1 Varietà Complesse: esercizi del 8 marzo 2004

Esercizio 1. Ogni funzione ellittica pari con esattamente due poli si può scrivere come

$$f(z) = \frac{a\wp(z) + b}{c\wp(z) + d}, \qquad ad - cb \neq 0.$$

 \triangle

Esercizio 2. (Formula di addizione)

Dati $z, w \in \mathbb{C}$,

1) dimostrare che

$$\begin{vmatrix} 1 & 1 & 1 \\ \wp(z) & \wp(w) & \wp(z+w) \\ \wp'(z) & \wp'(w) & -\wp'(z+w) \end{vmatrix} = 0.$$

2) Determinare tutte le soluzioni del sistema di equazioni

$$y^2 = 4x^3 - g_2x - g_3,$$
 $(\wp(z)\wp'(w) - \wp'(z)\wp(w)) = x(\wp'(w) - \wp'(z)) + y(\wp(w) - \wp(z)).$

3) Eliminare y dalle due equazioni precedenti in modo da trovare un polinomio monico di terzo grado in x a coefficienti funzioni ellittiche e, considerando il coefficiente di x^2 , esprimere $\wp(z+w)$ in funzione di $\wp(z), \wp(w), \wp'(z)$ e $\wp'(w)$.

Esercizio 3. Un vettore u di un reticolo $\Omega \subset \mathbb{R}^2$ si dice primitivo se non è possibile scrivere u = av con $v \in \Omega$, $a \in \mathbb{Z}$ e $|a| \neq 1$. Dimostrare che ogni vettore primitivo si estende ad una base. Generalizzare a reticoli di \mathbb{R}^n .

Esercizio 4. Siano $A, B \subset \mathbb{R}^2$ due reticoli e $f: A \to B$ un omomorfismo di gruppi. Dimostrare che esistono basi $e_1, e_2 \in A$, $u_1, u_2 \in B$ rispetto alle quali f si rappresenta con una matrice diagonale. (Sugg.: considerare la matrice (f_{ij}) che minimizza $\sum |f_{ij}|$ al variare di tutte coppie di basi $e_1, e_2 \in A$, $u_1, u_2 \in B$ tali che $f(e_1) = au_1$ per qualche intero positivo a.)

Generalizzare a reticoli di \mathbb{R}^n . \triangle

Esercizio 5. Sia $f: \mathbb{Z}^2 \to \mathbb{Z}^2$ un omomorfismo di gruppi rappresentato da una matrice a coefficienti interi e determinante $d \neq 0$. Dimostrare che f è iniettiva e che il conucleo di f è un gruppo finito di ordine |d|.

Esercizio 6. Sia τ un numero complesso con parte immaginaria > 0 e denotiamo $E_{\tau} = \mathbb{C}/\mathbb{Z} \oplus \mathbb{Z}\tau$.

Sia $\alpha = a + b\tau \in \mathbb{Z} \oplus \mathbb{Z}\tau$ un numero complesso non nullo tale che $\tau\alpha = c + d\tau \in \mathbb{Z} \oplus \mathbb{Z}\tau$. Dimostrare che la moltiplicazione per α induce un rivestimento $E_{\tau} \to E_{\tau}$ di grado uguale a |ad - cb|.

Varietà Complesse (geometria algebrica) 2003-04. M.M.