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Lectures on deformations of complex manifolds
(Deformations from differential graded viewpoint)

MARCO MANETTI

Preface: This paper is based on a course given at the “Dottorato di Ricerca in
Matematica” of the University of Rome “La Sapienza” in the Academic year 2000/2001.
The intended aim of the course was to rapidly introduce, although not in an exhaustive
way, the non-expert PhD student to deformations of compact complex manifolds, from
the very beginning to some recent (i.e. at that time not yet published) results.

With the term “deformation theory”, the mathematicians usually intend a set of
deformation theories, each one of which studies small parametric variation of a spe-
cific mathematical structure, for example: deformation theory of complex manifolds,
deformation theory of associative algebras, deformations of schemes, deformations of
representations and much more.
Every mathematician which tries to explain and investigate deformation theory has to
deal with two opposite features: order and chaos.
Chaos: the various deformation theories often rely on theorems which are proved using
very different tools, from families of elliptic differential operators of Kodaira and Spen-
cer [41] to ringed toposes of Illusie [32].
Order: all the deformation theories have lots of common features; for instance they
have a vector space of first order deformations (usually the H1 of some complex) and
they have an obstruction space (usually an H2).
Another unifying aspect of all deformation theories is summarized in the slogan “In
characteristic 0 every deformation problem is governed by a differential graded Lie al-
gebra”, which underlie some ideas given, mostly in private communications, by Quillen,
Deligne, Drinfeld and other about 20 years ago. More recently (especially in [42] and
[44]) these ideas have shown a great utility and possibility of development.
Nowadays this approach to deformation theory is a very active area of research which
is usually called deformation theory via DGLA or extended deformation theory.

The goal of these notes is to give a soft introduction to extended deformation
theory. In view of the aim (and the hope) of keeping this paper selfcontained, user
friendly and with a tolerating number of pages, we consider only deformations of com-
pact complex manifolds. Anyhow, most part of the formalism and of the results that we
prove here will apply to many other deformation problems.
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The first part of the paper (Sections 1, 2, and 3) is a classical introduction to deforma-
tions of compact complex manifolds; the beginners can find here the main definitions,
the statements of the theorems of Kodaira and Kodaira-Nirenberg-Spencer, an elemen-
tary description of the semiuniversal deformations of Segre-Hirzebruch surfaces and a
micro-course in complex analytic singularity theory.
In the second part (from Section 4 to 7) we study deformations in the context of dg-
objects, where by dg-objects we intend algebraic structures supported on differential
Z-graded vector spaces.
Most of this part is devoted to introduce some new objects which play a fundamental
role in extended deformation theory, such as for instance: deformation functors as-
sociated to a differential graded Lie algebra and their homotopy invariance, extended
deformation functors and Gerstenhaber-Batalin-Vilkoviski algebras. The reader of this
part can also find satisfaction in the proof of the unobstructness of Calabi-Yau mani-
folds (theorem of Bogomolov-Tian-Todorov).
Section 6 is a basic introduction to Kähler manifold which follows essentially Weil’s
book [80]: some modification in the presentation and simplification in the proofs are
made by using the formalism of dg-vector spaces; this partially explain the reason why
this section is contained in part II of these notes.
The third part of the notes (Sections 8 and 9) is a basic course in L∞-algebras and
their use in deformation theory: a nontrivial application of L∞-algebras in made in the
last section where we give (following [54]) an algebraic proof of Clemens-Ran theorem
“obstructions to deformations annihilate ambient cohomology”.

Each section contains: a brief introduction, the main matter, some exercises and
a survey section. The main matter is organized like a book, while the survey sections
contain bibliographical annotations and theorems for which the proof it is not given
here.
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1 – Smooth families of compact complex manifolds

In this section we introduce the notion of a family f :X → B of compact
complex manifolds as a proper holomorphic submersion of complex manifolds.
Easy examples (1.4, 1.6) will show that in general the fibres Xt := f−1(t) are
not biholomorphic each other. Using integration of vector fields we prove that
the family is locally trivial if and only if a certain morphism KS of sheaves
over B is trivial, while the restriction of KS at a point b ∈ B is a linear map
KS:Tb,B → H1(Xb, TXb

), called the Kodaira-Spencer map, which can interpreted
as the first derivative at the point b of the map

B → {isomorphism classes of complex manifolds}, t �→ Xt.

Then, according to Kodaira, Nirenberg and Spencer we define a deformation
of a complex manifolds X as the data of a family X → B, of a base point 0 ∈ B
and of an isomorphism X � X0. The isomorphism class of a deformation involves
only the structure of f in a neighbourhood of X0.

In the last section we state, without proof, the principal pioneer theo-
rems about deformations proved using hard analysis by Kodaira, Nirenberg and
Spencer in the period 1956-58.

1.1 – Dictionary

For every complex manifold M we denote by:
• OM (U) the C-algebra of holomorphic functions f :U → C defined on an

open subset U ⊂ M .
• OM the trivial complex line bundle C×M → M .
• TM the holomorphic tangent bundle to M . The fibre of TM at a point

x ∈ M , i.e. the complex tangent space at x, is denoted by Tx,M .

If x ∈ M is a point we denote by OM,x the C-algebra of germs of holomorphic
functions at a point x ∈ M ; a choice of local holomorphic coordinates z1, . . . , zn,
zi(x) = 0, gives an isomorphism OM,x = C{z1, . . . , zn}, being C{z1, . . . , zn} the
C-algebra of convergent power series.

In order to avoid a too heavy notation we sometimes omit the subscript M ,
when the underlying complex manifold is clear from the context.

Definition 1.1. A smooth family of compact complex manifolds is a proper
holomorphic map f :M → B such that:

1. M, B are nonempty complex manifolds and B is connected.
2. The differential of f , f∗:Tp,M → Tf(p),B is surjective at every point p ∈ M .

Two families f :M → B, g:N → B over the same base are isomorphic if there
exists a holomorphic isomorphism N → M commuting with f and g.
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From now on, when there is no risk of confusion, we shall simply say smooth
family instead of smooth family of compact complex manifolds.

Note that if f :M → B is a smooth family then f is open, closed and
surjective. If V ⊂ B is an open subset then f : f−1(V ) → V is a smooth family;
more generally for every holomorphic map of connected complex manifolds C →
B, the pull-back M ×B C → C is a smooth family.

For every b ∈ B we denote Mb = f−1(b): Mb is a regular submanifold of M .

Definition 1.2. A smooth family f :M → B is called trivial if it is iso-
morphic to the product Mb × B → B for some (and hence all) b ∈ B. It is
called locally trivial if there exists an open covering B = ∪Ua such that every
restriction f : f−1(Ua) → Ua is trivial.

Lemma 1.3. Let f :M → B be a smooth family, b ∈ B. The normal bundle
NMb/M of Mb in M is trivial.

Proof. Let E = Tb,B × Mb → Mb be the trivial bundle with fibre Tb,B .
The differential f∗:Tx,M → Tb,B , x ∈ Mb induces a surjective morphism of vector
bundles (TM )|Mb

→ E whose kernel is exactly TMb
.

By definition NMb/M = (TM )|Mb
/TMb

and then NMb/M = Tb,B ×Mb.

By a classical result (Ehresmann’s theorem, [37, Thm. 2.4]), if f :M → B is a
family, then for every b ∈ B there exists an open neighbourhood b ∈ U ⊂ B and a
diffeomorphism φ: f−1(U) → Mb×U making the following diagram commutative

Mb

i

�����
��

��
�� Id×{b}

�����������

f−1(U)
φ ��

f
�����������

Mb × U

p2
�����

��
��

��
�

U

being i:Mb → M the inclusion. In particular the diffeomorphism type of the
fibre Mb is independent from b. Later on (Theorem IV.30) we will prove a result
that implies Ehresmann’s theorem.

The following examples of families show that, in general, if a, b ∈ B, a �= b,
then Ma is not biholomorphic to Mb.

Example 1.4. Consider B = C− {0, 1},

M = {([x0, x1, x2], λ) ∈ P2 ×B |x2
2x0 = x1(x1 − x0)(x1 − λx0)},
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and f :M → B the projection. Then f is a family and the fibre Mλ is a smooth
plane cubic with j-invariant

j(Mλ) = 28 (λ2 − λ + 1)3

λ2(λ− 1)2
.

(Recall that two elliptic curves are biholomorphic if and only if they have the
same j-invariant.)

Example 1.5. (Universal family of hypersurfaces.) For fixed integers
n, d > 0, consider the projective space PN , N =

(
d+n

n

)
− 1, with homogeneous

coordinates ai0,... ,in
, ij ≥ 0,

∑
j ij = d, and denote

X =

{
([x], [a]) ∈ Pn × PN

∣∣∣∣∣ ∑
i0+...+in=d

ai0,... ,inxi0
0 . . . xin

n = 0

}
.

X is a smooth hypersurface of Pn×PN , the differential of the projection X → PN

is not surjective at a point ([x], [a]) if and only if [x] is a singular point of Xa.
Let B = {[a] ∈ PN |Xa is smooth }, M = f−1(B): then B is open (exer-

cise), f : M → B is a family and every smooth hypersurface of degree d of Pn is
isomorphic to a fibre of f .

Example 1.6. (Hopf surfaces.) Let A ∈ GL(2, C) be a matrix with eigen-
values of norm > 1 and let 〈A〉 � Z ⊂ GL(2, C) be the subgroup generated by
A. The action of 〈A〉 on X = C2 − {0} is free and properly discontinuous: in
fact a linear change of coordinates C: C2 → C2 changes the action of 〈A〉 into
the action of 〈C−1AC〉 and therefore it is not restrictive to assume A is a lower
triangular matrix.

Therefore the quotient SA = X/〈A〉 is a compact complex manifold called
Hopf surface: the holomorphic map X → SA is the universal cover and then for
every point x ∈ SA there exists a natural isomorphism π1(SA, x) � 〈A〉. We have
already seen that if A, B are conjugated matrix then SA is biholomorphic to SB .
Conversely if f :SA → SB is a biholomorphism then f lifts to a biholomorphism
g:X → X such that gA = Bkg; since f induces an isomorphism of fundamental
groups k = ±1.

By Hartogs’ theorem g extends to a biholomorphism g: C2 → C2 such that
g(0) = 0; since for every x �= 0 lim

n→∞
An(x) = +∞ and lim

n→∞
B−n(x) = 0 it must

be gA = Bg. Taking the differential at 0 of gA = Bg we get that A is conjugated
to B.

Exercise 1.7. If A = e2πiτI ∈ GL(2, C), τ = a + ib, b < 0, then the Hopf
surface SA is the total space of a holomorphic G-principal bundle SA → P1,
where G = C/(Z + τZ).
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Example 1.8. (Complete family of Hopf surfaces.) Denote B = {(a, b, c) ∈
C3 | |a| > 1, |c| > 1}, X = B × (C2 − {0}) and let Z � G ⊂ Aut(X) be the
subgroup generated by

(a, b, c, z1, z2) �→ (a, b, c, az1, bz1 + cz2)

The action of G on X is free and properly discontinuous, let M = X/G be its
quotient and f :M → B the projection on the first coordinates: f is a family
whose fibres are Hopf surfaces. Every Hopf surface is isomorphic to a fibre of f ,
this motivate the adjective “complete”.

In particular all the Hopf surfaces are diffeomorphic to S1 × S3 (to see this
look at the fibre over (2, 0, 2)).

Notation 1.9. For every pair of pointed manifolds (M, x), (N, y) we denote
by MorGer((M, x), (N, y)) the set of germs of holomorphic maps f : (M, x) →
(N, y). Every element of MorGer((M, x), (N, y)) is an equivalence class of pairs
(U, f), where x ∈ U ⊂ M is an open neighbourhood of x, f :U → N is a
holomorphic map such that f(x) = y and (U, f) ∼ (V, g) if and only if there
exists an open subset x ∈ W ⊂ U ∩ V such that f|W = g|W .

The category Gersm of germs of complex manifolds is the category whose
object are the pointed complex manifold (M, x) and the morphisms are the
MorGer((M, x), (N, y)) defined above. A germ of complex manifold is nothing
else that an object of Gersm.

In Section 3 we will consider Gersm as a full subcategory of the category
of analytic singularities Ger.

Exercise 1.10. Gersm is equivalent to its full subcategory whose objects
are (Cn, 0), n ∈ N.

Roughly speaking a deformation is a “framed germ” of family; more precisely

Definition 1.11. Let (B, b0) be a pointed manifold, a deformation

M0
i−→M

f−→(B, b0)

of a compact complex manifold M0 over (B, b0) is a pair of holomorphic maps

M0
i−→M

f−→B

such that:

1. fi(M0) = b0.
2. There exists an open neighbourhood b0 ∈ U ⊂ B such that f : f−1(U) → U

is a proper smooth family.
3. i: M0 → f−1(b0) is an isomorphism of complex manifolds.

M is called the total space of the deformation and (B, b0) the base germ space.
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Definition 1.12. Two deformations of M0 over the same base

M0
i−→M

f−→(B, b0), M0
j−→N

g−→(B, b0)

are isomorphic if there exists an open neighbourhood b0 ∈ U ⊂ B, and a com-
mutative diagram of holomorphic maps

M0
i ��

j

��

f−1(U)

f

�������������

g−1(U) g
�� U

with the diagonal arrow a holomorphic isomorphism.

For every pointed complex manifold (B, b0) we denote by DefM0(B, b0) the
set of isomorphism classes of deformations of M0 with base (B, b0). It is clear
from the definition that if b0 ∈ U ⊂ B is open, then DefM0(B, b0) = DefM0(U, b0).

Exercise 1.13. There exists an action of the group Aut(M0) of holo-
morphic isomorphisms of M0 on the set DefM0(B, b0): if g ∈ Aut(M0) and

ξ : M0
i−→M

f−→(B, b0) is a deformation we define

ξg : M0
ig−1

−→M
f−→(B, b0).

Prove that ξg = ξ if and only if g: f−1(b0) → f−1(b0) can be extended to
an isomorphism ĝ: f−1(V ) → f−1(V ), b0 ∈ V open neighbourhood, such that
fĝ = f .

If ξ : M0
i−→M

f−→(B, b0) is a deformation and g: (C, c0) → (B, b0) is a
holomorphic map of pointed complex manifolds then

g∗ξ : M0
(i,c0)−→M ×B C

pr−→(C, c0)

is a deformation with base point c0. It is clear that the isomorphism class of g∗ξ
depends only by the class of g in MorGer((C, c0), (B, b0)).

Therefore every g ∈ MorGer((C, c0), (B, b0)) induces a well defined pull-back
morphism

g∗: DefM0(B, b0) → DefM0(C, c0).
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1.2 – Dolbeault cohomology

If M is a complex manifold and E is a holomorphic vector bundle on M ,
we denote:

• E∨ the dual bundle of E.
• Γ(U, E) the space of holomorphic sections s:U → E on an open subset

U ⊂ M .
• Ω1

M = T∨
M the holomorphic cotangent bundle of M .

• Ωp
M =

∧p
T∨

M the bundle of holomorphic differential p-forms.

For every open subset U ⊂ M we denote by Γ(U,Ap,q
M ) the C-vector space of

differential (p, q)-forms on U . If z1, . . . , zn are local holomorphic coordinates,
then φ ∈ Γ(U,Ap,q

M ) is written locally as φ =
∑

φI,JdzI ∧ dzJ , where I =
(i1, . . . , ip), J = (j1, . . . , jq), dzI = dzi1 ∧ . . . ∧ dzip

, dzJ = dzj1 ∧ . . . ∧ dzjq
and

the φI,J are C∞ functions.
Similarly, if E→M is a holomorphic vector bundle we denote by Γ(U,Ap,q(E))

the space of differential (p, q)-forms on U with value in E; locally, if e1, . . . , er

is a local frame for E, an element of Γ(U,Ap,q(E)) is written as
∑r

i=1 φiei, with
φi ∈ Γ(U,Ap,q). Note that there exist natural isomorphisms Γ(U,Ap,q(E)) �
Γ(U,A0,q(Ωp

M ⊗ E)).
We begin recalling the well known

Lemma 1.14 (Dolbeault’s lemma). Let

∆n
R = {(z1, . . . , zn) ∈ Cn | |z1| < R, . . . , |zn| < R}

be a polydisk of radius R ≤ +∞ (∆n
+∞ = Cn) and let φ ∈ Γ(∆n

R,Ap,q), q > 0,
such that ∂φ = 0. Then there exists ψ ∈ Γ(∆n

R,Ap,q−1) such that ∂ψ = φ.

Proof. [37, Thm. 3.3], [26, pag. 25].

If E is a holomorphic vector bundle, the ∂ operator extends naturally to the Dol-
beault operator ∂: Γ(U,Ap,q(E)) → Γ(U,Ap,q+1(E)) by the rule ∂(

∑
i φiei) =∑

i(∂φi)ei. If h1, . . . , hr is another local frame of E then there exists a matrix
(aij) of holomorphic functions such that hi =

∑
j aijej and then

∂

(∑
i

φihi

)
= ∂

∑
i,j

φiaijej

 =
∑
i,j

∂(φiaij)ej =
∑

i

(∂φi)aijej =
∑

i

(∂φi)hi.

It is obvious that ∂
2

= 0.

Definition 1.15. The Dolbeault’s cohomology of E, Hp,∗
∂

(U, E) is the
cohomology of the complex

0−→Γ(U,Ap,0(E)) ∂−→Γ(U,Ap,1(E)) ∂−→ . . .
∂−→Γ(U,Ap,q(E)) ∂−→ . . .



[11] Lectures on deformations of complex manifolds 11

Note that Hp,0

∂
(U, E) = Γ(U,Ωp

M ⊗E) is the space of holomorphic sections.
The Dolbeault cohomology has several functorial properties; the most rele-

vant are:

1. Every holomorphic morphism of holomorphic vector bundles E → F in-
duces a morphism of complexes Γ(U,Ap,∗(E)) → Γ(U,Ap,∗(F )) and then
morphisms of cohomology groups Hp,∗

∂
(U, E) → Hp,∗

∂
(U, F ).

2. The wedge product

Γ(U,Ap,q(E))⊗ Γ(U,Ar,s(F )) ∧−→Γ(U,Ap+r,q+s(E ⊗ F )),

(∑
φiei

)
⊗

(∑
ψjfj

)
→

∑
φi ∧ ψjei ⊗ ej .

commutes with Dolbeault differentials and then induces a cup product

∪:Hp,q

∂
(U, E)⊗Hr,s

∂
(U, F ) → Hp+r,q+s

∂
(U, E ⊗ F ).

3. The composition of the wedge product with the trace map E ⊗ E∨ → OM

gives bilinear morphisms of cohomology groups

∪:Hp,q

∂
(U, E)×Hr,s

∂
(U, E∨) → Hp+r,q+s

∂
(U,OM ).

Theorem 1.16. If M is a compact complex manifold of dimension n and
E → M is a holomorphic vector bundle then for every p, q ≥ 0:

1. dimC Hp,q

∂
(M, E) < ∞.

2. (Serre’s duality) The bilinear map Γ(M,Ap,q(E))×Γ(M,An−p,n−q(E∨)) →
C,

(φ, ψ) �→
∫

M

φ ∧ ψ

induces a perfect pairing Hp,q

∂
(M, E) × Hn−p,n−q

∂
(M, E∨) → C and then an

isomorphism Hp,q

∂
(M, E)∨ � Hn−p,n−q

∂
(M, E∨).

Proof. [37].
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From now on we denote for simplicity Hq(M, E) = H0,q

∂
(M, E), hq(M, E) =

dimC Hq(M, E), Hq(M,Ωp(E)) = Hp,q

∂
(M, E).

Definition 1.17. If M is a complex manifold of dimension n, the holo-
morphic line bundle KM =

∧n
T∨

M = Ωn
M is called the canonical bundle of M .

Since Ωp
M = KM ⊗ (Ωn−p

M )∨, an equivalent statement of the Serre’s duality
is Hp(M, E)∨ � Hn−p(M, KM ⊗ E∨) for every holomorphic vector bundle E
and every p = 0, . . . , n.

The Hodge numbers of a fixed compact complex manifold M are by definition

hp,q = dimC Hp,q

∂
(M,O) = dimC H0,q

∂
(M,Ωp).

The Betti numbers of M are the dimensions of the spaces of the De Rham
cohomology of M , i.e.

bp = dimC Hp
d (M, C), Hp

d (M, C) =
d-closed p-forms
d-exact p-forms

.

Exercise 1.18. Let p ≥ 0 be a fixed integer and, for every 0 ≤ q ≤ p,
denote by Fq ⊂ Hp

d (M, C) the subspace of cohomology classes represented by
a d-closed form η ∈ ⊕i≤qΓ(M,Ap−i,i). Prove that there exist injective linear
morphisms Fq/Fq−1 → Hp−q,q

∂
(M,O). Deduce that bp ≤

∑
q hp−q,q.

Exercise 1.19. Let f : Cn → C be a holomorphic function and assume that
X = f−1(0) is a regular smooth submanifold; denote i:X → Cn the embedding.

Let φ ∈ Γ(Cn,Ap,q), q > 0, be a differential form such that ∂φ = 0 in an
open neighbourhood of X. Prove that i∗φ is ∂-exact in X. (Hint: prove that
there exists ψ ∈ Γ(Cn,Ap,q) such that ∂φ = ∂(fψ).)

Exercise 1.20. Let h: Cn → C be holomorphic and let U ={z ∈ Cn |h(z) �=
0}. Prove that Hq(U,OU ) = 0 for every q > 0. (Hint: consider the open disk
∆ = {t ∈ C | |t| < 1} and the holomorphic maps φ:U × ∆ → Cn+1, (z, t) �→
(z, (1+ t)h−1(z)), f : Cn+1 → C, f(z, u) = h(z)u−1; φ is a biholomorphism onto
the open set {(z, u) ∈ Cn+1 |, |uh(z)− 1| < 1}; use Exercise 1.19.)

Exercise 1.21. Prove that the following facts are equivalent:

1. For every holomorphic function f : C → C there exists a holomorphic func-
tion h: C → C such that f(z) = h(z + 1)− h(z) for every z.

2. H1(C− {0},OC) = 0.

(Hint: Denote p: C → C− {0} the universal covering p(z) = e2πiz. Given f , use
a partition of unity to find a C∞ function g such that f(z) = g(z + 1) − g(z);
then ∂g is the pull back of a ∂-closed form on C− {0}.)
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1.3 – Čech cohomology

Let E be a holomorphic vector bundle on a complex manifold M . Let
U = {Ua}, a ∈ I, M = ∪aUa be an open covering. For every k ≥ 0 let Ck(U , E)
be the set of skewsymmetric sequences {fa0,a1,... ,ak

}, a0, . . . , ak ∈ I, where
fa0,a1,... ,ak

:Ua0 ∩ . . .∩Uak
→ E is a holomorphic section. skewsymmetric means

that for every permutation σ ∈ Σk+1, faσ(0),aσ(1),... ,aσ(k) = (−1)σfa0,a1,... ,ak
.

The Čech differential d:Ck(U , E) → Ck+1(U , E) is defined as

(df)a0,... ,ak+1 =
k+1∑
i=0

(−1)if
a0,... ,âi,... ,ak+1

.

Since d2 = 0 (exercise) we may define cocycles Zk(U , E) = ker d ⊂ Ck(U , E),
coboundaries Bk(U , E) = Im d ⊂ Zk(U , E) and cohomology groups Hk(U , E) =
Zk(U , E)/Bk(U , E).

Proposition 1.22. For every holomorphic vector bundle E and every
locally finite covering U = {Ua}, a ∈ I, there exists a natural morphism of
C-vector spaces θ:Hk(U , E) → H0,k

∂
(M, E).

Proof. Let ta:M → C, a ∈ I, be a partition of unity subordinate to the
covering {Ua}: supp(ta) ⊂ Ua,

∑
a ta = 1,

∑
∂ta = 0.

Given f ∈ Ck(U , E) and a ∈ I we consider

φa(f) =
∑

c1,... ,ck

fa,c1,... ,ck
∂tc1 ∧ . . . ∧ ∂tck

∈ Γ(Ua,A0,k(E)),

φ(f) =
∑

a

taφa(f) ∈ Γ(M,A0,k(E)).

Since every fa,c1,... ,ck
is holomorphic, it is clear that ∂φa = 0 and then

∂φ(f) =
∑

a

∂ta ∧ φa(f) =
∑

c0,... ,ck

fc0,... ,ck
∂tc0 ∧ . . . ∧ ∂tck

.

We claim that φ is a morphism of complexes; in fact

φ(df) =
∑

a

ta
∑

c0,... ,ck

dfa,c0,... ,ck
∂tc0 ∧ . . . ∧ ∂tck

=

=
∑

a

ta

∂φ(f)−
k∑

i=0

∑
ci

∂tci ∧
∑

c0,... ,ĉi,... ,ck

f
a,c0,... ,̂ci,... ,ck

∂tc0 ∧ . . . ∧ ∂̂tci ∧ . . . ∧ ∂tck

=

=
∑

a

ta∂φ(f) = ∂φ(f).
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Setting θ as the morphism induced by φ in cohomology, we need to prove that
θ is independent from the choice of the partition of unity. We first note that, if
df = 0 then, over Ua ∩ Ub, we have

φa(f)− φb(f)=
∑

c1,... ,ck

(fa,c1,... ,ck
− fb,c1,... ,ck

)∂tc1 ∧ . . . ∧ ∂tck
=

=
∑

c1,... ,ck

k∑
i=1

(−1)i−1fa,b,c1,... ,ĉi,... ,ck
∂tc1 ∧ . . . ∧ ∂tck

=

=
k∑

i=1

(−1)i−1
∑

c1,... ,ck

fa,b,c1,... ,ĉi,... ,ck
∂tc1 ∧ . . . ∧ ∂tck

=

=
k∑

i=1

∑
ci

∂tci ∧
∑

c1,... ,ĉi,... ,ck

f
a,b,c1,... ,̂ci,... ,ck

∂tc1 ∧ . . . ∧ ∂̂tci ∧ . . . ∧ ∂tck
=

= 0.

Let va be another partition of 1, ηa = ta−va, and denote, for f ∈ Zk(U , E),

φ̃a =
∑

c1,... ,ck

fa,c1,... ,ck
∂vc1 ∧ . . . ∧ ∂vck

,

ψj
a =

∑
c1,... ,ck

fa,c1,... ,ck
∂tc1 ∧ . . . ∧ ∂tcj−1 ∧ vcj ∂vcj+1 ∧ . . . ∧ ∂vck

, j = 1, . . . , k.

The same argument as above shows that φ̃a = φ̃b and ψj
a = ψj

b for every a, b, j.
Therefore all the ψj

a come from a global section ψj ∈ Γ(M,A0,k−1(E)); moreover
φ− φ̃ =

∑
j(−1)j−1∂ψj and then φ, φ̃ determine the same cohomology class.

Exercise 1.23. In the same situation of Proposition 1.22 define, for ev-
ery k ≥ 0, Dk(U , E) as the set of sequences {fa0,a1,... ,ak

}, a0, . . . , ak ∈ I,
where fa0,a1,... ,ak

:Ua0 ∩ . . . ∩ Uak
→ E is a holomorphic section. Denote by

i: Ck(U , E) → Dk(U , E) the natural inclusion. The same definition of the Čech
differential gives a differential d:Dk(U , E) → Dk+1(U , E) making i a morphism
of complexes. Moreover, it is possible to prove (see e.g. 73, p. 214) that i induce
isomorphisms between cohomology groups. Prove:

1. Given two holomorphic vector bundles E, F consider the linear maps

Dk(U ,E)⊗Dp−k(U ,F ) ∪−→Dp(U ,E⊗F ), (f∪g)a0,... ,ap
=fa0,... ,ak

⊗gak,... ,ap
.

Prove that ∪ is associative and d(f ∪ g) = df ∪ g + (−1)kf ∪ dg, where
f ∈ Dk(U , E).
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2. The antisymmetrizer p:Dk(U , E) → Ck(U , E),

(pf)a0,... ,an =
1

(n + 1)!

∑
σ

(−1)σfaσ(0),... ,aσ(n) , σ ∈ Σn+1,

is a morphism of complexes and then induce a morphism p:Hk(D∗(U , E)) →
Hk(U , E) such that pi = Id (Hint: the readers who are frightened by com-
binatorics may use linearity and compatibility with restriction to open sub-
sets N ⊂ M of d, p to reduce the verification of dp(f) = pd(f) in the case
U = {Ua}, a = 1, . . . , m finite cover and fa1,... ,ak

�= 0 only if ai = i).
3. The same definition of φ given in the proof of 1.22 gives a morphism of

complexes φE :D∗(U , E) → Γ(M,A0,∗(E)) which is equal to the composition
of φ and p. In particular φE induces θ̃: Hk(D∗(U , E)) → Hk(M, E) such
that θp = θ̃.

4. Prove that, if dg = 0 then φE⊗F (f ∪ g) = φE(f) ∧ φF (g). (Hint: write
0 =

∑
b tbdgb,ak,... ,ap

.)
5. If E, F are holomorphic vector bundles on M then there exists a functorial

cup product

∪:Hp(U , E)⊗Hq(U , F ) → Hp+q(U , E ⊗ F )

commuting with θ and the wedge product in Dolbeault cohomology.

Theorem 1.24 (Leray). Let U = {Ua} be a locally finite covering of a
complex manifold M , E a holomorphic vector bundle on M : if Hk−q

∂
(Ua0 ∩ . . .∩

Uaq , E) = 0 for every q < k and a0, . . . , aq, then θ: Hk(U , E) → Hk
∂
(M, E) is an

isomorphism.

Proof. The complete proof requires sheaf theory and spectral sequences;
here we prove “by hand” only the cases k = 0, 1: this will be sufficient for our
applications.

For k = 0 the theorem is trivial, in fact H0
∂
(M, E) and H0(U , E) are both

isomorphic to the space of holomorphic sections of E over M . Consider thus the
case k = 1; by assumption H1

∂
(Ua, E) = 0 for every a.

Let φ ∈ Γ(M,A0,1(E)) be a ∂-closed form, then for every a there exists
ψa ∈ Γ(Ua,A0,0(E)) such that ∂ψa = φ. The section fa,b = ψa−ψb:Ua∩Ub → E
is holomorphic and then f = {fa,b} ∈ C1(U , E); since fa,b − fc,b + fc,a = 0 for
every a, b, c we have f ∈ Z1(U , E); define σ(φ) ∈ H1(U , E) as the cohomology
class of f . It is easy to see that σ(φ) is independent from the choice of the
sections ψa; we want to prove that σ = θ−1. Let ta be a fixed partition of unity.

Let f ∈ Z1(U , E), then θ(f) = [φ], φ =
∑

b fa,b∂tb; we can choose ψa =∑
b fa,btb and then

σ(φ)a,c =
∑

b

(fa,b − fc,b)tb = fa,c, ⇒ σθ = Id.
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Conversely, if φ|Ua
= ∂ψa then θσ([φ]) is the cohomology class of

∂
∑

b

(ψa − ψb)tb = ∂
∑

b

ψatb − ∂
∑

b

ψbtb = φ− ∂
∑

b

ψbtb.

Remark 1.25. The theory of Stein manifolds (see e.g. [28]) says that
the hypotheses of Theorem 1.24 are satisfied for every k whenever every Ua is
biholomorphic to an open convex subset of Cn.

Example 1.26. Let T → P1 be the holomorphic tangent bundle, x0, x1

homogeneous coordinates on P1, Ui = {xi �= 0}. Since the tangent bundle of
Ui = C is trivial, by Dolbeault’s lemma, H1(Ui, T ) = 0 and by Leray’s theorem
Hi(P1, T ) = Hi({U0, U1}, T ), i = 0, 1.

Consider the affine coordinates s = x1/x0, t = x0/x1, then the holomorphic
sections of T over U0, U1 and U0,1 = U0∩U1 are given respectively by convergent
power series

+∞∑
i=0

ais
i ∂

∂s
,

+∞∑
i=0

bit
i ∂

∂t
,

+∞∑
i=−∞

cis
i ∂

∂s
.

Since, over U0,1, t = s−1 and
∂

∂t
= −s2 ∂

∂s
, the Cech differential is given by

d

(
+∞∑
i=0

ais
i ∂

∂s
,

+∞∑
i=0

bit
i ∂

∂t

)
=

+∞∑
i=0

ais
i ∂

∂s
+

2∑
i=−∞

b2−is
i ∂

∂s
,

and then H1({U0, U1}, T ) = 0 and

H0({U0, U1}, T ) =
〈(

∂

∂s
,−t2

∂

∂t

)
,

(
s
∂

∂s
,−t

∂

∂t

)
,

(
s2 ∂

∂s
,−∂

∂t

)〉
.

Example 1.27. If X = P1×Cn
t then H1(X, TX) = 0. If C ⊂ P1 is an affine

open subset with affine coordinate s, then H0(X, TX) is the free O(Cn)-module
generated by

∂

∂t1
, . . . ,

∂

∂tn
,

∂

∂s
, s

∂

∂s
, s2 ∂

∂s
.

The proof is essentially the same (replacing the constant terms ai, bi, ci with
holomorphic functions over Cn) of Example 1.26.
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1.4 – The Kodaira-Spencer map

Notation 1.28. Given a holomorphic map f : X → Y of complex manifolds
and complexified vector fields η ∈ Γ(X,A0,0(TX)), γ ∈ Γ(Y,A0,0(TY )) we write
γ = f∗η if for every x ∈ X we have f∗η(x) = γ(f(x)), where f∗:Tx,X → Tf(x),Y

is the differential of f .

Let f :M → B be a fixed smooth family of compact complex manifolds,
dimB = n, dimM = m + n; for every b ∈ B we let Mb = f−1(b).

Definition 1.29. A holomorphic coordinate chart (z1, . . . , zm, t1, . . . , tn):
U ↪→ Cm+n, U ⊂ M open, is called admissible if f(U) is contained in a coordinate
chart (v1, . . . , vn):V ↪→ Cn, V ⊂ B, such that ti = vi ◦ f for every i = 1, . . . , n.

Since the differential of f has everywhere maximal rank, by the implicit
function theorem, M admits a locally finite covering of admissible coordinate
charts.

Lemma 1.30. Let f :M → B be a smooth family of compact complex
manifolds. For every γ ∈ Γ(B,A0,0(TB)) there exists η ∈ Γ(M,A0,0(TM )) such
that f∗η = γ.

Proof. Let M = ∪Ua be a locally finite covering of admissible charts; on
every Ua there exists ηa ∈ Γ(Ua,A0,0(TM )) such that f∗ηa = γ.

It is then sufficient to take η =
∑

a ρaηa, being ρa:Ua → C a partition of
unity subordinate to the covering {Ua}.

Let Tf ⊂ TM be the holomorphic vector subbundle of tangent vectors v such
that f∗v = 0. If z1, . . . , zm, t1, . . . , tn is an admissible system of local coordinates

then
∂

∂z1
, . . . ,

∂

∂zm
is a local frame of Tf . Note that the restriction of Tf to Mb

is equal to TMb
.

For every open subset V ⊂ B let Γ(V, TB) be the space of holomorphic
vector fields on V . For every γ ∈ Γ(V, TB) take η ∈ Γ(f−1(V ),A0,0(TM )) such
that f∗η = γ. In an admissible system of local coordinates zi, tj we have η =∑

i ηi(z, t)
∂

∂zi
+

∑
j

γi(t)
∂

∂tj
, with γi(t) holomorphic, ∂η =

∑
i ∂ηi(z, t)

∂

∂zi
and

then ∂η ∈ Γ(f−1(V ),A0,1(Tf )).
Obviously ∂η is ∂-closed and then we can define the Kodaira-Spencer map

KS(V )f : Γ(V, TB) → H1(f−1(V ), Tf ), KS(V )f (γ) = [∂η].

Lemma 1.31. The map KS(V )f is a well-defined homomorphism of O(V )-
modules.
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Proof. If η̃∈Γ(f−1(V ),A0,0(TM )), f∗η̃=γ, then η−η̃ ∈ (f−1(V ),A0,0(Tf ))
and [∂η̃] = [∂η] ∈ H1(f−1(V ), Tf ).

If g ∈ O(V ) then f∗(f∗g)η = gγ, ∂(f∗g)η = (f∗g)∂η.

If V1 ⊂ V2 ⊂ B then the Kodaira-Spencer maps KS(Vi)f : Γ(Vi, TB) →
H1(f−1(Vi), Tf ), i = 1, 2, commute with the restriction maps Γ(V2, TB) →
Γ(V1, TB), H1(f−1(V2), Tf ) → H1(f−1(V1), Tf ). Therefore we get a well de-
fined OB,b-linear map

KSf : ΘB,b → (R1f∗Tf )b,

where ΘB,b and (R1f∗Tf )b are by definition the direct limits, over the set of open
neighbourhood V of b, of Γ(V, TB) and H1(f−1(V ), Tf ) respectively.

If b ∈ B, then there exists a linear map KSf : Tb,B → H1(Mb, TMb
) such that

for every open subset b ∈ V ⊂ B there exists a commutative diagram

Γ(V, TB)
KS(V )f−−−−−→ H1(f−1(V ), Tf )� �r

Tb,B
KSf−−−−→ H1(Mb, TMb

)

where the vertical arrows are the natural restriction maps.
In fact, if V is a polydisk then Tb,B is the quotient of the complex vector

space Γ(V, TB) by the subspace I = {γ ∈ Γ(V, TB) | γ(b) = 0}; by O(V )-linearity
I is contained in the kernel of r ◦ KS(V )f .

The Kodaira-Spencer map has at least two geometric interpretations: ob-
struction to the holomorphic lifting of vector fields and first-order variation of
complex structures (this is a concrete feature of the general philosophy that
deformations are a derived construction of automorphisms).

Proposition 1.32. Let f :M → B be a family of compact complex
manifolds and γ ∈ Γ(V, TB), then KS(V )f (γ) = 0 if and only if there exists
η ∈ Γ(f−1(V ), TM ) such that f∗η = γ.

Proof. One implication is trivial; conversely let η ∈ Γ(f−1(V ),A0,0(TM ))
such that f∗η = γ. If [∂η] = 0 then there exists τ ∈ Γ(f−1(V ),A0,0(Tf )) such
that ∂(η − τ) = 0, η − τ ∈ Γ(f−1(V ), TM ) and f∗(η − τ) = γ.

To compute the Kodaira-Spencer map in terms of Cech cocycles we assume
that V is a polydisk with coordinates t1, . . . , tn and we fix a locally finite covering
U = {Ua} of admissible holomorphic coordinates za

1 , . . . , za
m, ta1 , . . . , tan:Ua → C,

tai = f∗ti.
On Ua ∩ Ub we have the transition functions{

zb
i = gb

i,a(za, ta), i = 1, . . . , m

tbi = tai , i = 1, . . . , n
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Consider a fixed integer h = 1, . . . , n and η ∈ Γ(f−1(V ),A0,0(TM )) such that

f∗η =
∂

∂th
; in local coordinates we have

η =
∑

i

ηa
i (za, ta)

∂

∂za
i

+
∂

∂tah
, η =

∑
i

ηb
i (z

b, tb)
∂

∂zb
i

+
∂

∂tbh
.

Since, for every a, η − ∂

∂tah
∈ Γ(Ua,A0,0(Tf )) and ∂

(
η − ∂

∂tah

)
= ∂η,

KS(V )f

(
∂

∂th

)
∈ H1(U , Tf )

is represented by the cocycle

(1.33) KS(V )f

(
∂

∂th

)
b,a

=
(
η − ∂

∂tbh

)
−

(
η − ∂

∂tah

)
=

∂

∂tah
− ∂

∂tbh
=

∑
i

∂gb
i,a

∂tah

∂

∂zb
i

.

The above formula allows to prove easily the invariance of the Kodaira-
Spencer maps under base change; more precisely if f :M → B is a smooth
family, φ:C → B a holomorphic map, φ̂, f̂ the pullbacks of φ and f ,

M ×B C
φ̂−−−−→ M�f̂

�f

C
φ−−−−→ B

c ∈ C, b = f(c).

Theorem 1.34. In the above notation, via the natural isomorphism Mb =
f̂−1(c), we have

KSf̂ = KSfφ∗:Tc,C → H1(Mb, TMb
).

Proof. It is not restrictive to assume B ⊂ Cn
t , C ⊂ Cs

u polydisks, c =
{ui = 0} and b = {ti = 0}, ti = φi(u).

If za, ta:Ua → C, zb, tb:Ub → C are admissible local coordinate sets with
transition functions zb

i = gb
i,a(za, ta), then za, ua:Ua×BC → C, zb, tb:Ub×BC →

C are admissible with transition functions zb
i = gb

i,a(za, φ(ua)).
Therefore

KSf̂

(
∂

∂uh

)
b,a

=
∑

i

∂gb
i,a

∂ua
h

∂

∂zb
i

=
∑
i,j

∂gb
i,a

∂taj

∂φj

∂ua
h

∂

∂zb
i

= KSf

(
φ∗

∂

∂uh

)
b,a

.
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It is clear that the Kodaira-Spencer map KSf :Tb0,B → H1(M0, TM0) is de-

fined for every isomorphism class of deformation M0 → M
f−→(B, b0): The map

KSf : ΘB,b0 → (R1f∗Tf )b0 is defined up to isomorphisms of the OB,b0 module
(R1f∗Tf )b0 .

Definition 1.35. Consider a deformation ξ : M0
i−→M

f−→(B, b0), fi(M0)=
b0, with Kodaira-Spencer map KSξ:Tb0,B → H1(M0, TM0). ξ is called:

1. Versal if KSξ is surjective and for every germ of complex manifold (C, c0)
the morphism

MorGer((C, c0), (B, b0)) → DefM0(C, c0), g �→ g∗ξ

is surjective.
2. Semiuniversal if it is versal and KSξ is bijective.
3. Universal if KSξ is bijective and for every pointed complex manifolds (C, c0)

the morphism

MorGer((C, c0), (B, b0)) → DefM0(C, c0), g �→ g∗ξ

is bijective.

Versal deformations are also called complete; semiuniversal deformations are
also called miniversal or Kuranishi deformations.

Note that if ξ is semiuniversal, g1, g2 ∈ MorGer((C, c0), (B, b0)) and g∗1ξ =
g∗2ξ then, according to Theorem 1.34, dg1 = dg2:Tc0,C → Tb0,B .

Exercise 1.36. A universal deformation ξ : M0
i−→M

f−→(B, b0) induces a
representation (i.e. a homomorphism of groups)

ρ: Aut(M0) → AutGer((B, b0)), ρ(g)∗ξ = ξg, g ∈ Aut(M0).

Every other universal deformation over the germ (B, b0) gives a conjugate rep-
resentation.

1.5 – Rigid varieties

Definition 1.37. A deformation M0 → M → (B, b0) is called trivial if it
is isomorphic to

M0
Id×{b0}−−−−→M0 ×B

pr−→(B, b0).

Lemma 1.38. Let f :M → ∆n
R be a smooth family of compact complex

manifolds, t1, . . . , tn coordinates in the polydisk ∆n
R. If there exist holomorphic

vector fields χ1, . . . , χn on M such that f∗χh =
∂

∂th
then there exists 0 < r ≤ R

such that f : f−1(∆n
r ) → ∆n

r is the trivial family.
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Proof. For every r ≤ R, h ≤ n denote

∆h
r = {(z1, . . . , zn) ∈ Cn | |z1| < r, . . . , |zh| < r, zh+1 = 0, . . . , zn = 0} ⊂ ∆n

R.

We prove by induction on h that there exists R ≥ rh > 0 such that the restriction
of the family f over ∆h

rh
is trivial. Taking r0 = R the statement is obvious for

h = 0. Assume that the family is trivial over ∆h
rh

, h < n; shrinking ∆n
R if

necessary it is not restrictive to assume R = rh and the family trivial over ∆h
R.

The integration of the vector field χh+1 gives an open neighbourhood M ×
{0} ⊂ U ⊂ M × C and a holomorphic map H: U → M with the following
properties (see e.g. 8, Ch VIII):

1. For every x ∈ M , {x} × C ∩ U = {x} ×∆(x) with ∆(x) a disk.
2. For every x ∈ M the map Hx = H(x,−): ∆(x) → M is the solution of the

Cauchy problem 
dHx

dt
(t) = χh+1(Hx(t))

Hx(0) = x

In particular if H(x, t) is defined then f(H(x, t)) = f(x) + (0, . . . , t, . . . , 0)
(t in the (h + 1)-th coordinate).

3. If V ⊂ M is open and V ×∆ ⊂ U then for every t ∈ ∆ the map H(−, t):V →
M is an open embedding.

Since f is proper there exists r ≤ R such that f−1(∆h
r ) × ∆r ⊂ U ; then the

holomorphic map H: f−1(∆h
r )×∆r → f−1(∆h+1

r ) is a biholomorphism (exercise)
giving a trivialization of the family over ∆h+1

r .

Example 1.39. Lemma 1.38 is generally false if f is not proper (cf. the
exercise in Lecture 1 of [43]).

Consider for instance an irreducible polynomial F ∈ C[x1, . . . , xn, t]; denote
by f : Cn

x × Ct → Ct the projection on the second factor and

V =
{

(x, t)
∣∣∣∣ F (x, t) =

∂F

∂xi
(x, t) = 0, i = 1, . . . , n

}
.

Assume that f(V ) is a finite set of points and set B = C− f(V ), X = {(x, t) ∈
Cn×B |F (x, t) = 0}. Then X is a regular hypersurface, the restriction f :X → B
is surjective and its differential is surjective everywhere.

X is closed in the affine variety Cn × B, by Hilbert’s Nullstellensatz there
exist regular functions g1, . . . , gn ∈ O(Cn ×B) such that

g :=
n∑

i=1

gi
∂F

∂xi
≡ 1 (mod F ).
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On the open subset U = {g �= 0} the algebraic vector field

χ =
n∑

i=1

gi

g

(
∂F

∂xi

∂

∂t
− ∂F

∂t

∂

∂xi

)
=

∂

∂t
−

n∑
i=1

gi

g

∂F

∂t

∂

∂xi

is tangent to X and lifts
∂

∂t
.

In general the fibres of f :X → B are not biholomorphic: consider for ex-
ample the case F (x, y, λ) = y2 − x(x − 1)(x − λ). Then B = C − {0, 1} and
f :X → B is the restriction to the affine subspace x0 �= 0 of the family M → B
of Example 1.4.

The fibre Xλ = f−1(λ) is Mλ − {point}, where Mλ is an elliptic curve with
j-invariant j(λ) = 28(λ2 − λ + 1)3λ−2(λ − 1)−2. If Xa is biholomorphic to Xb

then, by Riemann’s extension theorem, also Ma is biholomorphic to Mb and then
j(a) = j(b).

Exercise 1.40. Find a holomorphic vector field χ lifting
∂

∂λ
and tangent

to {F = 0} ⊂ C2 × C, where F (x, y, λ) = y2 − x(x − 1)(x − λ) (Hint: use the

Euclidean algorithm to find a, b ∈ C[x] such that ay
∂F

∂y
+ b

∂F

∂x
= 1 + 2aF ).

Theorem 1.41. A deformation M0 → M
f−→(B, b0) of a compact manifold

is trivial if and only if KSf : ΘB,b0 → (R1f∗Tf )b0 is trivial.

Proof. One implication is clear; conversely assume KSf = 0, it is not
restrictive to assume B a polydisk with coordinates t1, . . . , tn and f a smooth

family. After a possible shrinking of B we have KS(B)f

(
∂

∂ti

)
= 0 for every

i = 1, . . . , n. According to 1.32 there exist holomorphic vector fields ξi such that

f∗ξi =
∂

∂ti
; by 1.38 the family is trivial over a smaller polydisk ∆ ⊂ B.

Note that if a smooth family f :M → B is locally trivial, then for every
b ∈ B the Kodaira-Spencer map KSf :Tb,B → H1(Mb, TMb

) is trivial for every
b ∈ B.

Theorem 1.42 (Semicontinuity and base change). Let E → M be a
holomorphic vector bundle on the total space of a smooth family f :M → B.
Then, for every i ≥ 0:

1. b �→ hi(Mb, E) is upper semicontinuous.
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2. If b �→ hi(Mb, E) is constant, then for every b ∈ B there exists an open
neighbourhood b ∈ U and elements e1, . . . , er ∈ Hi(f−1(U), E) such that:
(a) Hi(f−1(U), E) is the free O(U)-module generated by e1, . . . , en.
(b) e1, . . . , er induce a basis of Hi(Mc, E) for every c ∈ U .

3. If b �→ hi−1(Mb, E) and b �→ hi+1(Mb, E) are constant then also b �→
hi(Mb, E) is constant.

Proof. [4, Ch. 3, Thm. 4.12], [41, I, Thm. 2.2], [37].

Corollary 1.43. Let X be a compact complex manifold. If H1(X, TX) =
0 then every deformation of X is trivial.

Definition 1.44. A compact complex manifold X is called rigid if
H1(X, TX) = 0.

Corollary 1.45. Let f :M → B a smooth family of compact complex
manifolds. If b �→ h1(Mb, TMb

) is constant and KSf = 0 at every point b ∈ B
then the family is locally trivial.

Proof. (cf. Example 1.49) Easy consequence of Theorems 1.41 and 1.42.

Example 1.46. Consider the following family of Hopf surfaces f :M → C,
M = X/G where X = B × (C2 − {0}) and G � Z is generated by (b, z1, z2) �→
(b, 2z1, b

2z1 + 2z2).
The fibre Mb is the Hopf surface SA(b), where A(b) =

(
2 0

b2 2

)
and then M0

is not biholomorphic to Mb for every b �= 0.
This family is isomorphic to N ×C B, where B → C is the map b �→ b2

and N is the quotient of C× (C2 − {0}) by the group generated by (s, z1, z2) �→
(s, 2z1, sz1 + 2z2). By base-change property, the Kodaira-Spencer map KSf :
T0,B → H1(M0, TM0) is trivial.

On the other hand the family is trivial over B − {0}, in fact the map

(B − {0})× (C2 − {0}) → (B − {0})× (C2 − {0}), (b, z1, z2) �→ (b, b2z1, z2)

induces to the quotient an isomorphism (B−{0})×M1 � (M −f−1(0)). There-
fore the Kodaira-Spencer map KSf :Tb,B → H1(Mb, TMb

) is trivial for every b.
According to the base-change theorem the dimension of H1(Mb, TMb

) cannot
be constant: in fact it is proved in [41] that h1(M0, TM0) = 4 and h1(Mb, TMb

) =
2 for b �= 0.

Example 1.47. Let M ⊂ Cb × P3
x × P1

u be the subset defined by the
equations

u0x1 = u1(x2 − bx0), u0x2 = u1x3,
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f :M → C the projection onto the first factor and f∗:M∗ = (M − f−1(0)) →
(C− {0}) its restriction.

Assume already proved that f is a family (this will be done in the next
section); we want to prove that:

1. f∗ is a trivial family.
2. f is not locally trivial at b = 0.

Proof of 1. After the linear change of coordinates x2 − bx0 �→ x0 the
equations of M∗ ⊂ C− {0} × P3 × P1 become

u0x1 = u1x0, u0x2 = u1x3

and there exists an isomorphism of families C− {0} × P1
s × P1

u → M∗, given by

(b, [t0, t1], [u0, u1]) �→ (b, [t0u1, t0u0, t1u1, t1u0], [u0, u1]).

Proof of 2. Let Y � P1 ⊂ M0 be the subvariety of equation b = x1 =
x2 = x3 = 0. Assume f locally trivial, then there exist an open neighbourhood
0 ∈ U ⊂ C and a commutative diagram of holomorphic maps

Y × U
j−→ M�pr

�f

U
i

↪→ C

where i is the inclusion, j is injective and extends the identity Y ×{0} → Y ⊂ M0.
Possibly shrinking U it is not restrictive to assume that the image of j is

contained in the open subset V0 = {x0 �= 0}. For b �= 0 the holomorphic map
δ: V0 ∩Mb → C3,

δ(b, [x0, x1, x2, x3], [u0, u1]) =
(

x1

x0
,
x2

x0
,
x3

x0

)
,

is injective; therefore for b ∈ U , b �= 0, the holomorphic map δj(−, b):Y �
P1 → C3 is injective. This contradicts the maximum principle of holomorphic
functions.

Example 1.48. In the notation of Example 1.47, the deformation M0 →
M

b−→(C, 0) is not universal: in order to see this it is sufficient to prove that M is
isomorphic to the deformation g∗M , where g: (C, 0) → (C, 0) is the holomorphic
map g(b) = b + b2.

The equation of g∗M is

u0x1 = u1(x2 − (b + b2)x0), u0x2 = u1x3,



[25] Lectures on deformations of complex manifolds 25

and the isomorphism of deformations g∗M → M is given by

(b, [x0, x1, x2, x3], [u0, u1]) = (b, [(1 + b)x0, x1, x2, x3], [u0, u1]).

Example 1.49. Applying the base change C → C, b �→ b2, to the family
M → C of Example 1.47 we get a family with trivial KS at every point of the
base but not locally trivial at 0.

We will prove in 2.5 that H1(Mb, TMb
) = 0 for b �= 0 and H1(M0, TM0) = C.

1.6 – Historical survey

The deformation theory of complex manifolds began in the years 1957-1960
by a series of papers of Kodaira-Spencer [39], [40], [41] and Kodaira-Nirenberg-
Spencer [38].

The main results of these papers were the completeness and existence the-
orem for versal deformations.

Theorem 1.50(Completeness theorem, [40]). A deformation ξ over a
smooth germ (B, 0) of a compact complex manifold M0 is versal if and only if
the Kodaira-Spencer map KSξ:T0,B → H1(M0, TM0) is surjective.

Note that if a deformation M0
M−→ f−→(B, 0) is versal then we can take a lin-

ear subspace 0 ∈ C ⊂ B making the Kodaira-Spencer map T0,C → H1(M0, TM0)
bijective; by completeness theorem M0 → M ×B C → (C, 0) is semiuniversal.

In general, a compact complex manifold does not have a versal deformation
over a smooth germ. The problem of determining when such a deformation exists
is one of the most difficult in deformation theory.

A partial answer is given by

Theorem 1.51(Existence theorem, [38]). Let M0 be a compact complex
manifold. If H2(M0, TM0) = 0 then M0 admits a semiuniversal deformation over
a smooth base.

The condition H2(M0, TM0) = 0 is sufficient but it is quite far from be-
ing necessary. The “majority” of manifolds having a versal deformation over a
smooth germ has the above cohomology group different from 0.

The next problem is to determine when a semiuniversal deformation is uni-
versal: a sufficient (and almost necessary) condition is given by the following
theorem.

Theorem 1.52 ([67], [79]). Let ξ : M0−→M−→(B, 0) be a semiuniversal
deformation of a compact complex manifold M0. If b �→ h0(Mb, TMb

) is constant
(e.g. if H0(M0, TM0) = 0) then ξ is universal.
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Remark 1.53. If a compact complex manifold M has finite holomorphic
automorphisms then H0(M, TM ) = 0, while the converse is generally false (take
as an example the Fermat quartic surface in P3, cf. [71]).

Example 1.54. Let M → B be a smooth family of compact complex tori
of dimension n, then TMb

= ⊕n
i=1OMb

and then h0(Mb, TMb
) = n for every b.

Example 1.55. If KM0 is ample then, by a theorem of Matsumura [55],
H0(M0, TM0) = 0.

Example 1.56. The deformation M0−→M
f−→C, where f is the family of

Example 1.47, is not universal.

2 – Deformations of Segre-Hirzebruch surfaces

In this section we compute the Kodaira-Spencer map of some particular
deformations and, using the completeness Theorem 1.50, we give a concrete
description of the semiuniversal deformations of the Segre-Hirzebruch surfaces
Fk (Theorem 2.28).

As a by-product we get examples of deformation-unstable submanifolds
(Definition 2.29). A sufficient condition for stability of submanifolds is the well
known Kodaira stability theorem (Thm. 2.30) which is stated without proof in
the last section.

2.1 – Segre-Hirzebruch surfaces

We consider the following description of the Segre-Hirzebruch surface Fq,
q ≥ 0.

Fq = (C2 − {0})× (C2 − {0})/ ∼,

where the equivalence relation ∼ is given by the (C∗)2-action

(l0, l1, t0, t1) �→ (λl0, λl1, λ
qµt0, µt1), λ, µ ∈ C∗.

The projection Fq → P1, [l0, l1, t0, t1] �→ [l0, l1] is well defined and it is a
P1-bundle (cf. Example 2.13).

Note that F0 = P1 × P1; Fq is covered by four affine planes C2 � Ui,j =
{litj �= 0}. In this affine covering we define local coordinates according to the
following table

U0,0 : z =
l1
l0

, s =
t1l

q
0

t0
U0,1 : z =

l1
l0

, s′ =
t0

t1l
q
0

U1,0 : w =
l0
l1

, y′ =
t1l

q
1

t0
U1,1 : w =

l0
l1

, y =
t0

t1l
q
1
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We also denote

V0 = {l0 �= 0} = U0,0 ∪ U0,1, V1 = {l1 �= 0} = U1,0 ∪ U1,1.

We shall call z, s principal affine coordinates and U0,0 principal affine subset.
Since the changes of coordinates are holomorphic, the above affine covering gives
a structure of complex manifold of dimension 2 on Fk.

Exercise 2.1. If we consider the analogous construction of Fq with R

instead of C we get Fq=torus for q even and Fq=Klein bottle for q odd.

Definition 2.2. For q > 0 we set σ∞ = {t1 = 0}. Clearly σ∞ is isomorphic
to P1.

Proposition 2.3. F0 is not homeomorphic to F1.

Proof. Topologically F0 = S2×S2 and therefore H2(F0, Z) = Z[S2×{p}]⊕
Z[{p} × S2], where p ∈ S2 and [V ] ∈ H2 denotes the homology class of a closed
subvariety V ⊂ S2 × S2 of real dimension 2.

The matrix of the intersection form q: H2 ×H2 → H0 = Z is(
0 1
1 0

)

and therefore q(a, a) is even for every a ∈ H2(F0, Z).
Consider the following subvarieties of F1:

σ = {t0 = 0}, σ′ = {t0 = l0t1}.

σ and σ′ intersect transversely at the point t0 = l0 = 0 and therefore their inter-
section product is equal to q([σ], [σ′]) = ±1. On the other hand the continuous
map

r : (F1 − σ∞)× [0, 1] → (F1 − σ∞), r((l0, l1, t0, t1), a) = (l0, l1, at0, t1)

shows that σ is a deformation retract of (F1 − σ∞). Since r1:σ′ → σ is an iso-
morphism we have [σ] = [σ′] ∈ H2(F1 − σ∞, Z) and then a fortiori [σ] = [σ′] ∈
H2(F1, Z). Therefore q([σ], [σ]) = ±1 is not even and F0 cannot be homeomor-
phic to F1.



28 MARCO MANETTI [28]

It is easy to find projective embeddings of the surfaces Fq.

Example 2.4. The Segre-Hirzebruch surface Fq is isomorphic to the sub-
variety X ⊂ Pq+1 × P1 of equation

u0(x1, x2, . . . , xq) = u1(x2, x3, . . . , xq+1),

where x0, . . . , xq+1 and u0, u1 are homogeneous coordinates in Pq+1 and P1 re-
spectively.

An isomorphism Fq → X is given by:

u0 = l0, u1 = l1, x0 = t0, xi = t1l
i−1
0 lq+1−i

1 , i = 1, . . . q + 1.

Denote by T → Fq the holomorphic tangent bundle, in order to compute
the spaces H0(Fq, T ) and H1(Fq, T ) we first notice that the open subsets V0, V1

are isomorphic to C× P1. Explicit isomorphisms are given by

V0 → Cz × P1, (l0, l1, t0, t1) �→
(

z =
l1
l0

, [t0, t1]
)

,

V1 → Cw × P1, (l0, l1, t0, t1) �→
(

w =
l0
l1

, [t0, t1]
)

.

According to Example 1.27 H1(Vi, T ) = 0, i = 0, 1, and then H0(Fq, T ) and
H1(Fq, T ) are isomorphic, respectively, to the kernel and the cokernel of the
Čech differential

H0(V0, T )⊕H0(V1, T ) d−→H0(V0 ∩ V1, T ), d(χ, η) = χ− η.

In the affine coordinates (z, s), (w, y) we have that:

1. H0(V0, T ) is the free O(Cz)-module generated by
∂

∂z
,

∂

∂s
, s

∂

∂s
, s2 ∂

∂s
.

2. H0(V1, T ) is the free O(Cw)-module generated by
∂

∂w
,

∂

∂y
, y

∂

∂y
, y2 ∂

∂y
.

3. H0(V0 ∩ V1, T ) is the free O(Cz − {0})-module generated by
∂

∂z
,

∂

∂s
, s

∂

∂s
,

s2 ∂

∂s
.

The change of coordinates is given by{
z = w−1

s = y−1wq

{
w = z−1

y = s−1z−q
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and then
∂

∂w
= −z2 ∂

∂z
+ qy−1w−q−1 ∂

∂s
= −z2 ∂

∂z
+ qzs

∂

∂s
∂

∂y
= −y−2wq ∂

∂s
= −zqs2 ∂

∂s

d

∑
i≥0

zi

(
ai

∂

∂z
+ (bi + cis + dis

2)
∂

∂s

)
,
∑
i≥0

wi

(
αi

∂

∂w
+ (βi + γiy + δiy

2)
∂

∂y

)=

=
∑
i≥0

zi

(
ai

∂

∂z
+ bi

∂

∂s
+ cis

∂

∂s
+ dis

2 ∂

∂s

)
+

+
∑
i≥0

z−i

(
αi

(
z2 ∂

∂z
− qzs

∂

∂s

)
+ βis

2zq ∂

∂s
+ γis

∂

∂s
+ δiz

−q ∂

∂s

)

An easy computation gives the following

Lemma 2.5.

∑
i∈Z

zi

(
ai

∂

∂z
+ bi

∂

∂s
+ cis

∂

∂s
+ dis

2 ∂

∂s

)
∈ H0(V0 ∩ V1, T )

belongs to the image of the Čech differential if and only if b−1 = b−2 = . . . =
b−q+1 = 0. In particular the vector fields

z−h ∂

∂s
∈ H0(V0 ∩ V1, T ), h = 1, . . . , q − 1

represent a basis of H1(Fq, T ) and then h1(Fq, T ) = max(0, q − 1).

Exercise 2.6. Prove that h0(Fq, T ) = max(6, q + 5).

Theorem 2.7. If a �= b then Fa is not biholomorphic to Fb.

Proof. Assume a > b. If a ≥ 2 then the dimension of H1(Fa, TFa
) is bigger

than the dimension of H1(Fb, TFb
). If a = 1, b = 0 we apply Proposition 2.3.

We will show in 2.24 that Fa is diffeomorphic to Fb if and only if a − b is
even.
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2.2 – Decomposable bundles on projective spaces

For n > 0, a ∈ Z we define

OPn(a) = (Cn+1 − 0)× C/C∗,

where the action of the multiplicative group C∗ = C− 0 is

λ(l0, . . . , ln, t) = (λl0, . . . , λln, λat), λ ∈ C∗.

The projection OPn(a) → Pn, [l0, . . . , ln, t] �→ [l0, . . . , ln], is a holomorphic
line bundle. Notice that OPn = OPn(0) → Pn is the trivial vector bundle of
rank 1.

The obvious projection maps give a commutative diagram

(Cn+1 − 0)× C −−−−→ OPn(a)� �p

(Cn+1 − 0) π−−−−→ Pn

inducing an isomorphism between (Cn+1 − 0) × C and the fibred product of p
and π; in particular for every open subset U ⊂ Pn the space H0(U,OPn(a)) is
naturally isomorphic to the space of holomorphic maps f :π−1(U) → C such that
f(λx) = λaf(x) for every x ∈ π−1(U), λ ∈ C∗.

If U = Pn then, by Hartogs’ theorem, every holomorphic map f :π−1(U) →
C can be extended to a function f : Cn+1 → C. Considering the power series
expansion of f we get a natural isomorphism between H0(Pn,OPn(a)) and the
space of homogeneous polynomials of degree a in the homogeneous coordinates
l0, . . . , ln.

Exercise 2.8. Prove that h0(Pn,OPn(a)) =
(
n+a

n

)
.

Exercise 2.9. Under the isomorphism σ∞ = P1 we have Nσ∞/Fq
=

OP1(−q).

On the open set Ui = {li �= 0} the section lai ∈ H0(Ui,OPn(a)) is nowhere 0
and then gives a trivialization of OPn(a) over Ui. The multiplication maps

H0(Ui,OPn(a))⊗H0(Ui,OPn(b)) → H0(Ui,OPn(a + b)), f ⊗ g �→ fg,

give natural isomorphisms of line bundles

OPn(a)⊗OPn(b) = OPn(a + b), Hom(OPn(a),OPn(b)) = OPn(b− a)

(In particular OPn(a)∨ = OPn(−a).)
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Definition 2.10. A holomorphic vector bundle E → Pn is called decom-
posable if it is isomorphic to a direct sum of line bundles of the form OPn(a).

Equivalently a vector bundle is decomposable if it is isomorphic to

(Cn+1 − 0)× Cr/C∗ → (Cn+1 − 0)/C∗ = Pn,

where the action is λ(l0, . . . , ln, t1, . . . , tr) = (λl0, . . . , λln, λa1t1, . . . , λar tr).

Lemma 2.11. Two decomposable bundles of rank r, E = ⊕r
i=1OPn(ai),

F = ⊕r
i=1OPn(bi), a1 ≤ a2, . . . ,≤ ar, b1 ≤ b2, . . . ,≤ br, are isomorphic if and

only if ai = bi for every i = 1, . . . , r.

Proof. Immediate from the formula

h0(Pn, (⊕iOPn(ai))⊗OPn(s)) =
∑

i

h0(Pn,OPn(ai + s)) =

=
∑

{i | ai+s≥0}

(
ai + s + n

n

)
.

Exercise 2.12. If n ≥ 2 not every holomorphic vector bundle is decom-
posable. Consider for example the surjective morphism

φ:⊕n
i=0OPn(1)ei → OPn(2),

∑
fiei �→

∑
fili.

We leave it as an exercise to show that the kernel of φ is not decomposable (Hint:
first prove that kerφ is generated by the global sections liej − ljei).

For every holomorphic vector bundle E → X on a complex manifold X we
denote by P(E) → X the projective bundle whose fibre over x ∈ X is P(E)x =
P(Ex). If E → X is trivial over an open subset U ⊂ X then also P(E) is
trivial over U ; this proves that P(E) is a complex manifold and the projection
P(E) → X is proper.

Exercise 2.13. For every a, b ∈ Z, P(OP1(a)⊕OP1(b)) = F|a−b|.
To see this it is not restrictive to assume a ≥ b; we have

P(OP1(a)⊕OP1(b)) = (C2 − 0)× (C2 − 0)/C∗ × C∗,

where the action is (λ, η)(l0, l1, t0, t1) = (λl0, λl1, λ
aηt0, λ

bηt1). Setting µ = λbη
we recover the definition of Fa−b.

More generally if E → X is a vector bundle and L → X is a line bundle
then P(E ⊗ L) = P(E).
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Exercise 2.14. The tangent bundle TP1 is isomorphic to OP1(2). Let l0, l1

be homogeneous coordinates on P1; s =
l1
l0

, t =
l0
l1

are coordinates on U0 = {l0 �=
0}, U1 = {l1 �= 0} respectively. The sections of TP1 over an open set U correspond

to pairs
(

f0(s)
∂

∂s
, f1(t)

∂

∂t

)
, fi ∈ O(U ∩ Ui), such that f1(t) = −t2f0(t−1).

The isomorphism φ:OP1(2) → TP1 is given by φ(la0 l2−a
1 )=

(
s2−a ∂

∂s
,−ta

∂

∂t

)
.

Theorem 2.15 (Euler exact sequence). On the projective space Pn there
exists an exact sequence of vector bundles

0−→OPn

∑
li

∂
∂li−→ ⊕n

i=0 OPn(1)
∂

∂li

φ−→ TPn−→0,

where on the affine open subset lh �= 0, with coordinates si =
li
lh

, i �= h,
φ

(
li

∂

∂lj

)
= si

∂

∂sj
i, j �= h

φ

(
lh

∂

∂lj

)
=

∂

∂sj
j �= h

,


φ

(
li

∂

∂lh

)
= −

∑
j �=h

sisj
∂

∂sj
i �= h

φ

(
lh

∂

∂lh

)
= −

∑
j �=h

sj
∂

∂sj

Proof. The surjectivity of φ is clear. Assume φ

(∑
i,j aij li

∂

∂lj

)
= 0,

looking at the quadratic terms in the set lh �= 0 we get aih = 0 for every i �= h.
In the open set l0 �= 0 we have

φ

(∑
i

aiili
∂

∂li

)
=

n∑
i=1

aiisi
∂

∂si
−

n∑
i=1

a00si
∂

∂si
= 0

and then the matrix aij is a multiple of the identity.

Remark 2.16. It is possible to prove that the map φ in the Euler exact
sequence is surjective at the level of global sections, this gives an isomorphism

H0(Pn, TPn) = gl(n + 1, C)/CId = pgl(n + 1, C) = TIdPGL(n + 1, C).
Moreover it is possible to prove that every biholomorphism of Pn is a projectivity
and the integration of holomorphic vector fields corresponds to the exponential
map in the complex Lie group PGL(n + 1, C).

Exercise 2.17. Use the Euler exact sequence and the surjectivity of φ on
global sections to prove that for every n ≥ 2 the tangent bundle of Pn is not
decomposable.

Corollary 2.18. The canonical bundle of Pn is KPn = OPn(−n− 1).
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Proof. From the Euler exact sequence we have∧n
TPn ⊗OPn =

∧n+1 (⊕n
i=0OPn(1)) = OPn(n + 1)

and then KPn = (
∧n

TPn)∨ = OPn(−n− 1).

Exercise 2.19. Prove that hn(Pn,OPn(−a)) =
(

a− 1
n

)
.

Lemma 2.20. Let E → P1 be a holomorphic vector bundle of rank r. If:

1. H0(P1, E(s)) = 0 for s � 0, and
2. There exists a constant c ∈ N such that h0(P1, E(s)) ≥ rs− c for s � 0.

Then E is decomposable.

Proof. Using the assumptions 1 and 2 we may construct recursively a
sequence a1, . . . , ar ∈ Z and sections αi ∈ H0(P1, E(ai)) such that:

1. ah+1 is the minimum integer s such that the map

⊕h
i=1αi:

h⊕
i=1

H0(P1,OP1(s− ai)) → H0(P1, E(s))

is not surjective.
2. αh+1 does not belong to the image of

⊕h
i=1αi:

h⊕
i=1

H0(P1,OP1(ah+1 − ai)) → H0(P1, E(ah+1)).

Notice that a1 ≤ a2 ≤ . . . ≤ ar.
We prove now by induction on h that the morphism of vector bundles

⊕h
i=1αi:

h⊕
i=1

OP1(−ai) → E

is injective on every fibre; this implies that ⊕r
i=1αi:

⊕r
i=1OP1(−ai) → E is an

isomorphism.
For h = 0 it is trivial. Assume ⊕h

i=1αi injective on fibres and let p ∈ P1.
Choose homogeneous coordinates l0, l1 such that p = {l1 = 0} and set s = l1/l0.

Assume that there exist c1, . . . , ch ∈ C such that

αh+1(p) =
∑

ci(l
ah+1−ai

0 αi)(p) ∈ E(ah+1)p.

If e1, . . . , er is a local frame for E at p we have locally

αh+1 −
h∑

i=1

cil
ah+1−ai

0 αi =
r∑

j=1

fj(s)l
ah+1
0 ej

with fj(s) holomorphic functions such that fj(0) = 0.
Therefore fj(s)/s is still holomorphic and l−1

0 (αh+1 −
∑

cil
ah+1−ai

0 αi) ∈
H0(P1, E(ah+1 − 1)), in contradiction with the minimality of ah+1.
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Theorem 2.21. Let 0−→E−→F−→G−→0 be an exact sequence of holo-
morphic vector bundles on P1.

1. If F, G are decomposable then also E is decomposable.
2. If E = ⊕OP1(−ai) then min(ai) is the minimum integer s such that

H0(P1, F (s)) → H0(P1, G(s))

is not injective.

Proof. The kernel of H0(P1,F (s)) → H0(P1, G(s)) is exactly H0(P1, E(s)).
If F = ⊕r

i=1OP1(bi), G = ⊕p
i=1OP1(ci) then for s � 0 h0(P1, F (s)) =

r(s + 1) +
∑

bi, h0(P1, G(s)) = p(s + 1) +
∑

ci and then the rank of E is r − p
and h0(P1, E(s)) ≥ (r− p)(s + 1) +

∑
bi −

∑
ci. According to Lemma 2.20, the

vector bundle E is decomposable.

We also state, without proof, the following

Theorem 2.22.
1. Every holomorphic line bundle on Pn is decomposable.
2. (Serre) Let E be a holomorphic vector bundle on Pn, then:

(a) H0(Pn, E(s)) = 0 for s � 0.
(b) E(s) is generated by global sections and Hp(Pn, E(s)) = 0 for p > 0,

s � 0.
3. (Bott vanishing theorem) For every 0 < p < n:

Hp(Pn,Ωq(a)) =
{

C if p = q, a = 0
0 otherwise

Moreover H0(Pn,Ωq(a)) = Hn(Pn,Ωn−q(−a))∨ = 0 whenever a < q.

Proof. [37].

2.3 – Semiuniversal families of Segre-Hirzebruch surfaces

Let q > 0 be a fixed integer, define M ⊂ C
q−1
t × P1

l × Pq+1
x as the set of

points of homogeneous coordinates (t2, . . . , tq, [l0, l1], [x0, . . . , xq+1]) satisfying
the vectorial equation

(1) l0(x1, x2, . . . , xq) = l1(x2 − t2x0, . . . , xq − tqx0, xq+1).

We denote by f :M → Cq−1, p:M → Cq−1 × P1
l the projections.

Lemma 2.23. There exists a holomorphic vector bundle of rank 2, E →
Cq−1 × P1

l such that the map p:M → Cq−1 × P1
l is a smooth family isomorphic

to P(E) → Cq−1 × P1
l .



[35] Lectures on deformations of complex manifolds 35

Proof. Let π: Cq−1 × P1
l → P1

l be the projection; define E as the kernel of
the morphism of vector bundles over Cq−1 × P1

l

q+1⊕
i=0

π∗OP1
A−→

q⊕
i=1

π∗OP1(1),

A(t2, . . . , tq, [l0, l1])


x0

x1
...

xq+1

 =


l0x1 − l1(x2 − t2x0)
l0x2 − l1(x3 − t3x0)

...
l0xq − l1xq+1

 .

We first note that A is surjective on every fibre, in fact for fixed t2, . . . , tq, l0, l1 ∈
C, A(ti, lj) is represented by the matrix


t2l1 l0 −l1 . . . 0 0
t3l1 0 l0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . l0 −l1

 .

Since either l0 �= 0 or l1 �= 0 the above matrix has maximal rank.
By definition we have that M is the set of points of x ∈ P(⊕q+1

i=0 π∗OP1) such
that A(x) = 0 and then M = P(E).

For every k ≥ 0 denote by Tk ⊂ C
q−1
t the subset of points of coordinates

(t2, . . . , tq) such that there exists a nonzero (q + 2)-uple of homogeneous poly-
nomials of degree k

(x0(l0, l1), . . . , xq+1(l0, l1))

which satisfy identically (t being fixed) the Equation (1). Note that t ∈ Tk if
and only if there exists a nontrivial morphism OP1(−k) → Et and then t ∈ Tk if
and only if −k ≤ −a. Therefore t ∈ Tk − Tk−1 if and only if a = k.

Lemma 2.24. In the notation above:

1. T0 = {0}.
2. Tk ⊂ Tk+1.
3. If 2k + 1 ≥ q then Tk = Cq−1.
4. If 2k ≤ q and t ∈ Tk − Tk−1 then Mt = Fq−2k.
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Proof. 1 and 2 are trivial.
Denoting by Sk ⊂ C[l0, l1] the space of homogeneous polynomials of degree

k, dimC Sk = k +1; interpreting Equation (1) as a linear map (depending on the
parameter t) Ak(t):Sq+2

k → Sq
k+1, we have that t ∈ Tk if and only if kerAk(t) �=

0.
Since (q + 2)(k + 1) > q(k + 2) whenever 2k > q − 2, item 3 follows imme-

diately.
Let Et be the restriction of the vector bundle E to {t} × P1, Et is the

kernel of the surjective morphism A(t):⊕q+1
i=0OP1 → ⊕q

i=1OP1(1). According to
Theorem 2.21, Et is decomposable. Since

∧2
Et = OP1(−q) we have Et =

OP1(−a)⊕OP1(a− q) with −a ≤ a− q and Mt = P(Et) = Fq−2a.

Lemma 2.25. In the notation above (t2, . . . , tq) ∈ Tk if and only if there
exists a nonzero triple (x0, x1, xq+1) ∈ ⊕C[s] of polynomials of degree ≤ k such
that

xq+1 = sqx1 + x0

(
q∑

i=2

tis
q+1−i

)
.

Proof. Setting s = l0/l1 we have by definition that (t2, . . . , tq) ∈ Tk if
and only if there exists a nontrivial sequence x0, . . . , xq+1 ∈ C[s] of polynomials
of degree ≤ k such that xi+1 = sxi + ti+1x0 for every i = 1, . . . , q (tq+1 = 0
by convention). Clearly this set of equation is equivalent to xi+1 = six1 +
x0

∑i
j=1 tj+1s

i−j .
Given x0, x1, xq+1 as in the statement, we can define recursively xi =

s−1(xi+1 − ti+1x0) and the sequence x0, . . . , xq−1 satisfies the defining equa-
tion of Tk.

Corollary 2.26. (t2, . . . , tq) ∈ Tk if and only if the (q− k− 1)× (k + 1)
matrix Bk(t)ij = (tq−k−i+j) has rank ≤ k.

Proof. If 2k+1 ≤ q then Tk = Cq−1, q−k−1 ≤ k and the result is trivial:
thus it is not restrictive to assume k + 1 ≤ q − k − 1 and then rankBk(t) ≤ k if
and only if kerBk(t) �= 0.

We note that if x0, x1, xq+1 satisfy the equation

xq+1 = sqx1 + x0

(
q∑

i=2

tis
q+1−i

)
then x1, xq+1 are uniquely determined by x0; conversely a polynomial x0(s)
of degree ≤ k can be extended to a solution of the equation if and only if
all the coefficients of sk+1, sk+2, . . . , sq−1 in the polynomial x0(

∑q
i=2 tis

q+1−i)
vanish. Writing x0 = a0 + a1s + . . . + aksk, this last condition is equivalent to
(a0, . . . , ak) ∈ ker Bk(t).
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Therefore Tk is defined by the vanishing of the
(

q − k − 1
k + 1

)
minors of Bk(t),

each one of which is a homogeneous polynomial of degree k + 1 in t2, . . . , tq. In
particular Tk is an algebraic cone.

As an immediate consequence of Corollary 2.26 we have that for q ≥ 2,
0 < 2k ≤ q, the subset {tk+1 �= 0, tk+2 = tk+3 = . . . = tq = 0} is contained in
Tk − Tk−1. In particular Fq is diffeomorphic to Fq−2k for every k ≤ q/2.

Proposition 2.27. If 2k < q then Tk is an irreducible affine variety of
dimension 2k.

Proof. Denote

Zk = {([v], t) ∈ Pk × Cq−1 |v ∈ Ck+1 − 0, Bk(t)v = 0}

and by p:Zk → Tk the projection on the second factor. p is surjective and if
tk+1 = 1, ti = 0 for i �= k + 1, then Bk(t) has rank k and p−1(t) is one point.
Therefore it is sufficient to prove that Zk is an irreducible variety of dimension
2k.

Let π:Zk → Pk be the projection. We have ([a0, . . . , ak], (t2, . . . , tq)) ∈ Zk

if and only if for every i = 1, . . . , q − k − 1

0 =
k∑

j=0

ti+1+jaj =
q∑

l=2

tlal−i−1,

where al = 0 for l < 0, l > k and then the fibre over [a0, . . . , ak] is the kernel
of the matrix Aij = (aj−i−1) i = 1, . . . , q − k − 1, j = 2, . . . , q. Since at least
one ai is �= 0 the rank of Aij is exactly q − k − 1 and then the fibre is a vector
subspace of dimension k. By a general result in algebraic geometry [72], [51] Z
is an irreducible variety of dimension 2k.

Theorem 2.28. In the above notation the Kodaira-Spencer map

KSf :T0,Cq−1 → H1(M0, TM0)

is bijective for every q ≥ 1 and therefore, by completeness Theorem 1.50, defor-
mation Fq → M → (Cq−1, 0) is semiuniversal.
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Proof. We have seen that M0 = Fq. Let V0, V1 ⊂ Fq be the open subset
defined in Subsection 1. Denote Mi ⊂ M the open subset {li �= 0}, i = 0, 1.

We have an isomorphism φ0: Cq−1 × V0 → M0, commuting with the projec-
tions onto Cq−1, given in the affine coordinates (z, s) by:

l0 =1, l1 =z, x0 =1, xh = zq−h+1s−
q−h∑
j=1

th+jz
j =z(xh+1−th+1x0), h > 0.

Similarly there exists an isomorphism φ1: Cq−1 × V1 → M1,

l0 = w, l1 = 1, x0 = y, xh = wh−1+y

h∑
j=2

tjw
h−j = wxh−1+thx0, h > 0.

In the intersection M0 ∩M1 we have:
z = w−1

s =
xq+1

x0
= y−1wq +

q∑
j=2

tjw
q+1−j .

According to Formula 1.33, for every h = 2, . . . , q

KSf

(
∂

∂th

)
=

∂w−1

∂th

∂

∂z
+

∂(y−1wq +
∑q

j=2 tjw
q+1−j)

∂th

∂

∂s
= zh−q−1 ∂

∂s
.

2.4 – Historical survey

One of the most famous theorems in deformation theory (at least in algebraic
geometry) is the stability theorem of submanifolds proved by Kodaira in 1963.

Definition 2.29. Let Y be a closed submanifold of a compact complex
manifold X. Y is called stable if for every deformation X

i−→X f−→(B, 0) there

exists a deformation Y
j−→Y g−→(B, 0) and a commutative diagram of holomor-

phic maps

Y
j ��

i|X

��

Y

����
��

��
�

g

��
X

f �� B

The same argument used in Example 1.46 shows that σ∞ ⊂ Fq is not stable
for every q ≥ 2, while σ∞ ⊂ F1 is stable because F1 is rigid.

Theorem 2.30 (Kodaira stability theorem for submanifolds, [36]). Let Y
be a closed submanifold of a compact complex manifold X. If H1(Y, NY/X) = 0
then Y is stable.
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Just to check Theorem 2.30 in a concrete case, note that h1(σ∞, Nσ∞/Fq
) =

max(0, q − 1).
Theorem 2.30 has been generalized to arbitrary holomorphic maps of com-

pact complex manifolds in a series of papers by Horikawa [30].

Definition 2.31. Let α:Y → X be a holomorphic map of compact complex
manifolds. A deformation of α over a germ (B, 0) is a commutative diagram of
holomorphic maps

Y
i−−−−→ Y f−−−−→ B�α

� �Id

X
j−−−−→ X g−−−−→ B

where Y
i−→Y f−→(B, 0) and X

j−→X g−→(B, 0) are deformations of Y and X re-
spectively.

Definition 2.32. In the notation of 2.31, the map α is called:

1. Stable if every deformation of X can be extended to a deformation of α.
2. Costable if every deformation of Y can be extended to a deformation of α.

Consider two locally finite coverings U = {Ua}, V = {Va}, a ∈ I, Y = ∪Ua,
X = ∪Va such that Ua, Va are biholomorphic to polydisks and α(Ua) ⊂ Va for
every a (Ua is allowed to be the empty set).

Given a∈I and local coordinate systems (z1, ..., zm):Ua → Cm, (u1, ..., un):
Va → Cn we have linear morphisms of vector spaces

α∗: Γ(Va, TX) → Γ(Ua, α∗TX), α∗
(∑

i

gi
∂

∂ui

)
=

∑
i

α∗(gi)
∂

∂ui

α∗: Γ(Ua, TY ) → Γ(Ua, α∗TX), α∗

(∑
i

hi
∂

∂zi

)
=

∑
i,j

hi
∂uj

∂zi

∂

∂uj

Define H∗(α∗) as the cohomology of the complex

0−→C0(U , TY ) d0−→C1(U , TY )⊕ C0(U , α∗TX) d1−→ . . .

where di(f, g) = (df, dg + (−1)iα∗f), being d the usual Čech differential.
Similarly define H∗(α∗) as the cohomology of the complex

0−→C0(V, TX) d0−→C1(V, TX)⊕ C0(U , α∗TX) d1−→ . . .

where di(f, g) = (df, dg + (−1)iα∗f).

Theorem 2.33 (Horikawa). The groups Hk(α∗) and Hk(α∗) do not depend
on the choice of the coverings U ,V. Moreover:

1. If H2(α∗) = 0 then α is stable.
2. If H2(α∗) = 0 then α is costable.
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Exercise 2.34. Give a Dolbeault-type definition of the groups Hk(α∗),
Hk(α∗).

Exercise 2.35. If α:Y → X is a regular embedding then Hk(α∗) =
Hk−1(Y, NY/X). (Hint: take Ua = Va ∩ Y , and local systems of coordinates
u1, . . . , un such that Y = {um+1 = . . . = un = 0}. Then prove that the projec-
tion maps Ck+1(U , TY )⊕Ck(U , α∗TX) → Ck(U , NY/X) give a quasiisomorphism
of complexes.

The following (non trivial) exercise is reserved to experts in algebraic geom-
etry:

Exercise 2.36. Let α:Y → Alb(Y ) be the Albanese map of a complex
projective manifold Y . If X = α(Y ) is a curve then α:Y → X is costable.

3 – Analytic singularities

Historically, a major step in deformation theory has been the introduction
of deformations of complex manifolds over (possibly non reduced) analytic sin-
gularities.

This section is a short introductory course on analytic algebras and analytic
singularities; moreover we give an elementary proof of the Nullstellenstaz for the
ring C{z1, . . . , zn} of convergent complex power series.

Quite important in deformation theory are the smoothness criterion 3.7 and
the two dimension bounds 3.40 and 3.41.

3.1 – Analytic algebras

Let C{z1, . . . , zn} be the ring of convergent power series with complex coef-
ficient. Every f ∈ C{z1, . . . , zn} defines a holomorphic function in a nonempty
open neighbourhood U of 0 ∈ Cn; for notational simplicity we still denote by
f :U → C this function.

If f is a holomorphic function in a neighbourhood of 0 and f(0) �= 0 then 1/f
is holomorphic in a (possibly smaller) neighbourhood of 0. This implies that f
is invertible in C{z1, . . . , zn} if and only if f(0) �= 0 and therefore C{z1, . . . , zn}
is a local ring with maximal ideal m = {f | f(0) = 0}. The ideal m is generated
by z1, . . . , zn.

Definition 3.1. The multiplicity of a power series f ∈ C{z1, . . . , zn} is
defined as

µ(f) = sup{s ∈ N | f ∈ ms} ∈ N ∪ {+∞}.
The valuation ν(S) of a nonempty subset S ⊂ C{z1, . . . , zn} is

ν(S) = sup{s ∈ N |S ⊂ ms} = inf{µ(f) | f ∈ S} ∈ N ∪ {+∞}.
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We note that ν(S) = +∞ if and only if S = {0} and µ(f) is the small-
est integer d such that the power series expansion of f contains a nontrivial
homogeneous part of degree d.

The local ring C{z1, . . . , zn} has the following important properties:

• C{z1, . . . , zn} is Noetherian [28, II¿B.9], [24].
• C{z1, . . . , zn} is a unique factorization domain [28, II.B.7], [24].
• C{z1, . . . , zn} is a Henselian ring [51], [23], [24].
• C{z1, . . . , zn} is a regular local ring of dimension n (see e.g. [3], [24], [56]

for the basics about dimension theory of local Noetherian ring).

We recall, for the reader’s convenience, that the dimension of a local Noetherian
ring A with maximal ideal m is the minimum integer d such that there exist
f1, . . . , fd ∈ m with the property

√
(f1, . . . , fd) = m. In particular dimA = 0 if

and only if
√

0 = m, i.e. if and only if m is nilpotent.
We also recall that a morphism of local rings f : (A, m) → (B, n) is called

local if f(m) ⊂ n.

Definition 3.2. A local C-algebra is called an analytic algebra if it is
isomorphic to C{z1, . . . , zn}/I, for some n ≥ 0 and some ideal I ⊂ (z1, . . . , zn).

We denote by An the category with objects the analytic algebras and mor-
phisms the local morphisms of C-algebras.

Every analytic algebra is a local Noetherian ring. Every local Artinian C-
algebra with residue field C is an analytic algebra.

The ring C{z1, . . . , zn} is, in some sense, a free object in the category An
as explained in the following lemma

Lemma 3.3. Let (R, m) be an analytic algebra. Then the map

MorAn(C{z1, . . . , zn}, R) → m× . . .×m︸ ︷︷ ︸
n factors

, f �→ (f(z1), . . . , f(zn))

is bijective.

Proof. We first note that, by the lemma of Artin-Rees [3, 10.19], ∩nmn = 0
and then every local homomorphism f : C{z1, . . . , zn} → R is uniquely deter-
mined by its factorizations

fs: C{z1, . . . , zn}/(z1, . . . , zn)s → R/ms.

Since C{z1, . . . , zn}/(z1, . . . , zn)s is a C-algebra generated by z1, . . . , zn, every
fs is uniquely determined by f(zi); this proves the injectivity.

For the surjectivity it is not restrictive to assume R = C{u1, . . . , um}; given
φ = (φ1, . . . , φn), φi ∈ m, let U be an open subset 0 ∈ U ⊂ Cm

u where the φi =
φi(u1, . . . , um) are convergent power series. The map φ = (φ1, . . . , φn):U → Cn

is holomorphic, φ(0) = 0 and φ∗(zi) = φi.
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Another important and useful tool is the following

Theorem 3.4 (Rückert’s nullstellensatz). Let I, J ⊂ C{z1, . . . , zn} be
proper ideals, then

MorAn(C{z1, . . . , zn}/I, C{t})=MorAn(C{z1, . . . , zn}/J, C{t}) ⇐⇒
√

I =
√

J,

where the left equality is intended as equality of subsets of

MorAn(C{z1, . . . , zn}, C{t}).

A proof of Theorem 3.4 will be given in Subsection 4.

Lemma 3.5. Every analytic algebra is isomorphic to C{z1, . . . , zk}/I for
some k ≥ 0 and some ideal I ⊂ (z1, . . . , zk)2.

Proof. Let A = C{z1, . . . , zn}/I be an analytic algebra such that I is not
contained in (z1, . . . , zn)2; then there exists u ∈ I and an index i such that
∂u

∂zi
(0) �= 0. Up to permutation of indices we may suppose i = n and then,

by inverse function theorem z1, . . . , zn−1, u is a system of local holomorphic
coordinates. Therefore A is isomorphic to C{z1, . . . , zn−1}/Ic, where Ic is the
kernel of the surjective morphism

C{z1, . . . , zn−1} → C{z1, . . . , zn−1, u}/I = A.

The conclusion follows by induction on n.

Definition 3.6. An analytic algebra is called smooth if it is isomorphic to
the power series algebra C{z1, . . . , zk} for some k ≥ 0.

Proposition 3.7. Let R = C{z1, . . . , zk}/I, I ⊂ (z1, . . . , zk)2, be an
analytic algebra.

The following conditions are equivalent:

1. I = 0.
2. R is smooth.
3. for every surjective morphism of analytic algebras B → A, the morphism

MorAn(R, B) → MorAn(R, A)

is surjective.
4. for every n ≥ 2 the morphism

MorAn(R, C{t}/(tn)) → MorAn(R, C{t}/(t2))

is surjective.
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Proof. [1 ⇒ 2] and [3 ⇒ 4] are trivial, while [2 ⇒ 3] is an immediate
consequence of the Lemma 3.3.

To prove [4 ⇒ 1], assume I �= 0 and let s = ν(I) ≥ 2 be the valuation
of I, i.e. the greatest integer s such that I ⊂ (z1, . . . , zk)s: we claim that
MorAn(R, C[t]/(ts+1)) → MorAn(R, C[t]/(t2)) is not surjective.

Choosing f ∈ I − (z1, . . . , zk)s+1, after a possible generic linear change of
coordinates of the form zi �→ zi + aiz1, a2, . . . , ak ∈ C, we may assume that
f contains the monomial zs

1 with a nonzero coefficient, say f = czs
1 + . . . ; let

α: R → C[t]/(t2) be the morphism defined by α(z1) = t, α(zi) = 0 for i > 1.
Assume that there exists β:R → C[t]/(ts+1) that lifts α, then β(z1) −

t, β(z2), . . . , β(zk) ∈ (t2) and therefore β(f) ≡ cts (mod ts+1).

Lemma 3.8. For every analytic algebra R with maximal ideal m there exist
natural isomorphisms

HomC(m/m2, C) = DerC(R, C) = MorAn(R, C[t]/(t2)).

Proof. Exercise.

Exercise 3.9 The ring of entire holomorphic functions f : C → C is an
integral domain but it is not factorial (Hint: consider the sine function sin(z)).

For every connected open subset U ⊂ Cn, the ring O(U) is integrally closed
in its field of fractions (Hint: Riemann extension theorem).

3.2 – Analytic singularities and fat points

Let M be a complex manifold, as in Section 1 we denote by OM,x the ring
of germs of holomorphic functions at a point x ∈ M . The elements of OM,x are
the equivalence classes of pairs (U, g), where U is open, x ∈ U ⊂ M , g:U → C is
holomorphic and (U, g) ∼ (V, h) if there exists an open subset W , x ∈ W ⊂ U∩V
such that g|W = h|W .

By definition of holomorphic function and the identity principle we have
that OCn,0 is isomorphic to the ring of convergent power series C{z1, . . . , zn}.

Let f :M → N be a holomorphic map of complex manifolds, for every open
subset V ⊂ N we have a homomorphism of C-algebras

f∗: Γ(V,ON ) → Γ(f−1(V ),OM ), f∗g = g ◦ f

If x ∈ M then the limit above maps f∗, for V varying over all the open
neighbourhood of y = f(x), gives a local homomorphism of local C-algebras
f∗:ON,y → OM,x.
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It is clear that f∗:ON,y → OM,x depends only on the behavior of f in
a neighbourhood of x and then depends only on the class of f in the space
MorGer((M, x), (N, y)).

A choice of local holomorphic coordinates z1, . . . , zn on M such that zi(x) =
0, gives an invertible morphism in MorGer((M, x), (Cn, 0)) and then an isomor-
phism OM,x = C{z1, . . . , zn}.

Exercise 3.10. Given f, g ∈ MorGer((M, x), (N, y)), prove that f = g if
and only if f∗ = g∗.

Definition 3.11. An analytic singularity is a triple (M, x, I) where M is
a complex manifold, x ∈ M is a point and I ⊂ OM,x is a proper ideal.

The germ morphisms MorGer((M, x, I), (N, y, J)) are the equivalence classes
of morphisms f ∈ MorGer((M, x), (N, y)) such that f∗(J) ⊂ I and f ∼ g if and
only if f∗ = g∗:ON,y/J → OM,x/I.

We denote by Ger the category of analytic singularities (also called germs
of complex spaces).

Lemma 3.12. The contravariant functor Ger → An,

Ob(Ger) → Ob(An), (M, x, I) �→ OM,x/I;

MorGer((M, x, I), (N, y, J)) → MorAn

(ON,y

J
,
OM,x

I

)
, f �→ f∗;

is an equivalence of categories. Its “inverse” An → Ger (cf. [49, 1.4]) is called
Spec (sometimes Specan).

Proof. Since C{z1, . . . , zn}/I is isomorphic to OCn,0/I the above functor
is surjective on isomorphism classes.

We only need to prove that

MorGer((M, x, I), (N, y, J)) → MorAn(ON,y/J,OM,x/I)

is surjective, being injective by definition of MorGer. To see this it is not restric-
tive to assume (M, x) = (Cm

u , 0), (N, y) = (Cn
z , 0).

Let g∗: C{z1, . . . , zn}/J → C{u1, . . . , um}/I be a local homomorphism and
choose, for every i = 1, . . . , n, a convergent power series fi ∈ C{u1, . . . , um}
such that fi ≡ g∗(zi) (mod I). Note that fi(0) = 0.

If U is an open set, 0 ∈ U ⊂ Cm, such that fi are convergent in U , then
we may define a holomorphic map f = (f1, . . . , fn):U → Cn. By construction
f∗(zi) = g∗(zi) ∈ C{u1, . . . , um}/I and then by Lemma 3.3 f∗ = g∗.
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Definition 3.13. Given an analytic singularity (X, x) = (M, x, I), the ana-
lytic algebra OX,x := OM,x/I is called the algebra of germs of analytic functions
of (X, x).

The dimension of (X, x) is by definition the dimension of the analytic algebra
OX,x.

Definition 3.14. A fat point is an analytic singularity of dimension 0.

Lemma 3.15. Let X = (M, x, I) be an analytic singularity; the following
conditions are equivalent.

1. The maximal ideal of OX,x is nilpotent.
2. X is a fat point.
T he ideal I contains a power of the maximal ideal of OM,x.
3. If V is open, x ∈ V ⊂ M , and f1, . . . , fh: V → C are holomorphic functions

generating the ideal I, then there exists an open neighbourhood U ⊂ V of x
such that

U ∩ {f1 = . . . = fh = 0} = {x}.
4. MorAn(OX,x, C{t}) contains only the trivial morphism f �→ f(0) ∈ C ⊂

C{t}.

Proof. [1 ⇔ 2 ⇔ 3] are trivial.
[3 ⇒ 4] It is not restrictive to assume that V is contained in a coordinate

chart; let z1, . . . , zn:V → C be holomorphic coordinates with zi(x) = 0 for
every i. If 3 holds then there exists s > 0 such that zs

i ∈ I and then there exists
an open subset x ∈ U ⊂ V and holomorphic functions aij :U → C such that
zs

i =
∑

j aijfj . Therefore U ∩ V ∩ {f1 = . . . = fh = 0} ⊂ U ∩ {zs
1 = . . . = zs

n =
0} = {x}.

[4 ⇒ 5] Let φ: (C, 0) → (M, x) be a germ of holomorphic map such that
φ∗(I) = 0. If φ is defined in an open subset W ⊂ C and φ(W ) ⊂ U then φ∗(I) = 0
implies φ(W ) ⊂ U∩{f1 = ... = fh = 0} and therefore MorGer((C, 0, 0), (M, x, I))
contains only the constant morphism.

[5 ⇒ 1] is a consequence of Theorem 3.4 (with J = mM,x).

Exercise 3.16. If f ∈ MorGer((M, x, I), (N, y, J)) we define the schematic
fibre f−1(y) as the singularity (M, x, I + f∗mN,y).

Prove that the dimension of a singularity (M, x, I) is the minimum integer
d such that there exists a morphism f ∈ MorGer((M, x, I), (Cd, 0, 0)) such that
f−1(0) is a fat point.

Definitioon 3.17. The Zariski tangent space Tx,X of an analytic singular-
ity (X, x) is the C-vector space DerC(OX,x, C).

Note that every morphism of singularities (X, x) → (Y, y) induces a linear
morphism of Zariski tangent spaces Tx,X → Ty,Y .



46 MARCO MANETTI [46]

Exercise 3.18 (Cartan’s Lemma). Let (R, m) be an analytic algebra and
G ⊂ Aut(R) a finite group of automorphisms. Denote n = dimC m/m2.

Prove that there exists an injective homomorphism of groups G → GL(Cn)
and a G-isomorphism of analytic algebras R � OCn,0/I for some G-stable ideal
I ⊂ OCn,0. (Hint: there exists a direct sum decomposition m = V ⊕ m2 such
that gV ⊂ V for every g ∈ G.)

3.3 – The resultant

Let A be a commutative unitary ring and p ∈ A[t] a monic polynomial of
degree d. It is easy to see that A[t]/(p) is a free A-module of rank d with basis
1, t, . . . , td−1.

For every f ∈ A[t] we denote by R(p, f) ∈ A the determinant of the multi-
plication map f :A[t]/(p) → A[t]/(p).

Definition 3.19. In the notation above, the element R(p, f) is called the
resultant of p and f .

If φ:A → B is a morphism of unitary rings then we can extend it to a
morphism φ:A[t] → B[t], φ(t) = t, and it is clear from the definition that
R(φ(p), φ(f)) = φ(R(p, f)).

By Binet’s theorem R(p, fg) = R(p, f)R(p, g).

Lemma 3.20. In the notation above there exist α, β ∈ A[t] with deg α <
deg f , deg β < deg p such that R(p, f) = βf − αp. In particular R(p, f) belongs
to the ideal generated by p and f .

Proof. For every i, j = 0, . . . , d− 1 there exist hi ∈ A[t] and cij ∈ A such
that

tif = hip +
d−1∑
j=0

cijt
j , deg hi < deg f.

By definition R(p, f) = det(cij); if (Cij) is the adjoint matrix of (cij) we have,
by Laplace formula, for every j = 0, . . . , d− 1∑

i

C0icij = δ0jR(p, f)

and then

R(p, f) =
d−1∑
i=0

C0i(tif − hip) = βf − αp.
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Lemma 3.21. In the notation above, if A is an integral domain and p, f
have a common factor of positive degree then R(p, f) = 0. The converse hold if
A is a unique factorization domain.

Proof. Since A injects into its fraction field, the multiplication f :A[t]/(p) →
A[t]/(p) is injective if and only if R(p, f) �= 0.

If p = qr with deg r < deg p, then the multiplication q:A[t]/(p) → A[t]/(p)
is not injective and then its determinant is trivial. If q also divides f then, by
the theorem of Binet also R(p, f) = 0.

Assume now that A is a unique factorization domain and R(p, f) = 0. There
exists q �∈ (p) such that fq ∈ (p); by Gauss’ lemma A[t] is a UFD and then there
exists a irreducible factor p1 of p dividing f . Since p is a monic polynomial the
degree of p1 is positive.

Lemma 3.22. Let A be an integral domain and 0 �= p ⊂ A[t] a prime ideal
such that p ∩ A = 0. Denote by K the fraction field of A and by pe ⊂ K[x] the
ideal generated by p.

Then:

1. pe is a prime ideal.
2. pe ∩A[x] = p.
3. There exists f ∈ p such that for every monic polynomial p �∈ p we have

R(p, f) �= 0.

Proof. 1. We have pe =
{ p

a

∣∣∣ p ∈ p, a ∈ A− {0}
}

. If
p1

a1

p2

a2
∈ pe with

pi ∈ A[x], ai ∈ A; then there exists a ∈ A − {0} such that ap1p2 ∈ p. Since
p ∩A = 0 it must be p1 ∈ p or p2 ∈ p. This shows that pe is prime.

2. If q ∈ pe ∩ A[x], then there exists a ∈ A, a �= 0 such that aq ∈ p and
therefore q ∈ p.

3. Let f ∈ p − {0} be of minimal degree, since K[t] is an Euclidean ring,
pe = fK[t] and, since pe is prime, f is irreducible in K[t]. If p ∈ A[t] \ p is
a monic polynomial then p �∈ pe = fK[t] and then, according to Lemma 3.21,
R(p, f) �= 0.

Theorem 3.23. Let A be a unitary ring, p ⊂ A[t] a prime ideal, q = A∩p.
If p �= q[t] (e.g. if p is proper and contains a monic polynomial) then there

exists f ∈ p such that for every monic polynomial p �∈ p we have R(p, f) �∈ q.
If moreover A is a unique factorization domain we can choose f irreducible.



48 MARCO MANETTI [48]

Proof. q is prime and q[t] ⊂ p, therefore the image of p in (A/q)[t] =
A[t]/q[t] is still a prime ideal satisfying the hypothesis of Lemma 3.22.

It is therefore sufficient to take f as any lifting of the element described in
Lemma 3.22 and use the functorial properties of the resultant. If A is UFD and
f is not irreducible we can write f = hg with g ∈ p irreducible; but R(p, f) =
R(p, h)R(p, g) and then also R(p, g) �∈ q.

Exercise 3.24. If p, q∈A[t] are monic polynomials of degrees d, l>0 then
for every f ∈ A[t] we have R(pq, f)=R(p, f)R(q, f). (Hint: write the matrix of
the multiplication f :A[t]/(pq) →A[t]/(pq) in the basis 1, t, ..., td−1, p, tp, ..., tl−1p.)

3.4 – Rückert’s Nullstellensatz

The aim of this section is to prove the following theorem, also called Curve
selection lemma, which is easily seen to be equivalent to Theorem 3.4. The proof
given here is a particular case of the one sketched in [51].

Theorem 3.25. Let p ⊂ C{z1, . . . , zn} be a proper prime ideal and h �∈ p.
Then there exists a homomorphism of local C-algebras φ: C{z1, . . . , zn} → C{t}
such that φ(p) = 0 and φ(h) �= 0.

Corollary 3.26. Let I ⊂ C{z1, . . . , zn} be a proper ideal and h �∈
√

I.
Then there exists a homomorphism of local C-algebras φ: C{z1, . . . , zn} → C{t}
such that φ(I) = 0 and φ(h) �= 0.

Proof. If h �∈
√

I there exists (cf. [3]) a prime ideal p such that I ⊂ p and
h �∈ p.

Before proving Theorem 3.25 we need a series of results that are of inde-
pendent interest. We recall the following

Definition 3.27. A power series p ∈ C{z1, . . . , zn, t} is called a Weier-
strass polynomial in t of degree d ≥ 0 if

p = td +
d−1∑
i=0

pi(z1, . . . , zn)ti, pi(0) = 0.

In particular if p(z1, . . . , zn, t) is a Weierstrass polynomial in t of degree d
then p(0, . . . , 0, t) = td.

Theorem 3.28 (Preparation theorem). Let f ∈ C{z1, . . . , zn, t} be a
power series such that f(0, . . . , 0, t) �= 0. Then there exists a unique e ∈
C{z1, . . . , zn, t} such that e(0) �= 0 and ef is a Weierstrass polynomial in t.
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Proof. For the proof we refer to [23], [24], [26], [37], [28], [51]. We note
that the condition that the power series µ(t) = f(0, . . . , 0, t) is not trivial is also
necessary and that the degree of ef in t is equal to the multiplicity at 0 of µ.

Corollary 3.29. Let f ∈ C{z1, . . . , zn} be a power series of multiplicity
d. Then, after a possible generic linear change of coordinates there exists e ∈
C{z1, . . . , zn} such that e(0) �= 0 and ef is a Weierstrass polynomial of degree d
in zn.

Proof. After a generic change of coordinates of the form zi �→ zi + aizn,
ai ∈ C, the series f(0, . . . , 0, zn) has multiplicity d.

Lemma 3.30. Let f, g ∈ C{x1, . . . , xn}[t] be polynomials in t with g
in Weierstrass’ form. if f = hg for some h ∈ C{x1, . . . , xn, t} then h ∈
C{x1, . . . , xn}[t].

We note that if g is not a Weierstrass polynomial then the above result is
false; consider for instance the case n = 0, f = t3, g = t + t2.

Proof. Write g = ts +
∑

gi(x)ts−i, gi(0) = 0, f =
∑r

i=0 fi(x)tr−i h =∑
i hi(x)ti, we need to prove that hi = 0 for every i > r − s.

Assume the contrary and choose an index j > r−s such that the multiplicity
of hj takes the minimum among all the multiplicities of the power series hi,
i > r − s.

From the equality 0 = hj +
∑

i>0 gihj+i we get a contradiction.

Lemma 3.31. Let f ∈ C{x1, . . . , xn}[t] be an irreducible monic polynomial
of degree d. Then the polynomial f0(t) = f(0, . . . , 0, t) ∈ C[t] has a root of
multiplicity d.

Proof. Let c ∈ C be a root of f0(t). If the multiplicity of c is l < d then
the multiplicity of the power series f0(t + c) ∈ C{t} is exactly l and therefore
f(x1, . . . , xn, t + c) is divided in C{x1, . . . , xn}[t] by a Weierstrass polynomial
of degree l.

Lemma 3.32. Let p ∈ C{x}[y] be a monic polynomial of positive degree d
in y. Then there exists a homomorphism φ: C{x}[y] → C{t} such that φ(p) = 0
and 0 �= φ(x) ∈ (t).
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Proof. If d = 1 then p(x, y) = y−p1(x) and we can consider the morphism
φ given by φ(x) = t, φ(y) = p1(t). By induction we can assume the theorem
true for monic polynomials of degree < d.

If p is reducible we have done, otherwise, writing p = yd + p1(x)yd−1 +
. . . + pd(x), after the coordinate change x �→ x, y �→ y − p1(x)/d we can assume
p1 = 0.

For every i ≥ 2 denote by µ(pi) = αi > 0 the multiplicity of pi (we set
αi = +∞ if pi = 0).

Let j ≥ 2 be a fixed index such that
αj

j
≤ αi

i
for every i. Setting m = αj ,

we want to prove that the monic polynomial p(ξj , y) is not irreducible.
In fact p(ξj , y) = yd +

∑
i≥2 hi(ξ)yd−i, where hi(ξ) = gi(ξj).

For every i the multiplicity of hi is jαi ≥ im and then

q(ξ, y) = p(ξj , ξmy)ξ−dm = td +
∑ hi(ξ)

ξmi
yd−i = yd +

∑
ηi(ξ)yd−i

is a well defined element of C{ξ, y}. Since η1 = 0 and ηj(0) �= 0 the polynomial
q is not irreducible and then, by induction there exists a nontrivial morphism
ψ: C{ξ}[y] → C{t} such that ψ(q) = 0, 0 �= ψ(ξ) ∈ (t) and we can take φ(x) =
ψ(ξj) and φ(y) = ψ(ξmy).

Theorem 3.33 (Division theorem). Let p ∈ C{z1, . . . , zn, t}, p �= 0, be a
Weierstrass polynomial of degree d ≥ 0 in t. Then for every f ∈ C{z1, . . . , zn, t}
there exist a unique h ∈ C{z1, . . . , zn, t} such that f − hp ∈ C{z1, . . . , zn}[t] is
a polynomial of degree < d in t.

Proof. For the proof we refer to [23], [24], [26], [37], [28], [51].

We note that an equivalent statement for the division theorem is the follow-
ing:

Corollary 3.34. If p ∈ C{z1, . . . , zn, t}, p �= 0, is a Weierstrass polyno-
mial of degree d ≥ 0 in t, then C{z1, . . . , zn, t}/(p) is a free C{z1, . . . , zn}-module
with basis 1, t, . . . , td−1.

Proof. Clear.

Theorem 3.35 (Newton-Puiseux). Let f ∈ C{x, y} be a power se-
ries of positive multiplicity. Then there exists a nontrivial local homomorphism
φ: C{x, y} → C{t} such that φ(f) = 0.

Moreover if f is irreducible then ker φ = (f).
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In the above statement nontrivial means that φ(x) �= 0 or φ(y) �= 0.
Proof. After a linear change of coordinates we can assume f(0, y) a non

zero power series of multiplicity d > 0; by Preparation theorem there exists an
invertible power series e such that p = ef is a Weierstrass polynomial of degree
d in y.

According to Lemma 3.32 there exists a homomorphism φ: C{x}[y] → C{t}
such that φ(p) = 0 and 0 �= φ(x) ∈ (t). Therefore φ(p(0, y)) ∈ (t) and, being
p a Weierstrass polynomial we have φ(y) ∈ (t) and then φ extends to a local
morphism φ: C{x, y} → C{t}.

Assume now f irreducible, up to a possible change of coordinates and mul-
tiplication for an invertible element we may assume that f ∈ C{x}[y] is an
irreducible Weierstrass polynomial of degree d > 0.

Let φ: C{x, y} → C{t} be a nontrivial morphism such that φ(f) = 0, then
φ(x) �= 0 (otherwise φ(y)d = φ(f) = 0) and therefore the restricted morphism
φ: C{x} → C{t} is injective.

Let g ∈ ker(φ), by division theorem there exists r ∈ C{x}[y] such that
g = hf + r and then r ∈ ker(φ), R(f, r) ∈ ker(φ) ∩ C{x} = 0. This implies that
f divides r.

The division theorem allows to extend the definition of the resultant to
power series. In fact if p ∈ C{z1, . . . , zn}[t] is a Weierstrass polynomial in t of
degree d, for every f ∈ C{z1, . . . , zn, t} we can define the resultant R(p, f) ∈
C{z1, . . . , zn} as the determinant of the morphism of free C{z1, . . . , zn}-module

f :
C{z1, . . . , zn, t}

(p)
→ C{z1, . . . , zn, t}

(p)

induced by the multiplication with f .
It is clear that R(p, f) = R(p, r) whenever f − r ∈ (p).

Lemma 3.36. Let p ∈ C{z1, . . . , zn, t} be a Weierstrass polynomial of
positive degree in t and V ⊂ C{z1, . . . , zn, t} a C-vector subspace.

Then R(p, f) = 0 for every f ∈ V if and only if there exists a Weierstrass
polynomial q of positive degree such that:

1. q divides p in C{z1, . . . , zn}[t]
2. V ⊂ qC{z1, . . . , zn, t}

Proof. One implication is clear, in fact if p = qr then the multiplication
by q in not injective in C{z1, . . . , zn, t}/(p); therefore R(p, q) = 0 and by Binet’s
theorem R(p, f) = 0 for every f ∈ (q).

For the converse let p = p1p2 . . . ps be the irreducible decomposition of p in
the UFD C{z1, . . . , zn}[t]. If R(p, f) = 0 and r = f − hp ∈ C{z1, . . . , zn}[t] is
the rest of the division then R(p, r) = 0 and by Lemma 3.21 there exists a factor
pi dividing r and therefore also dividing f .
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In particular, setting Vi = V ∩ (pi), we have V = ∪iVi and therefore V = Vi

for at least one index i and we can take q = pi.

Proof of 3.25. We first consider the easy cases n = 1 and p = 0. If p = 0
then, after a possible change of coordinates, we may assume h(0, . . . , 0, t) �= 0
and therefore we can take φ(zi) = 0 for i = 1, . . . , n− 1 and φ(zn) = t.

If n = 1 the only prime nontrivial ideal is (z1) and therefore the trivial
morphism φ: C{z1} → C ⊂ C{t} satisfies the statement of the theorem.

Assume then n > 1, p �= 0 and fix a nonzero element g ∈ p. After a possible
linear change of coordinates and multiplication by invertible elements we may
assume both h and g Weierstrass polynomials in the variable zn. Denoting

r = p∩C{z1, . . . , zn−1}[zn], q = p∩C{z1, . . . , zn−1} = r∩C{z1, . . . , zn−1},

according to Theorem 3.23, there exists f̂ ∈ r such that R(h, f̂) �∈ q. On the
other hand, by Lemma 3.20, R(g, f) ∈ q for every f ∈ p.

By induction on n there exists a morphism ψ̃: C{z1, . . . , zn−1} → C{x} such
that ψ̃(q) = 0 and ψ̃(R(h, f̂)) �= 0. Denoting by ψ: C{z1, . . . , zn} → C{x, zn}
the natural extension of ψ̃ we have R(ψ(h), ψ(f̂)) �= 0 and R(ψ(g), ψ(f)) = 0 for
every f ∈ p. Applying Lemma 3.36 to the Weierstrass polynomial ψ(g) and the
vector space V = ψ(p) we prove the existence of an irreducible factor p of ψ(g)
such that ψ(p) ⊂ pC{x, zn}.

In particular p divides ψ(f̂), therefore R(ψ(h), p) �= 0 and ψ(h) �∈ pC{x, zn}.
By Newton-Puiseux’ theorem there exists η: C{x, zn} → C{t} such that

η(p) = 0 and η(ψ(h)) �= 0. It is therefore sufficient to take φ as the composition
of ψ and η.

Exercise 3.37. Prove that f, g ∈ C{x, y} have a common factor of positive
multiplicity if and only if the C-vector space C{x, y}/(f, g) is infinite dimensional.

3.5 – Dimension bounds

As an application of Theorem 3.25 we give some bounds for the dimension
of an analytic algebra; this bounds will be very useful in deformation and moduli
theory. The first bound (Lemma 3.40) is completely standard and the proof is
reproduced here for completeness; the second bound (Theorem 3.41), communi-
cated to the author by H. Flenner) finds application in the “T 1-lifting” approach
to deformation problems.

We need the following two results of commutative algebra.

Lemma 3.38. Let (A, m) be a local Noetherian ring and J ⊂ I ⊂ A two
ideals. If J + mI = I then J = I.
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Proof. This a special case of Nakayama’s lemma [3], [51].

Lemma 3.39. Let (A, m) be a local Noetherian ring and f ∈ m, then
dimA/(f) ≥ dimA− 1.

Moreover, if f is nilpotent then dimA/(f) = dimA, while if f is not a
zerodivisor then dimA/(f) = dimA− 1.

Proof. [3].

Lemma 3.40. Let R be an analytic algebra with maximal ideal m, then
dimR ≤ dimC

m

m2
and equality holds if and only if R is smooth.

Proof. Let n = dimC

m

m2
and f1, . . . , fn ∈ m inducing a basis of

m

m2
. If

J = (f1, . . . , fn) by assumption J + m2 = m and then by Lemma 3.38 J = m,
R/J = C and 0 = dimR/J ≥ dimR− n.

According to Lemma 3.5 we can write R = C{z1, . . . , zn}/I for some ideal
contained in (z1, . . . , zn)2. Since C{z1, . . . , zn} is an integral domain, according
to Lemma 3.39 dim R = n if and only if I = 0.

Theorem 3.41. Let R=P/I be an analytic algebra, where P =C{z1, ..., zn},
n > 0 is a fixed integer, and I ⊂ P is a proper ideal.

Denoting by m = (z1, . . . , zn) the maximal ideal of P and by J ⊂ P the
ideal

J =
{

f ∈ I

∣∣∣∣ ∂f

∂zi
∈ I, ∀i = 1, . . . , n

}
we have dimR ≥ n− dimC

I

J + mI
.

Proof. (Taken from [14]) We first introduce the curvilinear obstruction
map

γI :MorAn(P, C{t}) → HomC

(
I

J + mI
, C

)
.

Given φ:P → C{t}, if φ(I) = 0 we define γI(φ) = 0; if φ(I) �= 0 and s is the
biggest integer such that φ(I) ⊂ (ts) we define, for every f ∈ I, γI(φ)f as the
coefficient of ts in the power series expansion of φ(f).

It is clear that γI(φ)(mI) = 0, while if φ(I) ⊂ (ts) and f ∈ J we have
φ(f) = f(φ(z1), . . . , φ(zn)),

dφ(f)
dt

=
n∑

i=1

∂f

∂zi
(φ(z1), . . . , φ(zn))

dφ(zi)
dt

∈ (ts)
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and therefore φ(f) ∈ (ts+1) (this is the point where the characteristic of the field
plays an essential role).

The ideal I is finitely generated, say I =(f1, ..., fd), according to Nakayama’s
lemma we can assume f1, . . . , fd a basis of I/mI.

By repeated application of Corollary 3.26 (and possibly reordering the fi’s)
we can assume that there exists an h ≤ d such that the following holds:

1. fi /∈
√

(f1, . . . , fi−1) for i ≤ h;
2. for every i ≤ h there exists a morphism of analytic algebras φi : P → C{t}

such that φi(fi) �= 0, φi(fj) = 0 if j < i and the multiplicity of φi(fj)) is
bigger than or equal to the multiplicity of φi(fi)) for every j > i.

3. I ⊂
√

(f1, . . . , fh).

Condition 3) implies that dimR = dimP/(f1, . . . , fh) ≥ n−h, hence it is enough

to prove that γI(φ1), . . . , γI(φh) are linearly independent in HomC

(
I

J + mI
, C

)
and this follows immediately from the fact that the matrix aij = γI(φi)fj , i, j =
1, . . . , h, has rank h, being triangular with nonzero elements on the diagonal.

Exercise 3.42. In the notation of Theorem 3.41 prove that I2 ⊂ J . Prove
moreover that I = J + mI if and only if I = 0.

Exercise 3.43. Let I ⊂ C{x, y} be the ideal generated by the polynomial
f = x5 + y5 + x3y3 and by its partial derivatives fx = 5x4 + 3x2y3, fy =
5y4 +3x3y2. Prove that J is not contained in mI, compute the dimension of the

analytic algebra C{x, y}/I and of the vector spaces
I

J + mI
,

I

mI
.

Exercise 3.44. (Easy, but for experts) In the notation of 3.41, if I ⊂ m2

then

HomC

(
I

J + mI
, C

)
= Ext1R(ΩR, C).

(ΩR is the R-module of separated differentials)

Exercise 3.45. In the notation of Theorem 3.41, prove that for every
short exact sequence 0 → E → F → G → 0 of R-modules of finite length (i.e.
annihilated by some power of the maximal ideal) it is defined a map

ob: DerC(R, G) → HomR

(
I

J
, E

)
with the property that ob(φ) = 0 if and only if φ lifts to a derivation R → F .

Moreover, if mRE = 0 then HomR

(
I

J
, E

)
= HomC

(
I

J + mI
, E

)
.
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Remark 3.46. (T 1-lifting for prorepresentable functors.)
For every morphism of analytic algebras f :R → A and every A-module of

finite length M there exists a bijection between DerC(R, M) and the liftings of
f to morphisms R → A⊕M .

In the notation of Theorem 3.41, if I ⊂ m2, then HomC

(
I

J + mI
, C

)
is the

subspace of HomC

(
I

mI
, C

)
of obstructions (see [13, Section 5]) of the functor hR

arising from all the small extensions of the form 0 → C → A⊕M
(Id,p)−→ A⊕N → 0,

where p:M → N is a morphism of A-modules and A⊕M → A, A⊕N → A are
the trivial extensions.

3.6 – Historical survey

According to [24], the preparation theorem was proved by Weierstrass in
1860, while division theorem was proved by Stickelberger in 1887.

The factoriality of C{z1, . . . , zn} was proved by E. Lasker in a, long time
ignored, paper published in 1905. The same result was rediscovered by W.
Rückert (a student of W. Krull) together the Noetherianity in 1931. In the
same paper of Rückert it is implicitly contained the Nullstellensatz. The ideas
of Rückert’s proof are essentially the same used in the proof given in [28]. The
proof given here is different.

All the algebraic results of this section that make sense also for the ring of
formal power series C[[z1, . . . , zn]] and their quotients, remain true. In many
cases, especially in deformation theory, we seek for solutions of systems of an-
alytic equations but we are able to solve these equation only formally; in this
situation a great help comes from the following theorem, proved by M. Artin in
1968.

Theorem 3.47. Consider two arbitrary morphisms of analytic alge-
bras f : S → R, g:S → C{z1, . . . , zn} and a positive integer s > 0. The
inclusion C{z1, . . . , zn} ⊂ C[[z1, . . . , zn]] and the projection C{z1, . . . , zn} →
C{z1, ..., zn}
(z1, ..., zn)s

give structures of S-algebras also on C[[z1, ..., zn]] and
C{z1, ..., zn}
(z1, ..., zn)s

.

Assume it is given a morphism of analytic S-algebras

φ:R → C{z1, . . . , zn}
(z1, . . . , zn)s

=
C[[z1, . . . , zn]]
(z1, . . . , zn)s

.

If φ lifts to a S-algebra morphism R → C[[z1, . . . , zn]] then φ lifts also to a
S-algebra morphism R → C{z1, . . . , zn}.
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Beware. Theorem 3.47 does not imply that every lifting R → C[[z1, . . . , zn]] is
“convergent”.

Proof. This is an equivalent statement of the main theorem of [1]. We
leave as as an exercise to the reader to proof of the equivalence of the two
statements.

Exercise 3.48. Use Theorem 3.47 to prove:

1. Every irreducible convergent power series f ∈ C{z1, . . . , zn} is also irre-
ducible in C[[z1, . . . , zn]].

2. C{z1, . . . , zn} is integrally closed in C[[z1, . . . , zn]].

Remark 3.49. It is possible to give also an elementary proof of item 2 of
Exercise 3.48 (e.g. [51]), while I don’t know any proof of item 1 which does not
involve Artin’s theorem.

4 – Infinitesimal deformations of complex manifolds

In this section we pass from the classical language of deformation the-
ory to the formalism of differential graded objects. After a brief introduc-
tion of dg-vector spaces and dg-algebras, we associate to every deformation
X0 ↪→ {Xt}t∈T → (T, 0) its algebraic data (Definition 4.27), which is a pair
of morphisms of sheaves of dg-algebras on X0. This algebraic data encodes the
Kodaira-Spencer map and also all the “Taylor coefficients” of t �→ Xt.

We introduce the notion of infinitesimal deformation as an infinitesimal vari-
ation of integrable complex structures; this definition will be more useful for our
purposes. The infinitesimal Newlander-Nirenberg theorem, i.e. the equivalence
of this definition with the more standard definition involving flatness, although
not difficult to prove, would require a considerable amount of preliminaries in
commutative and homological algebra and it is not given in this notes.

In Subsection 7 we state without proof the Kuranishi’s theorem of existence
of semiuniversal deformations of compact complex manifolds. In order to keep
this notes short and selfcontained, we avoid the use of complex analytic spaces
and we state only the “infinitesimal” version of Kuranishi’s theorem. This is not
a great gap for us since we are mainly interested in infinitesimal deformations.
The interested reader can find sufficient material to filling this gap in the papers
[59], [60] and references therein.

From now on we assume that the reader is familiar with the notion of sheaf,
sheaf of algebras, ideal and quotient sheaves, morphisms of sheaves.

If F is a sheaf on a topological space Y we denote by Fy, y ∈ Y , the stalk
at the point y. If G is another sheaf on Y we denote by Hom(F ,G) the sheaf of
morphisms from F to G and by Hom(F ,G) = Γ(Y,Hom(F ,G)).
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For every complex manifold X we denote by Ap,q
X the sheaf of differential

forms of type (p, q) and A∗,∗
X = ⊕p,qAp,q

X . The sheaf of holomorphic functions
on X is denoted by OX ; Ω∗

X (resp.: Ω
∗
X) is the sheaf of holomorphic (resp.:

antiholomorphic) differential forms. By definition Ω∗
X = ker(∂:A∗,0 → A∗,1),

Ω
∗
X = ker(∂:A0,∗ → A1,∗); note that φ ∈ Ω∗

X if and only if φ ∈ Ω
∗
X .

If E → X is a holomorphic vector bundle we denote by OX(E) the sheaf of
holomorphic sections of E.

4.1 – Differential graded vector spaces

This section is purely algebraic and every vector space is considered over a
fixed field K ; unless otherwise specified, by the symbol ⊗ we mean the tensor
product ⊗K over the field K .

Notation 4.1. We denote by G the category of Z-graded K -vector space.
The objects of G are the K -vector spaces V endowed with a Z-graded direct
sum decomposition V = ⊕i∈ZVi. The elements of Vi are called homogeneous of
degree i. The morphisms in G are the degree-preserving linear maps.

If V = ⊕n∈ZVn ∈ G we write deg(a;V ) = i ∈ Z if a ∈ Vi; if there is no
possibility of confusion about V we simply denote a = deg(a;V ).

Given two graded vector spaces V, W ∈ G we denote by Homn
K (V, W ) the

vector space of K -linear maps f :V → W such that f(Vi) ⊂ Wi+n for every
i ∈ Z. Observe that Hom0

K (V, W ) = HomG(V, W ) is the space of morphisms in
the category G.

The tensor product, ⊗:G×G → G, and the graded Hom, Hom∗:G×G →
G, are defined in the following way: given V, W ∈ G we set

V ⊗W =
⊕
i∈Z

(V ⊗W )i, where (V ⊗W )i =
⊕
j∈Z

Vj ⊗Wi−j ,

Hom∗(V, W ) =
⊕
n

Homn
K (V, W ).

We denote by

〈, 〉 : Hom∗(V, W )× V → W, 〈f, v〉 = f(v)

the natural pairing.

Definition 4.2. If V, W ∈ G, the twisting map T :V ⊗ W → W ⊗ V is
the linear map defined by the rule T (v ⊗ w) = (−1)v ww ⊗ v, for every pair of
homogeneous elements v ∈ V , w ∈ W .

Unless otherwise specified we shall use the Koszul signs convention. This
means that we choose as natural isomorphism between V ⊗ W and W ⊗ V the



58 MARCO MANETTI [58]

twisting map T and we make every commutation rule compatible with T . More
informally, to “get the signs right”, whenever an “object of degree d passes on
the other side of an object of degree h, a sign (−1)dh must be inserted”.

As an example, the natural map 〈, 〉 : V ×Hom∗(V, W ) → W must be defined
as 〈v, f〉 = (−1)f vf(v) for homogeneous f, v. Similarly, if f, g ∈ Hom∗(V, W ),
their tensor product f ⊗ g ∈ Hom∗(V ⊗ V, W ⊗W ) must be defined on bihomo-
geneous tensors as (f ⊗ g)(u⊗ v) = (−1)g uf(u)⊗ g(v).

Notation 4.3. We denote by DG the category of Z-graded differential
K -vector spaces (also called complexes of vector spaces). The objects of DG are
the pairs (V, d) where V = ⊕Vi is an object of G and d:V → V is a linear map,
called differential such that d(Vi) ⊂ Vi+1 and d2 = d ◦ d = 0. The morphisms in
DG are the degree-preserving linear maps commuting with the differentials.

For simplicity we will often consider G as the full subcategory of DG whose
objects are the complexes (V, 0) with trivial differential.

If (V, d), (W, δ) ∈ DG then also (V ⊗W, d⊗ Id + Id⊗ δ) ∈ DG; according
to Koszul signs convention, since δ ∈ Hom1

K (W, W ), we have (Id⊗ δ)(v ⊗ w) =
(−1)vv ⊗ δ(w).

There exists also a natural differential ρ on Hom∗(V, W ) given by the formula

δ〈f, v〉 = 〈ρf, v〉+ (−1)f 〈f, dv〉.

Given (V, d) in DG we denote as usual by Z(V ) = ker d the space of cycles,
by B(V ) = d(V ) the space of boundaries and by H(V ) = Z(V )/B(V ) the
homology of V . Note that Z, B and H are all functors from DG to G.

A morphism in DG is called a quasiisomorphism if it induces an isomor-
phism in homology.

A differential graded vector space (V, d) is called acyclic if H(V ) = 0.

Definition 4.4. Two morphisms f, g ∈ Homn
K (V, W ) are said to be homo-

topic if their difference f − g is a boundary in the complex Hom∗(V, W ).

Exercise 4.5. Let V, W be differential graded vector spaces, then:

1. HomDG(V, W ) = Z0(Hom∗(V, W )).
2. If f ∈ B0(Hom∗(V, W )) ⊂ HomDG(V, W ) then the induced morphism

f :H(V ) → H(W ) is trivial.
3. If f, g ∈ HomDG(V, W ) are homotopic then they induce the same morphism

in homology.
4. V is acyclic if and only if the identity Id:V → V is homotopic to 0. (Hint:

if C ⊂ V is a complement of Z(V ), i.e. V = Z(V )⊕ C, then V is acyclic if
and only if d:Ci → Z(V )i+1 is an isomorphism for every i.)



[59] Lectures on deformations of complex manifolds 59

The fiber product of two morphisms B
f−→D and C

h−→D in the category
DG is defined as the complex

C ×D B =
⊕
n

(C ×D B)n, (C ×D B)n = {(c, b) ∈ Cn ×Bn |h(c) = f(b)}

with differential d(c, b) = (dc, db).
A commutative diagram in DG

A −−−−→
g

B�g

�f

C
h−−−−→ D

is called cartesian if the induced morphism A → C×D B is an isomorphism; it is
an easy exercise in homological algebra to prove that if f is a surjective (resp.:
injective) quasiisomorphism, then g is a surjective (resp.: injective) quasiiso-
morphism. (Hint: if f is a surjective quasiisomorphism then ker f = ker g is
acyclic.)

For every integer n ∈ Z let’s choose a formal symbol 1[n] of degree −n and
denote by K [n] the graded vector space generated by 1[n]. In other terms, the
homogeneous components of K [n] ∈ G ⊂ DG are

K [n]i =
{

K if i + n = 0
0 otherwiseh

For every pair of integers n, m ∈ Z there exists a canonical linear isomorphism
Sm

n ∈ Homn−m
K

(K [n], K [m]); it is described by the property Sm
n (1[n]) = 1[m].

Given n ∈ Z, the shift functor [n]:DG → DG is defined by setting V [n] =
K [n]⊗ V , V ∈ DG, f [n] = IdK [n] ⊗ f , f ∈ MorDG.

More informally, the complex V [n] is the complex V with degrees shifted
by n, i.e. V [n]i = Vi+n, and differential multiplied by (−1)n. The shift functors
preserve the subcategory G and commute with the homology functor H. If v ∈ V
we also write v[n] = 1[n]⊗ v ∈ V [n].

Exercise 4.6. There exist natural isomorphisms

Homn
K (V, W ) = HomG(V [−n], W ) = HomG(V, W [n]).

Example 4.7. Among the interesting objects in DG there are the acyclic
complexes Ω[n] = K [n]⊗ Ω, where Ω = (Ω0 ⊕ Ω1, d), Ω0 = K , Ω1 = K [−1] and
d: Ω0 → Ω1 is the canonical linear isomorphism d(1[0]) = 1[−1]. The projection
p: Ω → Ω0 = K and the inclusion Ω1 → Ω are morphisms in DG.
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Exercise 4.8. Let V, W be differential graded vector spaces, then:

1. In the notation of Example 4.7, two morphisms of complexes f, g:V → W
are homotopic if and only if there exists h ∈ HomDG(V, Ω ⊗ W ) such that
f − g = (p⊗ Id|W ) ◦ h.

2. If f, g:V → W are homotopic then f ⊗ h is homotopic to g ⊗ h for every
h:V ′ → W ′.

3. (Künneth) If V is acyclic then V ⊗ U is acyclic for every U ∈ DG.

4.2 – Review of terminology about algebras

Let R be a commutative ring, by a nonassociative (= not necessarily as-
sociative) R-algebra we mean a R-module M endowed with a R-bilinear map
M ×M → M .

The nonassociative algebra M is called unitary if there exist a “unity” 1 ∈ M
such that 1m = m1 = m for every m ∈ M .

A left ideal (resp.: right ideal) of M is a submodule I ⊂ M such that MI ⊂ I
(resp.: IM ⊂ I). A submodule is called an ideal if it is both a left and right
ideal.

A homomorphism of R-modules d:M → M is called a derivation if satisfies
the Leibnitz rule d(ab) = d(a)b + ad(b). A derivation d is called a differential if
d2 = d ◦ d = 0.

A R-algebra is associative if (ab)c = a(bc) for every a, b, c ∈ M . Unless
otherwise specified, we reserve the simple term algebra only to associative algebra
(almost all the algebras considered in these notes are either associative or Lie).

If M is unitary, a left inverse of m ∈ M is an element a ∈ M such that
am = 1. A right inverse of m is an element b ∈ M such that mb = 1.

If M is unitary and associative, an element m is called invertible if has left
and right inverses. It is easy to see that if m is invertible then every left inverse
of m is equal to every right inverse, in particular there exists a unique m−1 ∈ M
such that mm−1 = m−1m = 1.

Exercise 4.9. Let g be a Riemannian metric on an open connected subset
U ⊂ Rn and let φ:U → R be a differentiable function (called potential).

Denote by R = C∞(U, R) and by M the (free of rank n) R-module of vector
fields on U . If x1, . . . , xn is a system of linear coordinates on Rn denote by:

1. ∂i =
∂

∂xi
∈ M , φijk = ∂i∂j∂kφ ∈ R.

2. gij = g(∂i, ∂j) ∈ R and gij the coefficients of the inverse matrix of gij .
3. ∂i ∗ ∂j =

∑
k,l

φijlg
lk∂k

Prove that the R-linear extension M × M → M of the product ∗ is indepen-
dent from the choice of the linear coordinates and write down the (differential)



[61] Lectures on deformations of complex manifolds 61

equation that φ must satisfy in order to have the product ∗ associative. This
equation is called WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equation and it
is very important in mathematics since 1990.

4.3 – dg-algebras and dg-modules

Definition 4.10. A graded (associative, Z-commutative) algebra is a
graded vector space A = ⊕Ai ∈ G endowed with a product Ai × Aj → Ai+j

satisfying the properties:
1. a(bc) = (ab)c.
2. a(b + c) = ab + ac, (a + b)c = ac + bc.
3. (Koszul sign convention) ab = (−1)a bba for a, b homogeneous.

The algebra A is unitary if there exists 1 ∈ A0 such that 1a = a1 = a for every
a ∈ A.

Let A be a graded algebra, then A0 is a commutative K -algebra in the usual
sense; conversely every commutative K -algebra can be considered as a graded
algebra concentrated in degree 0. If I ⊂ A is a homogeneous left (resp.: right)
ideal then I is also a right (resp.: left) ideal and the quotient A/I has a natural
structure of graded algebra.

Example 4.11. The exterior algebra A =
∧∗

V of a K -vector space V ,
endowed with wedge product, is a graded algebra with Ai =

∧i
V .

Example 4.12. (Polynomial algebras.) Given a set {xi}, i ∈ I, of homo-
geneous indeterminates of integral degree xi ∈ Z we can consider the graded
algebra K [{xi}]. As a K -vector space K [{xi}] is generated by monomials in the
indeterminates xi subjected to the relations xixj = (−1)xi xj xjxi.

In some cases, in order to avoid confusion about terminology, for a monomial
xα1

i1
. . . xαn

in
it is defined:

• The internal degree
∑

h xih
αh.

• The external degree
∑

h αh.
In a similar way it is defined A[{xi}] for every graded algebra A.

Exercise 4.13. Let A be a graded algebra: if every a �= 0 is invertible then
A = A0 and therefore A is a field.

Give an example of graded algebra where every homogeneous a �= 0 is
invertible but A �= A0.

Definition 4.14. A dg-algebra (differential graded algebra) is the data of
a graded algebra A and a K -linear map s:A → A, called differential, with the
properties:

1. s(An) ⊂ An+1, s2 = 0.
2. (graded Leibnitz rule) s(ab) = s(a)b + (−1)aas(b).
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A morphism of dg-algebras is a morphism of graded algebras commuting with
differentials; the category of dg-algebras is denoted by DGA.

Example 4.15. Let U be an open subset of a complex variety and denote
by Ai = ⊕p+q=iΓ(U,Ap,q

X ). Then Γ(U,A∗,∗
X ) = ⊕Ai admits infinitely many

structures of differential graded algebras where the differential of each one of is
a linear combination a∂ + b∂, a, b ∈ C.

Exercise 4.16.Let (A, s) be a unitary dg-algebra; prove:

1. 1 ∈ Z(A).
2. Z(A) is a graded subalgebra of A and B(A) is a homogeneous ideal of Z(A).

In particular 1 ∈ B(A) if and only if H(A) = 0.

A differential ideal of a dg-algebra (A, s) is a homogeneous ideal I of A such
that s(I) ⊂ I; there exists an obvious bijection between differential ideals and
kernels of morphisms of dg-algebras.

On a polynomial algebra K [{xi}] a differential s is uniquely determined by
the values s(xi).

Example 4.17. Let t, dt be indeterminates of degrees t = 0, dt = 1; on
the polynomial algebra K [t, dt] = K [t] ⊕ K [t]dt there exists an obvious dif-
ferential d such that d(t) = dt, d(dt) = 0. Since K has characteristic 0, we
have H(K [t, dt]) = K . More generally if (A, s) is a dg-algebra then A[t, dt]
is a dg-algebra with differential s(a ⊗ p(t)) = s(a) ⊗ p(t) + (−1)aa ⊗ p′(t)dt,
s(a⊗ q(t)dt) = s(a)⊗ q(t)dt.

Definition 4.18. A morphism of dg-algebras B → A is called a quasiiso-
morphism if the induced morphism H(B) → H(A) is an isomorphism.

Given a morphism of dg-algebras B → A the space Dern
B(A, A) of B-

derivations of degree n is by definition

Dern
B(A, A) = {φ ∈ Homn

K (A, A) |φ(ab)=φ(a)b + (−1)naaφ(b), φ(B)=0}.

We also consider the graded vector space

Der∗B(A, A) =
⊕
n∈Z

Dern
B(A, A) ∈ G.

There exist a natural differential d and a natural bracket [−,−] on Der∗B(A, A)
defined as

d: Dern
B(A, A) → Dern+1

B (A, A), dφ = dAφ− (−1)nφdA

and
[f, g] = fg − (−1)f ggf.
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Exercise 4.19. Verify that, if f ∈ Derp
B(A, A) and g ∈ Derq

B(A, A) then
[f, g] ∈ Derp+q

B (A, A) and d[f, g] = [df, g] + (−1)p[f, dg].

Let (A, s) be a fixed dg-algebra, by an A-dg-module we mean a differential
graded vector space (M, s) together two associative distributive multiplication
maps A×M → M , M ×A → M with the properties:

1. AiMj ⊂ Mi+j , MiAj ⊂ Mi+j .
2. (Koszul) am = (−1)a mma, for homogeneous a ∈ A, m ∈ M .
3. (Leibnitz) s(am) = s(a)m + (−1)aas(m).

If A = A0 we recover the usual notion of complex of A-modules.

Example 4.20. For every morphism of dg-algebras B → A the space
Der∗B(A, A) = ⊕pDerp

B(A, A) has a natural structure of A-dg-module, with left
multiplication (af)(b) = a(f(b)).

If M is an A-dg-module then M [n] = K [n] ⊗K M has a natural structure
of A-dg-module with multiplication maps

(e⊗m)a = e⊗ma, a(e⊗m) = (−1)nae⊗am, e ∈ K [n], m ∈ M, a ∈ A.

The tensor product N ⊗A M is defined as the quotient of N ⊗K M by the
graded submodules generated by all the elements na⊗m− n⊗ am.

Given two A-dg-modules (M, dM ), (N, dN ) we denote by

Homn
A(M, N) = {f ∈ Homn

K (M, N) | f(ma) = f(m)a, m ∈ M, a ∈ A}

Hom∗
A(M, N) =

⊕
n∈Z

Homn
A(M, N).

The graded vector space Hom∗
A(M, N) has a natural structure of A-dg-

module with left multiplication (af)(m) = af(m) and differential

d: Homn
A(M, N) → Homn+1

A (M, N), df = [d, f ] = dN ◦ f − (−1)nf ◦ dM .

Note that f ∈ Hom0
A(M, N) is a morphism of A-dg-modules if and only if

df = 0. A homotopy between two morphism of dg-modules f, g:M → N is a
h ∈ Hom−1

A (M, N) such that f−g = dh = dNh+hdM . Homotopically equivalent
morphisms induce the same morphism in homology.

Morphisms of A-dg-modules f :L → M , h: N → P induce, by composition,
morphisms f∗: Hom∗

A(M, N) → Hom∗
A(L, N), h∗: Hom∗

A(M, N) →Hom∗
A(M, P );

Lemma 4.21. In the above notation if f is homotopic to g and h is
homotopic to l then f∗ is homotopic to g∗ and l∗ is homotopic to h∗.
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Proof. Let p ∈ Hom−1
A (L, M) be a homotopy between f and g, It is a

straightforward verification to see that the composition with p is a homotopy
between f∗ and g∗. Similarly we prove that h∗ is homotopic to l∗.

Lemma 4.22 (Base change). Let A → B be a morphism of unitary dg-
algebras, M an A-dg-module, N a B-dg-modules. Then there exists a natural
isomorphism of B-dg-modules

Hom∗
A(M, N) � Hom∗

B(M ⊗A B, N).

Proof. Consider the natural maps:

Hom∗
A(M, N) L−→ Hom∗

B(M ⊗A B, N),←−
R

Lf(m⊗ b) = f(m)b, Rg(m) = g(m⊗ 1).

We left as exercise the easy verification that L, R are isomorphisms of B-dg-
modules and R = L−1.

Given a morphism of dg-algebras B → A and an A-dg-module M we set:

Dern
B(A, M) = {φ ∈ Homn

K (A, M) |φ(ab)=φ(a)b + (−1)naaφ(b), φ(B)=0}
Der∗B(A, M) =

⊕
n∈Z

Dern
B(A, M).

As in the case of Hom∗, there exists a structure of A-dg-module on Der∗B(A, M)
with product (aφ)(b) = aφ(b) and differential

d: Dern
B(A, M) → Dern+1

B (A, M), dφ = [d, φ] = dMφ− (−1)nφdA.

Given φ ∈ Dern
B(A, M) and f ∈ Homm

A (M, N) their composition fφ belongs
to Dern+m

B (A, N).

4.4 – Kodaira-Spencer’s maps in dg-land

In this section, we define on the central fibre of a deformation a sheaf of
differential graded algebras B which contains (well hidden) the “Taylor coeffi-
cients” of the variation of the complex structures given by the deformation (the
first derivative being the Kodaira-Spencer map).

Lemma 4.23. Let U be a differential manifold (not necessarily compact),
∆ ⊂ Cn a polydisk with coordinates t1, . . . , tn and f(x, t) ∈ C∞(U ×∆, C).

Then there exist f1, . . . , fn, f1, . . . , fn ∈ C∞(U ×∆, C) such that

fi(x, 0) =
∂f

∂ti
(x, 0), fi(x, 0) =

∂f

∂ti
(x, 0) and

f(x, t) = f(x, 0) +
∑

tifi(x, t) +
∑

tifi(x, t).
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Proof. The first 2 equalities follow from the third. Writing tj = uj + ivj ,
tj = uj − ivj , with uj , vj real coordinates on Cn = R2n we have

f(x, u, v) = f(x, 0, 0) +
∫ 1

0

d

ds
f(x, su, sv)ds =

= f(x, 0, 0) +
∑

j

uj

∫ 1

0

d

duj
f(x, su, sv)ds +

∑
j

vj

∫ 1

0

d

dvj
f(x, su, sv)ds

Rearranging in the coordinates tj , tj we get the proof.

Let X be a fixed complex manifold; denote byDer∗
Ω

∗
X

(A0,∗
X ,A0,∗

X )⊂Hom(A0,∗
X ,A0,∗

X )

the sheaf of Ω
∗
X -derivations of the sheaf of graded algebras A0,∗

X ; we have the
following

Proposition 4.24. In the notation above there exists a natural isomor-
phism of sheaves

θ:A0,∗
X (TX) ∼−→Der∗

Ω
∗(A0,∗

X ,A0,∗
X ).

In local holomorphic coordinates z1, . . . , zm,

θ:A0,p
X (TX) → Derp

Ω
∗
X

(A0,∗
X ,A0,∗

X ) ⊂ Derp
C
(A0,∗

X ,A0,∗
X )

is given by θ

(
φ

∂

∂zi

)
(fdzI) = φ ∧ ∂f

∂zi
dzI .

The Dolbeault differential in A0,∗
X (TX) corresponds, via the isomorphism θ,

to the restriction to Der∗
Ω

∗
X

(A0,∗
X ,A0,∗

X ) of the adjoint operator

[∂,−]:Der∗C(A0,∗
X ,A0,∗

X ) → Der∗+1
C

(A0,∗
X ,A0,∗

X ).

Proof. The morphism θ is injective and well defined. Let U ⊂ X be an
open polydisk with coordinates z1, . . . , zm. Take ξ ∈ Γ(U,Derp

Ω
∗(A0,∗

X ,A0,∗
X ))

and denote φi = ξ(zi) ∈ Γ(U,A0,p
X ). We want to prove that ξ = θ

(∑
i φi

∂

∂zi

)
.

Since, over U , A0,∗
X is generated by A0,0

X and Ω
∗
X , it is sufficient to prove

that for every open subset V ⊂ U , every point x ∈ V and every C∞-function

f ∈ Γ(V,A0,0
X ) the equality ξ(f)(x) =

∑
i φi

∂f

∂zi
(x) holds.

If zi(x) = xi ∈ C, then by Lemma 4.23 we can write

f(z1, . . . , zm)=f(x1, ..., xm)+
m∑

i=1

(zi−xi) fi (z1, ..., zm)+
m∑

i=1

(zi−xi) fi (z1, ..., zm)
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for suitable C∞ functions fi, fi; therefore

ξ(f)(x) =
m∑

i=1

ξ(zi − xi)fi(x1, . . . , xm) =
m∑

i=1

φi
∂f

∂zi
(x).

In particular, for ξ, η ∈ Γ(U,Derp

Ω
∗
X

(A0,∗
X ,A0,∗

X )), we have ξ = η if and only if

ξ(zi) = η(zi) for i = 1, . . . , m. Since ∂ Ω
∗
X ⊂ Ω

∗
X , the adjoint operator [∂,−]

preserves Derp

Ω
∗
X

(A0,∗
X ,A0,∗

X ), moreover

θ

(
∂φ

∂

∂zi

)
zj = (∂φ)δij = ∂(φδij)− (−1)φ

(
φ

∂

∂zi

)
(∂zj) =

[
∂, θ

(
φ

∂

∂zi

)]
zj ,

and then θ∂ = [∂,−]θ.

According to Proposition 4.24, the standard bracket on Der∗
Ω

∗
X

(A0,∗
X ,A0,∗

X )

induces a bracket on the sheaf A0,∗
X (TX) given in local coordinates by[

f
∂

∂zi
dzI , g

∂

∂zj
dzJ

]
=

(
f

∂g

∂zi

∂

∂zj
− g

∂f

∂zj

∂

∂zi

)
dzI ∧ dzJ .

Note that for f, g ∈ Γ(U,A0,0
X (TX)), [f, g] is the usual bracket on vector fields on

a differentiable manifolds.

Let B ⊂ Cn be an open subset, 0 ∈ B, and let M0
i−→M

f−→(B, 0) be
a deformation of a compact complex manifold M0; let t1, . . . , tn be a set of
holomorphic coordinates on B.

It is not restrictive to assume M0 ⊂ M and i the inclusion map.

Definition 4.25. In the notation above, denote by IM ⊂ A∗,∗
M the graded

ideal sheaf generated by ti, dti, dti. Denote by B∗,∗
M the quotient sheafA∗,∗

M /IM .(1)

If z1, . . . , zm, t1, . . . , tn are admissible (Defn. 1.29) local holomorphic co-
ordinates on an admissible chart W ⊂ M , W � (W ∩ M0) × ∆, 0 ∈ ∆ ⊂ B
polydisk, then every φ ∈ Γ(W,B∗,∗

M ) has a representative in Γ(W,A∗,∗
M ) of the

form

φ0(z) +
∑

i

tiφi(z, t), φ0(z) ∈ Γ(W ∩M0,A∗,∗
M0

), φi ∈ Γ(W,A∗,∗
M ).

(1)It is also possible to define B as the quotient of A by the ideal generated by ti, dti, dti

and the C∞ functions on B with vanishing Taylor series at 0: the results of this section
will remain essentially unchanged
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By a recursive use of Lemma 4.23 we have that, for every s > 0, φ is represented
by ∑

|I|<s

tIφI(z) +
∑
|I|=s

tIφI(z, t).

The ideal sheaf IM is preserved by the differential operators d, ∂, ∂ and
therefore we have the corresponding induced operators on the sheaf of graded
algebras B∗,∗

M . Denoting by B0,∗
M ⊂ B∗,∗

M the image of A0,∗
M we have that B0,∗

M is a
sheaf of dg-algebras with respect to the differential ∂.

Lemma 4.26. In the notation above, let U, V ⊂ M be open subsets; if
U ∩ M0 = V ∩ M0 then Γ(U,B∗,∗

M ) = Γ(V,B∗,∗
M ) and therefore B∗,∗

M is a sheaf of
dg-algebras over M0.

Proof. It is not restrictive to assume V ⊂ U , then U = V ∪ (U − M0)
and by the sheaf properties it is sufficient to show that Γ(U − M0,B∗,∗

M ) =
Γ(V − M0,B∗,∗

M ) = 0. More generally if U ⊂ M is open and U ∩ M0 = ∅ then
Γ(U,B∗,∗

M ) = 0; in fact there exists an open covering U = ∪Ui such that ti is
invertible in Ui.

If W ⊂ M0 is open we define Γ(W,B∗,∗
M ) = Γ(U,B∗,∗

M ), where U is any open
subset of M such that U ∩M0 = W .

The pull-back i∗:A∗,∗
M → A∗,∗

M0
factors to a surjective morphism i∗:B∗,∗

M →
A∗,∗

M0
of sheaves of differential graded algebras over M0.

Note also that the image in B∗,∗
M of the sheaf of antiholomorphic differential

forms Ω
∗
M is naturally isomorphic to the sheaf Ω

∗
M0

. In fact if z1, . . . , zm, t1, . . . , tn
are local admissible coordinates at a point p ∈ M0 and ψ ∈ Ω

q

M then

ψ ≡
∑

ψj1,... ,jq (z)dzj1 ∧ . . . ∧ dzjq (mod ti, dti), ∂ψj1,... ,jq = 0.

Therefore to every deformation M0
i−→M

f−→(B, 0) we can associate an injective
morphism of sheaves of dg-algebras on M0:

Ω
∗
M0

f̂−→B0,∗
M ⊂ B∗,∗

M .

Definition 4.27. The algebraic data of a deformation M0
i−→M

f−→(B, 0)
is the pair of morphisms of sheaves of dg-algebras on M0:

Ω
∗
M0

f̂−→B∗,∗
M

i∗−→A∗,∗
M0

.

We note that f̂ injective, i∗ surjective and i∗f̂ the natural inclusion. More-
over f̂ and i∗ commute with both differentials ∂, ∂.
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If M0
j−→N

g−→(B, 0) is an isomorphic deformation then there exists an iso-
morphism of sheaves of dg-algebras B∗,∗

M → B∗,∗
N which makes commutative the

diagram

Ω
∗
M0

f̂ ��

ĝ

��

B∗,∗
M

i∗

������
��

��
��

B∗,∗
N j∗

�� A∗,∗
M0

Similarly if (C, 0) → (B, 0) is a germ of holomorphic map, then the pull-back
of differential forms induces a commutative diagram

Ω
∗
M0

��

��

B∗,∗
M

������
��

��
��

�

B∗,∗
M×BC

�� A∗,∗
M0

Before going further in the theory, we will show that the Kodaira-Spencer
map of a deformation M0

i−→M
f−→(B, 0) of a compact connected manifold M0

can be recovered from its algebraic data Ω
∗
M0

f̂−→B∗,∗
M

i∗−→A∗,∗
M0

Lemma 4.28. In the notation above, consider A0,∗
M0

as a sheaf of B0,∗
M -

modules with the structure induced by i∗ and denote for every j ≥ 0.

T j
M =

Derj

Ω
∗(B0,∗

M ,A0,∗
M0

)

i∗Derj

Ω
∗(A0,∗

M0
,A0,∗

M0
)
.

Then there exists a natural linear isomorphism

T0,B = ker(Γ(M0, T 0
M ) → Γ(M0, T 1

M ), h �→ ∂Ah− h∂B).

Proof. We consider T0,B as the C-vector space of C-derivations OB,0 → C.
Let h∈Γ(M0,Der∗

Ω
∗(B0,∗

M ,A0,∗
M0

)) be such that ∂Ah−h∂B ∈ i∗Der1
Ω

∗(A0,∗
M0

,A0,∗
M0

);
in particular ∂h(ti) = 0 for every i, the function h(ti) is holomorphic and then
constant. Moreover, h(ti) = 0 for every i if and only if h(ker i∗) = 0 if and only
if h ∈ i∗Der0

Ω
∗(A0,∗

M0
,A0,∗

M0
).

This gives a linear injective morphism

ker(Γ(M0, T 0
M ) → Γ(M0, T 1

M )) → T0,B .
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To prove the surjectivity, consider a derivation δ:OB,0 → C and let M0 = ∪Ua,
a ∈ I, be a locally finite covering with every Ua open polydisk with coordinate
systems za

1 , . . . , za
m:Ua → C. Let t1, . . . , tn be coordinates on B.

Over Ua, every φ ∈ B0,∗
M can be written as φ0(z) +

∑
tiφi(z) +

∑
titj . . . ,

with φi ∈ A0,∗
M0

. Setting ha(φ) =
∑

i δ(ti)φi we see immediately that ha is a Ω
∗
Ua

-
derivation lifting δ. Taking a partition of unity ρa subordinate to the covering
{Ua}, we can take h =

∑
a ρaha.

Let h ∈ Γ(M0,Der∗
Ω

∗(B0,∗
M ,A0,∗

M0
)) be such that

ψ = ∂Ah− h∂B ∈ i∗Der1
Ω

∗(A0,∗
M0

,A0,∗
M0

)

and let δ:OB,0 → C be the corresponding derivation, δ(ti) = h(ti).
According to the isomorphism (Proposition 4.24)

Derj

Ω
∗(A0,∗

M0
,A0,∗

M0
) = A0,j

M0
(TM0)

we have ψ ∈ Γ(M0,A0,1(TM0)).
Moreover, being ψ exact in the complex Der∗

Ω
∗(B0,∗

M ,A0,∗
M0

), it is closed in
Der0

Ω
∗(A0,∗

M0
,A0,∗

M0
), ψ is a ∂-closed form of Γ(M0,A0,1(TM0)) and the cohomology

class [ψ] ∈ H1(M0, TM0) is depends only on the class of h in Γ(M0, T 0
M ). It is

now easy to prove the following

Proposition 4.29. In the above notation, [ψ] = [∂h− h∂] = KSf (δ).

Proof. (sketch) Let η ∈ Γ(M,A0,0
M (TM )) be a complexified vector field

such that (f∗η)(0) = δ. We may interpret η as a Ω
∗
M -derivation of degree 0

η:A0,∗
M → A0,∗

M ; passing to the quotient we get a Ω
∗
M0

-derivation h:B0,∗
M → A0,∗

M0
.

The condition (f∗η)(0) = δ means that h lifts δ and therefore ψ corresponds to
the restriction of ∂η to the fibre M0.

4.5 – Transversely holomorphic trivializations

Definition 4.30. A transversely holomorphic trivialization of a deforma-
tion M0

i−→M
f−→(B, 0) is a diffeomorphism φ: M0 ×∆ → f−1(∆) such that:

1. ∆ ⊂ B is an open neighbourhood of the base point 0 ∈ B
2. φ(x, 0) = i(x) and fφ is the projection on the second factor.
3. For every x ∈ M0, φ: {x} ×∆ → M is a holomorphic function.

Theorem 4.31. Every deformation of a compact complex manifold admits
a transversely holomorphic trivialization.
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Proof. (cf. also [10], [78]) Let f :M → B be a deformation of M0; it is not
restrictive to assume B ⊂ Cn a polydisk with coordinates t1, . . . , tn and 0 ∈ B
the base point of the deformation. We identify M0 with the central fibre f−1(0).

After a possible shrinking of B there exist a finite open covering M = ∪Wa,
a = 1, . . . , r, and holomorphic projections pa: Wa → Ua = Wa ∩ M0 such that
(pa, f):Wa → Ua × B is a biholomorphism for every a and Ua is a local chart
with coordinates za

i :Ua → C, i = 1, . . . , m.
Let ρa:M0 → [0, 1] be a C∞ partition of unity subordinate to the covering

{Ua} and denote Va = ρ−1
a (]0, 1]); we note that {Va} is a covering of M0 and

Va ⊂ Ua. After a possible shrinking of B we may assume p−1
a (Va) closed in M .

For every subset C ⊂ {1, . . . , r} and every x ∈ M0 we denote

HC =

 ⋂
a∈C

Wa −
⋃

a�∈C

p−1
a (Va)

×

 ⋂
a∈C

Ua −
⋃

a�∈C

Va

 ⊂ M ×M0,

Cx = {a |x ∈ Va }, H =
⋃
C

HC .

Clearly (x, x) ∈ HCx and then H is an open subset of M × M0 containing the
graph G of the inclusion M0 → M . Since the projection pr:M×M0 → M is open
and M0 is compact, after a possible shrinking of B we may assume pr(H) = M .

Moreover if (y, x) ∈ H and x ∈ Va then (y, x) ∈ HC for some C containing
a and therefore y ∈ Wa.

For every a consider the C∞ function qa:H ∩ (M × Ua) → Cm,

qa(y, x) =
∑

b

ρb(x)
∂za

∂zb
(x)(zb(pb(y))− zb(x)).

By the properties of H, qa is well defined and separately holomorphic in the
variable y. If (y, x) ∈ H ∩ (M × (Ua ∩ Uc)) then

qc(y, x) =
∂zc

∂za
(x)qa(y, x)

and then
Γ = {(y, x) ∈ H | qa(y, x) = 0 whenever x ∈ Ua}

is a well defined closed subset of H.
If y ∈ Va ⊂ M0 and x is sufficiently near to y then x ∈ (

⋂
b∈Cy

Ub−
⋃

b �∈C Vb)
and, for every b ∈ Cy,

zb(y) = zb(x) +
∂zb

∂za
(x)(za(y)− za(x)) + o(‖za(y)− za(x)‖).
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Therefore
qa(y, x) = za(y)− za(x) + o(‖za(y)− za(x)‖).

In particular the map x �→ qa(y, x) is a local diffeomorphism at x = y.
Denote K ⊂ H the open subset of points (y, x) such that, if y ∈ p−1

a (Va)
then u �→ qa(y, u) has maximal rank at u = x; note that K contains G.

Let Γ0 be the connected component of Γ ∩ K that contains G; Γ0 is a
C∞-subvariety of K and the projection pr: Γ0 → M is a local diffeomorphism.
Possibly shrinking B we may assume that pr: Γ0 → M is a diffeomorphism.

By implicit function theorem Γ0 is the graph of a C∞ projection γ:M → M0.
After a possible shrinking of B, the map (γ, f):M → M0 × B is a diffeo-

morphism, take φ = (γ, f)−1.
To prove that, for every x ∈ M0, the map t �→ φ(x, t) is holomorphic we note

that f :φ({x} × B) → B is bijective and therefore φ(x,−) = f−1pr: {x} × B →
φ({x} ×B).

The map f−1:B → φ({x} ×B) is holomorphic if and only if φ({x} ×B) =
γ−1(x) is a holomorphic subvariety and this is true because for x fixed every
map y �→ qa(y, x) is holomorphic.

Let z1, . . . , zm, t1, . . . , tn be an admissible system of local coordinates at a
point p ∈ M0 ⊂ M . z1, . . . , zm, t1, . . . , tn is also a system of local coordinates
over M0 ×B.

In these systems, a transversely holomorphic trivialization φ:M0 ×B → M
is written as

φ(z, t) = (φ1(z, t), . . . , φm(z, t), t1, . . . , tn),

where every φi, being holomorphic in t1, . . . , tn, can be written as

φi(z, t) = zi +
∑
I>0

tIφi,I(z), I = (i1, . . . , in), φi,I ∈ C∞.

In a neighbourhood of p,

φ∗dzi = dzi +
∑
I>0

tI
m∑

j=1

(
∂φi,I

∂zj
dzj +

∂φi,I

∂zj
dzj

)
, (mod IM0×B),

φ∗dzi = dzi, (mod IM0×B).

Lemma 4.32. Every transversely holomorphic trivialization φ:M0 × B →
M induces isomorphisms of sheaves of graded algebras over M0

φ∗:B∗,∗
M → B∗,∗

M0×B , φ∗:B0,∗
M → B0,∗

M0×B
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making commutative the diagrams

Ω
∗
M0

��

��

B∗,∗
M

��φ∗
����

��
��

��
�

B∗,∗
M0×B

�� A∗,∗
M0

Ω
∗
M0

��

��

B0,∗
M

��φ∗
����������

B0,∗
M0×B

�� A0,∗
M0

Beware: It is not true in general that, for p > 0, φ∗(Bp,q) ⊂ Bp,q.
Proof. For every open subset U ⊂ M , the pull-back

φ∗: Γ(U,A∗,∗
M ) → Γ(φ−1(U),A∗,∗

M0×B)

is an isomorphism preserving the ideals IM and IM0×B . Since U∩M0 = φ−1(U)∩
M0, the pull-back φ∗ induces to the quotient an isomorphism of sheaves of graded
algebras φ∗:B∗,∗

M → B∗,∗
M0×B .

From the above formulas follows that φ∗(Bp,k−p
M ) ⊂ ⊕q≤pBq,k−q

M0×B and φ∗

is the identity on Ω
∗
M0

. This shows that φ∗(B0,∗
M ) = B0,∗

M0×B and proves the
commutativity of the diagrams.

The ∂ operator on A∗,∗
M factors to B0,∗

M and therefore induces operators

∂:B0,∗
M → B0,∗+1

M , ∂φ = φ∗∂(φ∗)−1:B0,∗
M0×B → B0,∗+1

M0×B .

If z1, . . . , zm, t1, . . . , tn are admissible local coordinates at p ∈ M0, we have

(φ∗)−1dzi = dzi +
m∑

j=1

aijdzj + bijdzj , (mod IM ),

where aij , bij are C∞ functions vanishing on M0 and

(φ∗)−1dzi = dzi, (mod IM ).

Thus we get immediately that ∂φ(dzi) = 0. Let’s now f be a C∞ function in a
neighbourhood of p ∈ U ⊂ M0×B and let π:A∗,∗

M → A0,∗
M be the projection. By

definition ∂φf is the class in B0,∗
M0×B of

φ∗πd(φ∗)−1f = φ∗π(φ∗)−1df =
m∑

i=1

∂f

∂zi
φ∗π(φ∗)−1dzi +

m∑
i=1

∂f

∂zi
φ∗π(φ∗)−1dzi

and then
∂φf = ∂f +

∑
ij

bij
∂f

∂zi
dzj .

If ψ:M0 × B → M is another transversely holomorphic trivialization and θ =
φ∗(ψ∗)−1 then ∂ψ = θ∂φθ−1.
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4.6 – Infinitesimal deformations

Let M0
i−→M

f−→(B, 0) be a deformation of a compact complex manifold
and J ⊂ OB,0 a proper ideal such that

√
I = mB,0; after a possible shrinking of

B we can assume that:

1. B ⊂ Cn is a polydisk with coordinates t1, . . . , tn and J is generated by a
finite number of holomorphic functions on B.

2. f :M → B is a family admitting a transversely holomorphic trivialization
φ:M0 ×B → M .

Denote by (X, 0) the fat point (B, 0, J) and by OX,0 = OB,0/J its associated
analytic algebra. If ms

B,0 ⊂ J then the holomorphic functions tI , I = (i1, . . . , in),
|I| < s, generate OX,0 as a C-vector space.

Denote by IM,J ⊂ A∗,∗
M the graded ideal sheaf generated by IM and J ,

B∗,∗
M,J = A∗,∗

M /IM,J = B∗,∗
M /(J), OM,J = OM/(J). The same argument used

in Lemma 4.26 shows that B∗,∗
M,J and OM,J are sheaves over M0. In the same

manner we define B∗,∗
M0×B,J

Lemma 4.33. Let U ⊂ M0 be an open subset, then there exist isomorphisms

Γ(U,OM0×B,J) = Γ(U,OM0)⊗COX,0, Γ(U,B∗,∗
M0×B,J) = Γ(U,A∗,∗

M0
)⊗COX,0.

The same holds for M instead of M0 × B provided that U is contained in an
admissible coordinate chart.

Proof. We have seen that every φ ∈ Γ(U,Bp,q
M0×B,J) is represented by a form∑

|I|<s tIφI , with φI ∈ Γ(U,Ap,q
M0

). Writing every tI as a linear combination of
the elements of a fixed basis of OX,0 and rearranging the terms we get the desired
result. The same argument applies to OM0×B,J and, if U is sufficiently small, to
B∗,∗

M,J , OM,J .

Corollary 4.34. OM,J = ker(∂:B0,0
M,J → B0,1

M,J).

Proof. If U ⊂ M0 is a sufficiently small open subset, we have Γ(U,B∗,∗
M,J) =

Γ(U,A∗,∗
M0

)⊗C OX,0 and then

ker
(
∂: Γ(U,B0,0

M,J) → Γ(U,B0,1
M,J)

)
=

= ker
(
∂: Γ(U,A0,0

M0
)⊗OX,0 → Γ(U,A0,1

M0
)⊗OX,0

)
= Γ(U,OM,J).
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The transversely holomorphic trivialization φ gives a commutative diagram
of morphisms of sheaves of graded algebras

Ω
∗
M0

⊗OX,0
��

��

B0,∗
M,J

��φ∗
������������

B0,∗
M0×B,J

�� A0,∗
M0

with φ∗ an isomorphism. The operator ∂φ = φ∗∂(φ∗)−1 is a OX,0-derivation
of degree 1 such that ∂

2

φ = 1
2 [∂φ, ∂φ] = 0 and then ηφ = ∂φ − ∂:B0,∗

M0×B,J →
B0,∗+1

M0×B,J is a Ω
∗
M0

⊗OX,0-derivation.
According to Lemma 4.33 we have B0,∗

M0×B,J = A0,∗
M0

⊗ OX,0; moreover, if
g0 = 1, g1(t), . . . , gr(t) is a basis of OX,0 with gi ∈ mX,0 for i > 0, then we can
write ηφ =

∑
i>0 gi(t)ηi, with every ηi a Ω

∗
M0

-derivation of degree 1 of A0,∗
M0

. By
Proposition 4.24 ηφ ∈ Γ(M0,A0,1(TM0))⊗mX,0.

In local holomorphic coordinates z1, . . . , zm we have ∂φ(dzi) = 0 and

∂φf = ∂f +
∑
i,j,k

gi(t)bi
j,k(z)

∂f

∂zj
dzk

for every C∞ function f . The bi
j,k are C∞ functions on M0.

A different choice of transversely holomorphic trivialization ψ:M0×B → M
gives a conjugate operator ∂ψ = θ∂φθ−1, where θ = φ∗(ψ∗)−1.

This discussion leads naturally to the definition of deformations of a compact
complex manifolds over a fat points.

Definition 4.35. A deformation of M0 over a fat point (X, 0) is a section

η ∈ Γ(M0,A0,1(TM0))⊗mX,0 = Der1
Ω

∗
M0

(A0,∗
M0

,A0,∗
M0

)⊗mX,0

such that the operator ∂+η ∈ Der1OX,0
(A0,∗

M0
⊗OX,0,A0,∗

M0
⊗OX,0) is a differential,

i.e. [∂ + η, ∂ + η] = 0.
Two deformations η, µ ∈ Γ(M0,A0,1(TM0))⊗mX,0 are isomorphic if and only

if there exists an automorphism of sheaves of graded algebras θ:A0,∗
M0

⊗OX,0 →
A0,∗

M0
⊗ OX,0 commuting with the projection A0,∗

M0
⊗ OX,0 → A0,∗

M0
and leaving

point fixed the subsheaf Ω
∗
M0

⊗OX,0 such that ∂ + µ = θ(∂ + η)θ−1.

According to 4.24 the adjoint operator [∂,−] corresponds to the Dolbeault
differential in the complex A0,∗(TM0) and therefore (∂ + η)2 = 0 if and only if
η ∈ Γ(M0,A0,1(TM0))⊗mX,0 satisfies the Maurer-Cartan equation

∂η +
1
2
[η, η] = 0 ∈ Γ(M0,A0,2(TM0))⊗mX,0.
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We denote with both DefM0(X, 0) and DefM0(OX,0) the set of isomorphism
classes of deformations of M0 over (X, 0). By an infinitesimal deformation we
mean a deformation over a fat point; by a first order deformation we mean a
deformation over a fat point (X, 0) such that mX,0 �= 0 and m2

X,0 = 0.
The Proposition 4.29 allows to extend naturally the definition of the Kodaira-

Spencer map KS:T0,X → H1(M0, TM0) to every infinitesimal deformation over
(X, 0).

Consider in fact δ ∈ DerC(OX,0, C) = T0,X , then

h = Id⊗ δ:A0,∗
M0

⊗OX,0 → A0,∗
M0

is a Ω
∗
M0

-derivation lifting δ. Since

(∂h− h(∂ + η))(f ⊗ 1) = h(−η(f))

we may define KS(δ) as the cohomology class of the derivation

A0,∗
M0

→ A0,∗+1
M0

, f �→ h(−η(f)),

which corresponds, via the isomorphism of Proposition 4.24, to

(Id⊗ δ)(−η) ∈ Γ(M0,A0,1(TM0)),

where Id⊗δ: Γ(M0,A0,1(TM0))⊗mX,0. According to the Maurer-Cartan equation
∂η = − 1

2 [η, η] ∈ Γ(M0,A0,2(TM0))⊗m2
X,0 and then

∂((Id⊗ δ)(−η)) = (Id⊗ δ)(−∂η) = 0.

A morphism of fat points (Y, 0) → (X, 0) is the same of a morphism of local
C-algebras α:OX,0 → OY,0; It is natural to set Id⊗ α(η) ∈ Γ(M0,A0,1(TM0))⊗
mY,0 as the pull-back of the deformation η. It is immediate to see that the
Kodaira-Spencer map of Id ⊗ α(η) is the composition of the Kodaira-Spencer
map of η and the differential α:TY,0 → TX,0.

4.7 – Historical survey

The importance of infinitesimal deformations increased considerably after
the proof (in the period 1965-1975) of several ineffective existence results of
semiuniversal deformations of manifolds, of maps etc.., over singular bases.

The archetype of these results is the well known theorem of Kuranishi (1965)
[45], asserting the existence of the semiuniversal deformation of a compact com-
plex manifold over a base which is an analytic singularity. An essentially equiv-
alent formulation of Kuranishi theorem is the following
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Theorem 4.36. Let M0 be a compact complex manifold with

n = h1(M0, TM0), r = h2(M0, TM0).

Then there exist a polydisk ∆ ⊂ Cn, a section η ∈ Γ(M,A0,1(Tf )), being
M = M0 × ∆ and f :M → ∆ the projection, and q = (q1, . . . , qr): ∆ → Cr a
holomorphic map such that:

1. q(0) = 0 and
∂qi

∂tj
(0) = 0 for every i, j, being t1, . . . , tn holomorphic coordi-

nates on ∆.
2. η vanishes on M0 and it is holomorphic in t1, . . . , tn; this means that it is

possible to write

η =
∑
I>0

tIηI , I = (i1, . . . , in), ηI ∈ Γ(M0,A0,1(TM0)).

3. η satisfies the Maurer-Cartan equation to modulus q1, . . . , qs, i.e.

∂η +
1
2
[η, η] ∈

∑
qiΓ(M,A0,2(Tf )).

4. Given a fat point (X, 0) the natural map

η:MorAn(O∆,0/(q1, . . . , qs),OX,0) → DefM0(X, 0), α �→ α(η)

is surjective for every (X, 0) and bijective whenever OX,0 = C[t]/(t2).

It is now clear that the study of infinitesimal deformations can be used to
deduce the structure of the holomorphic map q and the existence of the semiu-
niversal deformation over a smooth base. For example we have the following

Corollary 4.37. Let M0 be a compact complex manifolds such that for
every n ≥ 2 the natural map DefM0(C[t]/(tn)) → DefM0(C[t]/(t2)) is surjective.
Then M0 has a semiuniversal deformation M0−→M−→(H1(M0, TM0), 0).

Proof. (sketch) In the notation of Theorem 4.36 we have (q1, . . . , qs) ⊂
m2

∆,0 and then, according to Proposition 3.7, q1 = . . . = qs = 0. In particular η
satisfies the Maurer-Cartan equation and by the Newlander-Nirenberg’s theorem
(cf. [9, 1.4], [78]) the small variation of almost complex structure [9, 2.1, 2.5],
[78]

−η:A1,0
M → A0,1

M , −tη:T 0,1
M → T 1,0

M

is integrable and gives a complex structure on M with structure sheaf OM,η =
ker(∂ + η∂:A0,0

M → A0,1
M ).

The projection map (M,OM,η) → ∆ is a family with bijective Kodaira-
Spencer map, by completeness Theorem 1.50 it is a semiuniversal deforma-
tion.



[77] Lectures on deformations of complex manifolds 77

It is useful to remind here the following result proved by Malgrange [50].

Theorem 4.38. Let q1, . . . , qm: (Cn, 0) → C be germs of holomorphic
functions and f : (Cn, 0) → C a germ of C∞ function. If ∂f ≡0, (mod q1, ..., qm)
then there exists a germ of holomorphic function g: (Cn, 0) → C such that f ≡ g,
(mod q1, . . . , qm).

5 – Differential graded Lie algebras (DGLA)

The classical formalism (Grothendieck-Mumford-Schlessinger) of infinitesi-
mal deformation theory is described by the procedure (see e.g [2], [66])

Deformation problem � Deformation functor/groupoid

The above picture is rather easy and suffices for many applications; unfortunately
in this way we forget information which can be useful.

It has been suggested by several people (Deligne, Drinfeld, Quillen, Kont-
sevich [43], Schlessinger-Stasheff [68], [69], Goldman-Millson [20], [21] and many
others) that a possible and useful way to preserve information is to consider a
factorization

Deformation problem � DGLA � Deformation functor/groupoid

where by DGLA we mean a differential graded Lie algebra depending from the
data of the deformation problem and the construction

DGLA � Deformation functor, L � DefL,

is a well defined, functorial procedure explained in this section.
More precisely, we introduce (as in [44]) the deformation functor associated

to a differential graded Lie algebra and we prove in particular (Corollary 5.52)
that quasiisomorphic differential graded Lie algebras give isomorphic deforma-
tion functors: this is done in the framework of Schlessinger’s theory and extended
deformation functors.

We refer to [20] for a similar construction which associate to every DGLA
a deformation groupoid.

Some additional comments on this procedure will be done in Subsection 9;
for the moment we only point out that, for most deformation problems, the
correct DGLA is only defined up to quasiisomorphism and then the results of
this section are the necessary background for the whole theory.

In this section K will be a fixed field of characteristic 0. We assume that
the reader is familiar with basic concepts about Lie algebras and their represen-
tations [31], [33]; unless otherwise stated we allow the Lie algebras to be infinite
dimensional.
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5.1 – Exponential and logarithm

For every associative K -algebra R we denote by RL the associated Lie al-
gebra with bracket [a, b] = ad(a)b = ab− ba; the linear operator ad(a) ∈ End(R)
is called the adjoint of a, the morphism ad: RL → End(R) is a morphism of Lie
algebras. If I ⊂ R is an ideal then I is also a Lie ideal of RL

Exercise 5.1. Let R be an associative K -algebra, a, b ∈ R, prove:

1.

ad(a)nb =
n∑

i=0

(−1)i

(
n

i

)
an−ibai.

2. If a is nilpotent in R then also ad(a) is nilpotent in End(R) and

ead(a)b :=
∑
n≥0

ad(a)n

n!
b = eabe−a.

Let V be a fixed K -vector space and denote

P (V ) =

{ ∞∑
n=0

vn

∣∣∣∣∣ vn ∈
⊗n

V

}
�

∞∏
n=0

⊗n
V.

With the natural notion of sum and Cauchy product P (V ) becomes an associa-
tive K -algebra; the vector subspace

m(V ) =

{ ∞∑
n=1

vn

∣∣∣∣∣ vn ∈
⊗n

V

}
⊂ P (V )

is an ideal, m(V )s = {
∑∞

n=s vn} for every s and P (V ) is complete for the m(V )-

adic topology: this means that a series
∞∑

i=0

xi is convergent whenever xi ∈ m(V )i

for every i.
In particular, it is well defined the exponential

e: m(V ) → E(V ) := 1+m(V ) = {1+
∞∑

n=1

vn | vn ∈
⊗n

V } ⊂ P (V ), ex =
∞∑

n=0

xn

n!

and the logarithm

log:E(V ) → m(V ), log(1 + x) =
∞∑

n=1

(−1)n−1 xn

n
.
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We note that E(V ) is a multiplicative subgroup of the set of invertible elements
of P (V ) (being

∑∞
n=0 xn the inverse of 1− x, x ∈ m(V )). It is well known that

exponential and logarithm are one the inverse of the other. Moreover if [x, y] =
xy − yx = 0 then ex+y = exey and log((1 + x)(1 + y)) = log(1 + x) + log(1 + y).

Every linear morphism of K -vector spaces f1:V → W induces a natural,
homogeneous and continuous homomorphism of K -algebras f :P (V ) → P (W ).
It is clear that f(m(V )) ⊂ m(W ), f :E(V ) → E(W ) is a group homomorphism
and f commutes with the exponential and the logarithm.

Consider for instance the three homomorphisms

∆, p, q:P (V ) → P (V ⊕ V )

induced respectively by the diagonal ∆1(v) = (v, v), by p1(v) = (v, 0) and by
q1(v) = (0, v).

We define

l̂(V )={x ∈ P (V ) |∆(x) = p(x) + q(x)}, L̂(V )={x ∈ P (V ) |∆(x)=p(x)q(x)}.

It is immediate to observe that V ⊂ l̂(V ) ⊂ m(V ) and 1 ∈ L̂(V ) ⊂ E(V ).

Theorem 5.2. In the above notation we have:

1. l̂(V ) is a Lie subalgebra of P (V )L.
2. L̂(V ) is a multiplicative subgroup of E(V ).
3. Let f1:V → W be a linear map and f : P (V ) → P (W ) the induced algebra

homomorphism. Then f(l̂(V )) ⊂ l̂(W ) and f(L̂(V )) ⊂ L̂(W ).
4. The exponential gives a bijection between l̂(V ) and L̂(V ).

Proof. We first note that for every n ≥ 0 and every pair of vector spaces
U, W we have a canonical isomorphism⊗n(U ⊕W ) =

n⊕
i=0

(
⊗i

U ⊕
⊗n−i

W )

and therefore

P (U ⊕W ) =
∞∏

i,j=0

⊗i
U ⊕

⊗j
W.

In particular for every x ∈ P (U)⊗K ⊂ P (U ⊕W ), y ∈ K ⊗P (W ) ⊂ P (U ⊕W )
we have xy = yx. In our case, i.e. when U = W = V this implies that
p(x)q(y) = q(y)p(x) for every x, y ∈ P (V ).

Let x, y ∈ l̂(V ) then

∆([x, y]) = ∆(x)∆(y)−∆(y)∆(x)
= (p(x) + q(x))(p(y) + q(y))− (p(y) + q(y))(p(x) + q(x))
= p([x, y]) + q([x, y]).
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If x, y ∈ L̂(V ) then

∆(yx−1) = ∆(y)∆(x)−1 = p(y)q(x)q(x)−1p(x)−1 = p(yx−1)q(yx−1)

and therefore yx−1 ∈ L̂(V ).
If g:P (V ⊕ V ) → P (W ⊕ W ) is the algebra homomorphism induced by

f1 ⊕ f1: V ⊕ V → W ⊕W it is clear that ∆f = g∆, pf = gp and qf = gq. This
implies immediately item 3.

If x ∈ l̂(V ) then the equalities

∆(ex) = e∆(x) = ep(x)+q(x) = ep(x)eq(x) = p(ex)q(ex)

prove that e(l̂(V )) ⊂ L̂(V ). Similarly if y ∈ L̂(V ) then

∆(log(y)) = log(∆(y)) = log(p(y)q(y)) =
= log(p(y)) + log(q(y)) = p(log(y)) + q(log(y))

and therefore log(L̂(V )) ⊂ l̂(V ).

Corollary 5.3. For every vector space V the binary operation

∗: l̂(V )× l̂(V ) → l̂(V ), x ∗ y = log(exey)

induces a group structure on the Lie algebra l̂(V ).
Moreover for every linear map f1: V → W the induced morphism of Lie

algebras f : l̂(V ) → l̂(W ) is also a homomorphism of groups.

Proof. Clear.

In the next sections we will give an explicit formula for the product ∗ which
involves only the bracket of the Lie algebra l̂(V ).

5.2 – Free Lie algebras and the Baker-Campbell-Hausdorff formula

Let V be a vector space over K , we denote by

T (V ) =
⊕
n≥0

⊗n
V, T (V ) =

⊕
n≥1

⊗n
V ⊂ T (V ).

The tensor product induce on T (V ) a structure of unital associative algebra, the
natural embedding T (V ) ⊂ P (V ) is a morphism of unitary algebras and T (V )
is the ideal T (V ) ∩m(V ).

The algebra T (V ) is called tensor algebra generated by V and T (V ) is called
the reduced tensor algebra generated by V .

Lemma 5.3. Let V be a K -vector space and ı:V =
⊗1

V → T (V ) the
natural inclusion. For every associative K -algebra R and every linear map
f :V → R there exists a unique homomorphism of K -algebras φ:T (V ) → R
such that f = φı.
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Proof. Clear.

Definition 5.5. Let V be a K -vector space; the free Lie algebra generated
by V is the smallest Lie subalgebra l(V ) ⊂ T (V )L which contains V .

Equivalently l(V ) is the intersection of all the Lie subalgebras of T (V )L

containing V .
For every integer n > 0 we denote by l(V )n ⊂

⊗n
V the linear subspace

generated by all the elements

[v1, [v2, [. . . , [vn−1, vn]].]], n > 0, v1, . . . , vn ∈ V.

By definition l(V )n = [V, l(V )n−1] and therefore ⊕n>0l(V )n ⊂ l(V ). On the
other hand the Jacobi identity [[x, y], z] = [x, [y, z]]− [y, [x, z]] implies that

[l(V )n, l(V )m] ⊂ [V, [l(V )n−1, l(V )m]] + [l(V )n−1, [V, l(V )m]]

and therefore, by induction on n, [l(V )n, l(V )m] ⊂ l(V )n+m.
As a consequence ⊕n>0l(V )n is a Lie subalgebra of l(V ) and then

⊕n>0l(V )n = l(V ), l(V )n = l(V ) ∩
⊗n

V.

Every morphism of vector spaces V → W induce a morphism of algebras
T (V ) → T (W ) which restricts to a morphism of Lie algebras l(V ) → l(W ).

The name free Lie algebra of l(V ) is motivated by the following universal
property:

Let V be a vector space, H a Lie algebra and f :V → H a linear map. Then
there exists a unique homomorphism of Lie algebras φ: l(V ) → H which extends
f .

We will prove this property in Theorem 5.6.
Let H be a Lie algebra with bracket [, ] and σ1:V → H a linear map.
Define recursively, for every n ≥ 2, the linear map

σn:
⊗n

V → H, σn(v1 ⊗ . . .⊗ vn) = [σ1(v1), σn−1(v2 ⊗ . . .⊗ vn)].

For example, if V = H and σ1 is the identity then

σn(v1 ⊗ . . .⊗ vn) = [v1, [v2, [. . . , [vn−1, vn]].]].

Theorem 5.6 (Dynkyn-Sprecht-Wever). In the notation above, the linear
map

σ =
∞∑

n=1

σn

n
: l(V ) → H

is the unique homomorphism of Lie algebras extending σ1.
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Proof. The adjoint representation θ:V → End(H), θ(v)x = [σ1(v), x] ex-
tends to a unique morphism of associative algebras θ:T (V ) → End(H) by the
composition rule

θ(v1 ⊗ . . .⊗ vs)x = θ(v1)θ(v2) . . . θ(vs)x.

We note that, if v1, . . . , vn, w1, . . . , wm ∈ V then

σn+m(v1 ⊗ . . .⊗ vn ⊗ w1 ⊗ . . .⊗ wm) = θ(v1 ⊗ . . .⊗ vn)σm(w1 ⊗ . . .⊗ wm).

Since every element of l(V ) is a linear combination of homogeneous elements it
is sufficient to prove, by induction on n ≥ 1, the following properties

[An] If m ≤ n, x ∈ l(V )m and y ∈ l(V )n then σ(xy − yx) = [σ(x), σ(y)].
[Bn] If m ≤ n, y ∈ l(V )m and h ∈ H then θ(y)h = [σ(y), h].

The initial step n = 1 is straightforward, assume therefore n ≥ 2.
[An−1 + Bn−1 ⇒ Bn] We can consider only the case m = n. The element y

is a linear combination of elements of the form ab− ba, a ∈ V , b ∈ l(V )n−1 and,
using Bn−1 we get

θ(y)h = [σ(a), θ(b)h]− θ(b)[σ(a), h] = [σ(a), [σ(b), h]]− [σ(b), [σ(a), h].

Using An−1 we get therefore

θ(y)h = [[σ(a), σ(b)], h] = [σ(y), h].

[Bn ⇒ An]

σn+m(xy − yx) = θ(x)σn(y)− θ(y)σm(x) = [σ(x), σn(y)]− [σ(y), σm(x)]
= n[σ(x), σ(y)]−m[σ(y), σ(x)] = (n + m)[σ(x), σ(y)].

Since l(V ) is generated by V as a Lie algebra, the unicity of σ follows.

Corollary 5.7. For every vector space V the linear map

σ: T (V ) → l(V ), σ(v1 ⊗ . . .⊗ vn) =
1
n

[v1, [v2, [. . . , [vn−1, vn]].]]

is a projection.

Proof. The identity on l(V ) is the unique Lie homomorphism extending
the natural inclusion V → l(V ).
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The linear map σ defined in Corollary 5.7 extends naturally to a projector
σ: P (V ) → P (V ). We have the following theorem

Theorem 5.8 (Friedrichs). In the notation above

l̂(V ) = {x ∈ P (V ) |σ(x) = x} and l(V ) = T (V ) ∩ l̂(V ).

Proof. The two equalities are equivalent, we will prove the second. We
have already seen that T (V ) and l̂(V ) are Lie subalgebras of P (V )L containing
V and then l(V ) ⊂ T (V ) ∩ l̂(V ).

Define the linear map

δ:T (V ) → T (V ⊕ V ), δ(x) = ∆(x)− p(x)− q(x).

By definition T (V ) ∩ l̂(V ) = ker δ and we need to prove that if δ(x) = 0 for
some homogeneous x then x ∈ l(V ). For later computation we point out that,
under the identification T (V ⊕ V ) = T (V ) ⊗ T (V ), for every monomial

∏
i xi

with xi ∈ ker δ we have

δ

(∏
i

xi

)
=

∏
i

(xi ⊗ 1 + 1⊗ xi)−
(∏

i

xi

)
⊗ 1− 1⊗

(∏
i

xi

)
.

In particular if x ∈ T (V ) then δ(x) is the natural projection of ∆(x) onto the
subspace

⊕
i,j≥1

⊗i
V ⊗

⊗j
V.

Let {yi | i ∈ I } be a fixed homogeneous basis of l(V ). We can find a total
ordering on the set I such that if yi ∈ l(V )n, yj ∈ l(V )m and n < m then i < j.
For every index h ∈ I we denote by Jh ⊂ T (V ) the ideal generated by y2

h and
the yi’s for every i > h, then Jh is a homogeneous ideal and yh �∈ Jh.

A standard monomial is a monomial of the form y = yi1yi2 . . . yih
with

i1 ≤ . . . ≤ ih. The external degree of the above standard monomial y is by
definition the positive integer h.

Since yiyj = yjyi +
∑

h ahyh, ah ∈ K , the standard monomials generate
T (V ) as a vector space and the standard monomials of external degree 1 are a
basis of l(V ).

Claim 5.9. For every n > 0 the following hold:

1. The image under δ of the standard monomials of external degree h with
2 ≤ h ≤ n are linearly independent.

2. The standard monomials of external degree ≤ n are linearly independent.
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Proof of Claim. Since the standard monomials of external degree 1 are
linearly independent and contained in the kernel of δ it is immediate to see the
implication [1 ⇒ 2].

We prove [1] by induction on n, being the statement true for n = 1.
Consider a nontrivial, finite linear combination l.c. of standard monomials

of external degree ≥ 2 and ≤ n. There exists an index h ∈ I such that we
can write l.c. = z +

∑n
i=1 yi

hwi, where z, wi are linear combination of standard
monomials in yj , j > h and at least one of the wi is non trivial. If we consider
the composition φ of δ:T (V ) → T (V ⊕ V ) = T (V ) ⊗ T (V ) with the projection
T (V )⊗ T (V ) → T (V )/Jh ⊗ T (V ) we have

φ(l.c.) =
n∑

i=1

iyh ⊗ yi−1
h wi = yh ⊗

n∑
i=1

iyi−1
h wi.

Since
∑n

i=1 iyi−1
h wi is a nontrivial linear combination of standard monomials

of external degrees ≤ n − 1, by inductive assumption, it is different from 0 on
T (V ).

From the claim follows immediately that the kernel of δ is generated by the
standard monomials of degree 1 and therefore ker δ = l(V ).

Exercise 5.10. Let x1, . . . , xn, y be linearly independent vectors in a vector
space V . Prove that the n! vectors

σn+1(xτ(1) . . . xτ(n)y), τ ∈ Σn,

are linearly independent in the free Lie algebra l(V ).
(Hint: Let W be a vector space with basis e0, . . . , en and consider the

subalgebra A ⊂ End(W ) generated by the endomorphisms φ1, . . . , φn, φi(ej) =
δijei−1. Take a suitable morphisms of Lie algebras l(V ) → A⊕W .)

Our main use of the projection σ:P (V ) → l̂(V ) consists in the proof of the
an explicit description of the product ∗: l̂(V )× l̂(V ) → l̂(V ).

Theorem 5.11 (Baker-Campbell-Hausdorff formula). For every a, b ∈
l̂(V ) we have

a ∗ b =
∑
n>0

(−1)n−1

n

∑
p1+q1>0

·
pn+qn>0

(
n∑

i=1

(pi + qi)

)−1

p1!q1! . . . pn!qn!
ad(a)p1ad(b)q1 . . . ad(b)qn−1b.

In particular a ∗ b− a− b belongs to the Lie ideal of l̂(V ) generated by [a, b].
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Proof. Use the formula of the statement to define momentarily a binary
operator • on l̂(V ); we want to prove that • = ∗.

Consider first the case a, b ∈ V , in this situation

a ∗ b = σ log(eaeb) = σ

(∑
n>0

(−1)n−1

n

( ∑
p+q>0

apbq

p!q!

)n )
=

= σ

∑
n>0

(−1)n−1

n

∑
p1+q1>0·
pn+qn>0

ap1bq1 . . . apnbqn

p1!q1! . . . pn!qn!

 =

=
∑
n>0

(−1)n−1

n

∑
p1+q1>0

·
pn+qn>0

1
m

σm(ap1bq1 . . . apnbqn)
p1!q1! . . . pn!qn!

, m :=
n∑

i=1

(pi + qi).

The elimination of the operators σm gives

a ∗ b =
∑
n>0

(−1)n−1

n

∑
p1+q1>0

·
pn+qn>0

(
n∑

i=1

(pi + qi)

)−1

p1!q1! . . . pn!qn!
ad(a)p1ad(b)q1 . . . ad(b)qn−1b.

Choose a vector space H and a surjective linear map H → l̂(V ), its composition
with the inclusion l̂(V ) ⊂ m(V ) ⊂ P (V ) extends to a continuous morphism of
associative algebras q:P (H) → P (V ); since l̂(V ) is a Lie subalgebra of P (V ) we
have q(l(H)n) ⊂ l̂(V ) for every n and then q(l̂(H)) ⊂ l̂(V ). Being q: l̂(H) → l̂(V )
a morphism of Lie algebras, we have that q commutes with •.

On the other hand q also commutes with exponential and logarithms and
therefore q commutes with the product ∗. Since ∗ = •:H ×H → l̂(H) the proof
is done.

The first terms of the Baker-Campbell-Hausdorff formula are:

a ∗ b = a + b +
1
2
[a, b] +

1
12

[a, [a, b]]− 1
12

[b, [b, a]] + . . .
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5.3 – Nilpotent Lie algebras

We recall that every Lie algebra L has a universal enveloping algebra U
characterized by the properties [31, 17.2], [33, Ch. V]:

1. U is an associative algebra and there exists an injective morphism of Lie
algebras i:L → UL.

2. For every associative algebra R and every morphism f :L → RL of Lie
algebras there exists a unique morphism of associative algebras g:U → R
such that f = gi.

A concrete exhibition of the universal enveloping algebra is given by U = T (L)/I,
where I is the ideal generated by all the elements a⊗ b− b⊗ a− [a, b], a, b ∈ L.
The only non trivial condition to check is the injectivity of the natural map
L → U . This is usually proved using the well known Poincaré-Birkhoff-Witt’s
theorem [33, Ch. V].

Exercise 5.12. Prove that, for every vector space V , T (V ) is the universal
enveloping algebra of l(V ).

Definition 5.13. The lower central series of a Lie algebra L is defined
recursively by L1 = L, Ln+1 = [L, Ln].

A Lie algebra L is called nilpotent if Ln = 0 for n � 0.

It is clear that if L is a nilpotent Lie algebra then the adjoint operator
ad(a) = [a,−]:L → L is nilpotent for every a ∈ L. According to Engel’s theorem
[31, 3.2] the converse is true if L is finite dimensional.

Example 5.14. It is immediate from the construction that the lower central
series of the free Lie algebra l(V ) ⊂ T (V ) is l(V )n =

⊕
i≥n

l(V )i = l(V )∩
⊕
i≥n

⊗i
V .

If V is a nilpotent Lie algebra, then the Baker-Campbell-Hausdorff formula
defines a product V × V

∗−→V ,

a∗b=
∑
n>0

(−1)n−1

n

∑
p1+q1>0

·
pn+qn>0

(
n∑

i=1

(pi + qi)

)−1

p1!q1! . . . pn!qn!
ad(a)p1ad(b)q1 . . . ad(a)pnad(b)qn−1b.

It is clear from the definition that the product ∗ commutes with every mor-
phism of nilpotent Lie algebra. The identity on V induce a morphism of Lie
algebras π: l(V ) → V such that π(l(V )n) = 0 for n � 0; this implies that π can
be extended to a morphism of Lie algebras π: l̂(V ) → V .

Proposition 5.15. The Baker-Campbell-Hausdorff product ∗ induces a
group structure on every nilpotent Lie algebras V .
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Proof. The morphism of Lie algebras π: l̂(V ) → V is surjective and com-
mutes with ∗.

It is customary to denote by exp(V ) the group (V, ∗). Equivalently it is
possible to define exp(V ) as the set of formal symbols ev, v ∈ V , endowed with
the group structure evew = ev∗w.

Example 5.16. Assume that V ⊂ M = M(n, n, K ) is the Lie subalgebra
of strictly upper triangular matrices. Since the product of n matrices of V is
always equal to 0, the inclusion V → M extends to a morphism of associative
algebras φ:P (V ) → M and the morphism

φ: exp(V ) → GL(n, K ), φ(eA) =
∞∑

i=0

Ai

i!
∈ GL(n, K ).

is a homomorphism of groups.

The above example can be generalized in the following way

Example 5.17. Let R be an associative unitary K -algebra, R∗ ⊂ R the
multiplicative group of invertible elements and N ⊂ R a nilpotent subalgebra
(i.e. Nn = 0 for n � 0).

Let V be a nilpotent Lie algebra and ξ:V → N ⊂ R a representation. This
means that ξ:V → NL is a morphism of Lie algebras.

Denoting by ı:V ↪→U the universal enveloping algebra, we have a commuta-
tive diagram

l(V ) π−→ V
ξ−→ NL� � �

T (V )
η−→ U

ψ−→ R

where π, ξ are morphisms of Lie algebras and η, ψ homomorphisms of algebras.
Since the image of the composition φ = ψη is contained in the nilpotent subal-
gebra N the above diagram extends to

l̂(V ) −→ P (V )�π

�φ

V
ξ−→ R

with φ homomorphism of associative algebras. If f ∈ N it makes sense its
exponential ef ∈ R. For every v ∈ V we have eξ(v) = φ(ev) and for every
x, y ∈ V

eξ(x)eξ(y) = φ(ex)φ(ey) = φ(exey) = φ(ex∗y) = eξ(x∗y).

The same assertion can be stated by saying that the exponential map eξ: (V, ∗) =
exp(V ) → R∗ is a homomorphism of groups.
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5.4 – Differential graded Lie algebras

Definition 5.18. A differential graded Lie algebra (DGLA ) (L, [, ], d) is the
data of a Z-graded vector space L = ⊕i∈ZLi together a bilinear bracket [, ]:L×
L → L and a linear map d ∈ Hom1(L, L) satisfying the following condition:

1. [ , ] is homogeneous skewsymmetric: this means [Li, Lj ] ⊂ Li+j and [a, b] +
(−1)ab[b, a] = 0 for every a, b homogeneous.

2. Every triple of homogeneous elements a, b, c satisfies the (graded) Jacobi
identity

[a, [b, c]] = [[a, b], c] + (−1)ab[b, [a, c]].

3. d(Li) ⊂ Li+1, d ◦ d = 0 and d[a, b] = [da, b] + (−1)a[a, db]. The map d is
called the differential of L.

Exercise 5.19. Let L = ⊕Li be a DGLA and a ∈ Li:

1. If i is even then [a, a] = 0.

2. If i is odd then [a, [a, b]] =
1
2
[[a, a], b] for every b ∈ L and [[a, a], a] = 0.

Example 5.20. If L = ⊕Li is a DGLA then L0 is a Lie algebra in the usual
sense. Conversely, every Lie algebra can be considered as a DGLA concentrated
in degree 0.

Example 5.21. Let (A, dA), A = ⊕Ai, be a dg-algebra over K and (L, dL),
L = ⊕Li, a DGLA.

Then L⊗K A has a natural structure of DGLA by setting:

(L⊗K A)n = ⊕i(Li ⊗K An−i),

d(x⊗ a) = dLx⊗ a + (−1)xx⊗ dAa, [x⊗ a, y ⊗ b] = (−1)a y[x, y]⊗ ab.

Example 5.22. Let E be a holomorphic vector bundle on a complex
manifold M . We may define a DGLA L = ⊕Lp, Lp = Γ(M,A0,p(End(E)))
with the Dolbeault differential and the natural bracket. More precisely if e, g
are local holomorphic sections of End(E) and φ, ψ differential forms we define
d(φe) = (∂φ)e, [φe, ψg] = φ ∧ ψ[e, g].

Example 5.23. Let (F∗, d) be a sheaf of dg-algebras on a topological
space; the space Der∗(F∗,F∗) is a DGLA with bracket [f, g] = fg − (−1)f ggf
and differential δ(f) = [d, f ].

Definition 5.24. We shall say that a DGLA L is ad0-nilpotent if for every
i the image of the adjoint action ad : L0 → End(Li) is contained in a nilpotent
(associative) subalgebra.
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Exercise 5.25.
1) Every nilpotent DGLA (i.e. a DGLA whose descending central series is

definitively trivial) is ad0-nilpotent.
2) If L is ad0-nilpotent then L0 is a nilpotent Lie algebra.
3) The converses of 1) and 2) are generally false.

Definition 5.26. A linear map f :L → L is called a derivation of degree
n if f(Li) ⊂ Li+n and satisfies the graded Leibnitz rule f([a, b]) = [f(a), b] +
(−1)na[a, f(b)].

We note that the Jacobi identity is equivalent to the assertion that, if a ∈ Li

then ad(a):L → L, ad(a)(b) = [a, b], is a derivation of degree i. The differential
d is a derivation of degree 1.

By following the standard notation we denote by Zi(L) = ker(d:Li → Li+1),
Bi(L) = Im(d:Li−1 → Li), Hi(L) = Zi(L)/Bi(L).

Definition 5.27. The Maurer-Cartan equation (also called the deformation
equation) of a DGLA L is

da +
1
2
[a, a] = 0, a ∈ L1.

The solutions MC(L)⊂L1 of the Maurer-Cartan equation are called the Maurer-
Cartan elements of the DGLA L.

There is an obvious notion of morphisms of DGLAs; we denote by DGLA
the category of differential graded Lie algebras.

Every morphism of DGLAs induces a morphism between cohomology groups.
It is moreover clear that morphisms of DGLAs preserve the solutions of the
Maurer-Cartan equation.

A quasiisomorphism of DGLAs is a morphism inducing isomorphisms in
cohomology. Two DGLA’s are quasiisomorphic if they are equivalent under the
equivalence relation generated by quasiisomorphisms.

The cohomology of a DGLA is itself a differential graded Lie algebra with
the induced bracket and zero differential:

Definition 5.28. A DGLA L is called Formal if it is quasiisomorphic to
its cohomology DGLA H∗(L).

Exercise 5.29. Let D:L → L be a derivation, then the kernel of D is a
graded Lie subalgebra.

Example 5.30. Let (L, d) be a DGLA and denote Deri(L, L) the space
of derivations f :L → L of degree i. The space Der∗(L, L) = ⊕iDeri(L, L) is a
DGLA with bracket [f, g] = fg − (−1)f ggf and differential δ(f) = [d, f ].

For a better understanding of some of next topics it is useful to consider the
following functorial construction. Given a DGLA (L, [, ], d) we can construct a
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new DGLA (L′, [, ]′, d′) by setting (L′)i = Li for every i �= 1, (L′)1 = L1 ⊕ K d
(here d is considered as a formal symbol of degree 1) with the bracket and the
differential

[a+vd, b+wd]′ = [a, b]+vd(b)+(−1)awd(a), d′(a+vd) = [d, a+vd]′ = d(a).

The natural inclusion L ⊂ L′ is a morphism of DGLA; for a better under-
standing of the Maurer-Cartan equation it is convenient to consider the affine
embedding φ:L1 → (L′)1, φ(a) = a + d. For an element a ∈ L1 we have

d(a) +
1
2
[a, a] = 0 ⇐⇒ [φ(a), φ(a)]′ = 0.

Let’s now introduce the notion of gauge action on the Maurer-Cartan ele-
ments of an ad0-nilpotent DGLA. Note that [L0, L1 ⊕K d] ⊂ L1; in particular if
L is ad0-nilpotent then also L′ is ad0-nilpotent.

Given an ad0-nilpotent DGLA N , the exponential of the adjoint action gives
homomorphisms of groups

exp(N0) = (N0, ∗) → GL(N i), ea �→ ead(a), i ∈ Z

where ∗ is the product given by the Baker-Campbell-Hausdorff formula.
These homomorphisms induce actions of the group exp(N0) onto the vector

spaces N i given by

eab = ead(a)b =
∑
n≥0

1
n!

ad(a)n(b).

Lemma 5.31. In the above notation, if W is a linear subspace of N i and
[N0, N i] ⊂ W then the exponential adjoint action preserves the affine subspaces
v + W , v ∈ Ni.

Proof. Let a ∈ N0, v ∈ N i, w ∈ W , then

ea(v + w) = v +
∑
n≥1

1
n!

ad(a)n−1([a, v]) +
∑
n≥0

1
n!

ad(a)n(w).

Lemma 5.32. In the above notation the exponential adjoint action pre-
serves the quadratic cone Z = {v ∈ N1 | [v, v] = 0}.

For every v ∈ Z and u ∈ N−1 the element exp([u, v]) belongs to the stabilizer
of v.
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Proof. By Jacobi identity 2[v, [a, v]] = −2[v, [v, a]] = [a, [v, v]] for every
a ∈ N0, v ∈ N1.

Let a ∈ N0 be a fixed element, for every u ∈ N1 define the polynomial
function Fu: K → N2 by

Fu(t) = e−ad(ta)[ead(ta)u, ead(ta)u].

For every s, t ∈ K , if v = ead(sa)u then

Fu(t + s) = ead(−sa)Fv(t),
∂Fv

∂t
(0) = −[a, [v, v]] + 2[v, [a, v]] = 0

∂Fu

∂t
(s) = ead(−sa)u

∂Fv

∂t
(0) = 0.

Since the field K has characteristic 0 every function Fv is constant, proving the
invariance of Z.

If u ∈ N−1 and v ∈ Z, then by Jacobi identity [[u, v], v] = ad([u, v])v = 0
and then exp([u, v])v = v.

If L is an ad0-nilpotent DGLA then 5.31 and 5.32 can be applied to N = L′.
Via the affine embedding φ:L1 → (L′)1, the exponential of the adjoint action on
L′ induces the so called Gauge action of exp(L0) over the set of solution of the
Maurer-Cartan equation, given explicitly by

exp(a)(w) = φ−1
(
ead(a)φ(w)

)
=

∑
n≥0

1
n!

ad(a)n(w)−
∑
n≥1

1
n!

ad(a)n−1(da) =

= w +
∑
n≥0

ad(a)n

(n + 1)!
([a, w]− da).

Remark 5.33. If w is a solution of the Maurer-Cartan equation and u ∈
L−1 then [w, u] + du = [w + d, u] ∈ L0 belongs to the stabilizer of w under the
gauge action.

For every a ∈ L0, w ∈ L1, the polynomial γ(t) = exp(ta)(w) ∈ L1 ⊗K [t] is
the solution of the “Cauchy problem”

dγ(t)
dt

= [a, γ(t)]− da

γ(0) = w .
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5.5 – Functors of Artin rings

5-A. Basic definitions

We denote by:

• Set the category of sets in a fixed universe; we also make the choice of a
fixed set {0} ∈ Set of cardinality 1.

• Grp the category of groups.
• ArtK the category of local Artinian K -algebras with residue field K (with

as morphisms the local homomorphisms). If A ∈ ArtK , we will denote by
mA its maximal ideal.

A small extension e in ArtK is an exact sequence of abelian groups

e : 0−→M
i−→B

p−→A−→0

such that B
p−→A is a morphism in ArtK and ker p = i(M) is annihilated by the

maximal ideal of B (that is, as a B-module it is a K -vector space).
Given a surjective morphism B → A in ArtK with kernel J , there exists a

sequence of small extensions

0−→mn
BJ/mn+1

B J−→B/mn+1
B J−→B/mn

BJ−→0, n ≥ 0.

Since, by Nakayama’s lemma, there exists n0 ∈ N such that mn
BJ = 0 for every

n ≥ n0 we get that every surjective morphism is ArtK is the composition of a
finite number of small extensions.

Definition 5.34. A Functor of Artin rings is a covariant functor F :ArtK→
Set such that F (K ) � {0}.

Example 5.35. If V is a K -vector space we may interpret V as a functor
of Artin rings V :ArtK → Set, V (A) = V ⊗K mA. If V = 0 we get the trivial
functor 0:ArtK → Set.

The functors of Artin rings are the object of a new category whose mor-
phisms are the natural transformation of functors. A natural transformation
η: F → G is an isomorphism if and only if η(A):F (A) → G(A) is bijective for
every A ∈ ArtK .

Definition 5.36. Let F, G:ArtK → Set be two functors of Artin rings
and η: F → G a natural transformation; η is called smooth if for every small
extension

0−→M−→B
p−→A−→0

the map
(η, p):F (B) → G(B)×G(A) F (A)

is surjective.
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A functor of Artin rings F is called smooth if the morphism F → 0 is smooth.

Exercise 5.37. F :ArtK → Set is smooth if and only if for every surjective
morphism B → A is ArtK , the map F (B) → F (A) is also surjective.

If V is a vector space then V is smooth as a functor of Artin rings (cf.
Example 5.35).

Exercise 5.38. Let R be an analytic algebra and let hR:ArtC → Set be
the functor of Artin rings defined by hR(A) = MorAn(R, A).

Prove that hR is smooth if and only if R is smooth.

Example 5.39. Let M0 be a compact complex manifold and define for
every A ∈ ArtC

DefM0(A) = DefM0(OX,0) = DefM0(X, 0)

where (X, 0) = Spec(A) is a fat point such that OX,0 = A; since it is always
possible to write A as a quotient of C{z1, . . . , zn} for some n ≥ 0, such a fat
point (X, 0) always exists. According to 3.12 the isomorphism class of (X, 0)
depends only on A.

Every morphism OX,0 → OY,0 in ArtC is induced by a unique morphism
(Y, 0) → (X, 0). The pull-back of infinitesimal deformations gives a morphism
DefM0(X, 0) → DefM0(Y, 0). Therefore DefM0 :ArtC → Set is a functor of Artin
rings.

Definition 5.40. The tangent space to a functor of Artin rings F :ArtK →
Set is by definition

tF = F

(
K [t]
(t2)

)
= F (K ⊕K ε), ε2 = 0.

Exercise 5.41. Prove that, for every analytic algebra R there exists a
natural isomorphism thR

= DerC(R, C) (see Exercise 5.38).

5-B. Automorphisms functor

In this section every tensor product is intended over K , i.e ⊗ = ⊗K . Let
S

α−→R be a morphism of graded K -algebras, for every A ∈ ArtK we have
natural morphisms S ⊗ A

α−→R ⊗ A and R ⊗K A
p−→R, p(x ⊗ a) = xa, where

a ∈ K is the class of a in the residue field of A.

Lemma 5.42. Given A ∈ ArtK and a commutative diagram of morphisms
of graded K -algebras

S ⊗A
α ��

α

��

R⊗A

p

��
R⊗A

f
����������� p �� R

we have that f is an isomorphism and f(R⊗ J) ⊂ R⊗ J for every ideal J ⊂ A.
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Proof. f is a morphism of graded A-algebras, in particular for every ideal
J ⊂ A, f(R ⊗ J) ⊂ Jf(R ⊗ A) ⊂ R ⊗ J . In particular, if B = A/J , then f
induces a morphism of graded B-algebras f : R⊗B → R⊗B.

We claim that if mAJ = 0 then f is the identity on R⊗ J ; in fact for every
x ∈ R, f(x⊗ 1)− x⊗ 1 ∈ ker p = R⊗mA and then if j ∈ J , x ∈ R.

f(x⊗ j) = jf(x⊗ 1) = x⊗ j + j(f(x⊗ 1)− x⊗ 1) = x⊗ j.

Now we prove the lemma by induction on n = dimK A, being f the identity for
n = 1. Let

0−→J−→A−→B−→0

be a small extension with J �= 0. Then we have a commutative diagram with
exact rows

0−→R⊗ J−→R⊗A−→R⊗B−→0�Id

�f

�f

0−→R⊗ J−→R⊗A−→R⊗B−→0

By induction f is an isomorphism and by snake lemma also f is an isomor-
phism.

Definition 5.43. For every A ∈ ArtK let AutR/S(A) be the set of com-
mutative diagrams of graded K -algebra morphisms

S ⊗A ��

��

R⊗A

��
R⊗A

f
�����������
�� R

According to Lemma 5.42 AutR/S is a functor from the category ArtK to
the category of groups Grp. Here we consider AutR/S as a functor of Artin rings
(just forgetting the group structure).

Let Der0S(R, R) be the space of S-derivations R → R of degree 0. If A ∈
ArtK and J ⊂ mA is an ideal then, since dimK J < ∞ there exist natural
isomorphisms

Der0S(R, R)⊗ J = Der0S(R, R⊗ J) = Der0S⊗A(R⊗A, R⊗ J),

where d =
∑

i di ⊗ ji ∈ Der0S(R, R)⊗ J corresponds to the S ⊗A-derivation

d:R⊗A → R⊗ J ⊂ R⊗A, d(x⊗ a) =
∑

i

di(x)⊗ jia.
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For every d ∈ Der0S⊗A(R⊗A, R⊗A) denote dn = d ◦ . . . ◦ d the iterated compo-
sition of d with itself n times. The generalized Leibnitz rule gives

dn(uv) =
n∑

i=0

(
n

i

)
di(u)dn−1(v), u, v ∈ R⊗A.

Note in particular that if d ∈ Der0S(R, R) ⊗ mA then d is a nilpotent endomor-
phism of R⊗A and

ed =
∑
n≥0

dn

n!

is a morphism of K -algebras belonging to AutR/S(A).

Proposition 5.44. For every A ∈ ArtK the exponential

exp: Der0S(R, R)⊗mA → AutR/S(A)

is a bijection.

Proof. This is obvious if A = K ; by induction on the dimension of A we
may assume that there exists a nontrivial small extension

0−→J−→A−→B−→0

such that exp: Der0S(R, R)⊗mB → AutR/S(B) is bijective.
We first note that if d ∈ Der0S(R, R)⊗mA, h ∈ Der0S(R, R)⊗ J then dihj =

hjdi = 0 whenever j > 0, j + i ≥ 2 and then ed+h = ed + h; this easily implies
that exp is injective.

Conversely take a f ∈ AutR/S(A); by the inductive assumption there exists
d ∈ Der0S(R, R)⊗mA such that f = ed ∈ AutR/S(B); denote h = f−ed:R⊗A →
R⊗J . Since h(ab) = f(a)f(b)−ed(a)ed(b) = h(a)f(b)+ed(a)h(b) = h(a)b+ah(b)
we have that h ∈ Der0S(R, R)⊗ J and then f = ed+h.

The same argument works also if S → R is a morphism of sheaves of graded
K -algebras over a topological space and Der0S(R, R), AutR/S(A) are respectively
the vector space of S-derivations of degree 0 of R and the S ⊗ A-algebra auto-
morphisms of R⊗A lifting the identity on R.

Example 5.45. Let M be a complex manifold, R = A0,∗
M , S = Ω

∗
M . Accord-

ing to Proposition 4.24 Der0S(R, R) = Γ(M,A0,0(TM )) and then the exponential
gives isomorphisms

exp: Γ(M,A0,0(TM ))⊗mA → AutR/S(A).

Since exp is clearly functorial in A, interpreting the vector space Γ(M,A0,0(TM )) as
a functor (Example 5.35), we have an isomorphism of functors exp:Γ(M,A0,0(TM ))→
AutR/S .
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5-C. The exponential functor

Let L be a Lie algebra over K , V a K -vector space and ξ:L → End(V ) a
representation of L.

For every A ∈ ArtK the morphism ξ can be extended naturally to a mor-
phism of Lie algebras ξ:L⊗A → EndA(V ⊗A). Taking the exponential we get
a functorial map

exp(ξ):L⊗mA → GLA(V ⊗A), exp(ξ)(x) = eξ(x) =
∞∑

i=0

ξn

n!
x,

where GLA denotes the group of A-linear invertible morphisms.
Note that exp(ξ)(−x) = (exp(ξ)(x))−1. If ξ is injective then also exp(ξ) is

injective (easy exercise).

Theorem 5.46. In the notation above the image of exp(ξ) is a sub-
group. More precisely for every a, b ∈ L⊗mA there exists c ∈ L⊗mA such that
eξ(a)eξ(b) = eξ(c) and a + b − c belong to the Lie ideal of L ⊗ mA generated by
[a, b].

Proof. This is an immediate consequence of the Campbell-Baker-Hausdorff
formula.

In the above notation denote P = End(V ) and let ad(ξ):L → End(P ) be
the adjoint representation of ξ,

ad(ξ)(x)f = [ξ(x), f ] = ξ(x)f − fξ(x).

Then for every a ∈ L⊗mA, f ∈ EndA(V ⊗A) = P ⊗A we have (cf. Exercise 5.1,
[31, 2.3])

ead(ξ)(a)f = eξ(a)fe−ξ(a).

5.6 – Deformation functors associated to a DGLA

Let L = ⊕Li be a DGLA over K , we can define the following three functors:

1. The Gauge functor GL:ArtK → Grp, defined by GL(A) = exp(L0 ⊗ mA).
It is immediate to see that GL is smooth.

2. The Maurer-Cartan functor MCL:ArtK → Set defined by

MCL(A) = MC(L⊗mA) =
{

x ∈ L1 ⊗mA

∣∣∣∣ dx +
1
2
[x, x] = 0

}
.

3. The gauge action of the group exp(L0 ⊗ mA) on the set MC(L ⊗ mA) is
functorial in A and gives an action of the group functor GL over MCL. We
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call DefL = MCL/GL the corresponding quotient. By definition DefL(A) =
MCL(A)/GL(A) for every A ∈ ArtK .
The functor DefL is called the deformation functor associated to the DGLA
L.

The reader should make attention to the difference between the deformation
functor DefL associated to a DGLA L and the functor of deformations of a
DGLA L.

Proposition 5.47. Let L = ⊕Li be a DGLA. If [L1, L1]∩Z2(L) ⊂ B2(L)
(e.g. if H2(L) = 0) then MCL and DefL are smooth functors.

Proof. It is sufficient to prove that for every small extension

0−→J−→A
α−→B−→0

the map MC(L⊗mA) α−→MC(L⊗mB) is surjective.
Given y ∈ L1 ⊗mB such that dy + 1

2 [y, y] = 0 we first choose x ∈ L1 ⊗mA

such that α(x) = y; we need to prove that there exists z ∈ L1 ⊗ J such that
x− z ∈ MC(L⊗mA).

Denote h = dx +
1
2
[x, x] ∈ L2 ⊗ J ; we have

dh = d2x + [dx, x] = [h, x]− 1
2
[[x, x], x].

Since [L2 ⊗ J, L1 ⊗mA] = 0 we have [h, x] = 0, by Jacobi identity [[x, x], x] = 0
and then dh = 0, h ∈ Z2(L)⊗ J .

On the other hand h ∈ ([L1, L1] + B2(L)) ⊗ mA, using the assumption of
the Proposition h ∈ (B2(L) ⊗ mA) ∩ L2 ⊗ J and then there exist z ∈ L1 ⊗ mA

such that dz = h.
Since Z1(L)⊗mA → Z1(L)⊗mB is surjective it is possible to take z ∈ L1⊗J :

it is now immediate to observe that x− z ∈ MC(L⊗mA).

Exercise 5.48. Prove that if MCL is smooth then [Z1, Z1] ⊂ B2.

Proposition 5.49. If L⊗mA is abelian then DefL(A) = H1(L)⊗mA. In
particular tDefL = H1(L)⊗K ε, ε2 = 0.

Proof. The Maurer-Cartan equation reduces to dx=0 and then MCL(A)=
Z1(L)⊗mA. If a ∈ L0 ⊗mA and x ∈ L1 ⊗mA we have

exp(a)x = x +
∑
n≥0

ad(a)n

(n + 1)!
([a, x]− da) = x− da

and then DefL(A) =
Z1(L)⊗mA

d(L0 ⊗mA)
= H1(L)⊗mA.
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Exercise 5.50. If [Z1, Z1] = 0 then MCL(A) = Z1 ⊗mA for every A.

It is clear that every morphism α:L → N of DGLA induces morphisms
of functors GL → GN , MCL → MCN . These morphisms are compatible with
the gauge actions and therefore induce a morphism between the deformation
functors Defα: DefL → DefN .

The following Theorem 5.51 (together its Corollary 5.52) is sometimes called
the basic theorem of deformation theory. For the clarity of exposition the (non-
trivial) proof of 5.51 is postponed at the end of Subsection 8.

Theorem 5.51. Let φ:L → N be a morphism of differential graded Lie
algebras and denote by Hi(φ):Hi(L) → Hi(N) the induced maps in cohomology.

1. If H1(φ) is surjective and H2(φ) injective then the morphism Defφ: DefL →
DefN is smooth.

2. If H0(φ) is surjective, H1(φ) is bijective and H2(φ) is injective then Defφ:
DefL → DefN is an isomorphism.

Corollary 5.52. Let L → N be a quasiisomorphism of DGLA. Then the
induced morphism DefL → DefN is an isomorphism.

Exercise 5.53. Let L be a formal DGLA, then DefL is smooth if and only
if the induced bracket [ , ]:H1 ×H1 → H2 is zero.

Example 5.54. Let L = ⊕Li be a DGLA and choose a vector space
decomposition N1 ⊕B1(L) = L1.

Consider the DGLA N = ⊕N i where N i = 0 if i < 1 and N i = Li if
i > 1 with the differential and bracket induced by L. The natural inclusion
N → L gives isomorphisms Hi(N) → Hi(L) for every i ≥ 1. In particular the
morphism DefN → DefL is smooth and induce an isomorphism on tangent spaces
tDefN = tDefL .

Beware. One of the most frequent wrong interpretations of Corollary 5.52
asserts that if L → N is a quasiisomorphism of nilpotent DGLA then MC(L)/
exp(L0) → MC(N)/ exp(N0) is a bijection. This is false in general: consider
for instance L = 0 and N = ⊕N i with N i = C for i = 1, 2, N i = 0 for i �= 1, 2,
d: N1 → N2 the identity and [a, b] = ab for a, b ∈ N1 = C.

Let TM be the holomorphic tangent bundle of a complex manifold M . The
Kodaira-Spencer DGLA is defined as

KS(M) = ⊕KS(M)p, KS(M)p = Γ(M,A0,p(TM ))

with the Dolbeault differential and the bracket (cf. Proposition 4.24)

[φdzI , ψdzJ ] = [φ, ψ]dzI ∧ dzJ
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for φ, ψ ∈ A0,0(TM ), I, J ⊂ {1, ..., n} and z1, ..., zn local holomorphic coordi-
nates.

Theorem 5.55. Let L = KS(M0) be the Kodaira-Spencer differential
graded Lie algebra of a compact complex manifold M0. Then there exists an
isomorphism of functors

DefM0 = DefL.

Proof. Fix A ∈ ArtC, according to Propositions 4.24 and 5.44 the expo-
nential

exp:L0 ⊗mA = Γ(M0,A0,0(TM0))⊗mA → AutA0,∗/Ω
∗(A)

is an isomorphism.
Therefore DefM0 is the quotient of

MCL(A) =
{

η ∈ Γ(M0,A0,1(TM0))⊗mA

∣∣∣∣ ∂η +
1
2
[η, η] = 0

}
,

by the equivalence relation ∼, given by η ∼ µ if and only if there exists a ∈
L0 ⊗mA such that

∂ + µ = ea(∂ + η)e−a = ead(a)(∂ + η)

or, equivalently, if and only if φ(µ) = ead(a)φ(η), where φ is the affine embedding
defined above.

Keeping in mind the definition of the gauge action on the Maurer-Cartan
elements we get immediately that this equivalence relation on MCL(A) is exactly
the one induced by the gauge action of exp(L0 ⊗mA).

Corollary 5.56. Let M0 be a compact complex manifold. If either
H2(M0, TM0) = 0 or its Kodaira-Spencer DGLA KS(M0) is quasiisomorphic to
an abelian DGLA, then DefM0 is smooth.

5.7 – Extended deformation functors (EDF)

We will always work over a fixed field K of characteristic 0. All vector
spaces, linear maps, algebras, tensor products etc. are understood of being over
K , unless otherwise specified.

We denote by:

• NA the category of all differential Z-graded associative (graded)-commuta-
tive nilpotent finite dimensional K -algebras.

• By NA ∩ DG we denote the full subcategory of A ∈ NA with trivial
multiplication, i.e. A2 = 0.
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In other words an object in NA is a finite dimensional complex A = ⊕Ai ∈ DG
endowed with a structure of dg-algebra such that An = AA . . . A = 0 for n � 0.
Note that if A = A0 is concentrated in degree 0, then A ∈ NA if and only if A
is the maximal ideal of a local artinian K -algebra with residue field K .

If A ∈ NA and I ⊂ A is a differential ideal, then also I ∈ NA and the
inclusion I → A is a morphism of dg-algebras.

Definition 5.57. A small extension in NA is a short exact sequence in
DG

0−→I−→A
α−→B−→0

such that α is a morphism in NA and I is an ideal of A such that AI = 0; in
addition it is called acyclic if I is an acyclic complex, or equivalently if α is a
quasiisomorphism.

Exercise 5.58.
• Every surjective morphism A

α−→B in the category NA is the composition
of a finite number of small extensions.

• If A
α−→B is a surjective quasiisomorphism in NA and Ai = 0 for every i > 0

then α is the composition of a finite number of acyclic small extensions. This
is generally false if Ai �= 0 for some i > 0.

Definition 5.59. A covariant functor F :NA → Set is called a predefor-
mation functor if the following conditions are satisfied:

1. F (0) = 0 is the one-point set.
2. For every pair of morphisms α:A → C, β: B → C in NA consider the map

η:F (A×C B) → F (A)×F (C) F (B)

Then:
(a) η is surjective when α is surjective.
(b) η is bijective when α is surjective and C ∈ NA ∩ DG is an acyclic

complex.
3. For every acyclic small extension

0−→I−→A−→B−→0

the induced map :F (A) → F (B) is surjective.

If we consider the above definition for a functor defined only for algebras
concentrated in degree 0, then condition 3 is empty, while conditions 1 and 2 are
essentially the classical Schlessinger’s conditions [67], [13], [52].

Lemma 5.60. For a covariant functor F :NA → Set with F (0) = 0 it is
sufficient to check condition 2.b of definition 5.59 when C = 0 and when B = 0
separately.
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Proof. Follows immediately from the equality

A×C B = (A×B)×C 0

where A
α−→C, B

β−→C are as in 2b of 5.59 and the fibred product on the right
comes from the morphism A×B → C, (a, b) �→ α(a)− β(b).

Definition 5.61. A predeformation functor F :NA → Set is called a
deformation functor if F (I) = 0 for every acyclic complex I ∈ NA ∩DG.

The predeformation functors (resp.: deformation functors) together their
natural transformations form a category which we denote by PreDef (resp.:
Def).

Lemma 5.62. Let F :NA → Set be a deformation functor. Then:

1. For every acyclic small extension

0−→I−→A−→B−→0

the induced map :F (A) → F (B) is bijective.
2. For every pair of complexes I, J ∈ NA ∩DG and every pair of homotopic

morphisms f, g: I → J , we have F (f) = F (g):F (I) → F (J).

Proof. We need to prove that for every acyclic small extension

0−→I−→A
ρ−→B−→0

the diagonal map F (A) → F (A)×F (B) F (A) is surjective; in order to prove this
it is sufficient to prove that the diagonal map A → A×B A induces a surjective
map F (A) → F (A×B A). We have a canonical isomorphism θ:A× I → A×B A,
θ(a, x) = (a, a + x) which sends A × {0} onto the diagonal; since F (A × I) =
F (A)× F (I) = F (A) the proof of item 1 is concluded.

For item 2, we can write I = I0 × I1, J = J0 × J1, with d(I0) = d(J0) = 0
and I1, J1 acyclic. Then the inclusion I0 i−→I and the projection J

p−→J0 induce
bijections F (I0) = F (I), F (J0) = F (J). It is now sufficient to note that pfi =
pgi: I0 → J0.
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A standard argument in Schlessinger’s theory [67, 2.10] shows that for ev-
ery predeformation functor F and every A ∈ NA ∩ DG there exists a natural
structure of vector space on F (A), where the sum and the scalar multiplication
are described by the maps

A×A
+−→A ⇒ F (A×A) = F (A)× F (A) +−→F (A)

s ∈ K , A
·s−→A ⇒ F (A) ·s−→F (A)

We left as an exercise to check that the vector space axioms are satisfied; if
A → B is a morphism in NA ∩DG then the commutativity of the diagrams

A×A
+−→A� �

B ×B
+−→B

,

A
·s−→A� �

B
·s−→B

, s ∈ K

shows that F (A) → F (B) is K -linear. Similarly if F → G is a natural trans-
formations of predeformation functors, the map F (A) → G(A) is K -linear for
every A ∈ NA ∩DG.

In particular, for every predeformation functor F and for every integer n the
sets F (Ω[n]) (see Example 4.7) and F (K [n]) are vector spaces and the projection
p: Ω[n] → K [n] induce a linear map F (Ω[n]) → F (K [n])

Definition 5.63. Let F be a predeformation functor, the tangent space of
F is the graded vector space TF [1], where

TF =
⊕
n∈Z

TnF, Tn+1F = TF [1]n = coker(F (Ω[n])
p−→F (K [n])), n ∈ Z.

A natural transformation F → G of predeformation functors is called a quasi-
isomorphism if induces an isomorphism on tangent spaces, i.e. if TnF � TnG
for every n.

We note that if F is a deformation functor then F (Ω[n]) = 0 for every n
and therefore TF [1]n = Tn+1F = F (K ε), where ε is an indeterminate of degree
−n ∈ Z such that ε2 = 0.

In particular T 1F = tF 0 , where F 0:ArtK → Set, F 0(A) = F (mA), is the
truncation of F in degree 0.

One of the most important examples of deformation functors is the defor-
mation functor associated to a differential graded Lie algebra.

Given a DGLA L and A ∈ NA, the tensor product L ⊗ A has a natural
structure of nilpotent DGLA with

(L⊗A)i =
⊕
j∈Z

Lj ⊗Ai−j

d(x⊗ a) = dx⊗ a + (−1)xx⊗ da

[x⊗ a, y ⊗ b] = (−1)a y[x, y]⊗ ab
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Every morphism of DGLA, L → N and every morphism A → B in NA give a
natural commutative diagram of morphisms of differential graded Lie algebras

L⊗A−→N ⊗A� �
L⊗B−→N ⊗B

The Maurer-Cartan functor MCL:NA → Set of a DGLA L is by definition

MCL(A) = MC(L⊗A) =
{

x ∈ (L⊗A)1
∣∣∣∣ dx +

1
2
[x, x] = 0

}
.

Lemma 5.64. For every differential graded Lie algebra L, MCL is a
predeformation functor.

Proof. It is evident that MCL(0) = 0 and for every pair of morphisms
α: A → C, β:B → C in NA we have

MCL(A×C B) = MCL(A)×MCL(C) MCL(B)

Let 0−→I−→A
α−→B−→0 be an acyclic small extension and x ∈ MCL(B). Since

α is surjective there exists y ∈ (L⊗A)1 such that α(y) = x. Setting

h = dy +
1
2
[y, y] ∈ (L⊗ I)2

we have
dh =

1
2
d[y, y] = [dy, y] = [h, y]− 1

2
[[y, y], y].

By Jacobi identity [[y, y], y] = 0 and, since AI = 0 also [h, y] = 0; thus dh = 0
and, being L⊗ I acyclic by Künneth formula, there exists s ∈ (L⊗ I)1 such that
ds = h. The element y − s lifts x and satisfies the Maurer-Cartan equation. We
have therefore proved that MCL is a predeformation functor.

Exercise 5.65. Prove that MC:DGLA → PreDef is a faithful functor
and every differential graded Lie algebra can be recovered, up to isomorphism,
from its Maurer-Cartan functor.

It is interesting to point out that, if A → B is a surjective quasiisomorphism
in NA, then in general MCL(A) → MCL(B) is not surjective. As an example
take L a finite-dimensional non-nilpotent complex Lie algebra, considered as a
DGLA concentrated in degree 0 and fix a ∈ L such that ad(a):L → L has an
eigenvalue λ �= 0. Up to multiplication of a by −λ−1 we can assume λ = −1. Let
V ⊂ L be the image of ad(a), the linear map Id+ad(a):V → V is not surjective
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and then there exists b ∈ L such that the equation x + [a, x] + [a, b] = 0 has no
solution in L.

Let u, v, w be indeterminates of degree 1 and consider the dg-algebras

B = Cu⊕ Cv, B2 = 0, d = 0

A = Cu⊕ Cv ⊕ Cw ⊕ Cdw, uv = uw = dw, vw = 0

The projection A → B is a quasiisomorphism but the element a ⊗ u + b ⊗ v ∈
MCL(B) cannot lifted to MCL(A). In fact if there exists ξ = a⊗u+b⊗v+x⊗w ∈
MCL(A) then

0 = dξ +
1
2
[ξ, ξ] = (x + [a, x] + [a, b])⊗ dw

in contradiction with the previous choice of a, b.

For every DGLA L and every A ∈ NA we define DefL(A) as the quotient of
MC(L⊗A) by the gauge action of the group exp((L⊗A)0). The gauge action
commutes with morphisms in NA and with morphisms of differential graded Lie
algebras; therefore the above definition gives a functor DefL:NA → Set.

Theorem 5.66. For every DGLA L, DefL:NA → Set is a deformation
functor with T iDefL = Hi(L).

Proof. If C ∈ NA∩DG is a complex then L⊗C is an abelian DGLA and
according to Proposition 5.49, MCL(C) = Z1(L⊗C) and DefL(C) = H1(L⊗C).
In particular T iDefL = H1(L ⊗ K [i − 1]) = Hi(L) and, by Künneth formula,
DefL(C) = 0 if C is acyclic.

Since DefL is the quotient of a predeformation functor, conditions 1 and 3
of 5.59 are trivially verified and then it is sufficient to verify condition 2.

Let α:A → C, β:B → C morphism in NA with α surjective. Assume
there are given a ∈ MCL(A), b ∈ MCL(B) such that α(a) and β(b) give the
same element in DefL(C); then there exists u ∈ (L ⊗ C)0 such that β(b) =
euα(a). Let v ∈ (L⊗A)0 be a lifting of u, changing if necessary a with its gauge
equivalent element eva, we may suppose α(a) = β(b) and then the pair (a, b)
lifts to MCL(A×C B): this proves that the map

DefL(A×C B) → DefL(A)×DefL(C) DefL(B)

is surjective.
If C = 0 then the gauge action exp((L ⊗ (A × B))0) × MCL(A × B) →

MCL(A×B) is the direct product of the gauge actions exp((L⊗A)0)×MCL(A)→
MCL(A), exp((L⊗B)0)×MCL(B) → MCL(B) and therefore DefL(A×B) =
DefL(A)×DefL(B).
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Finally assume B = 0, C acyclic complex and denote D = kerα � A×C B.
Let a1, a2 ∈ MCL(D), u ∈ (L ⊗ A)0 be such that a2 = eua1; we need to prove
that there exists v ∈ (L⊗D)0 such that a2 = eva1.

Since α(a1) = α(a2) = 0 and L⊗C is an abelian DGLA we have 0 = eα(u)0 =
0−dα(u) and then dα(u) = 0. L⊗C is acyclic and then there exists h ∈ (L⊗A)−1

such that dα(h) = −α(u) and u+ dh ∈ (L⊗D)0. Setting w = [a1, h] + dh, then,
according to Remark 5.33, ewa1 = a1 and euewa1 = eva1 = a2, where v = u ∗ w
is determined by Baker-Campbell-Hausdorff formula. We claim that v ∈ L⊗D:
in fact v = u ∗ w ≡ u + w ≡ u + dh (mod [L⊗A, L⊗A]) and since A2 ⊂ D we
have v = u ∗ w ≡ u + dh ≡ 0 (mod L⊗D).

Lemma 5.67. For every DGLA L, the projection π:MCL → DefL is a
quasiisomorphism.

Proof. Let i ∈ Z be fixed; in the notation of 5.63 we can write Ω[i− 1] =
K ε⊕K dε, where ε2 = εdε = (dε)2 = 0 and ε = 1− i, dε = 2− i. We have

MCL(K ε) = {xε ∈ (L⊗K ε)1|d(xε) = 0} = Zi(L)⊗K ε

MCL(K ε⊕K dε) = {xε + ydε ∈ (L⊗ Ω[i− 1])1 | dxε + (−1)1−ixdε + dydε = 0}
= {(−1)idyε + ydε| y ∈ Li−1}.

Therefore the image of p:MCL(K ε⊕K dε) → MCL(K ε) is exactly Bi(L)⊗K ε
and then

MCL(Ω[i− 1])
p−→MCL(K [i− 1]) π−→DefL(K [i− 1])−→0

is exact.

5.8 – Obstruction theory and the inverse function theorem for deformation
functors

Lemma 5.68. Let F :NA → Set be a deformation functor; for every
complex I ∈ NA ∩DG there exists a natural isomorphism

F (I) =
⊕
i∈Z

TF [1]i ⊗H−i(I) =
⊕
i∈Z

T i+1F ⊗H−i(I) = H1(TF ⊗ I).
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Proof. Let s:H∗(I) → Z∗(I) be a linear section of the natural projection,
then the composition of s with the natural embedding Z∗(I) → I is unique up to
homotopy and its cokernel is an acyclic complex, therefore it gives a well defined
isomorphism F (H∗(I)) → F (I). This says that it is not restrictive to prove the
lemma for complexes with zero differential. Moreover since F commutes with
direct sum of complexes we can reduce to consider the case when I = K s[n]
is a vector space concentrated in degree −n. Every v ∈ I gives a morphism
TF [1]n = F (K [n]) v−→F (I) and we can define a natural map TF [1]n⊗I → F (I),
x ⊗ v �→ v(x). It is easy to verify that this map is an isomorphism of vector
spaces.

Theorem 5.69. Let 0−→I
ι−→A

α−→B−→0 be an exact sequence of mor-
phisms in NA and let F :NA → Set be a deformation functor.

1. If AI = 0 then there exist natural transitive actions of the abelian group
F (I) on the nonempty fibres of F (A) → F (B).

2. If AI = 0 then there exists a natural “obstruction map” F (B) ob−→F (I[1])
with the property that ob(b) = 0 if and only if b belongs to the image of
F (A) → F (B).

3. If B is a complex, i.e. A2 ⊂ I, then there exist natural transitive actions of
the abelian group F (B[−1]) on the nonempty fibres of F (I) → F (A).

Here natural means in particular that commutes with natural transformation of
functors.

Proof. 1. There exists an isomorphism of dg-algebras

A× I−→A×B A; (a, t) �→ (a, a + t)

and then there exists a natural surjective map

ϑF : F (A)× F (I) = F (A× I) → F (A)×F (B) F (A)

The commutativity of the diagram

A× I × I−→A× I� �
A× I −→ A

,

(a, t, s) �→ (a, t + s)� �
(a + t, s)�→(a + t + s)

implies in particular that the composition of ϑF with the projection in the second
factor give a natural transitive action of the abelian group F (I) on the fibres of
the map F (A) → F (B).
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2. We introduce the mapping cone of ι as the dg-algebra C = A⊕ I[1] with
the product (a, m)(b, n) = (ab, 0) (note that, as a graded algebra, C is the trivial
extension of A by I[1]) and differential

dC =
(

dA ι
0 dI[1]

)
:A⊕ I[1] → A[1]⊕ I[2]

We left as exercise the easy verification that C ∈ NA, the inclusion A → C and
the projections C → I[1], C → B are morphisms in NA.

The kernel of C → B is isomorphic to I ⊕ I[1] with differential(
dI IdI[1]

0 dI[1]

)
.

Therefore 0−→I ⊕ I[1]−→C−→B−→0 is an acyclic small extension and then
F (C) = F (B).

On the other hand A = C ×I[1] 0 and then the map

F (A) → F (C)×F (I[1]) 0

is surjective. It is sufficient to define ob as the composition of the inverse of
F (C) → F (B) with F (C) → F (I[1]).

3. The derived inverse mapping cone is the dg-algebra D = A⊕B[−1] with
product (x, m)(x, n) = (xy, 0) and differential

dD =
(

dA 0
α dB[−1]

)
: A⊕B[−1] → A[1]⊕B

Here the projection D → A and the inclusions inclusion I → D, B[−1] → D are
morphisms in NA.

Since 0−→B[−1]−→D−→A−→0 is a small extension, by Item 1, there exist
natural actions of F (B[−1]) on the nonempty fibres of F (D) → F (A). The
quotient of I → D is the acyclic complex B ⊕B[−1], and then, according to 2b
of 5.59, F (I) → F (D) is an isomorphism.

Exercise 5.70. Prove that the stabilizers of the actions described in The-
orem 5.69 are vector subspaces.

Given two integers p ≤ q we denote by NAq
p the full subcategory of NA

whose objects are algebras A = ⊕Ai such that Ai �= 0 only if p ≤ i ≤ q.

Theorem 5.71. Let θ:F → G be a morphism of deformation functors.
Assume that θ:TF [1]i → TG[1]i is surjective for p− 1 ≤ i ≤ q and injective for
p ≤ i ≤ q + 1. Then:
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1. for every surjective morphism α:A → B in the category NAq
p−1 the mor-

phism
(α, θ):F (A) → F (B)×G(B) G(A)

is surjective.
2. θ:F (A) → G(A) is surjective for every A ∈ NAq

p−1.
3. θ:F (A) → G(A) is a bijection for every A ∈ NAq

p.

Proof. The proof uses the natural generalization to the differential graded
case of some standard techniques in Schlessinger’s theory, cf. [13].

We first note that, according to Lemma 5.68, for every complex I ∈ NAq
p ∩

DG we have that θ:F (I) → G(I) is bijective, θ: F (I[1]) → G(I[1]) is injective
and θ:F (I[−1]) → G(I[−1]) is surjective.

Moreover, since F (0) = G(0) = 0, we have F (0) ×G(0) G(A) = G(A) and
then Item 2 is an immediate consequence of Item 1.

Step 1. For every small extension in NAq
p−1,

0−→I−→A
α−→B−→0

and every b ∈ F (B) we have either α−1(b) = ∅ or θ(α−1(b)) = α−1(θ(b)).
In fact we have a commutative diagram

F (A) α−→F (B)�θ

�θ

G(A) α−→G(B)

and compatible transitive actions of the abelian groups F (I), G(I) on the fibres
of the horizontal maps. Since F (I) → G(I) is surjective this proves Step 1.

Step 2. Let
0−→I

ι−→A
α−→B−→0

be a small extension in NAq
p−1 and b ∈ F (B). Then b lifts to F (A) if and only

if θ(b) lifts to G(A).
The only if part is trivial, let’s prove the if part. If θ(b) lifts to G(A)

then ob(θ(b)) = 0 in G(I[1]); since the obstruction maps commute with natural
transformation of functors and F (I[1]) → G(I[1]) is injective, also ob(b) = 0 in
F (I[1]) and then b lifts to F (A).

Step 3. For every surjective morphism β:A → C in the category NAq
p−1,

the morphism
(α, θ):F (A) → F (C)×G(C) G(A)

is surjective.
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Let J be the kernel of β and consider the sequence of homogeneous differ-
ential ideals J = J0 ⊃ J1 = AJ0 ⊃ J2 = AJ1 · · · . Since A is nilpotent we have
Jn �= 0 and Jn+1 = 0 for some n ≥ 0. Denoting by I = Jn and B = A/I we
have a small extension

0−→I−→A
α−→B−→0

By induction on dimK A we can assume that the natural morphism F (B) →
F (C)×G(C) G(B) is surjective and therefore it is sufficient to prove that F (A) →
F (B)×G(B) G(A) is surjective.

Let ã ∈ G(A) be fixed element and let b ∈ F (B) such that θ(b) = α(ã). By
Step 2 α−1(b) is not empty and then by Step 1 ã ∈ θ(F (A)).

Step 4. For every surjective morphism f : A → B in the category NAq
p and

every a ∈ F (A) we define

SF (a, f) = {ξ ∈ F (A×B A) | ξ �→ (a, a) ∈ F (A)×F (B) F (A) ⊂ F (A)× F (A)}.
By definition, if f is a small extension and I = ker f then SF (a, f) is naturally
isomorphic to the stabilizer of a under the action of F (I) on the fibre f−1(f(a)).
It is also clear that:

1. θ(SF (a, f)) ⊂ SG(θ(a), f).
2. If α:B → C is a surjective morphism if NA, then SF (a, f)=h−1(SF (a, αf)),

where h:F (A ×B A) → F (A ×C A) is induced by the natural inclusions
A×B A ⊂ A×C A.

Step 5. For every surjective morphism f :A → B in NAq
p and every a ∈

F (A) the map θ:SF (a, f) → SG(θ(a), f) is surjective.
This is trivially true if B = 0, we prove the general assertion by induction

on dimK B. Let
0−→I−→B

α−→C−→0

be a small extension with I �= 0, set g = αf and denote by h:A ×C A → I the
surjective morphism in NAq

p defined by h(a1, a2) = f(a1) − f(a2); we have an
exact sequence

0−→A×B A
ι−→A×C A

h−→I−→0.

According to 2a of 5.59 the maps

F (A×B A) → F (A×C A) ∩ h−1(0); SF (a, f) → SF (a, g) ∩ h−1(0)

are surjective.
Let ξ̃ ∈ SG(θ(a), f) and let η ∈ SF (a, g) such that θ(η) = ι(ξ̃). Since

F (I) = G(I) we have h(η) = 0 and then η lifts to some ξ1 ∈ SF (a, f). According
to Theorem 5.69 there exist surjective maps commuting with θ

F (A×B A)× F (I[−1])
�−→F (A×B A)×F (A×CA) F (A×B A)

G(A×B A)×G(I[−1])
�−→G(A×B A)×G(A×CA) G(A×B A)
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Since F (I[−1]) → G(I[−1]) is surjective there exists v ∈ F (I[−1]) such that
�(θ(ξ1), θ(v)) = (θ(ξ1), ξ̃); defining ξ ∈ F (A ×B A) by the formula �(ξ1, v) =
(ξ1, ξ) we get θ(ξ) = ξ̃ and then ξ ∈ SF (a, f).

Step 6. For every A ∈ NAq
p the map θ: F (A) → G(A) is injective.

According to Lemma 5.68 this is true if A2 = 0; if A2 �= 0 we can suppose
by induction that there exists a small extension

0−→I
ι−→A

α−→B−→0

with I �= 0 and θ:F (B) → G(B) injective.
Let a1, a2 ∈ F (A) be two elements such that θ(a1) = θ(a2); by assumption

f(a1) = f(a2) and then there exists t ∈ F (I) such that ϑF (a1, t) = (a1, a2).
Since ϑ is a natural transformation ϑG(θ(a1), θ(t)) = (θ(a1), θ(a2)) and then
θ(t) ∈ SG(θ(a1), α). By Step 5 there exists s ∈ SF (a1, α) such that θ(s) = θ(t)
and by injectivity of θ:F (I) → G(I) we get s = t and then a1 = a2.

As an immediate consequence we have:

Corollary 5.72. A morphism of deformation functors θ:F → G is an
isomorphism if and only if it is a quasiisomorphism.

Proof of Theorem 5.51. We apply Theorem 5.71 to the morphism of
deformation functors θ = Defφ: DefL → DefN .

According to Theorem 5.66, the first item of 5.51 is exactly the first item of
5.71 for p = 1, q = 0, while the second item of 5.51 is exactly the third item of
5.71 for p = q = 0.

5.9 – Historical survey

The material Subsections 1, 2 and 3 is standard and well exposed in the
literature about Lie algebras; in Subsections 4, 5 and 6 we follows the approach
of [52], while the material of Subsections 7 and 8 comes from [53].

Some remarks on the introduction of this section:

A) Given a deformation problem, in general it is not an easy task to find a
factorization as in the introduction and in some cases it is still unknown.

B) Even in the simplest examples, the governing DGLA is only defined up to
(non canonical) quasiisomorphism and then the Theorem 5.51 is a necessary
background for the whole theory.

For example, there are very good reasons to consider, for the study of de-
formations of a compact complex manifold M , the DGLA L = ⊕Li, where Li
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is the completion of Γ(M,A0,i(TM )) is a suitable Sobolev’s norm. According to
elliptic regularity the inclusion KS(M) ⊂ L is a quasiisomorphism of DGLA.

In general a correct procedure gives, for every deformation problem P with
associated deformation functor DefP , a connected subcategory P ⊂ DGLA with
the following properties:

1. If L is an object of P then DefL = DefP .
2. Every morphism in P is a quasiisomorphism of DGLA.
3. If MorP(L, N) �= ∅ then the induced isomorphism Defα: DefL → DefN is

independent from the choice of α ∈ MorP(L, N).

C) It may happen that two people, say Circino and Olibri, starting from the
same deformation problem, get two non-quasiisomorphic DGLA governing the
problem. This is possible because the DGLA governs an extended (or derived)
deformation problem. If Circino and Olibri have in mind two different extensions
of the problem then they get different DGLA.

D) Although the interpretation of deformation problems in terms of solutions
of Maurer-Cartan equation is very useful on its own, in many situation it is
unavoidable to recognize that the category of DGLA is too rigid for a “good”
theory. The appropriate way of extending this category will be the introduction
of L∞-algebras; these new objects will be described in Section 9.

6 – Kähler manifolds

This section provides a basic introduction to Kähler manifolds. We first
study the local theory, following essentially Weil’s book [80] and then, assuming
harmonic and elliptic theory, we give a proof of the ∂∂-lemma which is presented
both in the classical version (Theorem 6.37, Item 2) and in the “homological”
version (Theorem 6.37, Item 1).

The material of this section is widely present in the literature, with the
possible exception of the homological version of ∂∂-lemma; I only tried to simplify
the presentation and some proofs. The main references are [80], [81] and [11]

6.1 – Covectors on complex vector spaces

Given a complex vector space E of dimension n we denote by:

• E∨ = HomC(E, C) its dual.
• EC = E ⊗R C, with the structure of C-vector space induced by the scalar

multiplication a(v ⊗ b) = v ⊗ ab.
• E its complex conjugate.
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The conjugate E is defined as the set of formal symbols v, v ∈ E with the vector
space structure given by

v + w = v + w, av = av.

The conjugation :E → E, v �→ v is a R-linear isomorphism.
There exists a list of natural isomorphisms (details left as exercise)

1. (EC)∨ = (E∨)C = HomR(E, C)
2. E∨ = E

∨
given by f(v) = f(v), f ∈ E∨, v ∈ E.

3. E ⊕ E → EC, (v, w) �→ v ⊗ 1 − iv ⊗ i + w ⊗ 1 + iw ⊗ i, being i a square
root of −1.

4. E∨ ⊕ E∨ → E∨
C

= HomR(E, C), (f, g)(v) = f(v) + g(v).

Under these isomorphisms, the image of E∨ (resp.: E
∨
) inside E∨

C
is the subspace

of f such that f(iv) = if(v) (resp.: f(iv) = −if(v)). Moreover E∨ = E
⊥

,
E

∨
= E⊥.
For 0 ≤ p, q ≤ n we set Ap,q =

∧p
E∨ ⊗

∧q
E

∨
: this is called the space of

(p, q)-covectors of E. We also set Ap = ⊕a+b=pAa,b (the space of p-covectors)
and A = ⊕a,bAa,b. Denote by Pa,b:A → Aa,b, Pp:A → Ap the projections.

If z1, . . . , zn is a basis of E∨ then z1, . . . , zn is a basis of E
∨

and therefore

zi1 ∧ . . . ∧ zip ∧ zj1 ∧ . . . ∧ zjq , i1 < . . . < ip, j1 < . . . < jq

is a basis of Ap,q. Since E∨
C

= E∨ ⊕ E
∨
, we have

∧∗
E∨

C
= A.

The complex conjugation is defined in A and gives a R-linear isomorphism
:A → A. On the above basis, the conjugation acts as

zi1 ∧ . . . ∧ zip ∧ zj1 ∧ . . . ∧ zjq = (−1)pqzj1 ∧ . . . ∧ zjq ∧ zi1 ∧ . . . ∧ zip .

Since Aa,b = Ab,a, we have Pa,b(η) = Pb,a(η).

Definition 6.1. The operator C:A → A is defined by the formula

C =
∑
a,b

ia−bPa,b.

Note that C(u) = C(u) (i.e. C is a real operator) and C2 =
∑

p(−1)pPp.
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6.2 – The exterior algebra of a Hermitian space

Let E be a complex vector space of dimension n. A Hermitian form on E
is a R-bilinear map h:E × E → C satisfying the conditions

1. h(av, w) = ah(v, w), h(v, aw) = ah(v, w), a ∈ C, v, w ∈ E.
2. h(w, v) = h(v, w), v, w ∈ E.

Note that h(v, v) ∈ R for every v. h is called positive definite if h(v, v) > 0 for
every v �= 0.

Definition 6.2. A Hermitian space is a pair (E, h) where h is a positive
definite Hermitian form on E.

It is well known that a Hermitian form h on a finite dimensional vector
space E is positive definite if and only if it admits a unitary basis, i.e. a basis
e1, . . . , en of E such that h(ei, ej) = δij .

Every Hermitian space (E, h) induces canonical Hermitian structures on the
associated vector spaces. For example

h:E × E → C, h(v, w) = h(v, w)

and

hp:
∧p

E ×
∧p

E → C, hp(v1 ∧ . . . ∧ vp, w1 ∧ . . . ∧ wp) = det(h(vi, wj))

are Hermitian forms. If e1, . . . , en is a unitary basis of E then e1, . . . , en is a
unitary basis for h and ei1 ∧ . . . ∧ eip

, i1 < . . . < ip, is a unitary basis for hp.
Similarly, if (F, k) is another Hermitian space then we have natural Hermi-

tian structures on E ⊗ F and HomC(E, F ) given by

hk:E ⊗ F → C, hk(v ⊗ f, w ⊗ g) = h(v, w)k(f, g)

h∨k: HomC(E, F ) → C, h∨k(f, g) =
n∑

i=1

k(f(ei), g(ei))

where ei is a unitary basis of E. It is an easy exercise (left to the reader) to
prove that h∨k is well defined and positive definite.

In particular the complex dual E∨ is a Hermitian space and the dual basis
of a unitary basis for h is a unitary basis for h∨.

Let e1, . . . , en be a basis of E, z1, . . . , zn ∈ E∨ its dual basis; then

h(v, w) =
∑
i,j

hijzi(v)zj(w)

where hij = h(ei, ej). We have hji = hij and the basis is unitary if and only if
hij = δij . We then write h =

∑
ij hijzi ⊗ zj ; in doing this we also consider h as

an element of E∨ ⊗ E
∨

= (E ⊗ E)∨.



114 MARCO MANETTI [114]

Taking the real and the imaginary part of h we have h = ρ−iω, with ρ, ω:E×
E → R. It is immediate to observe that ρ is symmetric, ω is skewsymmetric and

ρ(iv, iw) = ρ(v, w), ω(iv, iw) = ω(v, w), ρ(iv, w) = ω(v, w).

Since zi ∧ zj = zi ⊗ zj − zj ⊗ zi, we can write

ω =
i

2
(h− h) =

i

2

∑
ij

hijzi ∧ zj ∈ A1,1.

Note that ω is real, i.e. ω = ω, and the Hermitian form is positive definite if and
only if for every v �= 0, h(v, v) = ρ(v, v) = ω(v, iv) > 0. The basis e1, . . . , en is

unitary if and only if ω =
i

2

∑
i

zi ∧ zi.

Let now e1, . . . , en be a fixed unitary basis of a Hermitian space (E, h) with

dual basis z1, . . . , zn and denote uj =
i

2
zj ∧ zj ; if zj = xj + iyj then uj = xj ∧yj

and
ω∧n

n!
= u1 ∧ . . . ∧ un = x1 ∧ y1 ∧ . . . ∧ xn ∧ yn.

Since x1, y1, . . . , xn, yn is a system of coordinates on E, considered as a real
oriented vector space of dimension 2n and the quadratic form ρ is written in this
coordinates

ρ(v, v) =
n∑

i=1

(xi(v)2 + yi(v)2),

we get from the above formula that ω∧n/n! ∈
∧
R

2nHomR(E, R) is the volume
element associated to the scalar product ρ on E.

For notational simplicity, if A = {a1, . . . , ap} ⊂ {1, . . . , n} and a1 < a2 <
. . . < ap, we denote |A| = p and

zA = za1 ∧ . . . ∧ zap , zA = za1 ∧ . . . ∧ zap , uA = ua1 ∧ . . . ∧ uap .

For every decomposition of {1, . . . , n} = A ∪ B ∪M ∪N into four disjoint
subsets, we denote

zA,B,M,N =
1√

2|A|+|B|
zA ∧ zB ∧ uM ∈ A|A|+|M |,|B|+|M |.

These elements give a basis of A which we call standard basis.
Note that zA,B,M,N = (−1)|A| |B|zB,A,M,N .

Definition 6.3. The C-linear operator ∗:Ap,q → An−q,n−p is defined as

∗zA,B,M,N = sgn(A, B)i|A|+|B|zA,B,N,M ,
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where sgn(A, B) = ±1 is the sign compatible with the formulas

(2) zA,B,M,N ∧ ∗zA,B,M,N = zA,B,M,N ∧ ∗zA,B,M,N = u1 ∧ . . . ∧ un.

(3)
C−1 ∗ zA,B,M,N = (−1)

(|A|+|B|)(|A|+|B|+1)
2 zA,B,N,M =

= (−1)
(p+q)(p+q+1)

2 +|M |zA,B,N,M .

Exercise 6.4. Verify that Definition 6.3 is well posed.

In particular

∗2zA,B,M,N = (−1)|A|+|B|zA,B,M,N = (−1)|A|+|B|+2|M |zA,B,M,N

and then
(C−1∗)2 = Id, ∗2 = C2 =

∑
p

(−1)pPp.

If we denote vol: C → An,n the multiplication for the “volume element”
ω∧n/n!, then vol is an isomorphism and we can consider the R-bilinear maps

( , ):Aa,b ×Aa,b → C, (v, w) = vol−1(v ∧ ∗w) = vol−1(v ∧ ∗w).

Clearly ( , ) is C-linear on the first member and C-antilinear in the second; since

(zA,B,M,N , zA′,B′,M ′,N ′) =
{

1 if A = A′, B = B′, M = M ′, N = N ′

0 otherwise

we have that ( , ) is a positive definite Hermitian form with the zA,B,M,N ’s,
|A| + |M | = a, |B| + |M | = b, a unitary basis; since ∗ sends unitary basis into
unitary basis we also get that ∗:Aa,b → An−b,n−a is an isometry.

Lemma 6.5. The Hermitian form ( , ) is the Hermitian form associated to
the Hermitian space (E, h/2). In particular ( , ) and ∗ are independent from the
choice of the unitary basis e1, . . . , en.

Proof. The basis
√

2e1, . . . ,
√

2en is a unitary basis for h/2 and then the
standard basis is a unitary basis for the associated Hermitian structures on A.
From the formula (v, w)ω∧n = n!(v ∧ ∗w) and from the fact that the wedge
product is nondegenerate follows that ∗ depends only by ω and ( , ).
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Consider now, for every j = 1, . . . , n, the linear operators

Lj :Ap,q → Ap+1,q+1, Lj(η) = η ∧ uj ,

Λj :Ap,q → Ap−1,q−1, Λj(η) = η  
(

2
i
ej ∧ ej

)
,

where  denotes the contraction on the right. More concretely, in the standard
basis

LizA,B,M,N =
{

zA,B,M∪{i},N−{i} if i ∈ N

0 otherwise

ΛizA,B,M,N =
{

zA,B,M−{i},N∪{i} if i ∈ M

0 otherwise
It is therefore immediate to observe that Li∗ = ∗Λi and ∗Li = Λi∗. Setting
L =

∑
i Li, Λ =

∑
i Λi we have therefore

L(η) = η ∧ ω, Λ = ∗−1L∗ = ∗L ∗−1 .

Lemma 6.6. The operators L and Λ do not depend from the choice of the
unitary basis.

Proof. ω and ∗ do not depend.

Proposition 6.7. The following commuting relations hold:

[L, C] = 0, [Λ, C] = 0, [∗, C] = 0, [Λ, L] =
2n∑

p=0

(n− p)Pp.

Proof. Only the last is nontrivial, we have:

LzA,B,M,N =
∑
i∈N

zA,B,M∪{i},N−{i}, ΛzA,B,M,N =
∑
i∈M

zA,B,M−{i},N∪{i},

ΛLzA,B,M,N =
∑
i∈N

zA,B,M,N +
∑
j∈M

∑
i∈N

zA,B,M∪{i}−{j},N∪{j}−{i},

LΛzA,B,M,N =
∑
i∈M

zA,B,M,N +
∑
j∈M

∑
i∈N

zA,B,M∪{i}−{j},N∪{j}−{i}.

Therefore we get

(ΛL− LΛ)zA,B,M,N = (|N | − |M |)zA,B,M,N = (n− |A| − |B| − 2|M |)zA,B,M,N .

and then

[Λ, L] =
2n∑

p=0

(n− p)Pp.
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6.3 – The Lefschetz decomposition

The aim of this section is to study the structure of
∧∗,∗

E∨ as a module
over the algebra Φ generated by the linear operators C−1∗, L,Λ. In the notation
of the previous subsection, it is immediate to see that there exists a direct sum
decomposition of Φ-modules

∧∗,∗
E∨ =

⊕
VA,B , where VA,B is the subspace

generated by the 2n−|A|−|B| elements zA,B,M,N , being A, B fixed.
It is also clear that every VA,B is isomorphic to one of the Φ-modules V (h, τ),

h ∈ N, τ = ±1, defined in the following way:

1. V (h, τ) is the C-vector space with basis uM , M ⊂ {1, . . . , h}.
2. The linear operators L,Λ and C−1∗ act on V (h, τ) as

LuM =
∑
i �∈M

uM∪{i}, ΛuM =
∑
i∈M

uM−{i}, C−1 ∗ uM = τuMc ,

where M c = {1, . . . , h} −M denotes the complement of M .

We have a direct sum decomposition

V (h, τ) =
⊕

α≡h(mod 2)

Vα,

where Vα is the subspace generated by the uM with |M c|−|M | = α. An element
of Vα is called homogeneous of weight α. Set Pα: V (h, τ) → Vα the projection.

Note that L:Vα → Vα−2, Λ: Vα → Vα+2 and C−1∗:Vα → V−α.
We have already seen that

[Λ, L] =
∑
α∈Z

αPα, LC−1∗ = C−1 ∗ Λ, C−1 ∗ L = ΛC−1 ∗ .

A simple combinatorial argument shows that for every r ≥ 0,

LruM = r!
∑

M⊂N,|N |=|M |+r

uN .

Lemma 6.8. For every r ≥ 1 we have

[Λ, Lr] =
∑
α

r(α− r + 1)Lr−1Pα.
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Proof. This has already done for r = 1, we prove the general statement
for induction on r. We have

[Λ, Lr+1] = [Λ, Lr]L + Lr[Λ, L] =
∑
α

r(α− r + 1)Lr−1PαL +
∑
α

αPα.

Since PαL = LPα+2 we have

[Λ, Lr+1] =
∑
α

r(α− r + 1)LrPα+2 +
∑
α

αPα =
∑
α

(r(α− r − 1) + α)LrPα.

Definition 6.9 A homogeneous vector v ∈ Vα is called primitive if Λv = 0.

Proposition 6.10. Let v ∈ Vα be a primitive element, then:

1. Lqv = 0 for every q ≥ max(α + 1, 0). In particular if α < 0 then v = L0v =
0.

2. If α ≥ 0, then for every p > q ≥ 0

Λp−qLpv =
p∏

r=q+1

r(α− r + 1)Lqv;

in particular ΛαLαv = α!2v.

Proof. We first note that for s, r ≥ 1

ΛsLrv = Λs−1[Λ, Lr]v = r(α− r + 1)Λs−1Lr−1v.

and then for every p > q ≥ 0

Λp−qLpv =
p∏

r=q+1

r(α− r + 1)Lqv.

If p > q > α then r(α− r + 1) �= 0 for every r > q and then Lqv = 0 if and only
if Λp−qLpv = 0: taking p � 0 we get the required vanishing.

Lemma 6.11. Let α ≥ 0, m = (h − α)/2 and v =
∑

|M |=m aMuM ∈ Vα,
aM ∈ C. If v is primitive, then for every M

aM = (−1)m
∑

N⊂Mc,|N |=m

aN .
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Proof. For m = 0 the above equality becomes a∅ = a∅ and therefore we
can assume m > 0. Let M ⊂ {1, . . . , h} be a fixed subset of cardinality m, since

0 = Λv =
∑

|H|=m

aH

∑
i∈H

uH−{i} =
∑

|N |=m−1

uN

∑
i �∈N

aN∪{i}

we get for every N ⊂ {1, . . . , h} of cardinality m− 1 the equality

RN :
∑

i∈M−N

aN∪{i} = −
∑

i �∈M∪N

aN∪{i}.

For every 0 ≤ r ≤ m denote by

Sr =
∑

|H|=m,|H∩M |=r

aH .

Fixing an integer 1 ≤ r ≤ m and taking the sum of the equalities RN , for all N
such that |N ∩M | = r − 1 we get

rSr = −(m− r + 1)Sr−1

and then

aM =Sm = −Sm−1

m
=

2Sm−2

m(m− 1)
= . . .= (−1)m m!

m!
S0 = (−1)m

∑
N⊂Mc,|N |=m

aN .

Lemma 6.12. If v ∈ Vα, α ≥ 0, is primitive, then for every 0 ≤ r ≤ α

C−1 ∗ Lrv = τ(−1)m r!
(α− r)!

Lα−rv,

where m = (h− α)/2.

Proof. Consider first the case r = 0; writing v =
∑

aNuN with |N | = m,
aN ∈ C, we have:

Lαv

α!
=

∑
|N |=m

aN

∑
N⊂M

|M |=m+α

uM =
∑

|N |=m

aN

∑
M⊂Nc

|M |=m

uMc =
∑

|M |=m

uMc

∑
N⊂Mc

|N |=m

aN .

C−1 ∗ v = τ
∑

|M |=m

aMuMc .

The equality C−1 ∗ v = τ(α!)−1Lαv follows immediately from Lemma 6.11. If
r ≥ 1 then

C−1 ∗ Lrv = ΛrC−1 ∗ v =
τ(−1)m

α!
ΛrLαv.

Using the formula of 6.10 we get

C−1 ∗ Lrv =
τ(−1)m

α!

α∏
j=α−r+1

j(α− j + 1)Lα−rv = τ(−1)m r!
(α− r)!

Lα−rv.
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Theorem 6.13 (Lefschetz decomposition).
1. Every v ∈ Vα can be written in a unique way as

v =
∑

r≥max(−α,0)

Lrvr

with every vr ∈ Vα+2r primitive.
2. For a fixed q ≥ h there exist noncommutative polynomials Gq

α,r(Λ, L) with
rational coefficients such that vr = Gq

α,r(Λ, L)v for every v ∈ Vα.

Proof. Assume first α ≥ 0, we prove the existence of the decomposition
v =

∑
r≥0 Lrvr as above by induction on the minimum q such that Λqv = 0.

If q = 1 then v is already primitive. If Λq+1v = 0 then w = Λqv ∈ Vα+2q is
primitive and then, setting γ =

∏q
r=1 r(α + 2q − r + 1), we have γ > 0 and

Λq

(
v − Lq w

γ

)
= w − ΛqLq w

γ
= 0.

This prove the existence when α ≥ 0. If α < 0 then C−1 ∗ v ∈ V−α and we can
write:

C−1 ∗ v =
∑
r≥0

Lrvr, v =
∑
r≥0

C−1 ∗ Lrvr, vr ∈ V−α+2r.

According to Lemma 6.12

v =
∑
r≥0

γrL
−α+rvr =

∑
r≥−α

γr+αLrvr

for suitable rational coefficients γr.
The unicity of the decomposition and item 2 are proved at the same time.

If

v =
q∑

r=max(−α,0)

Lrvr

is a decomposition with every vr ∈ Vα+2r primitive, then Lα+qv = Lα+2qvq and

vq =
1

(α + 2q)!2
Λα+2qLα+2qvq =

1
(α + 2q)!2

Λα+2qLα+qv.

Therefore vq is uniquely determined by v and we can take Gq
α,q = (α +

2q)!−2Λα+2qLα+q.
Since v − Lqvq = (1 − LqGq

α,q)v =
∑q−1

r=max(−α,0) Lrvr we can proceed by
decreasing induction on q.
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Corollary 6.14. v ∈ Vα, α ≥ 0, is primitive if and only if Lα+1v = 0.

Proof. Let v =
∑

r≥0 Lrvr be the Lefschetz decomposition of v, then∑
r>0 Lα+r+1vr is the Lefschetz decomposition of Lα+1v. Therefore Lα+1v = 0

if and only if v = v0.

It is clear that Theorem 6.13 and Corollary 6.14 hold also for every finite
direct sum of Φ-modules of type V (h, τ).

For later use we reinterpret Lemma 6.12 for the Φ-module A: we have

A =
⊕
A,B

VA,B , VA,B = V
(
n− |A| − |B|, (−1)

(|A|+|B|)(|A|+|B|+1)
2

)
where the sum is taken over all pairs of disjoint subsets A, B of {1, . . . , n}. The
space Aα =

⊕
(VA,B)α is precisely the space

⊕
a Aa,n−α−a of (n−α)-covectors.

We then get the following

Lemma 6.15. If v ∈ A is a primitive p-covector, p ≤ n, then

C−1 ∗ Lrv =

 (−1)
p(p+1)

2
r!

(n− p− r)!
Ln−p−rv if r ≤ n− p

0 if r > n− p

6.4 – Kähler identities

Let M be a complex manifold of dimension n and denote by A∗,∗ the sheaf
of differential forms on M . By definition Aa,b is the sheaf of sections of the
complex vector bundle

∧a
T∨

M ⊗
∧b

TM
∨
. The operators Pa,b, Pp and C, defined

on the fibres of the above bundles, extend in the obvious way to operators in the
sheaf A∗,∗.

If d:A∗,∗ → A∗,∗ is the De Rham differential we denote:

dC = C−1dC, ∂ =
d + idC

2
, ∂ =

d− idC

2
,

d = CdCC−1, d = ∂ + ∂, dC = i(∂ − ∂).

If η is a (p, q)-form then we can write dη = η′ +η′′ with η′ ∈ Ap+1,q, η′′ ∈ Ap,q+1

and then

dC(η)=C−1d(ip−qη)=
ip−q

ip−q+1
η′+

ip−q

ip−q−1
η′′= i−1η′+iη′′, ∂η=η′, ∂η=η′′.

Since 0 = d2 = ∂2 + ∂∂ + ∂∂ + ∂
2

we get 0 = ∂2 = ∂∂ + ∂∂ = ∂
2

and then
(dC)2 = 0, ddC = 2i∂∂ = −dCd.
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Using the structure of graded Lie algebra on the space of C-linear operators
of the sheaf of graded algebras A∗,∗ (with the total degree v = a+ b if v ∈ Aa,b),
the above relation can be rewritten as

[d, d] = dd + dd = 2d2 = 0, [dC , dC ] = [d, dC ] = [∂, ∂] = [∂, ∂] = [∂, ∂] = 0.

Note finally that d and C are real operators and then also dC is; moreover
∂η = ∂η.

A Hermitian metric on M is a positive definite Hermitian form h on the
tangent vector bundle TM . If z1, . . . , zn are local holomorphic coordinates then

hij = h

(
∂

∂zi
,

∂

∂zj

)
is a smooth function and the matrix (hij) is Hermitian and

positive definite. The local expression of h is then h =
∑

ij hijdzi ⊗ dzj and the
differential form

ω =
i

2

∑
i,j

hijdzi ∧ dzj ∈ Γ(M,A1,1)

is globally definite and gives the imaginary part of −h; ω is called the (real,
(1, 1)) associated form to h.

The choice of a Hermitian metric on M induces, for every open subset
U ⊂ M , linear operators

L: Γ(U,Aa,b) → Γ(U,Aa+1,b+1), Lv = v ∧ ω,

∗: Γ(U,Aa,b) → Γ(U,An−b,n−a),

Λ: Γ(U,Aa,b) → Γ(U,Aa−1,b−1), Λ = ∗−1L∗ = (C−1∗)−1LC−1 ∗ .

The commuting relations between them

[L, C] = [Λ, C] = [∗, C] = [L, ∗2] = 0, [Λ, Lr] =
∑

p

r(n− p− r + 1)Pp

are still valid.
A differential form v is primitive if Λv = 0; the existence of the polynomials

Gn
n−p,r(Λ, L) (cf. Theorem 6.13) gives the existence and unicity of Lefschetz

decomposition for every differential p-form

v =
∑

r≥max(p−n,0)

Lrvr, Λvr = 0.

We set:
δ = − ∗ d∗, δC = − ∗ dC∗ = C−1δC,

∂∗ = − ∗ ∂∗ =
δ − iδC

2
, ∂

∗
= − ∗ ∂∗ =

δ + iδC

2
.
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Definition 6.16. The Hermitian metric h is called a Kähler metric if
dω = 0.

Almost all the good properties of Kähler metrics come from the following

Theorem 6.17 (Kähler identities). Let h be a Kähler metric on a complex
manifold, then:

[L, d] = 0 [L, dC ] = 0 [L, ∂] = 0 [L, ∂] = 0

[Λ, d] = −δC [Λ, dC ] = δ [Λ, ∂] = i∂
∗

[Λ, ∂] = −i∂∗

[L, δ] = dC [L, δC ] = −d [L, ∂∗] = i∂ [L, ∂
∗
] = −i∂

[Λ, δ] = 0 [Λ, δC ] = 0 [Λ, ∂∗] = 0 [Λ, ∂
∗
] = 0

Proof. It is sufficient to prove that [L, d] = 0 and [Λ, d] = −δC . In fact,
since Λ = ∗−1L∗ = ∗L∗−1 we have [Λ, δ] + ∗[L, d]∗ = 0 and [L, δ] + ∗[Λ, d]∗ = 0:
this will prove the first column. The second column follows from the first using
the fact that C commutes with L and Λ. The last two columns are linear
combinations of the first two.

If v is a p-form then, since dω = 0,

[L, d]v = dv ∧ ω − d(v ∧ ω) = −(−1)pv ∧ dω = 0.

According to the Lefschetz decomposition it is sufficient to prove that [Λ, d]Lru =
−δCLru for every r ≥ 0 and every primitive p-form u (p ≤ n). We first note
that, being u primitive, Ln−p+1u = 0 and then Ln−p+1du = dLn−p+1u = 0.
This implies that the Lefschetz decomposition of du is du = u0 + Lu1.

Setting α = n− p, we have u ∈ Vα, u0 ∈ Vα−1, u1 ∈ Vα+1:

[Λ, d]Lru = ΛLrdu− dΛLru = ΛLru0 + ΛLr+1u1 − r(α− r + 1)dLr−1u =

= r(α−r)Lr−1u0+(r+1)(α−r+1)Lru1−r(α−r+1)Lr−1u0−r(α−r+1)Lru1 =

= −rLr−1u0 + (α− r + 1)Lru1.

On the other hand we have by 6.15

−δCLru = C−1 ∗ d ∗ CLru = C−1 ∗ dC2C−1 ∗ Lru =

= C−1 ∗ dC2(−1)p(p+1)/2 r!
(α− r)!

Lα−ru
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and then

−δCLru = (−1)p(p−1)/2 r!
(α− r)!

C−1 ∗ Lα−r(u0 + Lu1).

Again by 6.15,

C−1 ∗ Lα−ru0 = (−1)(p+1)(p+2)/2 (α− r)!
(r − 1)!

Lr−1u0,

C−1 ∗ Lα−r+1u1 = (−1)(p−1)p/2 (α− r + 1)!
r!

Lru1.

Putting all the terms together we obtain the result.

Corollary 6.18. If ω is the associated form of a Kähler metric h then
dω∧p = δω∧p = 0 for every p ≥ 0.

Proof. The equality dω∧p = 0 follows immediately from the Leibnitz rule.
Since ω∧p is a (p, p) form, we have Cω∧p = ω∧p and then also dCω∧p = 0.

We prove δω∧p = 0 by induction on p, being the result trivial when p = 0.
If p > 0 we have

0 = dCω∧p−1 = Lδω∧p−1 − δLω∧p−1 = −δω∧p.

The gang of Laplacians is composed by:

1. ∆d = ∆ = [d, δ] = dδ + δd.
2. ∆dC = ∆C = C−1∆C = [dC , δC ] = dCδC + δCdC .
3. ∆∂ = � = [∂, ∂∗] = ∂∂∗ + ∂∗∂.
4. ∆∂ = � = [∂, ∂

∗
] = ∂ ∂

∗
+ ∂

∗
∂.

A straightforward computation shows that ∆ + ∆C = 2� + 2�.

Corollary 6.19. In the above notation, if h is a Kähler metric then:

[d, δC ] = [dC , δ] = [∂, ∂
∗
] = [∂, ∂∗] = 0,

1
2
∆ =

1
2
∆C = � = �.

In particular ∆ is bihomogeneous of degree (0, 0).
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Proof. According to Theorem 6.17 and the Jacobi identity we have

[d, δC ] = [d, [d, Λ]] =
1
2
[[d, d], Λ] = 0.

The proof of [dC , δ] = [∂, ∂
∗
] = [∂, ∂∗] = 0 is similar and left as exercise. For the

equalities among Laplacians it is sufficient to shows that ∆ = ∆C and � = �.
According to the Kähler identities

∆ = [d, δ] = [d, [Λ, dC ]] = [[d, Λ], dC ] + [Λ, [d, dC ]].

Since [d, dC ] = ddC + dCd = 0 we have

∆ = [d, δ] = [[d, Λ], dC ] = [δC , dC ] = ∆C .

The proof of � = � is similar and it is left to the reader.

Corollary 6.20. In the above notation, if h is a Kähler metric, then ∆
commutes with all the operators Pa,b, ∗, d, L, C, Λ, dC , ∂, ∂, δ, δC , ∂∗, ∂

∗
.

Proof. Since ∆ is of type (0, 0) it is clear that commutes with the projec-
tions Pa,b. Recalling that δ = − ∗ d∗ we get d = ∗δ∗ and then

∗∆ = ∗dδ + ∗δd = − ∗ d ∗ d ∗+ ∗ δ ∗ δ∗ = δd ∗+dδ∗ = ∆ ∗ .

[L,∆] = [L, [d, δ]] = [[L, d], δ] + [[L, δ], d] = [dC , d] = 0.

[d, ∆] = [d, [d, δ]] =
1
2
[[d, d], δ] = 0.

Now it is sufficient to observe that all the operators in the statement belong to
the C-algebra generated by Pa,b, ∗, d and L.

Definition 6.21. A p-form v is called harmonic if ∆v = 0.

Corollary 6.22. Let h be a Kähler metric and let v =
∑

r Lrvr be the
Lefschetz decomposition of a p-form.

Then v is harmonic if and only if vr is harmonic for every r.

Proof. Since ∆ commutes with L, if ∆vr = 0 for every r then also ∆v = 0.
Conversely, since vr = Gn

p,r(Λ, L)v for suitable noncommutative polynomials
with rational coefficients Gn

p,r, and ∆ commutes with Λ, L then v harmonic
implies ∆vr = 0 for every r.
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Corollary 6.23. In the above notation, if h is a Kähler metric and v is
a closed primitive (p, q)-form then v is harmonic.

Note that if either p = 0 or q = 0 then v is always primitive.
Proof. It is sufficient to prove that δv = 0, we have

δv = CδCC−1v = iq−pCδCv = iq−pC[d, Λ]v = 0.

6.5 – Kähler metrics on compact manifolds

In this subsection we assume M compact complex manifold of dimension n.
We denote by La,b = Γ(M,Aa,b), Lp =

⊕
a+b=p La,b, L =

⊕
p Lp.

Every Hermitian metric h on M induces a structure of pre-Hilbert space on
La,b for every a, b (and then also on L) given by:

(φ, ψ) =
∫

M

φ ∧ ∗ψ.

We have already seen that the operator ∗:La,b → Ln−a,n−b is an isometry com-
muting with the complex conjugation and then we also have:

(φ, ψ) =
∫

M

φ ∧ ∗ψ =
∫

M

φ ∧ ∗ψ = (−1)a+b

∫
M

∗φ ∧ ψ =
∫

M

ψ ∧ ∗φ = (ψ, φ).

Proposition 6.24. With respect to the above pre-Hilbert structures we
have the following pairs (written in columns) of formally adjoint operator:

operator d dC ∂ ∂ L

formal adjoint δ δC ∂∗ ∂
∗

Λ

In particular, all the four Laplacians are formally self-adjoint operators.

Proof. We show here only that δ is the formal adjoint of d. The proof of
the remaining assertions is essentially the same and it is left as exercise.

Let φ be a p-form and ψ a p + 1-form. By Stokes theorem

0 =
∫

M

d(φ ∧ ∗ψ) =
∫

M

dφ ∧ ∗ψ + (−1)p

∫
M

φ ∧ d∗ψ.

Since d∗ψ = d ∗ ψ and d ∗ ψ = (−1)2n−p ∗2 d ∗ ψ = −(−1)p ∗ δψ we get

0 =
∫

M

dφ ∧ ∗ψ −
∫

M

φ ∧ ∗δψ = (dφ, ψ)− (φ, δψ).



[127] Lectures on deformations of complex manifolds 127

Let D be any of the operator d, dC , ∂, ∂; denote D∗ its formal adjoint and
by ∆D = DD∗ + D∗D its Laplacian (i.e. ∆d = ∆, ∆∂ = � etc...). The space of
D-harmonic p-forms is denoted by Hp

D = ker∆D ∩ Lp.

Lemma 6.25. We have ker ∆D = kerD ∩ ker D∗.

Proof. The inclusion ⊃ is immediate from the definitions of the Laplacian.
The inclusion ⊂ comes from

(∆Dφ,φ)=(DD∗φ,φ)+(D∗Dφ,φ)=(D∗φ,D∗φ)+(Dφ,Dφ)=‖D∗φ‖2+‖Dφ‖2.

The theory of elliptic self-adjoint operators on compact manifolds gives:

Theorem 6.26. In the notation above the spaces of D-harmonic forms
Hp

D are finite dimensional and there exist orthogonal decompositions

Lp = Hp
D

⊥⊕
Im ∆D.

Proof. See e.g. [78].

Corollary 6.27. The natural projection maps

Hp
d → Hp(M, C), Hp,q

∂
→ Hq

∂
(M,Ωp)

are isomorphism.

Proof. We first note that, according to Lemma 6.25, every harmonic form
is closed and then the above projection maps makes sense. It is evident that
Im ∆ ⊂ Im d + Im δ. On the other hand, since d, δ are formally adjoint and
d2 = δ2 = 0 we have ker d ⊥ Im δ, ker δ ⊥ Im d: this implies that Im d, Im δ and
Hp

d are pairwise orthogonal. Therefore Im ∆ = Im d⊕Im δ and ker d = Hp
d⊕Im d;

the conclusion follows by De Rham theorem.
The isomorphism Hp,q

∂
→ Hq

∂
(M,Ωp) is proved in the same way (with Dol-

beault’s theorem instead of De Rham) and it is left as exercise.

Corollary 6.28. The map ∆D: Im ∆D → Im ∆D is bijective.

Proof. Trivial consequence of Theorem 6.26.
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We define the harmonic projection HD: Lp → Hp
D as the orthogonal projec-

tion and the Green operator GD:Lp → Im ∆D as the composition of

GD:Lp Id−HD−−−−−−→ Im ∆D

∆−1
D−−−−−−→ Im ∆D.

Note that ∆DGD = GD∆D = Id−HD and GDHD = HDGD = 0.

Lemma 6.29. If K is an operator commuting with ∆D then K commutes
with GD.

Proof. Exercise (Hint: K preserves image and kernel of ∆D).

If h is a Kähler metric, then the equality ∆ = 2� implies that

Hd = HdC = H∂ = H∂ , Gd = GdC =
1
2
G∂ =

1
2
G∂ .

In particular, according to Lemma 6.29 and Corollary 6.20, Gd = GdC commutes
with d, dC .

Corollary 6.30. If h is a Kähler metric on a compact manifold then:
Every holomorphic p-form on M is harmonic.

Proof. According to Corollary 6.27 the inclusion Hp,0

∂
⊂ Γ(M,Ωp) is an

isomorphism and then if η is a holomorphic p-form we have ∆(η)=2�(η)=0.

Exercise 6.31. Let v �= 0 be a primitive (p, q)-form on a compact manifold
M with Kähler form ω. Prove that∫

M

v ∧ v ∧ ω∧n−p−q �= 0.

6.6 – Compact Kähler manifolds

In this section we will prove that certain good properties concerning the
topology and the complex structure of compact complex manifolds are true when-
ever we assume the existence of a Kähler metric. This motivates the following
definition:

Definition 6.32. A complex manifold M s called a Kähler manifolds if
there exists a Kähler metric on M .

We note that, while every complex manifold admits a Hermitian metric
(this is an easy application of partitions of unity, cf. 37, Thm. 3.14]), not every
complex manifold is Kählerian. We recall the following

Theorem 6.33.

1. Cn, Pn and the complex tori are Kähler manifolds.
2. If M is a Kähler manifold and N ⊂ M is a regular submanifold then also

N is a Kähler manifolds.
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For a proof of Theorem 6.33 we refer to [26].
From now on M is a fixed compact Kähler manifold on dimension n.
For every m ≤ 2n we denote by Hm(M, C) = Hm(M, R)⊗R C the De Rham

cohomology C-vector spaces. We note that a differential m-form η is d-closed if
and only if its conjugate η is. In particular the complex conjugation induce an
isomorphism of vector spaces Hm(M, C) = Hm(M, C).

If p + q = m we denote by F p,q ⊂ Hm(M, C) the subspace of cohomology
classes represented by d-closed form of type (p, q) (note that a (p, q)-form η is
d-closed if and only if it is ∂η = ∂η = 0). It is clear that F p,q = F q,p.

Theorem 6.34 (Hodge decomposition). In the notation above we have

Hm(M, C) =
⊕

p+q=m
F p,q

and the natural morphisms F p,q → Hp,q
∂ (M), F p,q → Hp,q

∂
(M) are isomor-

phisms.

Proof. Take a Kähler metric on M and use it to define the four Laplacians,
the harmonic projectors and the Green operators. According to Corollary 6.19
the Laplacian ∆ is bihomogeneous of bidegree (0, 0) and we have

ker ∆ ∩ Lq =
⊕

a+b=q

ker ∆ ∩ La,b.

The isomorphism ker ∆∩Lq → Hq(M, C) induces injective maps ker ∆∩La,b →
F a,b; this maps are also surjective because every closed form α is cohomologically
equivalent to its harmonic projection Hα and H is bihomogeneous of bidegree
(0, 0).

The last equalities follow from the isomorphisms

ker ∆∩La,b =ker�∩La,b =Ha,b
∂ (M), ker ∆∩La,b =ker�∩La,b = Ha,b

∂
(M).

Corollary 6.35. If M is a compact Kähler manifold then:

1. bi =
∑

a+b=i ha,b.
2. hp,q = hq,p, in particular bi is even if i is odd.
3. hp,p > 0, in particular bi > 0 if i is even.
4. Every holomorphic p-form on M is d-closed.

(bi = dimC Hi(M, C) are the Betti numbers, hp,q = dimC Hq(M, Ωp) the Hodge
numbers.)
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Proof. Items 1 and 2 are immediate consequence of the Hodge decompo-
sition. Take a Kähler metric on M and use it to define the four Laplacians, the
harmonic projectors and the Green operators. Let ω be the associated form of
the Kähler metric on M . According to Corollary 6.18, ω∧p is harmonic and then
ker� ∩ Lp,p = ker∆ ∩ Lp,p �= 0.

Finally, by Corollary 6.30 the holomorphic forms are ∆-harmonic and there-
fore d-closed.

Example 6.36. The Hopf surfaces (Example 1.6) have b1 = b3 = 1, b2 = 0
and then are not Kähler.

Finally we are in a position to prove the following

Theorem 6.37 (∂∂-Lemma). Let M be a compact Kähler manifold. Then

1. There exists a linear operator σ:L → L of bidegree (0,−1) such that

[∂, σ] = 0, [∂, σ]∂ = [∂, σ∂] = ∂.

2. Im ∂∂ = ker ∂ ∩ Im ∂ = ker ∂ ∩ Im ∂.

Proof. 1. Choose a Kähler metric and define σ = G∂∂
∗
. According

to 6.19, 6.20 and 6.29 we have σ = ∂
∗
G∂ , [∂, σ] = 0 and, denoting by H the

harmonic projection,

[∂, σ]∂ = G∂∆∂∂ = (Id−H)∂ = ∂.

2. (cf. Exercise 6.39) We prove only Im ∂∂ = ker ∂ ∩ Im ∂, being the other
equality the conjugate of this one. The inclusion ⊂ is evident, conversely let
x = ∂α be a ∂-closed differential form; we can write

x = ∂α = [∂, σ]∂α = ∂σ∂α + σ∂∂α = −∂∂σα− σ∂x = ∂∂(σα).

Corollary 6.38. Let M be a compact Kähler manifold. Then for every
p, q the natural maps

ker ∂ ∩ ker ∂ ∩ Lp,q

∂∂Lp−1,q−1
→ ker ∂ ∩ ker ∂ ∩ Lp,q

∂(ker ∂ ∩ Lp,q−1)
→ ker ∂ ∩ Lp,q

∂Lp,q−1
= Hq(M,Ωp)

ker ∂ ∩ ker ∂ ∩ Lp,q

∂∂Lp−1,q−1
→ ker ∂ ∩ ker ∂ ∩ Lp,q

∂(ker ∂ ∩ Lp−1,q)
→ ker ∂ ∩ Lp,q

∂Lp−1,q

are isomophisms.



[131] Lectures on deformations of complex manifolds 131

Proof. The two lines are conjugates each other and then it is sufficient to
prove that the maps on the first row are isomorphisms.

Choose a Kähler metric, every ∂-closed form φ can be written as φ = α+∂ψ
with �α = 0. Since � = � we have ∂α = 0 and then the above maps are
surjective.

According to Theorem 6.37 we have

∂∂(Lp−1,q−1) ⊂ ∂(ker ∂ ∩ Lp,q−1) ⊂ ker ∂ ∩ ∂(Lp,q−1) ⊂ ∂∂(Lp−1,q−1)

and then all the maps are injective.

Exercise 6.39. Prove that for a double complex (L∗,∗, d, δ) of vector spaces
(with d, δ differentials of respective bidegrees (1, 0) and (0, 1)) the following con-
ditions are equivalent:

1. There exists a linear operator σ:L∗,∗ → L∗,∗−1 of bidegree (0,−1) such that

[d, σ] = 0, [δ, σ]d = [δ, σd] = d.

2. Im dδ = ker δ ∩ Im d.

(Hint: The implication [1 ⇒ 2] is the same as in Theorem 6.37. In order to
prove [2 ⇒ 1] write La,b = F a,b ⊕ Ca,b with F a,b = dLa−1,b and observe that
the complexes (F a,∗, δ) are acyclic. Define first σ:F a,b → F a,b−1 such that
[δ, σ]d = d and then σ:Ca,b → Ca,b−1 such that [d, σ] = 0.)

6.7 – Historical survey

Most of the properties of Kähler manifolds are stable under deformation.
For example:

Theorem 6.40. Let f :M → B be a family of compact complex manifolds
and assume that Mb is Kählerian for some b ∈ B.

Then there exists an open neighbourhood b ∈ U ⊂ B such the functions
hp,q:U → N, hp,q(u) = dimC Hp,q(Mu) are constant and

∑
p+q=m hp,q(u) =

dimC Hm(Mu, C) for every u ∈ U .

Proof. (Idea) Exercise 1.18 implies
∑

p+q=m hp,q(u) ≥ dimC Hm(Mu, C)
and the equality holds whenever Mu is Kählerian. On the other side, by semicon-
tinuity Theorem 1.42 the functions hp,q are semicontinuous and by Ehresmann’s
theorem the function u �→ dimC Hm(Mu, C) is locally constant.
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Theorem 6.40 is one of the main ingredients for the proof of the following
theorem, proved by Kodaira (cf. [37], [78])

Theorem 6.41. Let f :M → B be a family of compact complex manifolds.
Then the subset {b ∈ B |Mb is Kählerian } is open in B.

The proof of 6.41 requires hard functional and harmonic analysis.

It seems that the name Kähler manifolds comes from the fact that they were
defined in a note of Erich Kähler (1906-2000) of 1933 but all their (first) good
properties were estabilished by W.V.D. Hodge some years later.

7 – Deformations of manifolds with trivial canonical bundle

In the first part of this section we prove, following [21] and assuming Ku-
ranishi Theorem 4.36, the following

Theorem 7.1 (Bogomolov-Tian-Todorov]). Let M be a compact Kähler
manifold with trivial canonical bundle KM = OM . Then M admits a semiuni-
versal deformation with smooth base (H1(M, TM ), 0).

According to Corollary 4.37, it is sufficient to to show that the natural map

DefM

(
C[t]

(tn+1)

)
→ DefM

(
C[t]
(t2)

)

is surjective for every n ≥ 1. This will be done using Corollary 5.52 and the so
called Tian-Todorov’s lemma.

A generalization of this theorem has been given recently by H. Clemens [10].
We will prove of Clemens’ theorem in Section 9.

In the second part we introduce some interesting classes of dg-algebras which
arise naturally both in mathematics and in physics: in particular we introduce
the notion of differential Gerstenhaber algebra and differential Gerstenhaber-
Batalin-Vilkovisky algebra. Then we show (Example 7.30) that the algebra of
polyvector fields on a manifold with trivial canonical bundle carries the structure
of differential Gerstenhaber-Batalin-Vilkovisky algebra.
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7.1 – Contraction on exterior algebras

Let K be a fixed field and E a vector space over K of dimension n; denote
by E∨ its dual and by 〈, 〉:E × E∨ → C the natural pairing. Given v ∈ E, the
(left) contraction by v is the linear operator v ":

∧b
E∨ →

∧b−1
E∨ defined by

the formula

v " (z1 ∧ . . . ∧ zb) =
b∑

i=1

(−1)i−1〈v, zi〉z1 ∧ . . . ∧ ẑi ∧ . . . ∧ zb.

For every a ≤ b the contraction

∧a
E ×

∧b
E∨ �−→

∧b−a
E∨

is the bilinear extension of

(va ∧ . . . ∧ v1) " (z1 ∧ . . . ∧ zb) = va " ((va−1 ∧ . . . ∧ v1) " (z1 ∧ . . . ∧ zb)) =

=
∑
σ∈G

(−1)σ

(
a∏

i=1

〈vi, zσ(i)〉
)

zσ(a+1) ∧ . . . ∧ zσ(b)

where G ⊂ Σb is the subset of permutations σ such that σ(a + 1) < σ(a + 2) <
. . . < σ(b). We note that if a = b then the contraction is a nondegenerate pairing
giving a natural isomorphism (

∧a
E)∨ =

∧a
E∨. This isomorphism is, up to sign,

the same considered is Subsection 6.2.
If a > b we use the convention that "= 0.

Lemma 7.2.

1. For every v ∈ E the operator v " is a derivation of degree −1 of the graded
algebra

∧∗
E∨.

2. For every v ∈
∧a

E, w ∈
∧b

E, z ∈
∧c

E∨, we have

(v ∧ w) " z = v " (w " z).

In particular the operatorw ":
∧c

E∨→
∧c−b

E∨ is the adjoint of ∧w:
∧c−b

E→∧c
E.

3. If v ∈
∧a

E∨, w ∈
∧b

E, Ω ∈
∧n

E∨, where dimE = n, a ≤ b, then:

v ∧ (w " Ω) = (v " w) " Ω.
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Proof. 1. Complete v to a basis v = e1, . . . , en of E and let z1, . . . , zn

be its dual basis. Every w ∈
∧∗

E∨ can be written in a unique way as w =
z1 ∧ w1 + w2 with w1, w2 ∈

∧∗
v⊥. According to the definition of " we have

v " w = w1.
If w = z1 ∧ w1 + w2, u = z1 ∧ u1 + u2 are decompositions as above then

(v " w) ∧ u+(−1)ww∧(v " u)=w1∧(z1∧u1+u2)+(−1)w2(z1 ∧ w1+ w2) ∧ u1 =

= w1 ∧ u2 + (−1)w2w2 ∧ u1.

v " (w ∧ u) = v " ((z1 ∧ w1 + w2) ∧ (z1 ∧ u1 + u2)) =
= v " (z1 ∧ w1 ∧ u2 + w2 ∧ z1 ∧ u1 + w2 ∧ u2) =

= w1 ∧ u2 + (−1)w2w2 ∧ u1.

2. Immediate from the definition.
3. Induction on a; if a = 1 then complete v to a basis v = z1, . . . , zn of E∨

and denote e1, . . . , en ∈ E its dual basis. Writing

w = e1 ∧ w1 + w2, wi ∈
∧∗

v⊥, wi " Ω = v ∧ ηi, ηi ∈
∧∗

e⊥1 ,

we have by Item 2

w " Ω = (e1 ∧ w1) " Ω + (w2 " Ω) = e1 " (w1 " Ω) + (w2 " Ω) = η1 + v ∧ η2,

and then
v ∧ (w " Ω)=v ∧ η1 =w1 " Ω = (v " w) " Ω.

If a > 1 and v = v1 ∧ v2, with v1 ∈ E∨, v2 ∈
∧a−1

E∨ then by item 2 and
inductive assumption

v1∧v2∧(w" Ω)=v1∧((v2" w)" Ω)=(v1" (v2" w))" Ω=((v1∧v2)" w)" Ω.

Lemma 7.3. For every vector space E of dimension n and every integer
a = 0, . . . , n, the contraction operator defines a natural isomorphism∧a

E
i−→

∧n
E ⊗

∧n−a
E∨, i(v) = Z ⊗ (v " Ω)

where (Z,Ω) ∈
∧n

E ×
∧n

E∨ is any pair satisfying Z " Ω = 1.

Proof. Trivial.

Exercise 7.4. Let 0−→E−→F−→G−→0 be an exact sequence of vector
spaces with dim G = n < ∞. Use the contraction operator to define, for every
a ≤ dimE, a natural surjective linear map

∧a+n
F →

∧a
E ⊗

∧n
G.
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7.2 – The Tian-Todorov’s lemma

The isomorphism i of Lemma 7.3 can be extended fiberwise to vector bun-
dles; in particular, if M is a complex manifold of dimension n and TM is its
holomorphic tangent bundle, we have holomorphic isomorphisms

i:
∧a

TM−→
∧n

TM ⊗
∧n−a

T∨
M = Ωn−a

M (K∨
M )

which extend to isomorphisms between their Dolbeault’s sheaf resolutions

i: (A0,∗(
∧a

TM ), ∂)−→(A0,∗(
∧n

TM ⊗
∧n−a

T∨
M ), ∂) = (An−a,∗(K∨

M ), ∂).

If z1, . . . , zn are local holomorphic coordinates then a local set of generators

of
∧a

TM is given by the polyvector fields
∂

∂zI
=

∂

∂zi1

∧ . . . ∧ ∂

∂zia

, being I =

(i1, . . . , ia) a multiindex.
If Ω is a local frame of KM and Z a local frame of K∨

M such that Z " Ω = 1,
then

i

(
∂

∂zI
dzJ

)
= Z ⊗

(
∂

∂zI
dzJ " Ω

)
= Z ⊗

(
∂

∂zI
" Ω

)
dzJ .

Given a fixed Hermitian metric h on the line bundle K∨
M we denote by

D = D′+∂ the unique hermitian connection on K∨
M compatible with the complex

structure.
We recall (cf. [35]) that D′:A0,b(K∨

M ⊗Ωa
M ) → A0,b(K∨

M ⊗Ωa+1
M ) is defined

in local coordinates as

D′(Z ⊗ φ) = Z ⊗ (θ ∧ φ + ∂φ), φ ∈ Aa,b,

where θ = ∂ log(|Z|2) = ∂ log(h(Z, Z)) is the connection form of the frame Z.
We have moreover (D′)2 = 0 and D′∂ + ∂D′ = Θ is the curvature of the

metric.
We can now define a C-linear operator (depending on h)(2)

∆:A0,b(
∧a

TM ) → A0,b(
∧a−1

TM ), ∆(φ) = i−1D′(i(φ)).

Lemma 7.5. Locally on M , with Ω, Z and θ as above we have

∆(φ) " Ω = θ ∧ (φ " Ω) + ∂(φ " Ω)

for every φ ∈ A0,b(
∧∗

TM ).

(2)don’t confuse this ∆ with the Laplacian
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Proof. By definition

i∆(φ) = Z ⊗ (∆(φ) " Ω),

i∆(φ) = D′(i(φ)) = D′(Z ⊗ (φ " Ω)) = Z ⊗ (θ ∧ (φ " Ω) + ∂(φ " Ω)).

Lemma 7.6. In local holomorphic coordinates z1, . . . , zn we have

∆
(

f
∂

∂zI
dzJ

)
=

(
(θf + ∂f) " ∂

∂zI

)
dzJ , f ∈ A0,0,

where θ is the connection form of the frame Z =
∂

∂z1
∧ . . . ∧ ∂

∂zn
and the right

hand side is considered = 0 when I = ∅.

Proof. We first note that if φ ∈ A0,0(
∧a

TM ) then i(φdzJ) = i(φ)dzJ and

D′i(φdzJ) = D′(Z ⊗ (φ " Ω)⊗ dzJ) = D′(Z ⊗ (φ " Ω))⊗ dzJ :

this implies that ∆(φdzJ) = ∆(φ)dzJ . According to Lemma 7.5

∆
(

f
∂

∂zI

)
" Ω = θ ∧

(
f

∂

∂zI
" Ω

)
+ ∂

(
f

∂

∂zI
" Ω

)

Since Ω = dzn ∧ . . . ∧ dz1 we have ∂

(
∂

∂zI
" Ω

)
= 0 and then, by Item 3 of

Lemma 7.2,

∆
(

f
∂

∂zI

)
" Ω = (θf + ∂f) ∧

(
∂

∂zI
" Ω

)
=

(
(θf + ∂f) " ∂

∂zI

)
" Ω.

Setting Pa,b = A0,b(
∧−a

TM ) for every a ≤ 0, b ≥ 0, the direct sum
P = (

⊕
a,b Pa,b, ∂) is a sheaf of dg-algebras, where the sections of A0,b(

∧a
TM )

have total degree b − a and ∂:A0,b(
∧a

TM ) → A0,b+1(
∧a

TM ) is the Dolbeault
differential. The product on P is the ‘obvious’ one:

(ξ ⊗ φ) ∧ (η ⊗ ψ) = (−1)φ η(ξ ∧ η)⊗ (φ ∧ ψ).

Lemma 7.7. The C-linear operator ∆:P → P has degree +1; moreover
∆2 = 0 and [∆, ∂] = ∆∂ + ∂∆ = i−1Θi.



[137] Lectures on deformations of complex manifolds 137

Proof. Evident.

Consider the bilinear symmetric map of degree 1, Q:P × P → P

Q(α, β) = ∆(α ∧ β)−∆(α) ∧ β − (−1)αα ∧∆(β).

A brutal computation in local coordinates shows that Q is independent of the
metric. In fact, for every pair of C∞ functions f, g

Q

(
f

∂

∂zI
dzJ , g

∂

∂zH
dzK

)
= (−1)|J| |H|Q

(
f

∂

∂zI
, g

∂

∂zH

)
dzJ ∧ dzK

and

Q

(
f

∂

∂zI
, g

∂

∂zH

)
= (θfg + ∂(fg)) "

(
∂

∂zI
∧ ∂

∂zH

)
−

−g

(
(θf + ∂f) " ∂

∂zI

)
∧ ∂

∂zH
− (−1)|I|f

∂

∂zI
∧

(
(θg + ∂g) " ∂

∂zH

)
.

According to Lemma 7.2, Item 1:

Q

(
f

∂

∂zI
, g

∂

∂zH

)
= f

(
∂g " ∂

∂zI

)
∧ ∂

∂zH
+ (−1)|I|g

∂

∂zI
∧

(
∂f " ∂

∂zH

)
.

In particular if |I| = 0, |H| = 1 then

Q

(
fdzJ , g

∂

∂zh
dzK

)
= (−1)|J|g

∂f

∂zh
dzJ ∧ dzK ,

while, if |I| = |H| = 1 then

Q

(
f

∂

∂zi
dzJ , g

∂

∂zh
dzK

)
= (−1)|J|

(
f

∂g

∂zi

∂

∂zh
− g

∂f

∂zh

∂

∂zi

)
dzJ ∧ dzK .

Recalling the definition of the bracket [ , ] in the Kodaira-Spencer algebra
KSM =

⊕
b A0,b(TM ) we have:

Lemma 7.8 (Tian-Todorov). If α ∈ A0,a(TM ), β ∈ A0,b(TM ) then

(−1)a[α, β] = ∆(α ∧ β)−∆(α) ∧ β − (−1)a−1α ∧∆(β).

In particular the bracket of two ∆-closed forms is ∆-exact.
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Example 7.9. If M is compact Kähler and c1(M) = 0 in H2(M, C) then
by [35, 2.23] there exists a Hermitian metric on K∨

M such that Θ = 0; in this
case [∆, ∂] = 0 and ker ∆ is a differential graded subalgebra of KSM .

Example 7.10. If M has a nowhere vanishing holomorphic n-form Ω
(n = dimM) we can set on K∨

M the trivial Hermitian metric induced by the
isomorphism Ω: K∨

M → OM . In this case, according to Lemma 7.5, the operator
∆ is defined by the rule

(∆α) " Ω = ∂(α " Ω).

7.3 – A formality theorem

Theorem 7.11. Let M be a compact Kähler manifold with trivial canonical
bundle KM = OM . Then the Kodaira-Spencer DGLA

KSM =
⊕
p

Γ(M,A0,p(TM ))

is quasiisomorphic to an abelian DGLA.

Proof. Let Ω ∈ Γ(M, KM ) be a nowhere vanishing holomorphic n-form
(n = dimM); via the isomorphism Ω:K∨

M → OM , the isomorphism of complexes

i: (A0,∗(TM ), ∂) → (An−1,∗, ∂)

is given in local holomorphic coordinates by

i

(
f

∂

∂zi
dzI

)
= f

(
∂

∂zi
" Ω

)
dzI

and induces a structure of DGLA, isomorphic to KSM on

Ln−1,∗ =
⊕
p

Γ(M,An−1,p).

Taking on K∨
M the trivial metric induced by Ω:K∨

M → OM , the connection D is
equal to the De Rham differential and then the Tian-Todorov’s lemma implies
that the bracket of two ∂-closed form of Ln−1,∗ is ∂-exact; in particular

Q∗ = ker ∂ ∩ Ln−1,∗

is a DGL subalgebra of Ln−1,∗.
Consider the complex (R∗, ∂), where

Rp =
ker ∂ ∩ Ln−1,p

∂Ln−2,p
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endowed with the trivial bracket, again by Lemma 7.8 the projection Q∗ → R∗

is a morphism of DGLA.
It is therefore sufficient to prove that the DGLA morphisms

Ln−1,∗ ←− Q∗ −→ R∗

are quasiisomorphisms.
According to the ∂∂-Lemma 6.37, ∂(ker ∂) ⊂ Im ∂ and then the operator ∂

is trivial on R∗: therefore

Hp(R∗) =
ker ∂ ∩ Ln−1,p

∂Ln−2,p
, Hp(Ln−1,∗) =

ker ∂ ∩ Ln−1,p

∂Ln−1,p−1
,

Hp(Q∗) =
ker ∂ ∩ ker ∂ ∩ Ln−1,p

∂(ker ∂ ∩ Ln−1,p−1)
.

The conclusion now follows immediately from Corollary 6.38.

Corollary 7.12. Let M be a compact Kähler manifold with trivial canon-
ical bundle KM = OM . For every local Artinian C-algebra (A, mA) we have

DefM (A) = H1(M, TM )⊗mA.

In particular

DefM

(
C[t]

(tn+1)

)
→ DefM

(
C[t]
(t2)

)
is surjective for every n ≥ 2.

Proof. According to Theorem 5.55 and Corollary 5.52 we have DefM =
DefR∗ . Since R∗ is an abelian DGLA we have by Proposition 5.49

DefR∗(A) = H1(R∗)⊗mA = H1(KSM )⊗mA = H1(M, TM )⊗mA.
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7.4 – Gerstenhaber algebras and Schouten brackets

Lemma 7.13. Let (G,∧) be a graded Z-commutative algebra and let
[, ]:G[−1] × G[−1] → G[−1] be a skewsymmetric bilinear map of degree 0 such
that

ada = [a,−] ∈ Derdeg(a,G[−1])(G, G), ∀a ∈ G[−1].

(Note that this last condition is equivalent to the so-called Odd Poisson identity

[a, b ∧ c] = [a, b] ∧ c + (−1)a(b−1)b ∧ [a, c],

[a ∧ b, c] = a ∧ [b, c] + (−1)c(b−1)[a, c] ∧ b,

for every a, b, c ∈ G[−1], x = deg(x, G[−1]).)
Let G ⊂ G be a set of homogeneous generators of the algebra G, then:

1. [, ] is uniquely determined by the values [a, b], a, b ∈ G.
2. A derivation d ∈ Dern(G, G) satisfies [d, ada] = add(a) for every a ∈ G[−1]

if and only if
d[a, b] = [da, b] + (−1)na[a, db]

for every a, b ∈ G.
3. [, ] satisfies the Jacobi condition ad[a,b] = [ada, adb] if and only if

[[a, b], c] = [a, [b, c]]− (−1)a b[b, [a, c]].

for every a, b, c ∈ G.

Proof. 1. is clear. If a ∈ G then by 2. the derivations [d, ada] and add(a)

take the same values in G and then [d, ada] = add(a). The skewsymmetry of [, ]
implies that for every b ∈ G[−1] the derivations [d, adb] and add(b) take the same
values in G.

The proof of 3. is made by applying twice 2., first with d = ada, a ∈ G,
and then with d = adb, b ∈ G[−1].

Definition 7.14. A Gerstenhaber algebra is the data of a graded Z-
commutative algebra (G,∧) and a morphism of graded vector spaces ad:G[−1] →
Der∗(G, G) such that the bracket

[, ]:G[−1]i ×G[−1]j → G[−1]i+j , [a, b] = ada(b)

induce a structure of graded Lie algebra on G[−1] (cf. [17, p.267]).
A morphism of Gerstenhaber algebras is a morphism of graded algebras

commuting with the bracket [, ].
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For every graded vector space G there exists an isomorphism from the space
of bilinear skewsymmetric maps [, ]:G[−1]×G[−1] → G[−1] of degree 0 and the
space of bilinear symmetric maps Q:G×G → G of degree 1; this isomorphism,
called décalage, is given by the formula(3)

Q(a, b) = (−1)deg(a,G[−1])[a, b].

Therefore a Gerstenhaber algebra can be equivalently defined as a graded alge-
bra (G,∧) endowed with a bilinear symmetric map Q:G × G → G of degree 1
satisfying the identities

Odd Poisson Q(a, b ∧ c) = Q(a, b) ∧ c + (−1)(a+1)bb ∧Q(a, c),

Jacobi Q(a, Q(b, c)) = (−1)aQ(Q(a, b), c) + (−1)a bQ(b, Q(a, c)),

where a = deg(a, G), b = deg(b, G).

Example 7.15 (Schouten algebras). A particular class of Gerstenhaber
algebras are the so called Schouten algebras: here the bracket is usually called
Schouten bracket.

Consider a commutative K -algebra A0 and let A−1 ⊂ DerK (A0, A0) be an
A0-submodule such that [A−1, A−1] ⊂ A−1. Define

A =
⊕
i≥0

A−i, A−i =
∧
A0

i
A−1.

With the wedge product, A is a graded algebra of nonpositive degrees.
There exists a unique structure of Gerstenhaber algebra (A,∧, [, ]) such that

for every a, b ∈ A[−1]1 = A0, f, g ∈ A[−1]0 = A−1

ada(b) = 0, adf (a) = f(a), adf (g) = [f, g].

In fact A is generated by A0 ∪ A−1 and, according to Lemma 7.13, the skew-
symmetric bilinear map

[ξ0 ∧ . . . ∧ ξn, h] =
n∑

i=0

(−1)n−iξi(h)ξ0 ∧ . . . ∧ ξ̂i ∧ . . . ∧ ξn

[ξ0 ∧ . . . ∧ ξn, ζ0 ∧ . . . ∧ ζm] =

=
n∑

i=0

m∑
j=0

(−1)i+j [ξi, ζj ] ∧ ξ0 ∧ . . . ∧ ξ̂i ∧ . . . ∧ ξn ∧ ζ0 ∧ . . . ∧ ζ̂j ∧ . . . ∧ ζm

(3)The décalage isomorphism is natural up to sign; the choice of deg(a, G[−1]) instead

of deg(a, G) is purely conventional.
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where h ∈ A0, ξ0, . . . , ξn, ζ0, . . . , ζm ∈ A−1 is well defined and it is the unique
extension of the natural bracket such that ad(A[−1]) ⊂ Der∗(A, A).

We need to show that [, ] satisfies the Jacobi identity

[[a, b], c] = [a, [b, c]]− (−1)a b[b, [a, c]].

Again by Lemma 7.13 we may assume that 0 ≤ a ≤ b ≤ c. There are 5 possible
cases, where the Jacobi identity is satisfied for trivial reasons, as summarized in
the following table:

a b c Jacobi is true because..

1 1 1 all terms are = 0

0 1 1 all terms are = 0

0 0 1 definition of [, ] on A−1

0 0 0 Jacobi identity on A−1

Example 7.16. Let M be a complex manifold of dimension n, the sheaf of
graded algebras T = ⊕i≤0Ti, Ti = A0,0(

∧−i
TM ), admits naturally a Schouten

bracket.
In local holomorphic coordinates z1, . . . , zn, since[

∂

∂zi
,

∂

∂zj

]
= 0,

[
∂

∂zI
, g

]
Sch

= (−1)|I|−1

(
∂g " ∂

∂zI

)
,

the Odd Poisson identity implies that the Schouten bracket takes the simple
form[

f
∂

∂zI
, g

∂

∂zH

]
Sch

= (−1)|I|−1f

(
∂g " ∂

∂zI

)
∧ ∂

∂zH
− g

∂

∂zI
∧

(
∂f " ∂

∂zH

)
.

Definition 7.17. A differential Gertstenhaber algebra is a Gerstenhaber
algebra (G,∧, [, ]) endowed with a differential d ∈ Der1(G, G) making (G, d, [, ])
a differential graded Lie algebra.

Example 7.18. Given any Gertstenhaber algebra G and an element a ∈
G0 = G[−1]1 such that [a, a] = 0 we have that d = ada gives a structure of
differential Gerstenhaber algebra.

Exercise 7.19. For every f ∈ K [x1, . . . , xn] the Koszul complex of the

sequence
∂f

∂x1
, . . . ,

∂f

∂xn
carries a structure of differential Gerstenhaber algebra.
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7.5 – d-Gerstenhaber structure on polyvector fields

Let M be a fixed complex manifold, then the sheaf of dg-algebras P defined
in Subsection 2, endowed with the Schouten bracket[

f
∂

∂zI
dzJ , g

∂

∂zH
dzK

]
Sch

= (−1)|J|(|H|−1)

[
f

∂

∂zI
, g

∂

∂zH

]
Sch

dzJ ∧ dzK

is a sheaf of differential Gerstenhaber algebras.
We have only to verify that locally ∂ is a derivation of the graded Lie algebra

(P, [, ]): this follows immediately from Lemma 7.13 and from the fact that locally
the Kodaira-Spencer DGLA generates P as a graded algebra.

Via the décalage isomorphism, the Schouten bracket corresponds to the
symmetric bilinear map of degree 1 Q:P × P → P given in local holomorphic
coordinates by the formulas

Q

(
fdzJ

∂

∂zI
, gdzK

∂

∂zH

)
= (−1)|K|(|I|−1)+|J|dzJ ∧ dzKQ

(
f

∂

∂zI
, g

∂

∂zH

)
,

where

Q

(
f

∂

∂zI
, g

∂

∂zH

)
= f

(
∂g " ∂

∂zI

)
∧ ∂

∂zH
+ (−1)|I|g

∂

∂zI
∧

(
∂f " ∂

∂zH

)
.

Notice that, in the notation of Subsection 2,

Q(α, β) = ∆(α ∧ β)−∆(α) ∧ β − (−1)αα ∧∆(β)

and therefore we also have the following

Lemma 7.20 (Tian-Todorov). for every α, β ∈ P[−1],

[α, β]Sch = α ∧∆β + (−1)deg(α,P[−1])(∆(α ∧ β)−∆α ∧ β).

There exists a natural morphism :̂P → Hom(A∗,∗,A∗,∗) of sheaves of bi-
graded vector spaces on M given in local coordinates by

̂
φ

∂

∂zI
(η) = φ ∧

(
∂

∂zI
" η

)
.

Since, for every φ ∈ P0,p = A0,p, η ∈ A∗,∗, we have

∂

∂zI
" (φ ∧ η) = (−1)p|I|φ ∧

(
∂

∂zI
" η

)
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the hat morphism̂ is a morphism of algebras, being the product inHom(A∗,∗,A∗,∗)
the composition product. We observe that the composition product is associative
and therefore Hom(A∗,∗,A∗,∗) has also a natural structure of sheaf of graded Lie
algebras. Since P is graded commutative, [â, b̂] = 0 for every a, b ∈ P.

Lemma 7.21. For every a, b ∈ P homogeneous,

1. ∂̂a = [∂, â].

2. Q̂(a, b) = [[∂, â], b̂] = −(−1)aâ∂b̂− (−1)a b+b b̂∂â± ∂âb̂± b̂â∂

Proof. The proof of the first identity is straightforward and left to the
reader.

By Jacobi identity,

0 = [∂, [â, b̂]] = [[∂, â], b̂]− (−1)a b[[∂, b̂], â]

and therefore both sides of the equality 7.21 are graded symmetric.
Moreover, since b̂ ∧ c = b̂ĉ and

Q(a, b ∧ c) = Q(a, b) ∧ c + (−1)(a+1)bb ∧Q(a, c),

[[∂, â], b̂ĉ] = [[∂, â], b̂]ĉ + (−1)(a+1)bb̂[[∂, â], ĉ],

it is sufficient to check the equality only when a, b = f, dzj ,
∂

∂zi
, f ∈ P0,0 = A0,0.

i) If φ ∈ P0,∗ then

[∂, φ̂]η = ∂(φ ∧ η)− (−1)φφ ∧ ∂η = ∂φ ∧ η.

In particular [∂, d̂zj ] = 0, Q(dzj , b) = 0 for every b.

ii) If f, g ∈ P0,0 then Q(f, g) ∈ P1,0 = 0 and

[[∂, f̂ ], ĝ]η = ∂f ∧ gη − g(∂f ∧ η) = 0.

If f ∈ P0,0 then Q

(
f,

∂

∂zi

)
=

∂

∂zi
" ∂f =

∂f

∂zi
and

[
[∂, f̂ ],

∂̂

∂zi

]
η = ∂f ∧

(
∂

∂zi
" η

)
+

∂

∂zi
" (∂f ∧ η) =

(
∂

∂zi
" ∂f

)
∧ η
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where the last equality follows from the Leibnitz rule applied to the derivation
∂

∂zi
".

Finally Q

(
∂

∂zi
,

∂

∂zj

)
= 0; since ∂,

∂̂

∂zi
,

∂̂

∂zj
are derivations of A∗,∗, also[[

∂,
∂̂

∂zi

]
,

∂̂

∂zj

]
is a derivation of bidegree (−1, 0) and then it is sufficient to

check the equality for η = dzi. This last verification is completely straightforward
and it is left to the reader.

Exercise 7.22. Prove that Ω
∗

= {a ∈ P | [∂, â] = 0 }.

7.6 – GBV-algebras

In this section K is a fixed field of characteristic 0.

Definition 7.23. A GBV (Gerstenhaber-Batalin-Vilkovisky) algebra is the
data of a graded algebra (G,∧) and a linear map ∆:G → G of degree 1 such
that:

1. ∆2 = 0
2. The symmetric bilinear map of degree 1

Q(a, b) = ∆(a ∧ b)−∆(a) ∧ b− (−1)aa ∧∆(b)

satisfies the odd Poisson identity

Q(a, b ∧ c) = Q(a, b) ∧ c + (−1)(a+1)bb ∧Q(a, c).

Note that the second condition on the above definition means that for every
homogeneous a ∈ G, the linear map Q(a,−) is a derivation of degree a + 1.

The map Q corresponds, via the décalage isomorphism, to a skewsymmetric
bilinear map of degree 0, [, ]:G[−1] × G[−1] → G[−1]; the expression of [, ] in
terms of ∆ is

[a, b] = a ∧∆(b) + (−1)deg(a,G[−1])(∆(a ∧ b)−∆(a) ∧ b).

Example 7.24. If ∆ is a differential of a graded algebra (G,∧), then Q = 0
and (G,∧,∆) is a GBV algebra called abelian.

Example 7.25. The sheaf P of polyvector fields on a complex manifold,
endowed with the operator ∆ described in Subsection 2 is a sheaf of GBV algebra.
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Exercise 7.26. Let (G,∧,∆) be a GBV algebra. If G has a unit 1, then
∆(1) = 0.

Lemma 7.27. For every a, b ∈ G homogeneous

∆Q(a, b) + Q(∆(a), b) + (−1)aQ(a,∆(b)) = 0.

Proof. It is sufficient to write Q in terms of ∆ and use ∆2 = 0.

Theorem 7.28. If (G,∧,∆) is a GBV algebra then (G[−1], [, ],∆) is a
DGLA and therefore (G,∧, Q) is a Gerstenhaber algebra.

Proof. Working in G[−1] (i.e. a=deg(a, G[−1])) we have from Lemma 7.27

∆[a, b] = [∆(a), b] + (−1)a[a,∆(b)]

and then we only need to prove the Jacobi identity.
Replacing a = α, b = β ∧ γ in the above formula we have

[α,∆(β ∧ γ)] = (−1)α(∆[α, β ∧ γ]− [∆α, β ∧ γ])

and then [α,∆(β ∧ γ)] is equal to

(−1)α∆([α, β]∧γ)+(−1)α β∆(β∧[α, γ])−(−1)α[∆α, β]∧γ+(−1)(α+1)ββ∧[∆α, γ].

Writing

[α, [β, γ]] = [α, β ∧∆γ] + (−1)β([α,∆(β ∧ γ)]− [α,∆β ∧ γ]),

[[α, β], γ] = [α, β] ∧∆γ + (−1)α+β(∆([α, β] ∧ γ)−∆[α, β] ∧ γ),

[β, [α, γ]] = β ∧∆[α, γ] + (−1)β(∆(β ∧ [α, γ])−∆β ∧ [α, γ])
we get

[α, [β, γ]] = [[α, β], γ] + (−1)α β [β, [α, γ]].

Definition 7.29. Let (G,∧,∆) be a GBV-algebra and d a differential of
degree 1 of (G,∧). If d∆ + ∆d = 0 then the gadget (G,∧,∆, d) is called a
differential GBV algebra.

Example 7.30. Let P be the algebra of polyvector fields on a complex
manifold M . In the notation of Subsection 2, (P,∧,∆, ∂) is a sheaf of differential
GBV algebras if and only if the connection D is integrable.

This happen in particular when M has trivial canonical bundle and D is
the trivial connection.

Exercise 7.31. If (G,∧,∆,d) is a differential GBV-algebra then (G[−1],[, ],d+
�∆) is a DGLA for every � ∈ K .
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7.7 – Historical survey

The Schouten bracket was introduced by Schouten in [70] while the Jacobi
identity was proved 15 years later by Nijenhuis [58].

The now called Gerstenhaber algebras have been first studied in [17] as a
structure on the cohomology of an associative ring.

Concrete examples of GBV algebra arising from string theory were studied
in 1981 by Batalin and Vilkovisky, while the abstract definition of GBV algebra
given in this notes was proposed in [48] (cf. also [75]).

8 – Graded coalgebras

This section is a basic course on graded coalgebra, with particular emphasis
on symmetric graded coalgebra. The aim is give the main definitions and to give
all the preliminaries for a satisfactory theory of L∞-algebras.

Through all the section we work over a fixed field K of characteristic 0.
Unless otherwise specified all the tensor products are made over K .

The main references for this section are [61, Appendix B], [22], [6].

8.1 – Koszul sign and unshuffles

Let V, W ∈ G be graded vector spaces over K . We recall (Definition 4.2)
that the twisting map T :V ⊗ W → W ⊗ V is defined by the rule T (v ⊗ w) =
(−1)v ww ⊗ v, for every pair of homogeneous elements v ∈ V , w ∈ W .

The tensor algebra generated by V ∈ G is by definition the graded vector
space

T (V ) =
⊕

n≥0

⊗n
V

endowed with the associative product (v1⊗. . .⊗vp)(vp+1⊗. . .⊗vn) = v1⊗. . .⊗vn.
Let I ⊂ T (V ) be the homogeneous ideal generated by the elements x ⊗

y − T (x ⊗ y), x, y ∈ V ; the symmetric algebra generated by V is defined as the
quotient

S(V ) = T (V )/I =
⊕

n≥0

⊙n
V,

⊙n
V =

⊗n
V/(

⊗n
V ∩ I)

The product in S(V ) is denoted by #. In particular if π:T (V ) → S(V ) is
the projection to the quotient then for every v1, . . . , vn ∈ V , v1 # . . . # vn =
π(v1 ⊗ . . .⊗ vn).

The exterior algebra generated by V is the quotient of T (V ) by the homo-
geneous ideal J generated by the elements x⊗ y + T (x⊗ y).∧

V = T (V )/J =
⊕

n≥0

∧n
V,

∧n
V =

⊗n
V/(

⊗n
V ∩ J).
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Every morphism of graded vector spaces f :V → W induces canonically
three homomorphisms of graded algebras

T (f):T (V ) → T (W ), S(f):S(V ) → S(W ),
∧

(f):
∧

V →
∧

W.

The following convention is adopted in force: let V, W be graded vector
spaces and F :T (V ) → T (W ) a linear map. We denote by

F i:T (V ) →
⊗i

W, Fj :
⊗j

V → T (W ), F i
j :

⊗j
V →

⊗i
W

the compositions of F with the inclusion
⊗j

V → T (V ) and/or the projection
T (W ) →

⊗i
W .

Similar terminology is adopted for linear maps S(V ) → S(W ).
If v1, . . . , vn is an ordered tuple of homogeneous elements of V and σ: {1,. . . ,s}→
{1, . . . , n} is any map, we denote vσ = vσ1 # vσ2 # . . .# vσs ∈

⊙s
V .

If I ⊂ {1, . . . , n} is a subset of cardinality s we define vI as above, consid-
ering I as a strictly increasing map I: {1, . . . , s} → {1, . . . , n}.

If I1 ∪ . . .∪ Ia = J1 ∪ . . .∪ Jb = {1, . . . , n} are decompositions of {1, . . . , n}

into disjoint subsets, we define the Koszul sign ε

(
V,

I1, . . . , Ia

J1, . . . , Jb

; {vh}
)

= ±1 by

the relation

ε

(
V,

I1, . . . , Ia

J1, . . . , Jb

; {vh}
)

vI1 # . . .# vIa
= vJ1 # . . .# vJb

.

Similarly, if σ is a permutation of {1, . . . , n}, ε(V, σ; v1, . . . , vn) = ±1 is
defined by

v1 # . . .# vn = ε(V, σ; v1, . . . , vn)(vσ(1) # . . .# vσ(n)),

or more explicitly

ε(V, σ; v1, . . . , vn) =
∏
i<j

(
σi − σj

|σi − σj |

)vi vj

, v = deg(v;V ).

For notational simplicity we shall write ε(σ; v1, . . . , vn) or ε(σ) when there is no
possible confusion about V and v1, . . . , vn.

The action of the twisting map on
⊗2

V extends naturally, for every n ≥ 0,
to an action of the symmetric group Σn on the graded vector space

⊗n
V . This

action can be described by the use of Koszul sign, more precisely

σ(v1 ⊗ . . .⊗ vn) = ε(σ; v1, . . . , vn)(vσ(1) ⊗ . . .⊗ vσ(n))
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Denote by N :S(V ) → T (V ) the linear map

N(v1 # . . .# vn) =
∑

σ∈Σn

ε(σ; v1, . . . , vn)(vσ(1) ⊗ . . .⊗ vσ(n)) =

=
∑

σ∈Σn

σ(v1 ⊗ . . .⊗ vn), v1, . . . , vn ∈ V.

Since K has characteristic 0, a left inverse of π:T (V ) → S(V ) is given by∑
n

Idn

n!
N , where, according to our convention, Idn:T (V ) →

⊗n
V is the pro-

jection.
For every homomorphism of graded vector spaces f :V → W , we have

N ◦ S(f) = T (f) ◦N : S(V ) → T (W ).

The image of N :
⊙n

V →
⊗n

V is contained in the subspace (
⊗n

V )Σn of
Σn-invariant vectors.

Lemma 8.1. In the notation above, let W ⊂
⊗n

V be the subspace gener-
ated by all the vectors v − σ(v), σ ∈ Σn, v ∈

⊗n
V .

Then
⊗n

V = (
⊗n

V )Σn⊕W and N :
⊙n

V → (
⊗n

V )Σn is an isomorphism
with inverse

π

n!
.

Proof. It is clear from the definition of W that π(W ) = 0; moreover
v −N

π

n!
v ∈ W for every v ∈

⊗n
V , and therefore Im(N) + W =

⊗n
V .

On the other side if v is Σn-invariant then

v =
1
n!

∑
σ∈Σn

σ(v) =
1
n!

Nπ(v)

and therefore Im(N) = (
⊗n

V )Σn , Im(N) ∩W ⊂ Im(N) ∩ ker(π) = 0.

For every 0 ≤ a ≤ n, the multiplication map V ⊗a
⊗

V ⊗n−a → V ⊗n is an
isomorphism of graded vector spaces; we denote its inverse by

aa,n−a:V ⊗n → V ⊗a⊗
V ⊗n−a,

aa,n−a(v1 ⊗ . . .⊗ vn) = (v1 ⊗ . . .⊗ va)⊗ (va+1 ⊗ . . .⊗ vn).

The multiplication µ: (
⊙a

V ) ⊗ (
⊙n−a

V ) →
⊙n

V is surjective but not

injective; a left inverse is given by la,n−a

(
n

a

)−1

, where

la,n−a(v1 # . . .# vn) =
∑

ε

(
I, Ic

{1, . . . , n}
; v1, . . . , vn

)
vI ⊗ vIc ,
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the sum is taken over all subsets I ⊂ {1, . . . , n} of cardinality a and Ic is the
complement of I to {1, . . . , n}.

Definition 8.2. The set of unshuffles of type (p, q) is the subset S(p, q) ⊂
Σp+q of permutations σ such that σ(i) < σ(i + 1) for every i �= p.

Since σ ∈ S(p, q) if and only if the restrictions σ: {1, . . . , p} → {1, . . . , p+q},
σ: {p+1, . . . , p+q} → {1, . . . , p+q}, are increasing maps, it follows easily that the
unshuffles are a set of representatives for the cosets of the canonical embedding
of Σp ×Σq inside Σp+q. More precisely for every σ ∈ Σp+q there exists a unique
decomposition σ = τρ with τ ∈ S(p, q) and ρ ∈ Σp × Σq.

Exercise 8.3. Prove the formula

la,n−a(v1 # . . .# vn) =
∑

σ∈S(a,n−a)

ε(σ)(vσ(1) # . . .# vσ(a))⊗ (vσ(a+1) # . . .# vσ(n))

Lemma 8.4. In the above notation, for every 0 ≤ a ≤ n

aa,n−aN = (N ⊗N)la,n−a:
⊙n

V →
⊗a

V ⊗
⊗n−a

V.

Proof. Easy exercise.

Consider two graded vector spaces V, M and a homogeneous linear map
f :

⊗m
V → M . The symmetrization f̃ :

⊙m
V → M of f is given by the formula

f̃(a1 # a2 # . . .# am) =
∑

σ∈Σm

ε(V, σ; a1, . . . , am)f(aσ1 ⊗ . . .⊗ aσm).

If g:
⊗l

V → V is a homogeneous linear map of degree k, the (non associa-
tive) Gerstenhaber composition product f • g:

⊗m+l−1
V → M is defined as

f • g(a1 ⊗ . . .⊗ am+l−1) =

=
m−1∑
i=0

(−1)k(a1+...+ai)f(a1 ⊗ . . .⊗ ai ⊗ g(ai+1 ⊗ . . .⊗ ai+l)⊗ . . .⊗ am+l−1).

The behavior of • with respect to symmetrization is given in the following lemma.

Lemma 8.5 (Symmetrization lemma). In the notation above

f̃ • g(a1 # . . .# am+l−1) =

=
∑

σ∈S(l,m−1)

ε(V, σ; a1, . . . , am)f̃(g̃(aσ1 # . . .# aσl
)# aσl+1 # . . .# aσl+m−1).
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Proof. We give only some suggestion, leaving the details of the proof as
exercise. First, it is sufficient to prove the formula in the “universal” graded
vector space U with homogeneous basis a1, . . . , am+l−1 and bI , where I ranges
over all injective maps {1, . . . , l} → {1, . . . , m + l − 1}, bI is homogeneous of
degree k + aI(1) + . . . + aI(l) and g(aI) = bI .

Second, by linearity we may assume that M = K and f an element of the
dual basis of the standard basis of

⊗m
U .

With these assumption the calculation becomes easy.

8.2 – Graded coalgebras

Definition 8.6. A coassociative Z-graded coalgebra is the data of a graded
vector space C = ⊕n∈ZCn ∈ G and of a coproduct ∆:C → C ⊗ C such that:

• ∆ is a morphism of graded vector spaces.
• (coassociativity) (∆⊗ IdC)∆ = (IdC ⊗∆)∆: C → C ⊗ C ⊗ C.

The coalgebra is called cocommutative if T∆ = ∆.

For simplicity of notation, from now on with the term graded coalgebra we
intend a Z-graded coassociative coalgebra.

Definition 8.7. Let (C,∆) and (B,Γ) be graded coalgebras. A morphism
of graded coalgebras f :C → B is a morphism of graded vector spaces that
commutes with coproducts, i.e. Γf = (f ⊗ f)∆.

The category of graded coalgebras is denoted by GC.

Exercise 8.8. A counity of a graded coalgebra is a morphism of graded
vector spaces ε:C → K such that (ε⊗ IdC)∆ = (IdC ⊗ ε)∆ = IdC .

Prove that if a counity exists, then it is unique (Hint: (ε⊗ ε′)∆ =?).

Example 8.9. Let C = K [t] be the polynomial ring in one variable t of
even degree. A coalgebra structure is given by

∆(tn) =
n∑

i=0

ti ⊗ tn−i.

We left to the reader the verification of the coassociativity, of the commutativity
and the existence of the counity.

If the degree of t is equal to 0, then for every sequence {fn}n>0 ⊂ K it is
associated a morphism of coalgebras f :C → C defined as

f(1) = 1, f(tn) =
n∑

s=1

∑
(i1,... ,is)∈N

s

i1+...+is=n

fi1fi2 . . . ais
ts.
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The verification that ∆f = (f ⊗ f)∆ can be done in the following way: Let
{xn} ⊂ C∨ = K [[x]] be the dual basis of {tn}. Then for every a, b, n ∈ N we
have:

〈xa ⊗ xb,∆f(tn)〉 =
∑

i1+...+ia+j1+...+jb=n

fi1 . . . fia
fj1 . . . fjb

,

〈xa ⊗ xb, f ⊗ f∆(tn)〉 =
∑

s

∑
i1+...+ia=s

∑
j1+...+jb=n−s

fi1 . . . fia
fj1 . . . fjb

.

Note that the sequence {fn}, n ≥ 1, can be recovered from f by the formula
fn = 〈x, f(tn)〉.

We shall prove later that every coalgebra endomorphism of K [t] has this
form for some sequence {fn}, n ≥ 1.

Lemma-Definition 8.10. Let (C,∆) be a graded coassociative coalgebra,
we define recursively ∆0 = IdC and, for n > 0, ∆n = (IdC ⊗ ∆n−1)∆: C →⊗n+1

C. Then:

1. For every 0 ≤ a ≤ n− 1 we have

∆n = (∆a ⊗∆n−1−a)∆: C →
⊗n+1

C,

aa+1,n−a∆n = (∆a ⊗∆n−1−a)∆

2. For every s ≥ 1 and every a0, . . . , as ≥ 0 we have

(∆a0 ⊗∆a1 ⊗ . . .⊗∆as)∆s = ∆s+
∑

ai .

In particular, if C is cocommutative then the image of ∆n−1 is contained in
the set of Σn-invariant elements of

⊗n
C.

3. If f : (C,∆) → (B,Γ) is a morphism of graded coalgebras then, for every
n ≥ 1 we have

Γnf = (⊗n+1f)∆n:C →
⊗n+1

B.

Proof. 1. If a = 0 or n = 1 there is nothing to prove, thus we can assume
a > 0 and use induction on n. we have:

(∆a ⊗∆n−1−a)∆ = ((IdC ⊗∆a−1)∆⊗∆n−1−a)∆ =
= (IdC ⊗∆a−1 ⊗∆n−1−a)(∆⊗ IdC)∆ =
= (IdC ⊗∆a−1 ⊗∆n−1−a)(IdC ⊗∆)∆ =
= (IdC ⊗ (∆a−1 ⊗∆n−1−a)∆)∆ = ∆n.
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2. Induction on s, being the case s = 1 proved in item 1. If s ≥ 2 we can
write

(∆a0 ⊗∆a1 ⊗ . . .⊗∆as)∆s = (∆a0 ⊗∆a1 ⊗ . . .⊗∆as)(Id⊗∆s−1)∆ =
= (∆a0 ⊗ (∆a1 ⊗ . . .⊗∆as)∆s−1)∆ =

= (∆a0 ⊗∆s−1+
∑

i>0
ai)∆ = ∆s+

∑
ai .

The action of Σn on
⊗n

C is generated by the operators Ta = Id⊗a
C ⊗ T ⊗

Id⊗n−a−2
C

, 0 ≤ a ≤ n− 2, and, if T∆ = ∆ then

Ta∆n−1 = Ta(Id⊗a
C ⊗∆⊗ Id⊗n−a−2

C
)∆n−2 =

= (Id⊗a
C ⊗∆⊗ Id⊗n−a−2

C
)∆n−2 = ∆n−1.

3. By induction on n,

Γnf = (IdB⊗Γn−1)Γf = (f⊗Γn−1f)∆ = (f⊗(⊗nf)∆n−1)∆ = (⊗n+1f)∆n.

Example 8.11. Let A be a graded associative algebra with product µ:A⊗
A → A and C a graded coassociative coalgebra with coproduct ∆:C → C ⊗ C.

Then Hom∗(C, A) is a graded associative algebra with product

fg = µ(f ⊗ g)∆.

We left as an exercise the verification that the product in Hom∗(C, A) is asso-
ciative.

In particular HomG(C, A) = Hom0(C, A) is an associative algebra and C∨ =
Hom∗(C, K ) is a graded associative algebra. (Notice that in general A∨ is not a
coalgebra.)

Example 8.12. The dual of the coalgebra C = K [t] (Example 8.9) is
exactly the algebra of formal power series A = K [[x]] = C∨. Every coalgebra
morphism f :C → C induces a local homomorphism of K -algebras f t:A → A.
Clearly f t = 0 only if f = 0, f t is uniquely determined by f t(x) =

∑
n>0 fnxn

and then every morphism of coalgebras f :C → C is uniquely determined by the
sequence fn = 〈f t(x), tn〉 = 〈x, f(tn)〉.

The map f �→ f t is functorial and then preserves the composition laws.

Definition 8.13. A graded coassociative coalgebra (C,∆) is called nilpo-
tent if ∆n = 0 for n � 0.

It is called locally nilpotent if it is the direct limit of nilpotent graded coal-
gebras or equivalently if C = ∪n ker ∆n.
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Example 8.14. The coalgebra K [t] of Example 8.9 is locally nilpotent.

Example 8.15. Let A = ⊕Ai be a finite dimensional graded associative
commutative K -algebra and let C = A∨ = Hom∗(A, K ) be its graded dual.

Since A and C are finite dimensional, the pairing 〈c1 ⊗ c2, a1 ⊗ a2〉 =
(−1)a1 c2〈c1, a1〉〈c2, a2〉 gives a natural isomorphism C ⊗ C = (A ⊗ A)∨ com-
muting with the twisting maps T ; we may define ∆ as the transpose of the
multiplication map µ:A⊗A → A.

Then (C,∆) is a coassociative cocommutative coalgebra. Note that C is
nilpotent if and only if A is nilpotent.

Exercise 8.16. Let (C,∆) be a graded coalgebra and p:C → V a morphism
of graded vector spaces. We shall say that p cogenerates C if for every c ∈ C
there exists n ≥ 0 such that (⊗n+1p)∆n(c) �= 0 in

⊗n+1
V .

Prove that every morphism of graded coalgebras B → C is uniquely deter-
mined by its composition B → C → V with a cogenerator p.

2-A. The reduced tensor coalgebra

Given a graded vector space V , we denote T (V ) =
⊕

n>0

⊗n
V . When

considered as a subset of T (V ) it becomes an ideal of the tensor algebra generated
by V .

The reduced tensor coalgebra generated by V is the graded vector space
T (V ) endowed with the coproduct a: T (V ) → T (V )⊗ T (V ),

a =
∞∑

n=1

n−1∑
a=1

aa,n−a, a(v1 ⊗ . . .⊗ vn) =
n−1∑
r=1

(v1 ⊗ . . .⊗ vr)⊗ (vr+1 ⊗ . . .⊗ vn)

The coalgebra (T (V ), a) is coassociative (but not cocommutative) and locally
nilpotent; in fact, for every s > 0,

as−1(v1 ⊗ . . .⊗ vn) =
∑

1≤i1<i2<...<is=n

(v1 ⊗ . . .⊗ vi1)⊗ . . .⊗ (vis−1+1 ⊗ . . .⊗ vis)

and then ker as−1 =
⊕s−1

n=1

⊗n
V .

If µ:
⊗s

T (V ) → T (V ) denotes the multiplication map then, for every
v1, . . . , vn ∈ V , we have

µas−1(v1 ⊗ . . .⊗ vn) =
(

n− 1
s− 1

)
v1 ⊗ . . .⊗ vn.

For every morphism of graded vector spaces f :V → W the induced mor-
phism of graded algebras

T (f):T (V ) → T (W ), T (f)(v1 ⊗ . . .⊗ vn) = f(v1)⊗ . . .⊗ f(vn)

is also a morphism of graded coalgebras.
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Exercise 8.17. Let p:T (V ) → T (V ) be the projection with kernel K =⊗0
V and φ:T (V ) → T (V )⊗T (V ) the unique homomorphism of graded algebras

such that φ(v) = v ⊗ 1 + 1⊗ v for every v ∈ V . Prove that pφ = ap.

If (C,∆) is locally nilpotent then, for every c ∈ C, there exists n > 0 such
that ∆n(c) = 0 and then it is defined a morphism of graded vector spaces

1
1−∆

=
∞∑

n=0

∆n:C → T (C).

Proposition 8.18. Let (C,∆) be a locally nilpotent graded coalgebra,
then:

1. The map
1

1−∆
=

∑
n≥0

∆n:C → T (C) is a morphism of graded coalgebras.

2. For every graded vector space V and every morphism of graded coalgebras
φ:C → T (V ), there exists a unique morphism of graded vector spaces f :C →
V such that φ factors as

φ = T (f)
1

1−∆
=

∞∑
n=1

(⊗nf)∆n−1:C → T (C) → T (V ).

Proof. 1. We have∑
n≥0

∆n

⊗

∑
n≥0

∆n

 ∆ =
∑
n≥0

n∑
a=0

(∆a ⊗∆n−a)∆

=
∑
n≥0

n∑
a=0

aa+1,n+1−a∆n+1 = a

∑
n≥0

∆n


where in the last equality we have used the relation a∆0 = 0.

2. The unicity of f is clear, since by the formula φ = T (f)(
∑

n≥0 ∆n) it
follows that f is the composition of φ and the projection T (V ) → V .

To prove the existence of the factorization, take any morphism of graded
coalgebras φ:C → T (V ) and denote by φi: C →

⊗i
V the composition of φ with

the projection. It is sufficient to show that for every n > 1, φn is uniquely
determined by φ1. Now, the morphism condition aφ = (φ⊗ φ)∆ composed with
the projection T (V )⊗ T (V ) →

⊕n−1
i=1 (

⊗i
V ⊗

⊗n−1
V ) gives the equality

aφn =
n−1∑
i=1

(φi ⊗ φn−i)∆, n ≥ 2.

Using induction on n, it is enough to observe that the restriction of a to
⊗n

V
is injective for every n ≥ 2.
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It is useful to restate part of the Proposition 8.18 in the following form

Corollary 8.19. Let V be a fixed graded vector space; for every locally
nilpotent graded coalgebra C the composition with the projection T (V ) → V
induces a bijection

HomGC(C, T (V )) = HomG(C, V ).

When C is a reduced tensor coalgebra, Proposition 8.18 takes the following
more explicit form

Corollary 8.20. Let U, V be graded vector spaces and p:T (V ) → V the
projection. Given f :T (U) → V , the linear map F :T (U) → T (V )

F (v1⊗. . .⊗vn) =
n∑

s=1

∑
1≤i1<i2<...<is=n

f(v1⊗. . .⊗vi1)⊗. . .⊗f(vis−1+1⊗. . .⊗vis)

is the unique morphism of graded coalgebras such that pF = f .

Example 8.21. Let A be an associative graded algebra. Consider the pro-
jection p:T (A) → A, the multiplication map µ:T (A) → A and its conjugate

µ∗ = −µT (−1), µ∗(a1 ⊗ . . .⊗ an) =
= (−1)n−1µ(a1 ⊗ . . .⊗ an) = (−1)n−1a1a2 . . . an.

The two coalgebra morphisms T (A) → T (A) induced by µ and µ∗ are isomor-
phisms, the one inverse of the other.

In fact, the coalgebra morphism F :T (A) → T (A)

F (a1 ⊗ . . .⊗ an) =
n∑

s=1

∑
1≤i1<i2<...<is=n

(a1a2 . . . ai1)⊗ . . .⊗ (ais−1+1 . . . ais)

is induced by µ (i.e. pF = µ), µ∗F (a) = a for every a ∈ A and for every n ≥ 2

µ∗F (a1 ⊗ . . .⊗ an) =
n∑

s=1

(−1)s−1
∑

1≤i1<i2<...<is=n

a1a2 . . . an =

=
n∑

s=1

(−1)s−1

(
n− 1
s− 1

)
a1a2 . . . an =

(
n−1∑
s=0

(−1)s

(
n− 1

s

))
a1a2 . . . an = 0.
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This implies that µ∗F = p and therefore, if F ∗: T (A) → T (A) is induced by µ∗

then pF ∗F = µ∗F = p and by Corollary 8.19 F ∗F is the identity.

Exercise 8.22. Let A be an associative graded algebra over the field K ,
for every local homomorphism of K -algebras γ: K [[x]] → K [[x]], γ(x) =

∑
γnxn,

we can associate a coalgebra morphism Fγ : T (A) → T (A) induced by the linear
map

fγ :T (A) → A, f(a1 ⊗ . . .⊗ an) = γna1 . . . an.

Prove the composition formula Fγδ = FδFγ . (Hint: Example 8.12.)

Exercise 8.23. A graded coalgebra morphism F : T (U) → T (V ) is sur-
jective (resp.: injective, bijective) if and only if F 1

1 :U → V is surjective (resp.:
injective, bijective).

2-B. The reduced symmetric coalgebra

Definition 8.24. The reduced symmetric coalgebra is by definition S(V ) =⊕
n>0

⊙n
V , with the coproduct l =

∑
n

∑n−1
i=0 l

n+1
i+1 ,

l(v1 # . . .# vn) =
n−1∑
r=1

∑
I⊂{1,... ,n};|I|=r

ε

(
I, Ic

{1, . . . , n} ; v1, . . . , vn

)
vI ⊗ vIc .

The verification that l is a coproduct is an easy consequence of Lemma 8.4.
In fact, the injective map N :S(V ) → T (V ) satisfies the equality aN = (N ⊗
N)l and then N is an isomorphism between (S(V ), l) and the subcoalgebra of
symmetric tensors of (T (V ), a).

Remark 8.25. It is often convenient to think the symmetric algebra as a
quotient of the tensor algebra and the symmetric coalgebra as a subset of the
tensor coalgebra.

The coalgebra S(V ) is coassociative without counity. It follows from the
definition of l that V = ker l and T l = l, where T is the twisting map; in
particular (S(V ), l) is cocommutative. For every morphism of graded vector
spaces f :V → W , the morphism S(f):S(V ) → S(W ) is a morphism of graded
coalgebras.

If (C,∆) is any cocommutative graded coalgebra, then the image of ∆n is
contained in the subspace of symmetric tensors and therefore

1
1−∆

= N ◦ e∆ − 1
∆

,

where
e∆ − 1

∆
=

∞∑
n=1

π

n!
∆n−1:C → S(C).
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Proposition 8.26. Let (C,∆) be a cocommutative locally nilpotent graded
coalgebra, then:

1. The map
e∆ − 1

∆
:C → S(C) is a morphism of graded coalgebras.

2. For every graded vector space V and every morphism of graded coalgebras
φ:C → S(V ), there exists a unique factorization

φ = S(φ1)
e∆ − 1

∆
=

∞∑
n=1

⊙n
φ1

n!
∆n−1:C → S(C) → S(V ),

where φ1:C → V is a morphism of graded vector spaces f :C → V . (Note
that φ1 is the composition of φ and the projection S(V ) → V .)

Proof. Since N is an injective morphism of coalgebras and
1

1−∆
= N ◦

e∆ − 1
∆

, the proof follows immediately from Proposition 8.18.

Corollary 8.27. Let C be a locally nilpotent cocommutative graded
coalgebra, and V a graded vector space. A morphism θ ∈ HomG(C,S(V )) is a
morphism of graded coalgebras if and only if there exists m ∈ HomG(C, V ) ⊂
HomG(C,S(V )) such that

θ = exp(m)− 1: =
∞∑

n=1

1
n!

mn,

being the n-th power of m is considered with respect to the algebra structure on
HomG(C,S(V )) (Example 8.11).

Proof. An easy computation gives the formula mn = (
⊙n

m)∆n−1 for the
product defined in Example 8.11.

Exercise 8.28. Let V be a graded vector space. Prove that the formula

c(v1∧. . .∧vn) =
n−1∑
r=1

∑
σ∈S(r,n−r)

(−1)σε(σ)(vσ(1)∧. . .∧vσ(r))⊗(vσ(r+1)∧. . .∧vσ(n)),

where (−1)σ is the signature of the permutation σ, defines a coproduct on∧
(V ) =

⊕
n>0

∧n
V . The resulting coalgebra is called reduced exterior coal-

gebra generated by V .
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8.3 – Coderivations

Definition 8.29. Let (C,∆) be a graded coalgebra. A linear map d ∈
Homn(C, C) is called a coderivation of degree n if it satisfies the coLeibnitz rule

∆d = (d⊗ IdC + IdC ⊗ d)∆.

A coderivation d is called a codifferential if d2 = d ◦ d = 0.
More generally, if θ:C → D is a morphism of graded coalgebras, a morphism

of graded vector spaces d ∈ Homn(C, D) is called a coderivation of degree n (with
respect to θ) if

∆Dd = (d⊗ θ + θ ⊗ d)∆C .

In the above definition we have adopted the Koszul sign convention: i.e. if
x, y ∈ C, f, g ∈ Hom∗(C, D), h, k ∈ Hom∗(B, C) are homogeneous then (f ⊗
g)(x⊗ y) = (−1)g xf(x)⊗ g(y) and (f ⊗ g)(h⊗ k) = (−1)g hfh⊗ gk.

The coderivations of degree n with respect a coalgebra morphism θ:C → D
form a vector space denoted Codern(C, D; θ).

For simplicity of notation we denote Codern(C, C) = Codern(C, C; Id).

Lemma 8.30. Let C
θ−→D

ρ−→E be morphisms of graded coalgebras. The
compositions with θ and ρ induce linear maps

ρ∗: Codern(C, D; θ) → Codern(C, E; ρθ), f �→ ρf ;

θ∗: Codern(D, E; ρ) → Codern(C, E; ρθ), f �→ fθ.

Proof. Immediate consequence of the equalities

∆Eρ = (ρ⊗ ρ)∆D, ∆Dθ = (θ ⊗ θ)∆C .

Exercise 8.31. Let C be a graded coalgebra and d ∈ Coder1(C, C) a
codifferential of degree 1. Prove that the triple (L, δ, [, ]), where:

L =
⊕
n∈Z

Codern(C, C), [f, g] = fg − (−1)g fgf, δ(f) = [d, f ]

is a differential graded Lie algebra.

Lemma 8.32. Let V, W be graded vector spaces, f ∈ HomG(V, W ) and
g ∈ Homm(S(V ), W ). Then the morphism d ∈ Homm(S(V ), S(W )) defined by
the rule

d(v1 # . . .# vn) =
∑

∅�=I⊂{1,... ,n}
ε

(
I, Ic

{1, . . . , n} ; v1, . . . , vn

)
g(vI)# S(f)(vIc)

is a coderivation of degree m with respect to the morphism of graded coalgebras
S(f):S(V ) → S(W ).
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Proof. Let v1, v2, . . . , vn be fixed homogeneous elements of V , we need to
prove that

ld(v1 # . . .# vn) = (d⊗ S(f) + S(f)⊗ d)l(v1 # . . .# vn).

If A ⊂ W is the image of f and B ⊂ W is the image of g, it is not restrictive to
assume that W = A⊕B: in fact we can always factorize

V

(f,0) 		����������
f



																			

A⊕B
+ �� W

S(V )

(0,g)
�����������

g

��



















and apply Lemma 8.30 to the coalgebra morphism S(+):S(A⊕B) → S(W ).
Under this assumption we have (S(A)B⊗S(A))∩ (S(A)⊗S(A)B) = ∅ and

the image of d is contained in S(A)B ⊂ S(A⊕B). Therefore the images of ld
and (d⊗S(f)+S(f)⊗d)l are both contained in (S(A)B⊗S(A))⊕(S(A)⊗S(A)B).

Denoting by p:S(W ) ⊗ S(W ) → S(A)B ⊗ S(A) the natural projection
induced by the decomposition W = A ⊕ B, since both the operators ld and
(d ⊗ S(f) + S(f) ⊗ d)l are invariant under the twisting map, it is sufficient to
prove that

pld(v1 # . . .# vn) = p(d⊗ S(f))l(v1 # . . .# vn).
We have (all Koszul signs are referred to v1, . . . , vn)

pld(v1 # . . .# vn) = pl

 ∑
∅�=J⊂{1,... ,n}

ε

(
J, Jc

{1, . . . , n}

)
g(vJ)# S(f)(vJc)

 =

=
∑

∅�=J⊂I⊂{1,... ,n}
ε

(
J, Jc

{1, . . . , n}

)
ε

(
J, I − J, Ic

J, Jc

)
g(vJ)# S(f)(vI−J)⊗ S(f)(vIc)=

=
∑

∅�=J⊂I⊂{1,... ,n}
ε

(
J, I − J, Ic

{1, . . . , n}

)
g(vJ)# S(f)(vI−J)⊗ S(f)(vIc).

On the other hand

p(d⊗ S(f))l(v1 # . . .# vn) = p(d⊗ S(f))

(∑
I

ε

(
I, Ic

{1, . . . , n}

)
vI ⊗ vIc

)
=

=
∑
J⊂I

ε

(
I, Ic

{1, . . . , n}

)
ε

(
J, I − J, Ic

I, Ic

)
g(vJ)# S(f)(vI−J)⊗ S(f)(vIc) =

=
∑
J⊂I

ε

(
J, I − J, Ic

{1, . . . , n}

)
g(vJ)# S(f)(vI−J)⊗ S(f)(vIc).
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Proposition 8.33. Let V be a graded vector space and C a locally nilpo-
tent cocommutative coalgebra. Then for every coalgebra morphism θ:C → S(V )
and every integer n, the composition with the projection S(V ) → V gives an
isomorphism

Codern(C,S(V ); θ) → Homn(C, V ) = HomG(C, V [n]).

Proof. The injectivity is proved essentially in the same way as in Propo-
sition 8.18: if d ∈ Codern(C,S(V ); θ) we denote by θi, di:C →

⊙i
V the com-

position of θ and d with the projection S(V ) →
⊙i

V . The coLeibnitz rule is
equivalent to the countable set of equalities

liadi = da ⊗ θi−a + θa ⊗ di−a, 0 < a < i.

Induction on i and the injectivity of

l:
n⊕

m=2

⊙m
V →

⊗2 (
n−1⊕
m=1

⊙m
V )

show that d is uniquely determined by d1.
For the surjectivity, consider g ∈ Homn(C, V ); according to Proposition 8.26

we can write θ = S(θ1)
e∆ − 1

∆
and, by Lemma 8.32, the map d = δ

e∆ − 1
∆

, where

δ:S(C) → S(V ) is given by

δ(c1 # . . .# cn) =
∑

i∈{1,... ,n}
ε

(
{i}, {i}c

{1, . . . , n} ; c1, . . . , cn

)
g(ci)# S(θ1)(c{i}c)

is a coderivation of degree n with respect to θ that lifts g.

Corollary 8.34. Let V be a graded vector space, S(V ) its reduced sym-
metric coalgebra. The application Q �→ Q1 gives an isomorphism of vector spaces

Codern(S(V ), S(V )) = Homn(S(V ), V )

whose inverse is given by the formula

Q(v1# . . .#vn) =
n∑

k=1

∑
σ∈S(k,n−k)

ε(σ)Q1
k(vσ(1)# . . .#vσ(k))#vσ(k+1)# . . .#vσ(n).

In particular for every coderivation Q we have Qi
j = 0 for every i > j and then

the subcoalgebras
⊕r

i=1

⊙i
V are preserved by Q.
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Proof. The isomorphism follows from Proposition 8.33, while the inverse
formula comes from Lemma 8.32.

9 – L∞ and EDF tools

In this section we introduce the category L∞ of L∞-algebras and we define
a sequence of natural transformations

DGLA → L∞ → PreDef → Def

whose composition is the functor L �→ DefL (cf. 5.66).
In all the four categories there is a notion of quasi-isomorphism which is

preserved by the above natural transformations: we recall that in the category
Def quasi-isomorphism means isomorphism in tangent spaces and then by Corol-
lary 5.72 every quasi-isomorphism is an isomorphism.

Through all the section we work over a fixed field K of characteristic 0.
Unless otherwise specified all the tensor products are made over K .

9.1 – Displacing (Décalage)

For every n and every graded vector space V , the twisting map gives a
natural isomorphism

dpn:
⊗n(V [1]) → (

⊗n)V [n], V [a] = K [a]⊗ V

dpn(v1[1]⊗. . .⊗vn[1])=(−1)
∑n

i=1
(n−i) deg(vi;V )(v1⊗. . .⊗vn)[n], v[a]=1[a]⊗v.

It is easy to verify that dpn, called the displacing(4) isomorphism, changes sym-
metric into skewsymmetric tensors and therefore it induces an isomorphism

dpn:
⊙n(V [1]) → (

∧n
V )[n],

dpn(v1[1]# . . .# vn[1]) = (−1)
∑n

i=1
(n−i) deg(vi;V )(v1 ∧ . . . ∧ vn)[n].

(4)It is often used the french name décalage.
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9.2 – DG-coalgebras and L∞-algebras

Definition 9.1. By a dg-coalgebra we intend a triple (C,∆, d), where
(C,∆) is a graded coassociative cocommutative coalgebra and d ∈ Coder1(C, C)
is a codifferential. If C has a counit ε:C → K , we assume that εd = 0. The cate-
gory of dg-coalgebras, where morphisms are morphisms of coalgebras commuting
with codifferentials, is denoted by DGC.

Example 9.2. If A is a finite dimensional dg-algebra with differential
d: A → A[1], then A∨ (Example 8.15) is a dg-coalgebra with codifferential the
transpose of d.

Lemma 9.3. Let V be a graded vector space and Q ∈ Coder1(S(V ), S(V )).
Then Q is a codifferential, i.e. Q ◦ Q = 0, if and only if for every n > 0 and
every v1, . . . , vn ∈ V∑
k+l=n+1

∑
σ∈S(k,n−k)

ε(σ; v1, . . . , vn)Q1
l (Q

1
k(vσ(1)#. . .#vσ(k))#vσ(k+1)#. . .#vσ(n))= 0.

Proof. Denote P = Q ◦ Q = 1
2 [Q, Q]: since P is a coderivation we have

that P = 0 if and only if P 1 = Q1 ◦Q = 0. According to Corollary 8.34

Q(v1 # . . .# vn) =
∑

I⊂{1,... ,n}
ε

(
I, Ic

{1, . . . , n}

)
Q1(vI)# vIc

and then

P 1(v1 # . . .# vn) =
∑

I⊂{1,... ,n}
ε

(
I, Ic

{1, . . . , n}

)
Q1(Q1(vI)# vIc).

Note that P 1
n = 0 whenever Q1

m = 0 for every m ≥ n + 1
2

and, if Q is a

codifferential in S(V ) then Q1
1 is a differential in the graded vector space V .

Definition 9.4. Let V be a graded vector space; a codifferential of degree
1 on the symmetric coalgebra C(V ) = S(V [1]) is called an L∞-structure on V .
The dg-coalgebra (C(V ), Q) is called an L∞-algebra.

An L∞-algebra (C(V ), Q) is called minimal if Q1
1 = 0.

Definition 9.5. A weak morphism F : (C(V ), Q) → (C(W ), R) of L∞-
algebras is a morphism of dg-coalgebras. By an L∞-morphism we always intend
a weak morphism of L∞-algebras.
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A weak morphism F is called a strong morphism if there exists a morphism
of graded vector spaces F 1

1 :V → W such that F = S(F 1
1 ).

We denote by L∞ the category having L∞-algebras as objects and (weak)
L∞-morphisms as arrows.

Consider now two L∞-algebras (C(V ), Q), (C(W ), R) and a morphism of
graded coalgebras F :C(V )→ C(W ). Since FQ−RF ∈Coder1(C(V ), C(W );F ),
we have that F is an L∞-morphism if and only if F 1Q = R1F .

Lemma 9.6. Consider two L∞-algebras (C(V ), Q), (C(W ), R) and a mor-
phism of graded vector spaces F 1:C(V ) → W [1]. Then

F = S(F 1)
el − 1

l
: (C(V ), Q) → (C(W ), R)

is an L∞-morphism if and only if

(4)
n∑

i=1

R1
i F

i
n =

n∑
i=1

F 1
i Qi

n

for every n > 0.

Proof. According to Proposition 8.26 F is a morphism of coalgebras. Since
FQ−RF ∈ Coder1(C(V ), C(W );F ), we have that F is an L∞-morphism if and
only if F 1Q = R1F .

Exercise 9.7. An L∞-morphism F is strong if and only if F 1
n = 0 for every

n ≥ 2.

If F : (C(V ), Q) → (C(W ), R) is an L∞-morphism, then by Lemma 9.6 R1
1F

1
1 =

F 1
1 Q1

1 and therefore we have a morphism in cohomology H(F 1
1 ):H∗(V [1], Q1

1) →
H∗(W [1], Q1

1).

Definition 9.8. An L∞-morphism F : (C(V ), Q) → (C(W ), R) is a quasi-
isomorphism if H(F 1

1 ):H∗(V [1], Q1
1) → H∗(W [1], Q1

1) is an isomorphism.

The following exercise shows that the above definition is not ambiguous.

Exercise 9.9. An L∞-morphism F : (C(V ), Q) → (C(W ), R) is a quasiiso-
morphism if and only if H(F ):H∗(C(V ), Q) → H∗(C(W ), R) is an isomorphism.

Given a coderivation Q:S(V [1])→ S(V [1])[1], their components Q1
j :

⊙n(V [1])→
V [2], composed with the inverse of the displacement isomorphism, give linear
maps

lj = (Q1
j ◦ dp−1

n )[−n]:
∧n

V → V [2− n].
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More explicitly

lj(v1 ∧ . . . ∧ vn) = (−1)−n(−1)
∑n

i=1
(n−i) deg(vi;V )Q1

j (v1[1]# . . .# vn[1])

The conditions of Lemma 9.3 become∑
k+i=n+1

σ∈S(k,n−k)
(−1)k(i−1)

(−1)σε(σ)li(lk(vσ(1) ∧ . . .∧ vσ(k))∧ vσ(k+1) ∧ . . .∧ vσ(n)) = 0.

Setting l1(v) = d(v) and l2(v1 ∧ v2) = [v1, v2], the first three conditions
(n = 1, 2, 3) becomes:

1 : d2 = 0

2 : d[x, y] = [dx, y] + (−1)x[x, dy]

3 : (−1)x z[[x, y], z] + (−1)y z[[z, x], y] + (−1)x y[[y, z], x] =

=(−1)x z+1(dl3(x, y, z) + l3(dx,y,z) + (−1)xl3(x,dy,z) + (−1)x+yl3(x,y,dz))

If l3 = 0 we recognize, in the three formulas above, the axioms defining a
differential graded Lie algebra structure on V .

Exercise 9.10. Let (C(V ), Q) be an L∞-algebra. Then the bracket

[w1, w2] = (−1)deg(w1;V )Q1
2(w1[1]# w2[1]) = l2(w1 ∧ w2)

gives a structure of graded Lie algebra on the cohomology of the complex (V, Q1
1).

9.3 – From DGLA to L∞-algebras

In this section we show that to every DGLA structure on a graded vector
space V it is associated naturally a L∞ structure on the same space V , i.e. a
codifferential Q on C(V ) = S(V [1]). The coderivation Q is determined by its
components Q1

j :
⊙j

V [1] → V [2].

Proposition 9.11. Let (V, d, [ , ]) be a differential graded Lie algebra.
Then the coderivation Q of components

1. Q1
1(v[1]) = −d(v).

2. Q1
2(w1[1]# w2[1]) = (−1)deg(w1;V )[w1, w2]

3. Q1
j = 0 for every j ≥ 3.

is a codifferential and then gives an L∞-structure on V .
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Proof. The conditions of Lemma 9.3 are trivially satisfied for every n > 3.
For n ≤ 3 they becomes (where x̂ = x[1] and x = deg(x;V )):

n = 1 : Q1
1Q

1
1(v̂) = d2(v) = 0

n = 2 : Q1
1Q

1
2(x̂# ŷ) + Q1

2(Q
1
1(x̂)# ŷ) + (−1)(x−1)(y−1)Q1

2(Q
1
1(ŷ)# x̂) =

= −(−1)x(d[x, y]− [dx, y]) + [x, dy] = 0

n = 3 : Q1
2(Q

1
2(x̂# ŷ)# ẑ) + (−1)x−1Q1

2(x̂#Q1
2(ŷ # ẑ))+

+(−1)x(y−1)Q1
2(ŷ #Q1

2(x̂# ẑ)) =
= (−1)y[[x, y], z] + (−1)y−1[x, [y, z]] + (−1)(x−1)y[x, [y, z]] = 0

It is also clear that every morphism of DGLA f :V → W induces a strong
morphism of the corresponding L∞-algebras S(f [1]):C(V ) → C(W ). Therefore
we get in this way a functor

DGLA → L∞

that preserves quasiisomorphisms.
This functor is faithful; the following example, concerning differential graded

Lie algebras arising from Gerstenhaber-Batalin-Vilkovisky algebras, shows that
it is not fully faithful.
Let (A, ∆) be a GBV-algebra (Subsection 7.6.); we have seen that (G[−1], [ , ],∆),
where

[a, b] = a∆(b) + (−1)deg(a,G[−1])(∆(ab)−∆(a)b)

is a differential graded Lie algebra and then it makes sense to consider the asso-
ciated L∞-algebra (C(G[−1]), δ) = (S(G), δ). The codifferential δ is induced by
the linear map of degree 1 δ1 = ∆ + Q ∈ Hom1

K (S(G), G), where δ1
1 = ∆ and

δ1
2 = Q:

⊙2
G → G, Q(a# b) = ∆(ab)−∆(a)b− (−1)aa∆(b)

Lemma 9.12. In the notation above,

∆(a1a2 . . . am) =
∑

σ∈S(1,m−1)

ε(σ; a1, . . . , am)∆(aσ1)aσ2 . . . aσm
+

+
∑

σ∈S(2,m−2)

ε(σ; a1, . . . , am)Q(aσ1 , aσ2)aσ3 . . . aσm

for every m ≥ 2 and every a1, . . . , am ∈ G.
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Proof. For m = 2 the above equality becomes

∆(ab) = ∆(a)b + (−1)aa∆(b) + Q(a# b)

which is exactly the definition of Q.
By induction on m we may assume the Lemma true for all integers < m

and then

∆((a1a2)a3 . . . am) =
m∑

i=1

(−1)a1+...+ai−1a1 . . .∆(ai)ai+1 . . . am+

+
∑
i≥3

ε Q(a1a2 # ai)a3 . . . âi . . . am +
∑

2<i<j

ε Q(ai # aj)a1a2 . . . âi . . . âj . . . am.

Replacing the odd Poisson identity

Q(a1a2 # ai) = (−1)a1a1Q(a2 # ai) + (−1)(a1+1)a2a2Q(a1 # ai)

in the above formula, we obtain the desired equality.

As an immediate consequence we have

Theorem 9.13. In the notation above, let (C(G[−1]), τ) be the (abelian)
L∞-algebra whose codifferential is induced by ∆: G → G. Then the morphism of
graded vector spaces f :S(G) → G,

f(a1 # . . .# am) = a1a2 . . . am

induces an isomorphism of L∞-algebras F : (C(G[−1]), δ) → (C(G[−1]), τ).

Proof. According to Lemmas 9.6 and 9.12 the morphism of graded coal-
gebras induced by f is an L∞-morphism.

Moreover, according to Example 8.21 F is an isomorphism of graded coal-
gebras whose inverse is induced by

g:S(G) → G, g(a1 # . . .# am) = (−1)m−1a1a2 . . . am.
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9.4 – From L∞-algebras to predeformation functors

Let Q ∈ Coder1(C(V ), C(V )) be a L∞ structure on a graded vector space
V , we define the Maurer-Cartan functor MCV :NA → Set by setting:

MCV (A) = HomDGC(A∨, C(V )).

We first note that the natural isomorphism

(C(V )⊗A)0 = HomG(A∨, C(V )), (v ⊗ a)c = c(a)v

is an isomorphism of algebras and then, according to Corollary 8.27, every coal-
gebra morphism θ:A∨ → C(V ) is written uniquely as θ = exp(m) − 1 for some
m ∈ (V [1] ⊗ A)0 = HomG(A∨, V [1]). As in Lemma 9.6, θ is a morphism of
dg-coalgebras if and only if mdA∨ = Q1θ; considering m as an element of the
algebra (C(V ) ⊗ A)0 this equality becomes the Maurer-Cartan equation of an
L∞-structure:

(IdV [1] ⊗ dA)m =
∞∑

n=1

1
n!

(Q1
n ⊗ IdA)mn, m ∈ (V [1]⊗A)0.

Via the décalage isomorphism the Maurer-Cartan equation becomes

IdV ⊗ dA(m) =
∞∑

n=1

1
n!

(−1)
n(n+1)

2 (ln ⊗ IdA)m ∧ . . . ∧m, m ∈ (V ⊗A)1.

It is then clear that if the L∞ structure comes from a DGLA V (i.e. ln = 0 for
every n ≥ 3) then the Maurer-Cartan equation reduces to the classical one.

It is evident that MCV is a covariant functor and MCV (0) = 0. Let α:A →
C, β:B → C be morphisms in NA, then

MCV (A×C B) = MCV (A)×MCV (C) MCV (B)

and therefore MCV satisfies condition 2) of Definition 5.59; in particular it makes
sense the tangent space TMCV .

Proposition 9.14. The functor MCV is a predeformation functor with
T iMCV = Hi−1(V [1], Q1

1).
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Proof. If A ∈ NA ∩DG then

MCV (A) = {m ∈ (V ⊗A)1 | IdV ⊗ dA(m) = −l1 ⊗ IdA(m)} = Z1(V ⊗A)

the same computation of 5.66 shows that there exists a natural isomorphism
T iMCV = Hi(V, l1) = Hi−1(V [1], Q1

1).
Let 0−→I−→A−→B−→0 be a small acyclic extension in NA, we want to

prove that MCV (A) → MCV (B) is surjective.
We have a dual exact sequence

0−→B∨−→A∨−→I∨−→0, B∨ = I⊥.

Since IA = 0 we have ∆A∨(A∨) ⊂ B∨ ⊗B∨.
Let φ ∈ MCV (B) be a fixed element and φ1:B∨ → V [1]; by Proposition 8.26

φ is uniquely determined by φ1. Let ψ1:A∨ → V [1] be an extension of φ1, then,
again by 8.26, ψ1 is induced by a unique morphism of coalgebras ψ:A∨ → C(V ).

The map ψdA∨ − Qψ:A∨ → C(V )[1] is a coderivation and then, setting
h = (ψdI∨ − Qψ)1 ∈ HomG(I∨, V [2]), we have that ψ is a morphism of dg-
coalgebras if and only if h = 0.

Note that ψ1 is defined up to elements of HomG(I∨, V [1]) = (V [1] ⊗ I)0

and, since ∆A∨(A∨) ⊂ B∨ ⊗B∨, ψi depends only by φ for every i > 1. Since I
is acyclic and hdI∨ + Q1

1h = 0 there exists ξ ∈ HomG(I∨, V [1]) such that h =
ξdI∨−Q1

1ξ and then θ1 = ψ1−ξ induces a dg-coalgebra morphism θ:A∨ → C(V )
extending φ.

Therefore the Maurer-Cartan functor can be considered as a functor L∞ →
PreDef that preserves quasiisomorphisms. We have already noted that the
composition DGLA → L∞ → PreDef is the Maurer-Cartan functor of DGLAs.

9.5 – From predeformation to deformation functors

We first recall the basics of homotopy theory of dg-algebras.
We denote by K [t1, . . . , tn, dt1, . . . , dtn] the dg-algebra of polynomial dif-

ferential forms on the affine space An with the de Rham differential. We have
K [t, dt] = K [t]⊕K [t]dt and

K [t1, . . . , tn, dt1, . . . , dtn] =
⊗
i=1

n
K [ti, dti].

Since K has characteristic 0, it is immediate to see that H∗(K [t, dt]) = K [0]
and then by Künneth formula H∗(K [t1, . . . , tn, dt1, . . . , dtn]) = K [0]. Note that
for every dg-algebras A and every s = (s1, . . . , sn) ∈ K n we have an evaluation
morphism

es:A⊗K [t1, . . . , tn, dt1, . . . , dtn] → A
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defined by

es(a⊗ p(t1, . . . , tn, dt1, . . . , dtn)) = p(s1, . . . , sn, 0, . . . , 0)a

For every dg-algebra A we denote A[t, dt] = A ⊗ K [t, dt]; if A is nilpotent
then A[t, dt] is still nilpotent. If A ∈ NA, then A[t, dt] is the direct limit of
objects in NA. To see this it is sufficient to consider, for every positive real
number ε > 0, the dg-subalgebra

A[t, dt]ε = A⊕⊕n>0(A�nε�tn ⊕A�nε�tn−1dt) ⊂ A[t, dt],

where A�nε� is the subalgebra generated by all the products a1a2 . . . as, s ≥ nε,
ai ∈ A.

It is clear that if A ∈ NA then A[t, dt]ε ∈ NA for every ε > 0 and A[t, dt]
is the union of all A[t, dt]ε, ε > 0.

Lemma 9.15. For every dg-algebra A the evaluation map eh:A[t, dt] → A
induces an isomorphism H(A[t, dt]) → H(A) independent from h ∈ K .

Proof. Let ı:A → A[t, dt] be the inclusion, since ehı = IdA it is sufficient
to prove that ı:H(A) → H(A[t, dt]) is bijective.

For every n > 0 denote Bn = Atn ⊕ Atn−1dt; since d(Bn) ⊂ Bn and
A[t, dt] = ı(A)

⊕
n>0 Bn it is sufficient to prove that H(Bn) = 0 for every n. Let

z ∈ Zi(Bn), z = atn + nbtn−1dt, then 0 = dz = datn + ((−1)ia + db)ntn−1dt
which implies a = (−1)i−1db and then z = (−1)i−1d(btn).

Definition 9.16. Given two morphisms of dg-algebras f, g:A → B, a
homotopy between f and g is a morphism H:A → B[t, dt] such that H0 :=
e0 ◦H = f , H1 := e1 ◦H = g (cf. [27, p. 120]).

We denote by [A, B] the quotient of HomDGA(A, B) by the equivalence
relation ∼ generated by homotopies.

According to Lemma 9.15, homotopic morphisms induce the same morphism
in homology.

Lemma 9.17. Given morphisms of dg-algebras,

A

f




g
�� B

h 



l

�� C ,

if f ∼ g and h ∼ l then hf ∼ lg.
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Proof. It is obvious from the definitions that hg ∼ lg. For every a ∈ K

there exists a commutative diagram

B ⊗K [t, dt] h⊗Id−−−−→ C ⊗K [t, dt]�ea

�ea

B
h−−−−→ C.

If F : A → B[t, dt] is a homotopy between f and g, then, considering the compo-
sition of F with h⊗ Id, we get a homotopy between hf and hg.

Since composition respects homotopy equivalence we can also consider the homo-
topy categories K(DGA) and K(NA). By definition, the objects of K(DGA)
(resp.: K(NA)) are the same of DGA (resp.: NA), while the morphisms are
Mor(A, B) = [A, B].

If A, B ∈ DG∩NA, then two morphisms f, g:A → B are homotopic in the
sense of 9.16 if and only if f is homotopic to g as morphism of complexes. In
particular every acyclic complex is contractible as a dg-algebra.

Lemma 9.18. A predeformation functor F :NA → Set is a deformation
functor if and only if F induces a functor [F ]:K(NA) → Set.

Proof. One implication is trivial, since every acyclic I ∈ NA ∩ DG is
isomorphic to 0 in K(NA).

Conversely, let H:A → B[t, dt] be a homotopy, we need to prove that H0 and
H1 induce the same morphism from F (A) to F (B). Since A is finite-dimensional
there exists ε > 0 sufficiently small such that H: A → B[t, dt]ε; now the eval-
uation map e0:B[t, dt]ε → B is a finite composition of acyclic small extensions
and then, since F is a deformation functor F (B[t, dt]ε) = F (B). For every
a ∈ F (A) we have H(a) = iH0(a), where i: B → B[t, dt]ε is the inclusion and
then H1(a) = e1H(a) = e1iH0(a) = H0(a).

Theorem 9.19. Let F be a predeformation functor, then there exists a
deformation functor F+ and a natural transformation η:F → F+ such that:

1. η is a quasiisomorphism.
2. For every deformation functor G and every natural transformation φ:F →

G there exists a unique natural transformation ψ:F+ → G such that φ = ψη.
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Proof. We first define a functorial relation ∼ on the sets F (A), A ∈ NA;
we set a ∼ b if and only if there exists ε > 0 and x ∈ F (A[t, dt]ε) such that
e0(x) = a, e1(x) = b. By 9.18 if F is a deformation functor then a ∼ b if and
only if a = b. Therefore if we define F+ as the quotient of F by the equivalence
relation generated by ∼ and η as the natural projection, then there exists a
unique ψ as in the statement of the theorem. We only need to prove that F+ is
a deformation functor.

Step 1. If C ∈ DG ∩NA is acyclic then F+(C) = {0}.
Since C is acyclic there exists a homotopy H:C → C[t, dt]ε, ε ≤ 1, such

that H0 = 0, H1 = Id; it is then clear that for every x ∈ F (C) we have
x = H1(x) ∼ H0(x) = 0.

Step 2. ∼ is an equivalence relation on F (A) for every A ∈ NA.
This is essentially standard (see e.g. [27]). In view of the inclusion A →

A[t, dt]ε the relation ∼ is reflexive. The symmetry is proved by remarking that
the automorphism of dg-algebras

A[t, dt] → A[t, dt]; a⊗ p(t, dt) �→ a⊗ p(1− t,−dt)

preserves the subalgebras A[t, dt]ε for every ε > 0.
Consider now ε > 0 and x ∈ F (A[t, dt]ε), y ∈ F (A[s, ds]ε) such that e0(x) =

e0(y); we need to prove that e1(x) ∼ e1(y).
Write K [t, s, dt, ds] = ⊕n≥0S

n, where Sn is the n-th symmetric power of

the acyclic complex K t ⊕ K s
d−→K dt ⊕ K ds and define A[t, s, dt, ds]ε = A ⊕

⊕n>0(A�nε� ⊗ Sn). There exists a commutative diagram

A[t, s, dt, ds]ε
t�→0−−−−→ A[s, ds]ε�s �→0

�s �→0

A[t, dt]ε
t�→0−−−−→ A

The kernel of the surjective morphism

A[t, s, dt, ds]ε
η−→A[t, dt]ε ×A A[t, dt]ε

is equal to ⊕n>0(A�nε� ⊗ (Sn ∩ I)), where I ⊂ K [t, s, dt, ds] is the homogeneous
differential ideal generated by st, sdt, tds, dtds. Since I ∩ Sn is acyclic for every
n > 0, the morphism η is a finite composition of acyclic small extensions.

Let ξ ∈ F (A[t, s, dt, ds]ε) be a lifting of (x, y) and let z ∈ F (A[u, du]ε) be
the image of ξ under the morphism

A[t, s, dt, ds]ε → A[u, du]ε, t �→ 1− u, s �→ u
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The evaluation of z gives e0(z) = e1(x), e1(z) = e1(y).

Step 3. If α:A → B is surjective then

F (A[t, dt]ε)
(e0,α)−→ F (A)×F (B) F (B[t, dt]ε)

is surjective.
It is not restrictive to assume α a small extension with kernel I. The kernel

of (e0, α) is equal to ⊕n>0(A�nε� ∩ I)⊗ (K tn ⊕K tn−1dt) and therefore (e0, α) is
an acyclic small extension.

Step 4. The functor F+ satisfies 2a of 5.59.
Let a ∈ F (A), b ∈ F (B) be such that α(a) ∼ β(b); by Step 3 there exists

a′ ∼ a, a′ ∈ F (A) such that α(a′) = β(b) and then the pair (a′, b) lifts to
F (A×C B).

Step 5. The functor F+ satisfies 2b of 5.59.
By 5.60 it is sufficient to verify the condition separately for the cases C = 0

and B = 0. When C = 0 the situation is easy: in fact (A × B)[t, dt]ε =
A[t, dt]ε×B[t, dt]ε, F ((A×B)[t, dt]ε) = F (A[t, dt]ε)×F (B[t, dt]ε) and the relation
∼ over F (A × B) is the product of the relations ∼ over F (A) and F (B); this
implies that F+(A×B) = F+(A)× F+(B).

Assume now B = 0, then the fibred product D := A ×C B is equal to
the kernel of α. We need to prove that the map F+(D) → F+(A) is injective.
Let a0, a1 ∈ F (D) ⊂ F (A) and let x ∈ F (A[t, dt]ε) be an element such that
ei(x) = ai, i = 0, 1. Denote by x ∈ F (C[t, dt]ε) the image of x by α.

Since C is acyclic there exists a morphism of graded vector spaces σ:C →
C[−1] such that dσ + σd = Id and we can define a morphism of complexes

h:C → (K s⊕K ds)⊗ C ⊂ C[s, ds]1; h(v) = s⊗ v + ds⊗ σ(v)

The morphism h extends in a natural way to a morphism

h:C[t, dt]ε → (K s⊕K ds)⊗ C[t, dt]ε

such that for every scalar ζ ∈ K there exists a commutative diagram

C[t, dt]ε
h−−−−→ (K s⊕K ds)⊗ C[t, dt]ε�eζ

�Id⊗eζ

C
h−−−−→ (K s⊕K ds)⊗ C

Setting z = h(x) we have z|s=1 = x, z|s=0 = z|t=0 = z|t=1 = 0. By Step
3 z lifts to an element z ∈ F (A[t, dt]ε[s, ds]1) such that z|s=1 = x; Now the
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specializations z|s=0, z|t=0, z|t=1 are annihilated by α and therefore give a chain
of equivalences in F (D)

a0 = z|s=1,t=0 ∼ z|s=0,t=0 ∼ z|s=0,t=1 ∼ z|s=1,t=1 = a1

proving that a0 ∼ a1 inside F (D).

The combination of Steps 1, 4 and 5 tell us that F+ is a deformation functor.

Step 6. The morphism η:F → F+ is a quasiisomorphism.
Let ε be of degree 1 − i, ε2 = 0, then K ε ⊕ Ii is isomorphic to the dg-

subalgebra
K ε⊕K εt⊕K εdt ⊂ K ε[t, dt]

and the map p:F (Ii) → F (K ε) factors as

p:F (Ii) ↪→ F (Ii)⊕ F (K ε) = F (K ε⊕K εt⊕K εdt) e1−e0−−−−→F (K ε).

On the other hand the evaluation maps e0, e1 factor as

ei: K ε[t, dt] h−→K ε⊕K εt⊕K εdt
ei−→K ε, i = 0, 1

where h is the morphism of dg-vector spaces

h(εtn+1) = εt, h(εtndt) =
εdt

n + 1
, ∀n ≥ 0.

Corollary 9.20. Let L be a differential graded Lie algebra, then there
exists a natural isomorphism MC+

L = DefL.

Proof. According to Theorem 9.19 there exists a natural morphism of
functors ψ:MC+

L → DefL; by 5.66 ψ is a quasiisomorphism and then, by Corol-
lary 5.72 ψ is an isomorphism.

Definition 9.21. Let (C(V ), Q) be a L∞-algebra and let DefV = MC+
V

be the deformation functor associated to the predeformation functor MCV . We
shall call DefV the deformation functor associated to the L∞-algebra (C(V ), Q).

A morphism of L∞-algebras C(V ) → C(W ) induces in the obvious way a
natural transformation MCV → MCW and then, according to 9.19, a morphism
DefV → DefW . Finally, since MCV → DefV is a quasiisomorphism we have
T iDefV = Hi(V, Q1

1).
The following result is clear.

Corollary 9.22. Let θ:C(V ) → C(W ) be a morphism of L∞-algebras.
The induced morphism DefV → DefW is an isomorphism if and only if θ1

1:V →
W is a quasiisomorphism of complexes.
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9.6 – Cohomological constraint to deformations of Kähler manifolds

Theorem 9.13 shows that the category of L∞-algebras is more flexible than
the category of differential graded Lie algebras. Another example in this direction
is given by the main theorem of [54].

Let X be a fixed compact Kähler manifold of dimension n and consider
the graded vector space MX = Hom∗

C(H∗(X, C), H∗(X, C)) of linear endomor-
phisms of the singular cohomology of X. The Hodge decomposition gives natural
isomorphisms

MX =
⊕
i

M i
X , M i

X =
⊕

r+s=p+q+i

HomC(Hp(Ωq
X), Hr(Ωs

X))

and the composition of the cup product and the contraction operator TX ⊗
Ωp

X
�−→Ωp−1

X gives natural linear maps

θp: Hp(X, TX) →
⊕
r,s

Hom∗
C(Hr(Ωs

X), Hr+p(Ωs−1
X )) ⊂ M [−1]pX = Mp−1

X .

By Dolbeault’s theorem H∗(KSX) = H∗(X, TX) and then the maps θp give a
morphism of graded vector spaces θ:H∗(KSX) → M [−1]X . This morphism is
generally nontrivial: consider for instance a Calabi-Yau manifold where the map
θp induces an isomorphism Hp(X, TX) = HomC(H0(Ωn

X), Hp(Ωn−1
X )).

Theorem 9.23. In the above notation, consider M [−1]X as a differential
graded Lie algebra with trivial differential and trivial bracket.

Every choice of a Kähler metric on X induces a canonical lifting of θ to an
L∞-morphism from KSX to M [−1]X .

The application of Theorem 9.23 to deformation theory, see [54], are based
on the idea that L∞-morphisms induce natural transformations of (extended) de-
formation functors commuting with tangential actions and obstruction maps (cf.
Theorem 5.69). Being the deformation functor of the DGLA M [−1] essentially
trivial, the lifting of θ impose several constraint on deformations of X.

Denote by:

• A∗,∗ =
⊕

p,q Ap,q, where Ap,q = Γ(X,Ap,q) the vector space of global (p, q)-
forms.

• N∗,∗=Hom∗
C(A∗,∗,A∗,∗)=

⊕
p,q Np,q, where Np,q =

⊕
i,j Hom∗

C(Ai,j,Ai+p,j+q)
is the space of homogeneous endomorphisms of A∗,∗ of bidegree (p, q).

The space N∗,∗, endowed with the composition product and total degree deg(φ)=
p + q whenever φ ∈ Np,q, is a graded associative algebra and therefore, with the
standard bracket

[φ, ψ] = φψ − (−1)deg(φ) deg(ψ)ψφ

becomes a graded Lie algebra. We note that the adjoint operator [∂, ]:N∗,∗ →
N∗,∗+1 is a differential inducing a structure of DGLA.
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Lemma 9.24. Let X be a compact Kähler manifold, then there exists
τ ∈ N1,−1 such that:

1. τ factors to a linear map A∗,∗/ ker ∂ → Im ∂.
2. [∂, τ ] = ∂.

In particular ∂ ∈ N1,0 is a coboundary in the DGLA (N∗,∗, [ , ], [∂, ]).

Proof. In the notation of Theorem 6.37 it is sufficient to consider τ = σ∂ =
−∂σ. Note that the above τ is defined canonically from the choice of the Kähler
metric.

We fix a Kähler metric on X and denote by: H ⊂ A∗,∗ the graded vector
space of harmonic forms, i:H → A∗,∗ the inclusion and h:A∗,∗ → H the harmonic
projector.

We identify the graded vector space MX with the space of endomorphisms
of harmonic forms Hom∗

C(H,H). We also we identify Der∗(A∗,∗,A∗,∗) with its
image into N = Hom∗

C(A∗,∗, A∗,∗).
According to Lemma 9.24 there exists τ ∈ N0 such that

h∂ = ∂h = τh = hτ = ∂τ = τ∂ = 0, [∂, τ ] = ∂.

For simplicity of notation we denote by L = ⊕Lp the Z-graded vector space
KS[1]X , this means that Lp = Γ(X,A0,p+1(TX)), −1 ≤ p ≤ n − 1. The local
description of the two linear maps of degree +1, d:L → L, Q:#2L → L intro-
duced, up to décalage, in Proposition 9.11 is: if z1, . . . , zn are local holomorphic
coordinates, then

d

(
φ

∂

∂zi

)
= (∂φ)

∂

∂zi
, φ ∈ A0,∗.

If I, J are ordered subsets of {1, . . . , n}, a = fdzI
∂

∂zi
, b = gdzJ

∂

∂zj
, f, g ∈ A0,0

then

Q(a# b) = (−1)adzI ∧ dzJ

(
f

∂g

∂zi

∂

∂zj
− g

∂f

∂zj

∂

∂zi

)
, a = deg(a, L).

The formula

(5)

δ(a1 #. . .# am) =
∑

σ∈S(1,m−1)

ε(L, σ; a1, . . . , am)daσ1 # aσ2 # . . .# aσm+

+
∑

σ∈S(2,m−2)

ε(L, σ; a1, . . . , am)Q(aσ1 # aσ2)# aσ3 # . . .# aσm
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gives a codifferential δ of degree 1 on S(L) and the differential graded coalgebra
(S(L), δ) is exactly the L∞-algebra associated to the Kodaira-Spencer DGLA
KSX .

If Derp(A∗,∗,A∗,∗) denotes the vector space of C-derivations of degree p of
the sheaf of graded algebras (A∗,∗,∧), where the degree of a (p, q)-form is p + q
(note that ∂, ∂ ∈ Der1(A∗,∗,A∗,∗)), then we have a morphism of graded vector
spaces

L
ˆ−→Der∗(A∗,∗,A∗,∗) =

⊕
p

Derp(A∗,∗,A∗,∗), a �→ â

given in local coordinates by

̂
φ

∂

∂zi
(η) = φ ∧

(
∂

∂zi
" η

)
.

Lemma 9.25. If [ , ] denotes the standard bracket on Der∗(A∗,∗,A∗,∗),
then for every pair of homogeneous a, b ∈ L we have:

1. d̂a = [∂, â] = ∂â− (−1)aâ∂.

2. ̂Q(a# b) = −[[∂, â], b̂] = (−1)aâ∂b̂ + (−1)a b+b b̂∂â± ∂âb̂± b̂â∂.

Proof. This is a special case of Lemma 7.21.

Consider the morphism

F1:L → MX , F1(a) = hâi.

We note that F1 is a morphism of complexes, in fact F1(da) = hd̂ai = h(∂â ±
â∂)i = 0. By construction F1 induces the morphism θ in cohomology and there-
fore the theorem is proved whenever we lift F1 to a morphism of graded vector
spaces F :S(L) → MX such that F ◦ δ = 0.

Define, for every m ≥ 2, the following morphisms of graded vector spaces

fm:
⊗m

L → MX , Fm:
⊙m

L → MX , F =
∞∑

m=1

Fm: S(L) → MX ,

fm(a1 ⊗ a2 ⊗ . . .⊗ am) = hâ1τ â2τ â3 . . . τ âmi.

Fm(a1 # a2 # . . .# am) =
∑

σ∈Σm

ε(L, σ; a1, . . . , am)fm(aσ1 ⊗ . . .⊗ aσm
).

Theorem 9.26. In the above notation F ◦ δ = 0 and therefore

Θ =
∞∑

m=1

1
m!

F�m ◦∆m−1
C(KSX): (C(KSX), δ) → (C(M [−1]X), 0)

is an L∞-morphism with linear term F1.
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Proof. We need to prove that for every m ≥ 2 and a1, . . . , am ∈ L we have

Fm

 ∑
σ∈S(1,m−1)

ε(L, σ)daσ1 # aσ2 # . . .# aσm

 =

= −Fm−1

 ∑
σ∈S(2,m−2)

ε(L, σ)Q(aσ1 # aσ2)# aσ3 # . . .# aσm

 ,

where ε(L, σ) = ε(L, σ; a1, . . . , am).
It is convenient to introduce the auxiliary operators q:

⊗2
L → N [1], q(a⊗

b) = (−1)aâ∂b̂ and gm:
⊗m

L → M [1]X ,

gm(a1⊗. . .⊗am)=−
m−2∑
i=0

(−1)a1+a2+...+aihâ1τ . . . âiτq(ai+1⊗ai+2)τ âi+3 . . . τ âmi.

Since for every choice of operators α = h, τ and β = τ, i and every a, b ∈ L we
have

α ̂Q(a# b)β = α((−1)aâ∂b̂ + (−1)a b+bb̂∂â)β = α(q(a⊗ b) + (−1)a bq(b⊗ a))β,

the symmetrization Lemma 8.5 gives∑
σ∈Σm

ε(L, σ)gm(aσ1 ⊗ . . .⊗ aσm) =

= −Fm−1

 ∑
σ∈S(2,m−2)

ε(L, σ)Q(aσ1 # aσ2)# aσ3 # . . .# aσm

 .

On the other hand

fm

(
m−1∑
i=0

(−1)a1+...+aia1 ⊗ . . .⊗ ai ⊗ dai+1 ⊗ . . .⊗ am

)
=

=
m−1∑
i=0

(−1)a1+...+aihâ1 . . . âiτ(∂âi+1 − (−1)ai+1 âi+1∂)τ . . . τ âmi =

=
m−2∑
i=0

(−1)a1+...+aihâ1 . . . âiτ(−(−1)ai+1 âi+1∂τ âi+2+

+ (−1)ai+1 âi+1τ∂âi+2)τ . . . τ âmi=

= −
m−2∑
i=0

(−1)a1+...+aihâ1 . . . âiτ((−1)ai+1 âi+1[∂, τ ]âi+2)τ . . . τ âmi =

= −
m−2∑
i=0

(−1)a1+...+aihâ1 . . . âiτq(ai+1 ⊗ ai+2)τ . . . τ âmi =

= gm(a1 ⊗ . . .⊗ am).
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Using again Lemma 8.5 we have

∑
σ∈Σm

ε(L, σ)gm(aσ1 ⊗. . .⊗ aσm
)=Fm

 ∑
σ∈S(1,m−1)

ε(L, σ)daσ1 # aσ2 #. . .# aσm

.

Remark. If X is a Calabi-Yau manifold with holomorphic volume form Ω,
then the composition of F with the evaluation at Ω induces an L∞-morphism
C(KSX) → C(H[n− 1]).

For every m ≥ 2, evΩ ◦Fm:
⊙m

L → H[n] vanishes on
⊙m{a ∈ L | ∂(a "

Ω) = 0}.

9.7 – Historical survey

L∞-algebras, also called strongly homotopy Lie algebras, are the Lie ana-
logue of the A∞ ( strongly homotopy associative algebras), introduced by Stash-
eff [74] in the context of algebraic topology.

The popularity of L∞-algebras has been increased recently by their applica-
tion in deformation theory (after [68]), in deformation quantization (after [44])
and in string theory (after [82], cf. also [47]).
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