1 Esercizi di Topologia, 21 ottobre 2004, M.M.

Esercizio 1. Il cono di uno spazio topologico X è definito come $C(X) = X \times [0,1]/\sim$, dove \sim è le relazione di equivalenza

$$(x,t) \sim (y,s) \iff (x,t) = (y,s)$$
 oppure se $s = t = 0$.

 \triangle

Δ

Dimostrare che se X è di Hausdorff, allora anche C(X) è di Hausdorff.

Esercizio 2. Siano X uno spazio di Hausdorff e $f: X \to Y$ una identificazione aperta. Denotiamo con

$$K(f) = \{(x, y) \in X \times X \mid f(x) = f(y)\}.$$

Dimostrare che Y è di Hausdorff se e solo se K(f) è chiuso in $X \times X$.

Esercizio 3 (*). Sia A una matrice reale $n \times n$ triangolare superiore con tutti gli autovalori > 1 e sia $G = \{A^n \mid n \in \mathbb{Z}\} \subset GL(n, \mathbb{R})$ il gruppo ciclico infinito da essa generato. Dimostrare che il quoziente $(\mathbb{R}^n - \{0\})/G$ è di Hausdorff.

(Se vi risulta troppo difficile, potete togliere l'asterisco supponendo che A sia diagonale anziché triangolare: l'esercizio rimane comunque interessante. Se invece vi risulta troppo facile, dimostrate che il quoziente è omeomorfo al prodotto $S^1 \times S^{n-1}$.) \triangle