect to symmetrization is given in the following lemma.
LeEMMA VIIL5. (Symmetrization lemma) In the notation above

fegla1®...0an-1) =

= Z e(V,oia1,. .. am)f(§(a, ©...® Ug) O gy © ... Olgy,,, )
ceS(l,m—1)
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ProOOF. We give only some suggestion, leaving the details of the proof as exercise.
First, it is sufficient to prove the formula in the ”universal” graded vector space U
with homogeneous basis ay, . .. , @p+i—1 and by, where I ranges over all injective maps
{1,...,0} = {1,... ;m +1— 1}, by is homogeneous of degree k + a7y + ... + aq)
and g(ay) = by.

Second, by linearity we may assume that M = K and f an element of the dual basis
of the standard basis of @"'U.
With these assumption the calculation becomes easy. ]

2. Graded coalgebras

DEeFINITION VIII.6. A coassociative Z-graded coalgebra is the data of a graded
vector space C' = @,czC"™ € G and of a coproduct A: C — C ® C' such that:

e A is a morphism of graded vector spaces.
e (coassociativity) (A ® Ido)A = (Ide @ A)A: C - CC® C.
The coalgebra is called cocommutative if TA = A.

For simplicity of notation, from now on with the term graded coalgebra we intend a
Z-graded coassociative coalgebra.

DEFINITION VIIL.7. Let (C,A) and (B,IT") be graded coalgebras. A morphism of
graded coalgebras f: C' — B is a morphism of graded vector spaces that commutes
with coproducts, i.e. T'f = (f @ f)A.

The category of graded coalgebras is denoted by GC.

EXERCISE VIII.8. A counity of a graded coalgebra is a morphism of graded vector
spaces €: C' — K such that (e ® Idg)A = (Ide ® €)A = Idc.
Prove that if a counity exists, then it is unique (Hint: (e ® € )A =7). A

ExampPLE VIIL9. Let C = K[t] be the polynomial ring in one variable ¢ of even
degree. A coalgebra structure is given by

A(t") = En:ti ® "t
=0

We left to the reader the verification of the coassociativity, of the commutativity and
the existence of the counity.

If the degree of t is equal to 0, then for every sequence { f,},>0 C K it is associated
a morphism of coalgebras f: C — C defined as

f(l):17 f(t”)zz Z fi1fi2"'aists'
s=1 (%1,... 05 )EN®
11+...+is=n

The verification that Af = (f ® f)A can be done in the following way: Let {z"} C
CY =K[[z]] be the dual basis of {t"}. Then for every a,b,n € N we have:

(2 @ 2%, Af(t")) = > fiv oo fifin - Fins

i1+...+ig+Jj1 4. FIp=n

<$‘a®l‘b,f®fA(tn)>:Z Z Z fil--'fiafjl"'fjb'

s i1+...+iqg=s J1+...+jp=n—s

Note that the sequence {f,}, n > 1, can be recovered from f by the formula f, =

(@, f(2"))-
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We shall prove later that every coalgebra endomorphism of K [¢] has this form for
some sequence {f,}, n > 1.

LEMMA-DEFINITION VIIL.10. Let (C,A) be a graded coassociative coalgebra, we de-
fine recursively A° = Ide and, for n > 0, A" = (Ide ® A" HA: C — Q" C.
Then:

1. For every 0 <a <n—1 we have

A" — (Aa ® Anflfa)A: C — ®n+1C,

aa—i—l,n—aAn — (Aa ® An—l—a)A
2. For every s > 1 and every ag, ... ,as > 0 we have
(A% @ A" @ ... @ A%)AS = AsT2 o,

In particular, if C' is cocommutative then the image of A"~ is contained in
the set of X, -invariant elements of Q" C.

3. If f: (C,A) — (B,T) is a morphism of graded coalgebras then, for everyn > 1
we have

If= (@ HAm: ¢ — ®n+1B.

PrOOF. [1] If a = 0 or n = 1 there is nothing to prove, thus we can assume a > 0
and use induction on n. we have:

(A% ® A" YA = ((Ide ® A A @ AV 179)A =
= (Ide @ AP @ A" 1Y) (A ® Ido)A =

= (Ide @ A" @ A" 1) (Ide @ A)A = (Ide ® (A" @ A" 179 A)A = A™,
[2] Induction on s, being the case s = 1 proved in item 1. If s > 2 we can write

(Aao QAT ®...® AaS>AS = (Aao QA" ®...® Aas)(Id(X) As_l)A _

(A ® (A" ®@...@ A™)A A = (A% @ A0 A = AT,

The action of 3, on ®"C is generated by the operators T, = I dgic ®T ®
Id®n7a72c, 0<a<n-—2 and, if TA = A then

TaAnil = Ta(Id®a C ® A ® Id®n7a72 C)An72 ==

e (Id®‘lc’ ® A ® Id®n—a—2 C)An_z == An_l
[3] By induction on n,
I"f=Idp @I f = (f@T" A = (f @ (@")A" A = ("7 f)A™.
O

ExampLE VIII.11. Let A be a graded associative algebra with product p: AQ A —
A and C a graded coassociative coalgebra with coproduct A: C — C ® C.
Then Hom*(C, A) is a graded associative algebra with product

fg=p(f®g)A.

We left as an exercise the verification that the product in Hom*(C, A) is associative.
In particular Homg(C, A) = Hom?(C, A) is an associative algebra and CV = Hom*(C, K )
is a graded associative algebra. (Notice that in general AV is not a coalgebra.)
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ExampLE VIIL.12. The dual of the coalgebra C = K [¢] (Example VIII.9) is exactly
the algebra of formal power series A = K|[[z]] = CV. Every coalgebra morphism
f: C — C induces a local homomorphism of K-algebras f: A — A. Clearly ft =0
only if f = 0, f* is uniquely determined by f'(z) = >, ., fna" and then every
morphism of coalgebras f: C — C is uniquely determined by the sequence f, =
(f'(x), ") = (2, f(t")).

The map f — f! is functorial and then preserves the composition laws.

DEFINITION VIII.13. A graded coassociative coalgebra (C,A) is called nilpotent if
A" =0 for n >> 0.
It is called locally nilpotent if it is the direct limit of nilpotent graded coalgebras or
equivalently if C = U, ker A™.

ExAMPLE VIIL.14. The coalgebra K [t] of Example VIIL9 is locally nilpotent.

ExaMpLE VIIL.15. Let A = @A; be a finite dimensional graded associative com-
mutative K-algebra and let C' = AY = Hom*(4,K) be its graded dual.
Since A and C are finite dimensional, the pairing (c;®ca, a1®as) = (—1)%1%(cy, a1){cs, as)
gives a natural isomorphism C ® C = (A ® A)Y commuting with the twisting maps
T; we may define A as the transpose of the multiplication map pu: A ®@ A — A.
Then (C,A) is a coassociative cocommutative coalgebra. Note that C' is nilpotent if

and only if A is nilpotent.

EXERCISE VIIL.16. Let (C,A) be a graded coalgebra and p: C — V a morphism
of graded vector spaces. We shall say that p cogenerates C if for every ¢ € C' there
exists n > 0 such that (®"T'p)A™(c) # 0 in Q"' V.

Prove that every morphism of graded coalgebras B — C' is uniquely determined by
its composition B — C' — V with a cogenerator p. VAN

2-A. The reduced tensor coalgebra. Given a graded vector space V, we
denote T(V) = @, ®" V. When considered as a subset of T(V) it becomes an
ideal of the tensor algebra generated by V.

The reduced tensor coalgebra generated by V' is the graded vector space W endowed

with the coproduct a: T(V) — T(V) @ T(V),

oo n—1 n—1
A=) tona AMO...BU)=D (NO...®0) (V1 ® ... D V)
n=1a=1 r=1

The coalgebra (T'(V), a) is coassociative (but not cocommutative) and locally nilpo-
tent; in fact, for every s > 0,

Tl ®...Qv,) = > (V®...0V,)®...® (Vi,_141Q...Qv;,)

1<i1 <i2<...<is=n

and then kera®*~! = @ Q" V.

If u: @*T(V)— T(V) denotes the multiplication map then, for every vy,... ,v, €
V', we have

n—1
s—1

For every morphism of graded vector spaces f: V — W the induced morphism of
graded algebras

,ua51(v1®...®vn):( )v1®...®vn.

T(f): T(V)=>TW), T(Hor1®...0v,)=Ff(01)®...® f(vn)

is also a morphism of graded coalgebras.
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EXERCISE VIIL17. Let p: T(V) — T(V) be the projection with kernel K = ®° V
and ¢: T(V) — T(V) @ T(V) the unique homomorphism of graded algebras such
that ¢p(v) =v® 1+ 1 ® v for every v € V. Prove that p¢ = ap. A

If (C,A) is locally nilpotent then, for every ¢ € C, there exists n > 0 such that
A"™(¢) = 0 and then it is defined a morphism of graded vector spaces

1 ad n —

ProposITION VIIL18. Let (C,A) be a locally nilpotent graded coalgebra, then:
1 n —_— . .
1. The map N Z A": C — T(C) is a morphism of graded coalgebras.

n>0
2. For every graded vector space V and every morphism of graded coalgebras

¢: C — T(V), there exists a unique morphism of graded vector spaces f: C' —
V' such that ¢ factors as

LS (@ part ¢ —T(C) — T(V),

= T(f)ﬂ =
n=1

PRrROOF. [1] We have

n

A Y A A=) Y (AT ATMA
n>0a

n>0 n>0 0

I
NE

1
aa+1,n+1—aAn+ =a § A"
n>0

v

Oa

I
o

n

where in the last equality we have used the relation aA® = 0.

[2] The unicity of f is clear, since by the formula ¢ = T'(f)(>_, >, A") it follows that
f is the composition of ¢ and the projection T'(V) — V.

To prove the existence of the factorization, take any morphism of graded coalgebras
¢: C — m and denote by ¢': C — ®iV the composition of ¢ with the projection.
It is sufficient to show that for every n > 1, ¢" is uniquely determined by ¢'. Now,
the morphism condition a¢p = (¢®¢)A composed with the projection T' (V)T (V) —
P HR'V @ ®" V) gives the equality

n—1

ag” =) ($@¢" A, n>2.

i=1

Using induction on n, it is enough to observe that the restriction of a to ®" V is
injective for every n > 2.
O

It is useful to restate part of the Proposition VIII.18 in the following form

COROLLARY VIIIL.19. LetV be a fixed graded vector space; for every locally nilpotent
graded coalgebra C' the composition with the projection T(V) — V induces a bijection

Homgc(C,T(V)) = Homg(C,V).

When C'is a reduced tensor coalgebra, Proposition VIII.18 takes the following more
explicit form
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COROLLARY VIIL.20. Let U,V be graded vector spaces and p: T(V) — V the pro-
jection. Given f: T(U) — V, the linear map F: T(U) — T(V)

Floy®...Qv,) Z > f1®...0v,)®...0 flui, 1419 ...0v;,)

s=1 1<i1<ie<...<is=n

is the unique morphism of graded coalgebras such that pF = f.

ExamMpLE VIIL.21. Let A be an associative graded algebra. Consider the projection
p: T(A) — A, the multiplication map u: T'(A) — A and its conjugate
"

wt=—pT(-1), pag ®...0a,) = (— Yl ®...®a,) = (=1)"Laray. .. an.

The two coalgebra morphisms T'(A) — T'(A) induced by u and p* are isomorphisms,
the one inverse of the other.
In fact, the coalgebra morphism F': T(A) — T'(A)

n
F(a1®...®an)zz Z (ar1a9...04) @ ... (@i, _141---Gi,)

s=1 1<i1<i2<...<is=n

is induced by p (i.e. pF' = p), p*F(a) = a for every a € A and for every n > 2

n
PWFa®...Qay) = z:(—l)s_1 Z a1as ... an =

s=1 1<i1<i2<...<is=n
n—1 s, sfn—1
Z <8_1>a1a2...an:<zo(—l) < < >>a1a2_,,an:0_
s=1 p—

This implies that p*F = p and therefore, if F*: T'(A) — T(A) is induced by u* then
pF*F = pu*F = p and by Corollary VIII.19 F*F is the identity.

EXERCISE VIII.22. Let A be an associative graded algebra over the field K, for
every local homomorphism of K-algebras v: K[[z]] — K][z]], v(x) = > 2", we
can associate a coalgebra morphism F: T'(A) — T'(A) induced by the linear map

fy:T(A) — A, fla1 ® ... ® ap) = a1 - . . ap.

Prove the composition formula F.s = F5F,. (Hint: Example VIII.12.) A

EXERCISE VIII.23. A graded coalgebra morphlsm F:T({U) — T(V) is surjective
(resp.: injective, bijective) if and only if F}': U — V is surjective (resp.: injective,
bijective). A

2-B. The reduced symmetric coalgebra.

DEFINITION VIII.24. The reduced symmetric coalgebra is by definition S(V) =
@D,~0 O"V, with the coproduct [ =37 > "~ o U

n—1 I.I¢
[(v1®...©vn)zz Z e<{1 ’ n};vl,...,vn>v1®wc.

=L IC{L il |=r

The verification that [ is a coproduct is an easy consequence of Lemma VIII.4. In
fact, the injective map N: S(V) — T'(V) satisfies the equality aN = (N ® N)[ and

then N is an isomorphism between (S(V),[) and the subcoalgebra of symmetric ten-
sors of (T'(V), a).
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REMARK VIIL.25. Tt is often convenient to think the symmetric algebra as a quo-
tient of the tensor algebra and the symmetric coalgebra as a subset of the tensor
coalgebra.

The coalgebra S(V) is coassociative without counity. It follows from the definition
of [ that V = ker [ and T = [, where T is the twisting map; in particular (S(V), ) is
cocommutative. For every morphism of graded vector spaces f: V — W, the mor-
phism S(f): S(V) — S(W) is a morphism of graded coalgebras.

If (C, A) is any cocommutative graded coalgebra, then the image of A™ is contained
in the subspace of symmetric tensors and therefore

1 eA—1
—a- VoA
where
-1 _ Al 0 SO
A _Zln' - ()

PropPOSITION VIIL.26. Let (C,A) be a cocommutative locally nilpotent graded coal-

gebra, then:
A

1 S
1. The map ¢ : C'— S(C) is a morphism of graded coalgebras.
2. For every graded vector space V and every morphism of graded coalgebras

¢: C — S(V), there exists a unique factorization

A_l o0 n 41 . -
o= S(qﬁl)eT = Zl Qni!d)A"_l: C — S(C) — S(V),

where ¢*: C — V is a morphism of graded vector spaces f: C — V. (Note
that ¢! is the composition of ¢ and the projection S(V) — V.)

1 A1
PROOF. Since N is an injective morphism of coalgebras and —— = No 6T,
the proof follows immediately from Proposition VIII.18. O
COROLLARY VIIL.27. Let C be a locally nilpotent cocommutative graded coalgebra,
and V' a graded vector space. A morphism 0 € Homg(C,S(V)) is a morphism of
graded coalgebras if and only if there exists m € Homg(C,V) C Homeg(C,S(V))
such that

— 1
_ _ _ _ n
0 =exp(m)—1 —Zn!m ,
n=1
being the m-th power of m is considered with respect to the algebra structure on

Homg (C,S(V)) (Ezample VIII.11).

PROOF. An easy computation gives the formula m™ = (O"m)A" ! for the prod-
uct defined in Example VIII.11. O

EXERCISE VIII.28. Let V be a graded vector space. Prove that the formula

c(UiA...Avp) = Z > (=D)7e0) Vo) A M) ® (Vgrg1y A Alg(m))s

r=1geS(r,n—r)

where (—1)7 is the signature of the permutation o, defines a coproduct on A(V) =
@.,-0/\" V. The resulting coalgebra is called reduced exterior coalgebra generated
by V. A
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3. Coderivations

DEFINITION VIIL.29. Let (C, A) be a graded coalgebra. A linear map d € Hom"(C, C)
is called a coderivation of degree n if it satisfies the coLeibnitz rule

Ad = (d® Ide + Ide @ d)A.

A coderivation d is called a codifferential if d*> = dod = 0.

More generally, if §: C' — D is a morphism of graded coalgebras, a morphism of
graded vector spaces d € Hom"(C, D) is called a coderivation of degree n (with
respect to 6) if

Apd=(d®0+0® d)Ac.

In the above definition we have adopted the Koszul sign convention: i.e. if z,y € C,
fyg € Hom™(C, D), h,k € Hom*(B,C) are homogeneous then (f ® g)(z ® y) =

(—=1)97f(z) ® g(y) and (f @ g)(h @ k) = (=1)7"fh @ gk.

The coderivations of degree n with respect a coalgebra morphism 6: C' — D form a
vector space denoted Coder™(C, D;8).
For simplicity of notation we denote Coder”(C, C) = Coder"(C, C; Id).

LEMMA VIIL30. Let C-25D-25E be morphisms of graded coalgebras. The compo-
sitions with 8 and p induce linear maps

p«: Coder™(C, D;0) — Coder™(C, E; pf), frepf;

0*: Coder™ (D, E; p) — Coder™(C, E; pb), f— f6.
ProOOF. Immediate consequence of the equalities
App=(p@p)Ap, Apf=(0®0)Ac.
O

EXERCISE VIIL31. Let C be a graded coalgebra and d € Coder'(C, C) a codiffer-
ential of degree 1. Prove that the triple (L, 4, [,]), where:

L= @ Coder™(C,C), [f.g]=fg— (=) gf, &(f)=1[d,f]

neL
is a differential graded Lie algebra. A

LEMMA VIIL.32. Let V,W be graded vector spaces, f € Homg(V,W) and g €
Hom™(S(V),W). Then the morphism d € Hom™(S(V),S(W)) defined by the rule

d(vl®...®’0n): Z 6({1 I,IC };Ula...,'Un>g(vl)®s(f)(vfc)
0£IC{1,... n} AL

is a coderivation of degree m with respect to the morphism of graded coalgebras

S(f): S(V) — S(W).

PROOF. Let v1,v9,... ,v, be fixed homogeneous elements of V', we need to prove
that

ldv1 ©...0v,) =deS(f)+S(f)@d)l(vy ©...0v,).
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If A C W is the image of f and B C W is the image of g, it is not restrictive to
assume that W = A @ B: in fact we can always factorize

.

A®PB——=W

V,

and apply Lemma VIIL.30 to the coalgebra morphism S(+): S(A® B) — S(W).
Under this assumption we have (S(A)B ® S(A)) N (S(A) ® S(A)B) = § and the
image of d is contained in S(A)B C S(A@® B). Therefore the images of [d and
(d® S(f) + S(f) ® d)l are both contained in (S(A)B ® S(A)) @ (S(A) ® S(A)B).
Denoting by p: S(W) ® S(W) — S(A)B ® S(A) the natural projection induced by
the decomposition W = A@® B, since both the operators [d and (d®S(f)+S(f)@d)l
are invariant under the twisting map, it is sufficient to prove that

pld(v1 ©®...0v,) =p(d@S(f))(vi ©...Ovy,).

We have (all Koszul signs are referred to vy,... ,vy)
pld(v1 ©®...©vy) = pl Z € s g(vy) ©S(f)(vye) | =
{1,...,n}
PAJC{1,... ,n}

B ) e s -

0#AJCIC{l,... n}

- Y (‘{in‘]’ IC) 9(v) © S(f) (vr—1) ® S(F)(vre).

0#£JCIC{L,... ,n} X

On the other hand

P(d @ S()(wr © .. 0 va) = p(d® S()) (Z( ot n}>v, ® W) _
SV

=S () (M s e st o st -

Jcil

=D ¢ (J ' ..J I}) g(vy) © S(f)(vi-y) ® S(f)(vre).

JCI
O
ProposiTioN VIIL.33. Let V' be a graded vector space and C a locally nilpotent

cocommutative coalgebra. Then for every coalgebra morphism 0: C — S(V) and
every integer n, the composition with the projection S(V) — V' gives an isomorphism

Coder™(C, S(V);0) — Hom™(C, V) = Homg(C, V[n]).
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PROOF. The injectivity is proved essentially in the same way as in Proposi-
tion VIIL18: if d € Coder"(C, S(V); #) we denote by 0'.d': C — (O'V the composi-
tion of # and d with the projection S(V) — (O'V. The coLeibnitz rule is equivalent
to the countable set of equalities

Cd'=d*®60 " +0"®d 0<ac<i.
Induction on ¢ and the injectivity of

r:é@mh@b(@@mm

m=1

=2
show that d is uniquely determined by d.
For the surjectivity, consider g € Hom"(C, V'); according to Proposition VIIL.26 we
A

-1 A
can write 0 = 5(6’1)6 A and, by Lemma VIII.32, the map d = 5<
§: S(C) — S(V) is given by

C @ = {Z}{Z} C C C; 1 Ciie
000 = 5 () o) © 50

is a coderivation of degree n with respect to 6 that lifts g. O

, Where

A

COROLLARY VIIL.34. Let V' be a graded vector space, S(V') its reduced symmetric
coalgebra. The application Q — Q' gives an isomorphism of vector spaces

Coder™(S(V),5(V)) = Hom"(S(V), V)

whose inverse is given by the formula

Qui®...Ovm) Z >« (V1) © -+ © Vo (1)) © V(k1) O - - © Ug(n)-
k=1 oceS(k,n— k)

In particular for every coderivation @ we have Q;- = 0 for every i > j and then the

subcoalgebras @;_, @Z V' are preserved by Q.

ProOF. The isomorphism follows from Proposition VIII.33, while the inverse
formula comes from Lemma VIII.32. U



CHAPTER IX

L., and EDF tools

In this chapter we introduce the category Lo, of L..-algebras and we define a se-
quence of natural transformations

DGLA — L., — PreDef — Def

whose composition is the functor L +— Defy, (cf. V.66).

In all the four categories there is a notion of quasi-isomorphism which is preserved
by the above natural transformations: we recall that in the category Def quasi-
isomorphism means isomorphism in tangent spaces and then by Corollary V.72 every
quasi-isomorphism is an isomorphism.

Through all the chapter we work over a fixed field K of characteristic 0. Unless
otherwise specified all the tensor products are made over K.

1. Displacing (Décalage)

For every n and every graded vector space V, the twisting map gives a natural
isomorphism

dp,: @"(V[1]) = (@")VInl,  Via]=Kla] @V

dp, (11[1] ® ... @ vp[1]) = (—1)Z= (=D deeWiV) () & @wv,)[n],  vla] = 1]a] @ v.

It is easy to verify that dp,,, called the displacing' isomorphism, changes symmetric
into skewsymmetric tensors and therefore it induces an isomorphism

dp,,: ©@"(V[]) = (A"V)[nl,

dp, (v1[1] ® ... © wu[1]) = (—=1) 2= (=D A8V (4, A A wy)[n].

2. DG-coalgebras and L.,-algebras

DEFINITION IX.1. By a dg-coalgebra we intend a triple (C, A, d), where (C,A) is
a graded coassociative cocommutative coalgebra and d € Coder!(C,C) is a codif-
ferential. If C' has a counit ¢: C' — K, we assume that ed = 0. The category of

dg-coalgebras, where morphisms are morphisms of coalgebras commuting with cod-
ifferentials, is denoted by DGC.

ExAMPLE IX.2. If Ais a finite dimensional dg-algebra with differential d: A — A[1],
then AY (Example VIII.15) is a dg-coalgebra with codifferential the transpose of d.

MARCO MANETTI: Lectures on deformations of complexr manifolds
Tt is often used the french name décalage.

131
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LEMMA IX.3. Let V be a graded vector space and Q € Coder*(S(V),S(V)). Then
Q is a codifferential, i.e. Qo @Q = 0, if and only if for every n > 0 and every
Viy.o. ,Up €V

Z Z 6(0’;1)1,... )Ql (Qk( 0.(1 @’Uo.(k))@ Uo-(kJrl)@...@vU(n)) = 0.

k+l=n+1 oceS(k,n—k)

PRrROOF. Denote P = Qo Q = %[Q,Q]: since P is a coderivation we have that
P =0 if and only if P! = Q' 0 Q = 0. According to Corollary VIII.34

Qv ®...0v,) = Z 6<{1 ..T,..Icn}>Q1(w)@vIc

Ic{1,...,n}
and then
1 I? IC 1 1
Pllvyo...0um)= > ¢ 0 n} Q(Q (vr) © vre).
Ic{1,...,n} T

O

n
Note that P} = 0 whenever Q! = 0 for every m > and, if @) is a codifferential

in S(V) then Q1 is a differential in the graded vector space V.

DEFINITION 1X.4. Let V be a graded vector space; a codifferential of degree 1 on
the symmetric coalgebra C(V) = S(V]1]) is called an Lo -structure on V. The dg-
coalgebra (C'(V), Q) is called an L -algebra.

An Loo-algebra (C(V), Q) is called minimal if Q1 = 0.

DEFINITION IX.5. A weak morphism F: (C(V),Q) — (C(W), R) of Ly-algebras is
a morphism of dg-coalgebras. By an L.,-morphism we always intend a weak mor-
phism of L.-algebras.

A weak morphism F' is called a strong morphism if there exists a morphism of graded
vector spaces Fjl: V — W such that F = S(F}).

We denote by Lo, the category having L.,-algebras as objects and (weak) Loo-
morphisms as arrows.

Consider now two Leo-algebras (C(V),Q), (C(W),R) and a morphism of graded
coalgebras F': C(V) — C(W). Since FQ — RF € Coder' (C(V),C(W); F), we have
that F is an Leo-morphism if and only if F1Q = R'F

LEMMA IX.6. Consider two Loo-algebras (C(V),Q), (C(W), R) and a morphism of
graded vector spaces F*: C(V) — W([1]. Then

el—1
[

F = S(Fh)

H(C(V),Q) = (C(W), R)

is an Loo-morphism if and only if

@) S R =Y R,
=1 =1

for every n > 0.

PROOF. According to Proposition VIII.26 F' is a morphism of coalgebras. Since
FQ— RF € Coder'(C(V),C(W); F), we have that F is an Lo-morphism if and only
if F1Q = R'F.

L]
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EXERCISE IX.7. An Lo.-morphism F is strong if and only if F! = 0 for every
n > 2. AN

If F: (C(V),Q) — (C(W),R) is an Loo-morphism, then by Lemma IX.6 RiF} =
FlQ1 and therefore we have a morphism in cohomology H(F}): H*(V[1],Q1) —
H*(W[1], Q1)

DEFINITION IX.8. An Ly-morphism F': (C(V),Q) — (C(W), R) is a quasiisomor-
phism if H(F\): H*(V[1],Q1) — H*(W[1],Q}) is an isomorphism.
The following exercise shows that the above definition is not ambiguous.

EXERCISE 1X.9. An Lo-morphism F: (C(V),Q) — (C(W),R) is a quasiisomor-
phism if and only if H(F): H*(C(V),Q) — H*(C(W), R) is an isomorphism. A

Given a coderivation @Q: S(V[1]) — S(V[1])[1], their components le-: oMV —
V[2], composed with the inverse of the displacement isomorphism, give linear maps

lj = (Qjodp, )[-n]: A"V — V[2 —n].

More explicitly
(or A Avp) = (—1) T (=1) 2= (=0 4Vl () [1] © ... 0 v, 1))
The conditions of Lemma IX.3 become
Z (—1)U€(J)li(lk(’ua(1) VANIAAN 'Ua(k)) NVg(k+1) N oo A Q}U(n)) =0.

k+i=n+1
oeS(k,n—k)

Setting 1 (v) = d(v) and la(vi A va) = [v1, v2], the first three conditions (n = 1,2, 3)
becomes:

(_1)k(i—1)

2: d[.ﬁlf,y] = [dl’,y] + (_1)5[1‘76@/]
3: (_1)52 [.ﬁlf, y}: Z] + (_1)52[[27'%]73/] + (_1)5_[@7 Z],$] =
= (_1)EE+1(dl3(xa Y, Z) + l3(dx7 Y, Z) + (_1)Tl3(x7 dya Z) + (_1)54»@13(%.’ Y, dZ))

If I3 = 0 we recognize, in the three formulas above, the axioms defining a differential
graded Lie algebra structure on V.

EXERCISE IX.10. Let (C(V),Q) be an Lo-algebra. Then the bracket

[wi, wa] = (1) E“EVIQ) (wn [1] © wa1]) = la(wr A ws)

gives a structure of graded Lie algebra on the cohomology of the complex (V, Q%) A

3. From DGLA to L. -algebras

In this section we show that to every DGLA structure on a graded vector space V
it is associated naturally a L, structure on the same space V, i.e. a codifferential )
on C(V)=8(V[1)).

The coderivation @ is determined by its components Q]l @j V1] — V]2].

ProrosITION IX.11. Let (V,d,[, ]) be a differential graded Lie algebra. Then the
coderivation @Q of components
1. QH(ul1]) = —d(v).
2. Q3(wi[1] © wa[1]) = (~1)9E8 V) wy, wy)
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3. Q]l =0 for every j > 3.
s a codifferential and then gives an Loo-structure on V.
PRrROOF. The conditions of Lemma IX.3 are trivially satisfied for every n > 3. For
n < 3 they becomes (where ¥ = z[1] and T = deg(z; V)):
n=1: Q{Qi(0)=d*(v)=0
n=2: QIQ3F oY) +Q5QI[E) oy + ()T VEHQLQI[H) o) =
= —(=1)*(d[z,y] — [dz,y]) + [z, dy] =
n=3: Q3Q3F07 02+ (-1)T'QFOQUIO2))+
HD)TTNRI 0 Q(F 0 2) =
= (= 1P[fa, ), 2 + (=17 [z, [y, 2] + (=) D[z, [y, 2]] = 0
O

It is also clear that every morphism of DGLA f: V — W induces a strong morphism
of the corresponding Loo-algebras S(f[1]): C(V) — C(W). Therefore we get in this
way a functor

DGLA — L

that preserves quasiisomorphisms.

This functor is faithful; the following example, concerning differential graded Lie al-
gebras arising from Gerstenhaber-Batalin-Vilkovisky algebras, shows that it is not
fully faithful.

Let (A,A) be a GBV-algebra (Section VIIL.6); we have seen that (G[—1],[, ], A),

where
[a, 8] = aA(b) + (~1)*E @D (A(ab) — A(a)b)

is a differential graded Lie algebra and then it makes sense to consider the associated

L.-algebra (C(G[-1]),d) = (S(G), 5) The codifferential ¢ is induced by the linear
map of degree 16" = A+ Q € Homk (S(G), G), where 6§ = A and

=Q:OG—G,  Qa®b) = Alab) — Ala)b— (—1)%aA(b)
LEMMA IX.12. In the notation above,
Alarag...apm) = Z e(oyar, ... ,am)A(as,)agy - - - ag,, +
oeS(1,m—1)

+ Z a1, .., 0m)Q(Ag,, Ugy) Aoy - - - Qg
oceS(2,m—2)

for every m > 2 and every aq1,... ,am € G.

ProOF. For m = 2 the above equality becomes
A(ab) = Ala)b+ (—1)%aA (D) + Q(a ©® b)
which is exactly the definition of Q.

By induction on m we may assume the Lemma true for all integers < m and then

m

A((araz)as ... am) = > (=15 Tay . Aa;)airs .. . am+
=1

~

+ZeQ(a1a2@ai)ag...&}...am—l— Z €Q(a; ®aj)atas...a;...a5. .. any.
i>3 2<i<j
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Replacing the odd Poisson identity
Q(aras © a;) = (-1)"a;Q(az2 © a;) + (=1) @V %2g,Q(a1 ® a;)
in the above formula, we obtain the desired equality. ]
As an immediate consequence we have

THEOREM IX.13. In the notation above, let (C(G[—1]),T) be the (abelian) Lo-
algebra whose codifferential is induced by A: G — G. Then the morphism of graded
vector spaces f: S(G) — G,

fla1 ®...0ay) =a1ay...apy
induces an isomorphism of Loo-algebras F': (C(G[-1]),d) — (C(G[-1]), 7).

PROOF. According to Lemmas IX.6 and IX.12 the morphism of graded coalgebras
induced by f is an Ly,-morphism.
Moreover, according to Example VIII.21 F' is an isomorphism of graded coalgebras
whose inverse is induced by

g: S(G) — G, g(a1©...0an) = (=1)"aas...am.

4. From L,.-algebras to predeformation functors

Let Q € Coder!(C(V),C(V)) be a Ly structure on a graded vector space V, we
define the Maurer-Cartan functor M Cy : NA — Set by setting:

MCV(A) = Hongc(Av, C(V))
We first note that the natural isomorphism
(C(V)® A)? =Homg(AY,C(V)), (v®a)e=cla)v

is an isomorphism of algebras and then, according to Corollary VIII.27, every coal-
gebra morphism 6: AY — C(V) is written uniquely as # = exp(m) — 1 for some
m € (V[1] ® A)® = Homg(AY,V[1]). As in Lemma IX.6, 6 is a morphism of dg-
coalgebras if and only if mda4v = Q'6; considering m as an element of the algebra
(C(V)® A)° this equality becomes the Maurer-Cartan equation of an L.-structure:
(Idypy @ da)ym =) %(Q}l ® Ida)ym™,  me (V[1]® A)°.
n=1

Via the décalage isomorphism the Maurer-Cartan equation becomes

<1 n(n
Idy © da(m) =" —(~1) SRl @ IdamA...Am,  me (Ve Al
n=1

It is then clear that if the Lo, structure comes from a DGLA V (i.e. [, = 0 for every
n > 3) then the Maurer-Cartan equation reduces to the classical one.

It is evident that MCy is a covariant functor and MCy(0) = 0. Let a: A — C,
B: B — C be morphisms in NA, then

MCV(A X B) = MCV(A) XMCV(C) MCV(B)

and therefore M CYy satisfies condition 2) of Definition V.59; in particular it makes
sense the tangent space TMCYy, .

PROPOSITION IX.14. The functor MCly is a predeformation functor with T'MCy =
H=HV[1], Q).
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ProOF. If A € NANDG then
MCy(A) = {me (Ve A Idy @ds(m) = -1, @ Ida(m)} = Z'(V @ A)

the same computation of V.66 shows that there exists a natural isomorphism T*MCy =
HI(V,1h) = H-Y(V[1], QL.

Let 0—1—A— B—0 be a small acyclic extension in NA, we want to prove that
MCy(A) — MCy(B) is surjective.

We have a dual exact sequence

0—BY—AY—TY—0, BY =TI+

Since TA = 0 we have Ayv(AY) C BY @ BY.

Let ¢ € MCy(B) be a fixed element and ¢': BV — V[1]; by Proposition VIIIL.26 ¢
is uniquely determined by ¢'. Let 1!: AV — V[1] be an extension of ¢!, then, again
by VIIIL.26, 1! is induced by a unique morphism of coalgebras ¢: AV — C(V).

The map ¢¥dav —Q: AY — C(V)[1] is a coderivation and then, setting h = (d;v —
Qi)' € Homg(IV,V[2]), we have that ¢ is a morphism of dg-coalgebras if and only
if h =0.

Note that ! is defined up to elements of Homg (1, V[1]) = (V[1] ® I)? and, since
Aqv(AY) € BY ® BY, 4" depends only by ¢ for every i > 1. Since I is acyclic and
hdrv + Q1h = 0 there exists ¢ € Homg (1Y, V[1]) such that h = &dpv — Q1¢ and then
6! = ! — ¢ induces a dg-coalgebra morphism #: AV — C(V) extending ¢. O

Therefore the Maurer-Cartan functor can be considered as a functor Lo, — PreDef
that preserves quasiisomorphisms. We have already noted that the composition
DGLA — L — PreDef is the Maurer-Cartan functor of DGLAs.

5. From predeformation to deformation functors

We first recall the basics of homotopy theory of dg-algebras.

We denote by K|t1,...,t,,dt1,...,dt,] the dg-algebra of polynomial differential
forms on the affine space A" with the de Rham differential. We have K|t,dt] =
Kt] & K[t]dt and

K[t,... tn,dty, ... dt] = Q"K[t;, dti).
=1
Since K has characteristic 0, it is immediate to ‘see that H,.(K[t,dt]) = K|[0] and
then by Kiinneth formula H,(K[ty,... ,t,,dt1,... ,dt,]) = K[0]. Note that for every
dg-algebras A and every s = (s1,...,8,) € K™ we have an evaluation morphism

€s: A®K[t1,... Jtn,dty, ... ,dtn] — A
defined by
es(a@p(ti,... ty,dty, ... dty)) =p(s1,... ,5n,0,...,0)a

For every dg-algebra A we denote A[t,dt] = A ® K|[t,dt]; if A is nilpotent then
Alt,dt] is still nilpotent. If A € NA, then A[t,dt] is the direct limit of objects in
NA. To see this it is sufficient to consider, for every positive real number € > 0, the
dg-subalgebra

Alt,dt)e = A® Bpso(AImN @ Alelin=tar) ¢ Alt, di),
where AI™¢1 is the subalgebra generated by all the products ajas . . . as, s > ne, a; € A.

It is clear that if A € NA then Aft,dt] € NA for every ¢ > 0 and At,dt] is the
union of all A[t,dt]e, € > 0.

LEMMA IX.15. For every dg-algebra A the evaluation map ey, : Alt,dt] — A induces
an isomorphism H(A[t,dt]) — H(A) independent from h € K.
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PROOF. Let 1: A — Alt,dt] be the inclusion, since epr = Idy it is sufficient to
prove that «: H(A) — H(A[t,dt]) is bijective.
For every n > 0 denote B, = At" & At"~ldt; since d(B,) C B, and A[t,dt] =
1(A) P,,~¢ Bn it is sufficient to prove that H(B,) = 0 for every n. Let z € Z;(By),
z = at™ + nbt""'dt, then 0 = dz = dat™ + ((—1)%a + db)nt" dt which implies
a = (—1)""1db and then z = (—1)"~1d(bt"). O

DEeFINITION [X.16. Given two morphisms of dg-algebras f,g: A — B, a homotopy
between f and ¢ is a morphism H: A — Blt,dt] such that Hy := ey o H = f,
Hy:=ej0H =g (cf. [27, p. 120)).

We denote by [A, B] the quotient of Hompga (A, B) by the equivalence relation ~
generated by homotopies.

According to Lemma IX.15, homotopic morphisms induce the same morphism in
homology.

LEMMA IX.17. Given morphisms of dg-algebras,

A B c,

if f~gandh~1 then hf ~lg.

PROOF. It is obvious from the definitions that hg ~ lg. For every a € K there
exists a commutative diagram

BoK[td] 2L co Kt df .

lea h l

B C

If F: A — BIt,dt] is a homotopy between f and g, then, considering the composition
of F with h ® Id, we get a homotopy between hf and hg. O

Since composition respects homotopy equivalence we can also consider the homotopy
categories K(DGA) and K(INA). By definition, the objects of K(DGA) (resp.:
K(NA)) are the same of DGA (resp.: NA), while the morphisms are Mor(A, B) =
[A, B].

If A,B € DG NNA, then two morphisms f,g: A — B are homotopic in the sense
of IX.16 if and only if f is homotopic to g as morphism of complexes. In particular
every acyclic complex is contractible as a dg-algebra.

LEMMA IX.18. A predeformation functor F': NA — Set is a deformation functor
if and only if F induces a functor [F]: K(INA) — Set.

PROOF. One implication is trivial, since every acyclic I € NANDG is isomorphic
to 0 in K(NA).
Conversely, let H: A — Blt,dt] be a homotopy, we need to prove that Hy and
H, induce the same morphism from F(A) to F(B). Since A is finite-dimensional
there exists € > 0 sufficiently small such that H: A — BIt,dt].; now the evaluation
map eg: Blt,dt]e — B is a finite composition of acyclic small extensions and then,
since F' is a deformation functor F'(Blt,dt].) = F(B). For every a € F(A) we have
H(a) = iHp(a), where i: B — BIt,dt]. is the inclusion and then Hi(a) = e1H(a) =
€1iH0<a) = Ho(a).
O
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THEOREM IX.19. Let F' be a predeformation functor, then there exists a deforma-
tion functor F* and a natural transformation n: F — F* such that:
1. i is a quasiisomorphism.
2. For every deformation functor G and every natural transformation ¢: FF — G
there exists a unique natural transformation : F* — G such that ¢ = .

PrROOF. We first define a functorial relation ~ on the sets F'(A), A € NA; we

set a ~ b if and only if there exists e > 0 and = € F(A[t, dt]¢) such that ep(x) = a,
ei(z) = b. By IX.18 if F' is a deformation functor then a ~ b if and only if a = b.
Therefore if we define F'* as the quotient of F' by the equivalence relation generated
by ~ and 7 as the natural projection, then there exists a unique 9 as in the statement
of the theorem. We only need to prove that F'T is a deformation functor.

STEP 1: If C € DG N NA is acyclic then F*(C) = {0}.
Since C'is acyclic there exists a homotopy H: C' — C|[t,dt]., € < 1, such that Hy = 0,
H, = Id; it is then clear that for every x € F(C) we have x = Hi(x) ~ Ho(z) = 0.

STEP 2: ~ is an equivalence relation on F'(A) for every A € NA.
This is essentially standard (see e.g. [27]). In view of the inclusion A — A[t, dt]. the
relation ~ is reflexive. The symmetry is proved by remarking that the automorphism
of dg-algebras

Alt,dt] — Alt,dt];  a®p(t.dt) — a®p(l —t,—dt)

preserves the subalgebras Alt, dt]. for every e > 0.

Consider now € > 0 and x € F(A[t,dt].), y € F(A[s,ds]) such that ey(x) = eo(y);
we need to prove that ej(z) ~ e (y).

Write K [t, s, dt, ds] = &,>05", where S™ is the n-th symmetric power of the acyclic

complex K¢ @ K s—5K dt & K ds and define Alt, s, dt,ds]. = A® ®pso(AMl ® ™).
There exists a commutative diagram

Alt, s, dt,ds]. ima Als, dsle
s—0 s—0

t—0

Alt, dt]. — A
The kernel of the surjective morphism
Alt, s, dt, ds)c—— Alt, dt]. x 4 Alt, dt].

is equal to @,so(A™! ® (8" N 1)), where I C KI[t,s,dt,ds] is the homogeneous
differential ideal generated by st, sdt,tds,dtds. Since I N S™ is acyclic for every
n > 0, the morphism 7 is a finite composition of acyclic small extensions.

Let £ € F(A]t, s,dt,ds].) be a lifting of (x,y) and let z € F(A[u, du].) be the image
of £ under the morphism

Alt, s, dt,ds|. — Alu, du)., t—1—u, s—u
The evaluation of z gives eg(z) = e1(x), e1(z) = e1(y).
STEP 3: If a: A — B is surjective then

(607a)

F(A[t, dt)e) = F(A) xpp) F(B[t, dt]c)
is surjective.
It is not restrictive to assume « a small extension with kernel I. The kernel of (eq, @)

is equal to ®,>0(A™INI) @ (K" @K " 1dt) and therefore (e, o) is an acyclic small
extension.



5. FROM PREDEFORMATION TO DEFORMATION FUNCTORS 139

STEP 4: The functor F1 satisfies 2a of V.509.

Let a € F(A), b € F(B) be such that a(a) ~ 5(b); by Step 3 there exists a’ ~ a,
a’ € F(A) such that a(a’) = §(b) and then the pair (a’,b) lifts to F(A x¢ B).
STEP 5: The functor F'™ satisfies 2b of V.59.

By V.60 it is sufficient to verify the condition separately for the cases C' = 0 and
B = 0. When C = 0 the situation is easy: in fact (A x B)[t,dt]. = Alt, dt]c x B[t, dt].,
F((A x B)[t,dt]) = F(A[t,dt]¢) x F(B[t,dt]¢) and the relation ~ over F(A x B) is
the product of the relations ~ over F(A) and F'(B); this implies that F'*(A x B) =
Ft(A) x F™(B).

Assume now B = 0, then the fibred product D := A xX¢ B is equal to the kernel
of a. We need to prove that the map F™ (D) — FT(A) is injective. Let ag,a; €
F(D) c F(A) and let © € F(A[t,dt]) be an element such that e;(z) = a;, i = 0, 1.
Denote by T € F(CI|t,dt].) the image of x by a.

Since C' is acyclic there exists a morphism of graded vector spaces o: C — C[—1]
such that do + od = Id and we can define a morphism of complexes

h: C— (Ks®Kds)®C C C[s,ds]i; h(v) =s®@v+ds®o(v)
The morphism h extends in a natural way to a morphism
h: C[t,dt]le — (Ks ® Kds) @ C[t, dt].

such that for every scalar { € K there exists a commutative diagram

Clt,dt]e = (Ks&Kds)® Clt,dt].

leg l Id®e,

c X (KsaKds)®C

Setting z = h(Z) we have Zj,—; = T, Z|s—9 = Zjj—0 = 2=1 = 0. By step 3 Z lifts to
an element z € F'(A[t, dt]¢[s, ds]1) such that 2/,_; = x; Now the specializations z|,_o,
2|4=0, 2|t=1 are annihilated by a and therefore give a chain of equivalences in F (D)

A0 = Z|s=1,t=0 ™ %|s=0,t=0 ™ Z|s=0,t=1 " Z|s=1,t=1 — @1

proving that ag ~ a; inside F (D).
The combination of Steps 1, 4 and 5 tell us that F'T is a deformation functor.

STEP 6: The morphism 7n: F — F'" is a quasiisomorphism.
Let € be of degree 1 — i, €2 = 0, then K e @ I; is isomorphic to the dg-subalgebra
Ked Ket d Kedt C Kelt, dt]
and the map p: F(I;) — F(Ke) factors as
p: F(I;) — F(I;) ® F(Ke) = FKea Ket @ Kedt) =2 F(Ke).
On the other hand the evaluation maps ey, e; factor as
e Kelt,d]5Ked Ket ® Kedt—5Ke, i=0,1
where h is the morphism of dg-vector spaces

edt
n+1

h(et") =et, h(et"dt) = , Vn>0.
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COROLLARY IX.20. Let L be a differential graded Lie algebra, then there exists a
natural isomorphism MCT = Def7,.

PRrROOF. According to Theorem IX.19 there exists a natural morphism of functors
v M C’EL — Defr; by V.66 1 is a quasiisomorphism and then, by Corollary V.72 1
is an isomorphism. O

DEFINITION IX.21. Let (C(V),Q) be a Log-algebra and let Defy = MCy: be the
deformation functor associated to the predeformation functor MCy . We shall call
Defy the deformation functor associated to the Loy -algebra (C(V), Q).

A morphism of L.-algebras C(V) — C(W) induces in the obvious way a natural
transformation M Cy — MCyy and then, according to IX.19, a morphism Defy, —
Defyy. Finally, since MCy — Defy is a quasiisomorphism we have T?Defy =
HY(V,Q1).

The following result is clear.

COROLLARY IX.22. Let §: C(V) — C(W) be a morphism of Loo-algebras. The
induced morphism Defy — Defyy is an isomorphism if and only if 0}: V — W is a
quasiisomorphism of complexes.

6. Cohomological constraint to deformations of Kahler manifolds

Theorem IX.13 shows that the category of L..-algebras is more flexible than the
category of differential graded Lie algebras. Another example in this direction is
given by the main theorem of [54].

Let X be a fixed compact Kéhler manifold of dimension n and consider the graded
vector space My = Homg (H*(X,C), H*(X,C)) of linear endomorphisms of the sin-
gular cohomology of X. The Hodge decomposition gives natural isomorphisms

My =@My, My= @ Homc(HP(QY) H (2%))
% r+s=p+q+i
and the composition of the cup product and the contraction operator T’x ®Q§( LQ’;(_l
gives natural linear maps

6,: HP(X, Tx) — @Homi: (H" (%), H™(Q ) € M[-1]% = ME .

By Dolbeault’s theorem E*(KSX) = H*(X,Tx) and then the maps 6, give a mor-
phism of graded vector spaces §: H*(KSx) — M[—1]x. This morphism is generally
nontrivial: consider for instance a Calabi-Yau manifold where the map 6, induces an
isomorphism HP(X,Tx) = Home (H(Q%), HP(Q% ).

THEOREM IX.23. In the above notation, consider M|—1]|x as a differential graded
Lie algebra with trivial differential and trivial bracket.
Every choice of a Kdhler metric on X induces a canonical lifting of 6 to an Lo-
morphism from KSx to M[—1]x.

The application of Theorem IX.23 to deformation theory, see [54], are based on the
idea that L..-morphisms induce natural transformations of (extended) deformation
functors commuting with tangential actions and obstruction maps (cf. Theorem
V.69). Being the deformation functor of the DGLA M][—1] essentially trivial, the
lifting of § impose several constraint on deformations of X.

Denote by:

o A** = @p,q AP1 where AP? = I['(X, AP7) the vector space of global (p, q)-
forms.
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o N** = Homg(A%*, A%*) = @, , NP9, where NP7 = @), ; Homg (AW, A7TPi+4)
is the space of homogeneous endomorphisms of A** of bidegree (p, q).
The space N**, endowed with the composition product and total degree deg(¢) =

p + q whenever ¢ € NP4 is a graded associative algebra and therefore, with the
standard bracket

(6, 9] = g — (—1) =@ By

becomes a graded Lie algebra. We note that the adjoint operator 9, ]: N** — N***1
is a differential inducing a structure of DGLA.

LEMMA IX.24. Let X be a compact Kihler manifold, then there exists T € N1
such that:

1. 7 factors to a linear map A**/ker 9 — Im 0.
2. [0,7] = 0.
In particular 0 € N0 is a coboundary in the DGLA (N**,[, 1,[0, ]).

PrROOF. In the notation of Theorem VI.37 it is sufficient to consider 7 = 09 =
—0do. Note that the above 7 is defined canonically from the choice of the Kéahler
metric. ]

We fix a Kéahler metric on X and denote by: H C A™* the graded vector space of
harmonic forms, i: H — A** the inclusion and h: A** — H the harmonic projector.

We identify the graded vector space Mx with the space of endomorphisms of har-
monic forms Homg (H,H). We also we identify Der*(A**, A**) with its image into
N = Homg (A**, A**).

According to Lemma IX.24 there exists 7 € NV such that

hd =0h =71h=hr =0T =70 =0, [0,7] = 0.

For simplicity of notation we denote by L = @& LP the Z-graded vector space KS[1]x,
this means that LP = I'(X, A°P*1(Tx)), —1 < p < n—1. The local description of the
two linear maps of degree +1, d: L — L, Q: ®> L — L introduced, up to décalage,

in Proposition IX.11 is: if zq,... , 2z, are local holomorphic coordinates, then
0 =, 0
d( o) = (34)— 0,
(05-) =G0z, oca
_ 0 _ 0 0,0
If I, J are ordered subsets of {1,... ,n}, a = fdzlg, b= gdma, frg € A% then
{ J
= _ dg 0 of o _
b)=(—1)%dz; Nd - — g =d L).
Qawt) = (1t Az (132 - —aft 2). a—dentant)
The formula
a1 ®...0ap) = Z e(Lyo;a1,... ,am)day, © Gpy © ... 0O ag,, +
ceS(1,m—1)
(5)
+ Z e(Lyo5a1,... ,am)Q(a5, © Agy) @ Gpy © ... 0O ag,,
ceS(2,m—2)

gives a codifferential § of degree 1 on S(L) and the differential graded coalgebra
(S(L),0) is exactly the Loo-algebra associated to the Kodaira-Spencer DGLA K Sx.
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If Der?(A**, A**) denotes the vector space of C-derivations of degree p of the sheaf
of graded algebras (A™*,A), where the degree of a (p,g)-form is p + ¢ (note that
9,0 € Der!(A**, A**)), then we have a morphism of graded vector spaces

L—Der*(A™*, A%*) = @Der?(A**, A™*),  aw—a
p

given in local coordinates by

el 9
— M) =0N|—F .
g, M =9 ( 7 ?7)
LeEMMA IX.25. If [ , | denotes the standard bracket on Der*(A**, A**), then for

every pair of homogeneous a,b € L we have:

1. da = [0,d] = da — (—1)%a0.

2. Qla®b) = —[[0,d],5] = (—1)7adb + (—1)75+5 594 + Hab + bao.

ProoF. This is a special case of Lemma VII.21. ]

Consider the morphism
Fi: L — My, Fi(a) = hai.

We note that F is a morphism of complexes, in fact F(da) = hdai = h(da+ad)i = 0.
By construction F; induces the morphism 6 in cohomology and therefore the theorem

is proved whenever we lift F; to a morphism of graded vector spaces F': S(L) — Mx
such that Fod = 0.

Define, for every m > 2, the following morphisms of graded vector spaces

o0
fm: Q"L — Mx,  Fp:Q"L—Mx, F=Y Fpn:S(L)— My,
m=1

fm(a1 ®as ® ... ® ay) = ha1TaaTas . . . Tami.

Frla1®a20...0ay) = Z e(Lyo;a1,...,0m) fm(te, ®@...® ag,,).
Uezm

THEOREM IX.26. In the above notation F o =0 and therefore

= 1 m m—
0=> MFG 0 Al gyt (C(ESx),0) — (C(M[-1]x),0)
m=1

is an Loo-morphism with linear term F}.

PROOF. We need to prove that for every m > 2 and ay, ... ,a, € L we have

E,, Z e(L,0)dag, ©® a5, ©®...0a,, | =
ceS(1,m—1)

=—Fn1 Z €(L,0)Q(a5, ® tgy) ©® gy © ... ag,, |,
c€S(2,m—2)

where €(L,0) = €(L,0;a1,... ,am).

It is convenient to introduce the auxiliary operators ¢: ®*L — N[1], ¢(a ® b) =

(—1)%adb and gp: @™ L — M[1]x,
m—2

gm(a1 @ ... @ apy) = — Z (—1)@toet-Fpgr L airq(ais1 @ Giro)Tai13 - . . Tami.
=0



7. HISTORICAL SURVEY, IX 143

Since for every choice of operators o = h,7 and 8 = 7,7 and every a,b € L we have
aQ(a ® )3 = a((—=1)%adb + (—1)2+598) 3 = a(qla @ b) + (—=1)7¢(b ® a))8,

the symmetrization lemma VIIL.5 gives

Z €(L,0)gm(as, ® ... ®as,,) = —Fp_1 Z €(L,0)Q(a5, ® gy) @ U5y © ... 0O ag,,
oEYm c€S(2,m—2)

On the other hand

m—1
fim Z(—l)a+"'+“_ia1®...®ai®dai+1®...®am> =
=0

m—1
= Z (=)t Ghay . ayr(0ai1 — (=1 @ 10)T ... Tami
=0
2

-
I

3

(—1)THHThay G (—(~1) a1 0rans + (1) G mdams)T . . . Tami

I
]

I
3 o
|
(3]

(=)™ Ty L aym(—1) "+ @5 1[0, T)@i2)T - . . Tami

|
|
i
v
<) o

= (=)™ T hay .. aiTq(ais1 @ Aigo)T ... Tami

1=

3

[e=]

=gn(a1 ®...®ap).

Using again Lemma VIII.5 we have

Z e(L,0)gm(ty, @ ...Ray,,) = Fp, Z €(L,0)day, ® gy @ ... O ag,,
0cEX M ceS(1,m—1)
| O

Remark. If X is a Calabi-Yau manifold with holomorphic volume form €2, then the
composition of F' with the evaluation at € induces an Lo.-morphism C(KSx) —
C(Hn —1]).

For every m > 2, evgoF,,: (O™ L — H[n] vanishes on (O)"{a € L|d(a - ) = 0}.

7. Historical survey, IX

Lyo-algebras, also called strongly homotopy Lie algebras, are the Lie analogue of
the Ay, ( strongly homotopy associative algebras), introduced by Stasheff [74] in the
context of algebraic topology.

The popularity of L,.-algebras has been increased recently by their application in de-
formation theory (after [68]), in deformation quantization (after [44]) and in string
theory (after [82], cf. also [47]).
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