Corso di Laurea in Matematica - A.A. 2004/2005

Topologia

Esonero del 19 novembre 2004 (Prof. Marco Manetti)

Esercizio 1. Consideriamo il quadrato Q ed il triangolo T definiti in coordinate da

$$Q = \{(x, y) \in \mathbb{R}^2 \mid |x| + |y| \le 1\}, \qquad T = \{(x, y) \in Q \mid y \le 0\}.$$

Descrivere esplicitamente un omeomorfismo $f: Q \to T$ che lascia fissi tutti i punti $(x,y) \in Q \cap T$ tali che |x| = 1 + y.

Esercizio 2. Siano X uno spazio topologico e $A, B \subset X$ due sottoinsiemi non vuoti tali che $A \cup B = X$ e $\overline{A} \cap B = A \cap \overline{B} = \emptyset$. Dimostrare che X non è connesso.

Esercizio 3. Siano $C \subset A \subset X$, con X spazio topologico, A aperto in X e C chiuso in A. Indichiamo con ∂A e ∂C le frontiere di A e C in X. Provare che C è chiuso in X se e solo se $\partial A \cap \partial C = \emptyset$

Esercizio 4. Dire, motivando la risposta, se l'applicazione

$$f: \mathbb{R} \to S^1, \qquad f(t) = (\cos(2\pi t), \sin(2\pi t)),$$

è chiusa. \triangle

Esercizio 5. Dimostrare che la composizione di due identificazioni è ancora una identificazione. \triangle

Esercizio 6. Sia X il quoziente di \mathbb{R}^2 per l'azione naturale di $\mathrm{GL}(2,\mathbb{R})$. Dire, motivando la risposta, se la topologia quoziente su X è di Hausdorff.

Esercizio 7. Sia (X,d) uno spazio metrico. Provare che esiste un sottoinsieme $S \subset X$ tale che $d(s,t) \geq 1$ per ogni coppia s,t di punti distinti di S e tale che X sia ricoperto dalle palle aperte di raggio 1 e centro in S. (Sugg.: applicare il Lemma di Zorn alla famiglia dei sottoinsiemi $A \subset X$ tali che $d(s,t) \geq 1$ per ogni $s,t \in A, s \neq t$.) \triangle

Esercizio 8. Sia (X,d) uno spazio metrico compatto tale che per ogni $x \in X$ ed ogni r > 0 vale

$$\overline{\{y \mid d(x,y) < r\}} = \{y \mid d(x,y) \le r\}.$$

Dimostrare che X è connesso.

Esercizio 9. Sia $A \subset \mathbb{R}^n$ un aperto non vuoto. Denotiamo $C = \mathbb{R}^n - A$ e

$$f \colon A \to]0, +\infty[, \qquad f(x) = ||x|| + \frac{1}{\inf\{||x - y|| \mid y \in C\}}.$$

Dimostrare:

- 1. f è continua.
- 2. Per ogni compatto $K \subset]0, +\infty[$, l'insieme $f^{-1}(K)$ è compatto.
- 3. f è chiusa.

 \triangle

 \triangle