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Abstract

Given a smoothly bounded domain Ω b Rn with n ≥ 1 odd, we study the blow-up of

bounded sequences (uk) ⊂ H
n
2
00(Ω) of solutions to the non-local equation

(−∆)
n
2 uk = λkuke

n
2 u

2
k in Ω,

where λk → λ∞ ∈ [0,∞), and H
n
2
00(Ω) denotes the Lions-Magenes spaces of functions u ∈

L2(Rn) which are supported in Ω and with (−∆)
n
4 u ∈ L2(Rn). Extending previous works

of Druet, Robert-Struwe and the second author, we show that if the sequence (uk) is not
bounded in L∞(Ω), a suitably rescaled subsequence ηk converges to the function η0(x) =

log
(

2
1+|x|2

)
, which solves the prescribed non-local Q-curvature equation

(−∆)
n
2 η = (n− 1)!enη in Rn

recently studied by Da Lio-Martinazzi-Rivière when n = 1, Jin-Maalaoui-Martinazzi-Xiong
when n = 3, and Hyder when n ≥ 5 is odd. We infer that blow-up can occur only if
Λ := lim supk→∞ ‖(−∆)

n
4 uk‖2L2 ≥ Λ1 := (n− 1)!|Sn|.

1 Introduction

In this paper we study some compactness properties of the embedding of H
n
2

00(Ω) into Orlicz
spaces, where Ω is a smoothly bounded domain in Rn. In order to introduce the relevant
function spaces we start by recalling various definitions of fractional Laplacians.

Let S(Rn) denote Schwarz space of smooth and rapidly decreasing functions on Rn. For a
function u ∈ S(Rn) and for s ∈ (0,∞), we define

(−∆)
s
2u := (| · |2su∧)∨.

Here the Fourier transform is defined via

u∧(ξ) ≡ Fu(ξ) :=
1

(2π)n/2

∫
Rn
e−ix·ξ u(x)dx.

and u∨ is its inverse.
For s ∈ (0, 2) one can also prove (see e.g. [12]) that for a certain constant cn,s ∈ R

(−∆)
s
2u(x) = cn,sP.V.

∫
Rn

u(x+ h)− u(x)

|h|n+s
dh.
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In order to define the operator (−∆)s on a space larger than the Schwarz space, set for s > 0

Ls(Rn) :=

{
u ∈ L1

loc(Rn) :

∫
Rn

|u(x)|
1 + |x|n+s

dx <∞
}
. (1)

Then for u ∈ Ls(Rn) we can define (−∆)su as a tempered distribution as follows:

〈(−∆)
s
2u, ϕ〉 :=

∫
Rn
u(−∆)

s
2ϕdx, for ϕ ∈ S(Rn).

This is due to the fact that for ϕ ∈ S(Rn) one has (1 + |x|n+s)|(−∆)
s
2ϕ(x)| ≤ C for a constant

depending on ϕ but not on x, see [18, Proposition 2.2] and [32].
We can now define the space

Hs(Rn) := {u ∈ L2(Rn) : (−∆)
s
2u ∈ L2(Rn)},

endowed with the norm

‖u‖2Hs(Rn) := ‖u‖2L2(Rn) + ‖(−∆)
s
2u‖2L2(Rn),

where with the expression (−∆)
s
2u ∈ L2(Rn) we mean that the tempered distribution (−∆)

s
2u

can be represented by a square-summable function.
Given a bounded set Ω b Rn we also define its subspace

Hs
00(Ω) := {u ∈ Hs(Rn) : u ≡ 0 on Ωc}.

In particular we will consider the space X(Ω) := H
n
2

00(Ω) for n is odd, endowed with the norm

‖u‖2X := ‖(−∆)
n
4 u‖2L2(Rn) =

∫
Rn
|ξ|n|û(ξ)|2dξ.

The norms ‖ · ‖X and ‖ · ‖
H
n
2 (Rn)

are equivalent on H
n
2

00(Ω) by a Poincaré-type inequality. The

space Hs
00(Ω) is also known as Lions-Magenes space, and is sometimes denoted by H̃s(Ω), or

even Ls,20 (Ω).

We recall the following fractional version of the Adams-Moser-Trudinger inequality, see [23,
Theorem 1]:

Theorem 1.1. For any integer n > 0 there exists a constant Cn > 0 such that for every open
set Ω ⊂ Rn with finite volume |Ω| one has

sup
u∈X(Ω), ‖u‖2X≤Λ1

∫
Ω
e
n
2
u2dx ≤ Cn|Ω|, (2)

where Λ1 := (n− 1)!|Sn|.

When n = 2 the above theorem is a special case of the Moser-Trudinger inequality [35], and
when n > 2 is even it is a special case of Adams’ inequality [1].

In this paper we want to study the blow-up behavior of extremals of (2), i.e. weak solutions
u ∈ X(Ω) of the Euler-Lagrange equation

(−∆)
n
2 u = λue

n
2
u2 , for some λ ∈ R, (3)

which can be intended in the following sense:
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Definition 1.2. Given f ∈ L2(Ω), a function with u ∈ X(Ω) + R (i.e. u+ c ∈ X(Ω) for some
c ∈ R) is a weak solution to

(−∆)
n
2 u = f in Ω (4)

if ∫
Rn

(−∆)
n
4 u (−∆)

n
4 ϕdx =

∫
Rn
fϕdx, ∀ϕ ∈ X(Ω). (5)

Remark 1.3. It follows from Theorem 1.1 that for u ∈ X(Ω) one has eu
2 ∈ Lp(Ω) for every

p ∈ [1,∞) (see also [27, Theorem 9.1]). In particular the right-hand side of (3) belongs to
Lp(Ω) for p ∈ [1,∞).

The Lagrange multiplier λ in (3) can be computed by testing the equation with ϕ = u (in
the spirit of (5)). This leads to

‖(−∆)
n
4 u‖2L2(Rn) = λ

∫
Ω
u2e

n
2
u2dx, (6)

whence λ > 0, unless u ≡ 0.
We are interested in the study of the blowing-up behavior of a sequence of continuous

solution to the following problem :{
(−∆)

n
2 uk = λkuke

n
2
u2k in Ω

uk ∈ X(Ω)
(7)

where λk ≥ 0.

Remark 1.4. It follows from Remark 1.3, from the estimates in [15] and bootstrapping, that

every solution u to (3) belongs to C
n−1
2
,α(Ω̄) ∩ C∞(Ω) for some α ∈ (0, 1), and in fact the

function d−
n
2 u : Ω → R, where d is the distance function from ∂Ω, can be extended to a

function in C∞(Ω̄). In particular, supΩ uk ∈ R.

The main result of this paper can be stated as follows :

Theorem 1.5. Consider a bounded sequence (uk)k∈N ⊂ X(Ω) of solutions to (7). Set mk :=
supΩ |uk| and

Λ := lim sup
k→∞

‖uk‖2X <∞.

Up to possibly replacing uk with −uk we can assume that mk = supΩ uk for every k. Assume
also that 0 < λk ≤ λ̄ for some λ̄ < ∞ and that λk → λ∞ as k → ∞. Then up to extracting a
subsequence one of the following holds:

(i) limk→∞mk < ∞ and uk converges to u∞ in C`loc(Ω) ∩ C
n−1
2 (Ω̄) for any ` ∈ N and

u∞ ∈ C`loc(Ω) ∩ C
n−1
2 (Ω̄) ∩X(Ω) solves

(−∆)
n
2 u∞ = λ∞u∞e

n
2
u2∞ in Ω.

(ii) limk→∞mk =∞, Λ ≥ Λ1, with Λ1 as in Theorem 1.1, and setting rk such that

λkm
2
ke

n
2
m2
krnk = 2n(n− 1)!, (8)

and

ηk(x) := mk(uk(xk + rkx)−mk), η0(x) := log

(
2

1 + |x|2

)
, (9)

one has ηk + log 2→ η0 in C`loc(Rn) for every ` ≥ 0.
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Since Theorem 1.5 was proven in [2], [14], [28] and [22] when n is even, we shall only
consider the remaining case n odd. In some proofs we will focus on the case n ≥ 3, but simple
modifications make every argument work for the case n = 1. In fact the case n = 1 is a slightly
simpler, since comparison principles and in particular the Harnack inequality are available.

The general strategy of the proof is similar to the one in the even-dimensional case, but
some new difficulties arise due to the nonlocal nature of the operator (−∆)

n
2 , as we shall now

describe.
One would like to shows that in case of blow-up (Case (ii) in Theorem 1.5) the functions ηk

converge to a function η0 ∈ Ln(Rn) solving

(−∆)
n
2 η0 = (n− 1)!enη0 in Rn, V :=

∫
Rn
enη0dx <∞, (10)

and then prove that, among all solutions to (10), η0 has the special form given by (9).
The first problem is that the local convergence of ηk to a function η0 rests on local gradient

bounds for ηk not depending on k (when n = 1, 2 such bound are not necessary, thanks to the
Harnack inequality). This is the content of Propositions 2.4 and 2.5, one of the crucial parts of
the paper. In particular we will show that for s < n,∫

Bρ(x0)
|uk(−∆)

s
2uk| dx ≤ Cρn−s, for B10ρ(x0) ⊂ Ω. (11)

In the previous work [22] an analogous estimate was obtained by noticing that (−∆)
n
2 (u2

k)
is uniformly bounded in L1(Ω) when n is even. Unfortunately this was based on an explicit
expansion of (−∆)

n
2 (u2

k) as sum of partial derivatives of uk, which is of course not possible when
n is odd. Here instead we reduce (11) to a the bound

‖uk(−∆)
s
2uk‖L(ns ,∞)(Bρ(x0))

≤ C,

which will be proven writing uk(−∆)
s
2uk in terms of the Riesz potential. The formal heuristic

argument goes as follows. Write formally

uk(−∆)
s
2uk = ukIn−s(−∆)

n
2 uk

=: (In
2
(−∆)

n
4 uk)In−s(θ(−∆)

n
2 uk) + In−s(uk(−∆)

n
2 uk) + E

=: A+B + E,

(12)

where θ ∈ C∞0 (B2ρ(x0)) is a cut-off functions, It denotes the Riesz potential, and E is an error
term, which can be bounded using a commutator-type estimate. Then one has to bound the
term A in L(n

s
,∞)(Bρ(x0)) using that (−∆)

n
4 uk is bounded in L2(Rn), while (−∆)

n
2 uk is bounded

in L log
1
2 L(Ω). These are borderline estimates, for instance because In

2
fails to send L2 into L∞.

Using elementary tricks we are able to circumvent this problem, obtaining Propositions 3.1 and
3.2. In order to bound B one uses the PDE, and in particular that uk(−∆)

n
2 uk is bounded in

L1(Ω). Finally, to move from the formal argument to a rigorous one, and in particular to replace
the first identity in (12) with a correct identity, we have to approximate uk with functions in
C∞c (Rn). The necessary technical results are contained in Section 3 and the appendix.

The second problem, still related to the non-local nature of (−∆)
n
2 , is that uniform estimates

on the derivatives of the blown-up functions ηk do indeed guarantee that ηk → η0 in C`loc(Rn)
(up to the additive constant log 2 which we shall now ignore) for ` ≤ n− 1, but why should the
convergence

(−∆)
n
2 ηk → (−∆)

n
2 η0 in S ′(Rn) as k →∞ (13)
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hold? Indeed (13) means that

lim
k→∞

∫
Rn
ηk (−∆)

n
2 ϕdx→

∫
Rn
η0 (−∆)

n
2 ϕdx for every ϕ ∈ S(Rn), (14)

and since even for ϕ ∈ C∞c (Rn) we have that (−∆)
n
2 ϕ is not compactly supported, the local

convergence of ηk is not sufficient to guarantee (14). A priori it could happen that while ηk → η0

very strongly in a compact set, “at infinity” ηk has a wild behaviour. To rule this out we shall
prove uniform bounds of ηk in Ls(Rn) for any s > 0, which is the content of Proposition 2.7.
Here we critically use that ηk is uniformly upper bounded by construction, and the local bounds
on the derivatives of ηk.

At this point it will be easy to conclude that ηk locally converges to a function η0 ∈ Ln(Rn)
solving (10). Now we are faced with the problem of determining η0. Indeed, similarly to what
was shown in [5], also in odd dimension 3 or higher, Problem (10) has many solutions, as shown
in [19] (when n = 3) and [17] (for any n ≥ 3 odd). Here we are able to use the following recent
result of Ali Hyder, together with the previous bounds to show that among all solutions of (10)
actually η0 is a special one, precisely the one given in (9).

Theorem 1.6 (A. Hyder [18]). Let η0 ∈ Ln(Rn) solve (10). Then η0 can be decomposed as
η0 = v+P , where P is a polynomial of degree at most n− 1, and v(x) = −α log(|x|) + o(log |x|)
as |x| → ∞. Moreover P is constant if and only if

η0(x) = log
2λ

1 + λ2|x− x0|2
, for some λ > 0, x0 ∈ Rn. (15)

Indeed, if η0 is not of the form (15), then η0 at infinity behaves like a logarithm plus a
polynomial, only the former belonging to Ls(Rn) for s small. This is in contradiction to the
fact that η0 ∈ Ls(Rn) for every s > 0. This argument is different from the one used in the even
dimensional case, first introduced in [28] and then also applied in [22] and other works.

In the case n = 1 Theorem 1.6 is not necessary because Da Lio-Martinazzi-Rivière [10]
proved that every function η0 ∈ L1(R) solving (10) for n = 1 has necessarily the form (15).

It has to be mentioned that in even dimension the analog of Theorem 1.5 was complemented
in [14], [20], [24] and [34] by a quantization result, saying that in case of blow-up

Λ =

∫
Ω
|∇

n
2 u∞|2dx+ LΛ1 for an integer L > 0.

In other words the energy loss in the weak limit is an integer multiple of the fixed quantity
Λ1. Although it is natural to expect this to hold true also in our non-local case, we remark
that in the local case the proofs make abundant use of ODE techniques, which are not available
when dealing with fractional Laplacians. On the other hand in the case of half-harmonic maps,
precise energy quantization was obtained in [7].

Notation

The space Cα(Ω) ≡ Cα0,α̃(Ω), for α = α0 + α̃ with α̃ ∈ (0, 1], α0 ∈ N0, is the space of α0-
times differentiable functions with α0th derivative Hölder continous of order α̃. We define the
semi-norm

[f ]Cα(Ω) = sup
x 6=y∈Ω

|∇α0f(x)−∇α0f(y)|
|x− y|α̃

,

and the norm

‖f‖Cα(Ω) :=

α0∑
k=0

‖∇kf‖L∞(Ω) + [f ]Cα(Ω).
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2 Proof of Theorem 1.5

Proposition 2.1. If supkmk ≤ C then up to a subsequence uk → u∞ in C`loc(Ω) ∩ C
n−1
2 (Ω̄)

for every ` > 0, where u∞ solves (7).

Proof. This follows from Lemma A.6, from the estimates in [15] (compare also to [28]), and the
theorem of Arzelà-Ascoli.

We shall now assume that, up to a subsequence, mk →∞ as k →∞ and we consider xk ∈ Ω
so that

mk ≡ sup
Ω
uk = uk(xk)→∞ as k →∞. (16)

2.1 Rescaling and Convergence

Lemma 2.2. Let rk and xk be defined by (8) and (16) respectively. Then we have

lim
k→∞

dist(xk, ∂Ω)

rk
= +∞

Proof. For the sake of contradiction, we assume that

lim
k→∞

dist(xk, ∂Ω)

rk
<∞.

Let us assume that

0 < lim
k→∞

dist(xk, ∂Ω)

rk
<∞. (17)

If the above limit vanishes then the argument is similar. We set Ωk = {r−1
k (x − xk);x ∈ Ω}.

Then

vk(x) :=
uk(rkx+ xk)

mk

satisfies {
(−∆)

n
2 vk = 2n(n−1)!

m2
k

vke
n
2
m2
k(v2k−1) in Ωk

vk ∈ X(Ωk).
(18)

Notice that,

‖(−∆)
n
4 vk‖L2(Rn) = (mk)

−1‖(−∆)
n
4 uk‖L2(Rn)

k→∞−−−→ 0.

Then by the Sobolev embedding, Proposition A.3 using also (44), the boundedness of the Riesz

transform, and that (−∆)
1
2 = In

2
−1(−∆)

n
4 ,

‖∇vk‖Ln(Rn) = c‖R(−∆)
1
2 vk‖Ln(Rn) ≺ ‖(−∆)

1
2 vk‖Ln(Rn)

≺‖In
2
−1(−∆)

n
4 vk‖Ln(Rn) ≤ C‖(−∆)

n
4 vk‖L2(Rn)

k→∞−−−→ 0.
(19)

On the other hand, by (17) there exists some R > 0 so that B4R(0) ⊂ Ωk for all k ∈ N. Then

‖(−∆)
n
2 vk‖L∞(B3R(0))

k→∞−−−→ 0.

This implies that for any α ∈ (0, n), Lemma A.6,

[vk]Cα(B2R(0)) ≤ C.
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So recalling that |vk| ≤ 1, by Arzelà-Ascoli (up to a subsequence) we have that vk → v in
Cn−1(BR) for some v. Since at the same time ∇vk → 0 in Ln(Rn) and vk(0) = 1, we know that
v ≡ 1 in BR.

On the other hand, take R1 > R so that BR1
2

(0)∩∂Ωk 6= 0 for all but possibly finitely many

k ∈ N. Using (19), and noticing that vk ≡ 0 on a fixed part of positive measure of BR1 , we
know that vk → 0 in Ln(BR1(0)), hence v ≡ 0 in BR. This contradicts v ≡ 1.

Lemma 2.3. Let mk be as in (16). Then we have

uk(xk + rkx)−mk → 0 in Cn−1
loc (Rn) as k →∞. (20)

Proof. Let ũk := uk(xk + rkx). Then ũk ∈ C0
c (Rn) ∩X(Ωk) and

sup
x∈Rn

|ũk(x)| = ũk(0) = mk ∈ [0,∞).

As above by Sobolev embedding, ũk ∈W 1,n
0 (Ωk)

lim sup
k→∞

‖∇ũk‖Ln(Rn) ≤ C lim sup
k→∞

‖(−∆)
n
4 ũk‖L2(Rn)

= C lim sup
k→∞

‖(−∆)
n
4 uk‖L2(Rn)

≤ C(Λ).

and from (42), (43) and (44) below for k large enough we get

‖(−∆)
1
2 ũk‖Ln(Rn) =

n∑
i=1

‖RiRi(−∆)
1
2 ũk‖Ln(Rn)

≤ C
n∑
i=1

‖Ri(−∆)
1
2 ũk‖Ln(Rn)

≤ C‖∇ũk‖Ln(Rn)

≤ C(Λ).

(21)

Notice that

|(−∆)
n
2 ũk| ≤

C

mk
in Ωk.

Finally, by Lemma 2.2 for any ϕ ∈ C∞c (R3), for all sufficiently large k depending on the size of
the support of ϕ, ∣∣∣∣ ∫

Rn
(−∆)

n
4 ũk (−∆)

n
4 ϕdx

∣∣∣∣ ≤ C 1

mk

∫
R3

|ϕ| dx. (22)

Let gk := (−∆)
1
2 ũk, bounded in Ln(Rn), according to (21). There is a weakly convergent

subsequence gk ⇀ g in Ln(Rn). Moreover, we have for any ϕ ∈ C∞c (Rn), by (22)∫
Rn
g (−∆)

n−1
2 ϕdx = lim

k→∞

∫
Rn
gk (−∆)

n−1
2 ϕdx = lim

k→∞

∫
Rn

(−∆)
n
4 ũk (−∆)

n
4 ϕdx

k→∞−−−→ 0.

Consequently, g ∈ C∞(Rn) ∩ Ln(Rn), and pointwise (−∆)
n−1
2 g ≡ 0. This implies that g ≡ 0.

Indeed by elliptic estimates (see e.g. [21, Proposition 4]) and Hölder’s inequality it follows that

‖g‖L∞(B1) ≤ C‖g‖L1(B2) ≤ C̃‖g‖Ln(B2),
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which scaled gives
‖g‖L∞(BR) ≤ C̃R−1‖g‖Ln(B2R) → 0 as R→∞.

So we have obtained, that (−∆)
1
2 ũk ⇀ 0 in Ln(Rn). Then, using (44) and (45) we also have

∇ũk = R(−∆)
1
2 ũk ⇀ 0 in Ln(Rn).

Since ũk is uniformly bounded in H
n
2 (Rn), since n ≥ 3, we also have strong convergence in

W 1,2
loc (Rn). In particular up to choosing a subsequence, for any R > 1,

∇ũk → 0 in L2(BR). (23)

On the other hand, observe the following: For any R > 1, for all large k ∈ N, we have B2R ⊂ Ωk.
From (22), Lemma A.6 we obtain

‖∇ũk‖Cn−2,α(BR) ≤ C

for a uniform constant C and α ∈ (0, 1).
Since ũk(0) = mk, we have

‖ũk −mk‖L∞(BR) ≤ ‖∇ũk‖L∞(BR) ≤ C,

and consequently we have shown that

‖ũk −mk‖Cn−1,α(BR) ≤ C

Now Arzelà-Ascoli gives (up to a further subsequence) Cn−1(BR)-convergence of ũk −mk, and
using (23) we have that ũk−mk → 0 in Cn−1(BR). Since R is arbitrary the proof is complete.

2.2 Gradient-type estimates

Note that from (6)
lim sup
k→∞

‖uk(−∆)
n
2 uk‖L1(Ω) ≤ Λ.

Moreover, as in [22, Proof of Lemma 5], we know that for the Orlicz space L log
1
2 L(Ω),

lim sup
k→∞

‖(−∆)
n
2 uk‖

L log
1
2 L(Ω)

≤ C(Λ,Ω).

We will now need the following crucial estimate applied to u = uk and ρ = Rrk for a given
R > 0 and k so large that B10ρ(xk) ⊂ Ω (compare to Lemma 2.2).

Proposition 2.4. Let Ω be a smoothly bounded domain, and consider u ∈ X(Ω) such that

(−∆)
n
2 u = f weakly in Ω for some f ∈ L log

1
2 L(Ω) ∩ L∞(Ω). Assume moreover that

‖u f‖L1(Ω) + ‖f‖
L log

1
2 L(Ω)

+ ‖(−∆)
n
4 u‖L2(Rn) ≤ C1. (24)

Then for a constant depending C2 depending only on C1 and s ∈ (0, n) we have

sup
B4ρ(x0)⊂Ω

ρs−n
∫
Bρ(x0)

|u(−∆)
s
2u| dx ≤ C2
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Proof. We will use the Lorentz spaces L(p,q), for which we refer the reader to the appendix.
Using the Hölder-type inequality (see [26])

‖gh‖L1(Ω) ≤ ‖g‖L( n
n−s ,1)(Ω)

‖h‖
L(ns ,∞)(Ω)

,

we get (for Bρ = Bρ(x0), to simplify the notation)

ρs−n
∫
Bρ

|u(−∆)
s
2u|dx ≤ ρs−n‖χBρ‖L( n

n−s ,1)(Bρ)
‖u(−∆)

s
2u‖

L(ns ,∞)(Bρ)

= C‖u(−∆)
s
2u‖

L(ns ,∞)(Bρ)
,

so that it remains to show the bound

sup
B4ρ⊂Ω

‖u(−∆)
s
2u‖

L(ns ,∞)(Bρ)
≤ C2.

For ε > 0 we denote with uε ∈ C∞c (Rn) the usual mollification.
Consider now a cut-off function θB1 ∈ C∞(B2), θB1 ≡ 1 in B1 and 0 ≤ θB1 ≤ 1 everywhere.

Set θB2ρ := θB1(·/2ρ) ∈ C∞c (B4ρ). Then since uε ∈ C∞c (Rn) we have for s ∈ (0, n) pointwise in
Bρ:

|u(−∆)
s
2uε| =|uIn−s(−∆)

n
2 uε|

≤|uIn−s(θB2ρ(−∆)
n
2 uε)|+ |uIn−s((1− θB2ρ)(−∆)

n
2 uε)|

≤|uIn−s(θB2ρ(−∆)
n
2 uε)|

+ |uIn−s((1− θB2ρ)(−∆)
n
2 uε)− In−s(u(1− θB2ρ)(−∆)

n
2 uε)|

+ |In−s(u(−∆)
n
2 uε)|

=:I + II + III.

By Proposition 3.1 and Proposition 3.2, using that u = In
2
(−∆)

n
4 u we infer

‖I‖
L(ns ,∞)(Rn)

≺ ‖(−∆)
n
4 u‖L2(Rn)‖(−∆)

n
2 uε‖

L log
1
2 L(B4ρ)

. (25)

From the disjoint-support commutator estimate, see Proposition 3.4, we have

‖II‖
L(ns ,∞)(Bρ)

≺ ‖(−∆)
n
4 u‖2L2(Rn). (26)

Since the support of u is contained in Ω, by the Sobolev inequality

‖III‖
L(ns ,∞)(Rn)

≺ ‖u(−∆)
n
2 uε‖L1(Ω) (27)

Combining the estimates (27), (25), (26) we arrive at

‖u(−∆)
s
2uε‖

L(n2 ,∞)(Bρ)
≺ ‖u(−∆)

n
2 uε‖L1(Ω) + ‖(−∆)

n
4 u‖L2(Rn) ‖(−∆)

n
2 uε‖

L log
1
2 L(B4ρ)

+ ‖(−∆)
n
4 u‖2L2(Rn)

(24)

≤ ‖u(−∆)
n
2 uε‖L1(Ω) + C1 ‖(−∆)

n
2 uε‖

L log
1
2 L(B4ρ)

+ (C1)2.

It remains to take ε → 0, but some care is needed, since (−∆)
n
2 u is in general not a function,

but a distribution.
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Firstly, since B4ρ ⊂ Ω, for ε < ρ we have that

(−∆)
n
2 uε = ((−∆)

n
2 u)ε in B4ρ.

In particular, for ε < ρ

‖(−∆)
n
2 uε‖

L log
1
2 L(B4ρ)

≺ ‖(−∆)
n
2 u‖

L log
1
2 L(B4ρ)

≤ ‖(−∆)
n
2 u‖

L log
1
2 L(Ω)

≤ C1.

For the remaining term ‖u(−∆)
n
2 uε‖L1(Ω), we need to argue as follows. Firstly, since uε is the

usual mollification, we have

‖(−∆)
n
2 uε‖L2(Rn) ≤ ε−

n
2 ‖(−∆)

n
4 u‖L2(Rn) (28)

Moreover, since Ω is smooth and bounded and u ∈ X(Ω), the results by [15], see also [29,
Theorem 1.2], using that

‖(−∆)
n
2 u‖L∞(Ω) =: C3 <∞,

then if we set Ω−ε := {x ∈ Ω : dist(x, ∂Ω) > ε}

‖u‖L∞(Ω\Ω−ε) ≺ ε
n
2 C3.

In particular with (28) we have

‖u(−∆)
n
2 uε‖L1(Ω) ≤ ‖u(−∆)

n
2 uε‖L1(Ω−ε) + |Ω\Ω−ε|

1
2 ‖(−∆)

n
4 u‖L2(Rn)

= ‖u(−∆)
n
2 uε‖L1(Ω−ε) + o(1) as ε→ 0.

Now note again that
(−∆)

n
2 uε = ((−∆)

n
2 u)ε pointwise in Ω−ε.

Consequently,

‖u(−∆)
n
2 uε‖L1(Ω) ≤ ‖u((−∆)

n
2 u)ε‖L1(Ω−ε) + o(1)

ε→0−−−→ ‖u (−∆)
n
2 u‖L1(Ω).

This concludes the proof of Lemma 2.4.

2.3 Convergence of ηk

Let ηk be as in (9). From Proposition 2.4 we now infer:

Proposition 2.5. For every s ∈ (0, n) there exists C > 0 such that for every R > 0 and k large
enough (depending on R and s) we have∫

BR

|(−∆)
s
2 ηk|dx ≤ CRn−s. (29)

Proof. According to Lemma 2.3 we have

mk ≤ 2uk on BRrk(xk) for k large enough,

hence with Proposition 2.4 applied with u = uk and ρ = Rrk we obtain (note that (−∆)
s
2 (m2

k) =
0) ∫

BR

|(−∆)
s
2 ηk|dx =

mk

rn−sk

∫
BRrk (xk)

|(−∆)
s
2uk|dx

≤ 2

rn−sk

∫
BRrk (xk)

|uk(−∆)
s
2uk|dx

≤ CRn−s,

as claimed.
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Proposition 2.6. For every BR ⊂ Rn and any α ∈ [0, 1) there exists a constant CR,α so that

‖ηk‖Cn−1+α(BR) ≤ CR,α.

for k large enough.

Proof. We have that |(−∆)
n
2 ηk| ≤ C(R) in BR, in the sense that∣∣∣∣ ∫

Rn
(−∆)

n
4 ηk(−∆)

n
4 ϕdx

∣∣∣∣ ≤ C‖ϕ‖L1(BR), for ϕ ∈ C∞c (BR).

This can be rewritten as∣∣∣∣ ∫
Rn

(−∆)
1
2 ηk(−∆)

n−1
2 ϕdx

∣∣∣∣ ≤ C‖ϕ‖L1(BR), for ϕ ∈ C∞c (BR), (30)

which means that the function ψk := (−∆)
1
2 ηk satisfies

|(−∆)
n−1
2 ψk| ≤ CR in BR

in the sense of distributions (notice that (−∆)
n−1
2 is an integer power of −∆ since n is odd).

This, together with the estimate

‖ψk‖L1(BR) ≤ CRn−1

given by Proposition 2.5, and standard elliptic estimates (see e.g. Proposition 4 and Lemma 20
in [21]) implies that

‖ψk‖Cn−2,α(BR/2) ≤ CR,α for 0 ≤ α < 1,

as claimed. Together with Harnack’s inequality (see [16]) we get

‖ηk‖Cn−1,α(BR/4) ≤ CR,α for 0 ≤ α < 1,

and replacing R with 4R we conclude.

Proposition 2.7. The sequence (ηk) is uniformly bounded in Ls(Rn) for any s > 0.

Proof. Since by Proposition 2.6 the sequence (ηk) is bounded in L∞(B1), it is easy to see that
boundedness of (ηk) in Ls(Rn) for some s > 0 implies boundedness in Ls′(Rn) for every s′ > s.
Therefore without loss of generality we can assume that s < 1. We then have

(−∆)
s
2 ηk(x) = Cn,s

∫
Rn

ηk(y) + ηk(x)

|x− y|n+s
dy. (31)

Consequently, for an arbitrary ϕ ∈ C∞c (B1) using (29)

C‖ϕ‖L∞(B1)

(29)

≥
∣∣∣∣ ∫

B1

(−∆)
s
2 ηk ϕdx

∣∣∣∣
(31)

≥
∫
B1

∫
B2

ηk(x)− ηk(y)

|x− y|n+s
dy ϕ(x) dx

+

∫
B1

∫
Bc2

1

|x− y|n+s
dy ηk(x)ϕ(x) dx

+

∫
B1

∫
Bc2

−ηk(y)

|x− y|n+s
dy ϕ(x) dx

=: I + II + III.
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Since by Proposition 2.6,

|ηk(x)− ηk(y)| ≺ |x− y| ∀x, y ∈ B2,

we have that

|I| ≺
∫
B1

|ϕ(x)|
∫
|x−y|≤3

|x− y|−n+1−s dy dx ≺ ‖ϕ‖1.

Since we also have |ηk(x)| ≤ C for all x ∈ B2,

|II| ≺
∫
B1

|ϕ(x)|
∫
|x−y|>1

|x− y|−n−s dy dx ≺ ‖ϕ‖1.

Finally, since −ηk(y) = |ηk(y)|, we arrive at∫
B1

∫
Bc2

|ηk(y)|
|x− y|n+s

dy ϕ(x) dx ≤ C,

for a constant depending on ϕ and s, but independent of k. Taking ϕ(x) to be non-negative
and so that ϕ ≡ 1 on B1/2, we arrive at∫

|y|>2

|ηk(y)|
1 + |y|n+s

dy ≤ C.

Since again by Proposition 2.6 for a C uniform in k,∫
|y|<2

|ηk(y)|
1 + |y|n+s

dy ≤ C.

we have shown that
sup
k∈N
‖ηk‖Ls(Rn) ≤ C.

Proposition 2.8. Up to a subsequence, ηk + log 2 → η0 = log( 2
1+|·|2 ) in C`loc(Rn) for every

` ≥ 0, and

lim
R→∞

lim
k→∞

∫
BRrk (xk)

λku
2
ke

n
2
u2kdx = (n− 1)!

∫
Rn
enη0dx = Λ1. (32)

Proof. Let η0 be the pointwise limit of ηk + log 2, which exists up to a subsequence, by Proposi-
tion 2.6 and Arzelà-Ascoli’s theorem. In fact the limit is in C`loc(Rn) for every ` ≥ 0 since with
Proposition 2.7 one can bootstrap regularity for the operator (−∆)

n
2 , see e.g. [19, Corollary

24]. It follows from Proposition 2.7 that

η0 ∈ Ls(Rn) for every s > 0. (33)

We then have

lim
k→∞

∫
Rn
en(ηk+log 2)ϕdx =

∫
Rn
enη0ϕdx for every ϕ ∈ C∞c (Rn).

We will show that moreover

lim
k→∞

∫
Rn
ηk (−∆)

n
2 ϕdx =

∫
Rn
η0(−∆)

n
2 ϕdx for every ϕ ∈ C∞c (Rn). (34)
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Then η0 satisfies (−∆)
n
2 η0 = (n − 1)!enη0 as a distribution, and in fact also as tempered

distribution. Then from to Theorem 1.6 we infer that η0 = v+P where |v| ≤ C(1+log(1+|·|)) ∈
Ls(Rn) for every s > 0, and P is polynomial bounded from above. It is easy to see that
if P is not constant, then P 6∈ Ls(Rn) for any s > 0, which contadicts (33). Therefore P
is constant and η0 is as in (15). It remains to determine λ and x0 in (15), but this is easy
since ηk(0) = 0 = maxRn ηk, so that η0(0) = log 2 = maxRn η0, i.e. x0 = 0, λ = 1 and
η0(x) = log 2

1+|x|2 .

In order to obtain (34), Assume that for some R > 0, suppϕ ⊂ BR and let θ > 1. Then,∫
η0(−∆)

n
2 ϕdx−

∫
ηk(−∆)

n
2 ϕdx =

∫
BθR

(η0(−∆)
n
2 ϕ− ηk (−∆)

n
2 ϕ) dx

+

∫
Rn\BθR

(η0(−∆)
n
2 ϕ− ηk (−∆)

n
2 ϕ) dx

=:I + II.

Notice that by the disjoint support ϕ, see Lemma 3.5,

|II| ≺ ‖ϕ‖L1(Rn)

∫
Rn\BθR

|η0(x)|+ |ηk(x)|
|x|2n

dx

≺ ‖ϕ‖L1(Rn) θ
s−n

∫
Rn\BθR

|η0(x)|+ |ηk(x)|
1 + |x|n+s

dx

and the uniform bound of η0 and ηk in Ls(Rn) implies that

|II| ≺ θs−n,

for a constant independent of k. On the other hand, η0 − ηk → 0 uniformly in BθR, which
implies that limk→∞ I = 0. Consequently,

lim
k→∞

∣∣∣∣ ∫ η0(−∆)
n
2 ϕdx−

∫
ηk (−∆)

n
2 ϕdx

∣∣∣∣ ≺ θs−n,
for any θ > 1, and letting θ →∞ we conclude the proof of (34).

Finally, using Lemma 2.3 and the definition of rk, we obtain∫
BRrk (xk)

λku
2
ke

n
2
u2kdx =

∫
BR

rnkλku
2
k(rk·)e

n
2
m2
ke

n
2

(uk(rk·)−mk)2enηkdx

=

∫
BR

rnkλkm
2
k(1 + o(1))e

n
2
m2
keo(1)enηkdx

= 2n(n− 1)!

∫
BR

(1 + o(1))enηkdx

= (n− 1)!

∫
BR

enη0dx+ o(1)

with o(1)→ 0 as k →∞. Now letting also R→∞ and noticing that∫
Rn
enη0dx = |Sn|,

we infer (32).
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3 Borderline and commutator estimates

We have the following two borderline estimates:

Proposition 3.1. Let g ∈ L2(Rn), f ∈ L log1/2 L(Rn), s ∈ (0, n). Then

‖In−s(f In
2
g)‖(n

s
,∞) ≺ ‖g‖L2‖f‖L log1/2 L

Proof. By Fubini’s theorem and Proposition A.4,

‖fIn
2
g‖L1 ≺

∫
Rn

∫
Rn

|g(z)|
|z − y|n/2

dz |f(y)|dy

=

∫
Rn

∫
Rn

|f(y)|
|z − y|n/2

dy |g(z)|dz

= ‖|g| In
2
|f |‖L1

≤ ‖g‖L2‖In
2
|f |‖L2

≺ ‖g‖L2‖f‖L(log1/2 L),

so that by Proposition A.3,

‖In−s(f In
2
(g))‖(n

s
,∞) ≺ ‖f In2 g‖L1 ≺ ‖g‖L2‖f‖L(log1/2 L).

Proposition 3.2. Let g ∈ L2(Rn), f ∈ L log1/2 L(Rn), s ∈ (0, n). Then

‖In
2
g In−sf‖(n

s
,∞) ≺ ‖g‖L2‖f‖L log1/2 L

Proof. We write

In
2
g In−sf(x) =

∫
Rn

∫
Rn
k(x, y, z)g(z)f(y)dzdy, k(x, y, z) :=

1

|x− z|
n
2 |x− y|s

.

For ε ∈ (0, s) we can now bound (cf. [31])

k(x, y, z) ≤ |x− z|−
n
2
−ε|x− y|ε−s + C|y − z|−

n
2 |x− y|−s =: II + III.

Indeed if |y − z| ≥ 2|x− z|, then |x− z| ≤ |x− y| (by the triangular inequality), hence I ≤ II.
If |y − z| ≤ 2|x− z|, then I ≤ C III. Therefore we have

|In
2
g In−sf | ≤ In

2
−ε(|g|) In−s+ε(|f |) + CIn−s(|f | In

2
(|g|)).

The first term on the right-hand side can be bounded as

‖In
2
−εg In+ε−sf‖(n

s
,∞) ≺ ‖In2−ε(|g|)‖Lnε ‖In+ε−s(|f |)‖( n

s−ε ,∞) ≺ ‖g‖L2 ‖f‖L1 ,

while the second term can be bounded by Proposition 3.1.
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3.1 Disjoint-support estimates

When suppϕ ⊂ K for a compact set K then in general we have no information on the support
of (−∆)

s
2ϕ, since (−∆)

s
2 is a non-local operator. In particular (−∆)

s
2ϕ(x) 6= 0 also for x far

away from K. However, there is a decay of |(−∆)
s
2ϕ(x)| as dist(x,K)→∞. We shall call this

pseudo-local behavior of (−∆)
s
2 . It has been used allover the literature, for statements in the

following form see [4].

Definition 3.3 (Cut-off functions). With θB1 we will denote a fixed smooth function θB1 ∈
C∞c (B2) with θB1 ≡ 1 in B1 and 0 ≤ θB1 ≤ 1 everywhere. Define

θBρ(x) := θB1(x/ρ) ∈ C∞c (B2ρ), θAρ := θBρ − θB ρ
2
∈ C∞c (B2ρ \B ρ

2
).

In the proof of Proposition 2.4 we used the following “disjoint-support” commutator esti-
mate. Compared to the usual commutator estimates [6, 30] the estimates here are simpler, due
to the disjoint support. Note that going through the proof, one may obtain a BMO-estimate,
which is false for the commutator without disjoint support, see [13].

Proposition 3.4. Define the commutator [u, It](v) := uItv − It(uv). Then for any u, v ∈
C∞c (Rn),

‖[u, In−s]((1− θB2ρ)(−∆)
n
4 f)‖

L(ns ,∞)(Bρ)
≺ ‖(−∆)

n
4 u‖L2(Rn)‖f‖L2(Rn).

Proof. By scaling we can assume that ρ = 1. With θ` := θA
2`
∈ C∞c (B2`+1\B2`−1) as in

Definition 3.3 we have pointwise in Rn

1− θB2 =

∞∑
l=2

θ`.

Moreover for t ∈ (0,∞) and p ∈ [1,∞] we have

‖(−∆)
t
2 θ`‖Lp(Rn) ≤ Ct,p 2

`(n
p
−t)
.

Since u, v ∈ C∞c (Rn), we have then

|[u, In−s]((1− θB2)(−∆)
n
4 f)| ≤

∞∑
`=2

|uIn−s(θ`(−∆)
n
4 f)− In−s(uθ`(−∆)

n
4 f)|. (35)

Now set
u` := θB

2`+2
(u− (u)B

2`+2
).

Since θB
2`+2

≡ 1 in B2`+2 ⊃ B1 ∪ supp θ`, and the constant (u)B
2`+2

commutes with In−s,
multiplying each term on the right-hand side of (35) by θB

2`+2
and summing and subtracting

the term
θB

2`+1
(u)B

2`+1
In−s(θ`(−∆)

n
4 f),

we find

|[u, In−s]((1− θB2)(−∆)
n
4 f)| ≤

∞∑
`=2

|u`In−s(θ`(−∆)
n
4 f)|+

∞∑
`=2

|In−s(u`θ`(−∆)
n
4 f)|

=:

∞∑
`=2

((I)` + (II)`) in B1.
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Now, by Hölder inequality and Lemma 3.7

‖u`In−s(θ`(−∆)
n
4 f)‖

L(ns ,∞)(B1)
≺ ‖u`‖Lns (B1)

‖In−s(θ`(−∆)
n
4 f)‖L∞(B1)

≺ ‖u`‖Lns (B1)
2−`s‖f‖L2(Rn)

Note that for any p <∞,

‖u`‖p,Rn ≺ Cp2`
n
p [u]BMO ≺ 2

`n
p ‖(−∆)

n
4 u‖2,Rn .

Taking p > n
s and δ = n

p

‖u`‖n
s
,B1
≺ ‖u`‖p,B1 ≺ 2`δ ‖(−∆)

n
4 u‖2,Rn .

Together, we arrive at

‖u`In−s(θ`(−∆)
n
4 f)‖(n

s
,∞),B1

≺ 2`(δ−s) ‖(−∆)
n
4 u‖2,Rn ‖f‖2,Rn ,

and for δ < s, this ensures

∞∑
`=2

(I)` ≺ ‖(−∆)
n
4 u‖2,Rn ‖f‖2,Rn . (36)

It remains to treat (II)`, and we do that with Lemma 3.8:

‖In−s(u` θ`(−∆)
n
4 f)‖(n

s
,∞),B1

≺‖In−s(u` θ`(−∆)
n
4 f)‖n

s
,B1

≺ max
t∈[0,n

2
]
‖(−∆)

t
2u`‖2 (2`)t−

n
2
−s ‖f‖2,Rn

Now for any t ∈ [0, n2 ], by the construction of u` and Poincaré and Sobolev-embeddings,

‖(−∆)
t
2u`‖2 ≺ (2`)

n
2
−t‖(−∆)

n
4 u‖L2(Rn).

This leads to

‖In−s(u`θ`(−∆)
n
4 f)‖(n

2
,∞),B1

≺ 2−s` ‖(−∆)
n
4 u‖2,Rn ‖f‖2,Rn .

Again, this ensures
∞∑
`=2

(II)` ≺ ‖(−∆)
n
4 u‖2,Rn ‖f‖2,Rn . (37)

Lemma 3.5. Let ϕ ∈ C∞c (K) for some compact set K and let Ω ⊂ Rn be an open set containing
K with dist(∂Ω,K) ≥ d for some d > 0. Then for any p ∈ [1,∞] and s ∈ (0,∞) we have

‖(−∆)
s
2ϕ‖Lp(Rn\Ω) ≤ Cn,s,pdn−(n+s)p‖ϕ‖L1(K),

and for any s ∈ (0, n) and p > n
n−s we have

‖Isϕ‖Lp(Rn\Ω) ≤ Cn,s,pd
−( n

p′−s) ‖ϕ‖L1(K).
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Proof. Since convolution and multiplication are transformed into each other under Fourier trans-
form and (| · |s)∧ = c| · |−s−n, for x away from the support of ϕ we have

(−∆)
s
2ϕ(x) = cn,s| · |−n−s ∗ ϕ(x).

In particular
|χRn\Ω(−∆)

s
2ϕ| ≤

(
| · |−n−sχ|·|≥ d

2

)
∗ ϕ.

Now the first claim follows by Young’s inequality:

‖χRn\Ω(−∆)
s
2ϕ‖Lp(Rn) ≺ ‖| · |−n−sχ|·|≥ d

2
‖Lp(Rn) ‖ϕ‖L1(Rn).

The proof of the second claim is very similar.

Lemma 3.6. Consider two functions θ1, θ2 ∈ C∞c (Rn). Suppose that θ1 and θ2 have disjoint
support, i.e. for some d > 0,

dist(supp θ1, supp θ2) ≥ d. (38)

For s ∈ (0, n) let the operator T be defined via

Tf := θ1 Is(θ2f), f ∈ S(Rn).

Then for any t > 0 the operator T (−∆)
t
2 , originally defined on S(Rn), extends to a linear

bounded operator from Lp(Rn) to Lq(Rn) whenever 1 + 1
q −

1
p ∈ [0, 1], with the estimate

‖T (−∆)
t
2 f‖Lq(Rn) ≤ Cθ1,θ2,p,q,t‖f‖Lp(Rn)

Proof. First set
k(x, y) := |x− y|s−n θ1(x) θ2(y).

Notice that based on θ1 and θ2 and the disjoint support of the two functions (38) we can find
θ3 ∈ C∞c (Rn), θ3 ≡ 0 in the ball Bd/2 so that

k(x, y) = θ3(x− y)|x− y|s−n θ1(x) θ2(y)

Note that
θ3(·)| · |s−n ∈ C∞(Rn)

In particular, k(·, y) ∈ C∞c (Rn) for any y ∈ Rn and k(x, ·) ∈ C∞c (Rn) for any x ∈ Rn. Morever,

(−∆)
t
2
x k(x, ·) ∈ C∞c (Rn) for any x ∈ Rn. Then for f ∈ S(Rn)

T (−∆)
t
2 f(x) =

∫
Rn
k(x, y)(−∆)

t
2
y f(y) dy

=

∫
Rn

(−∆)
t
2
y k(x, y) f(y) dy,

where we integrated by parts.
Setting

k̃(x, y) := (−∆)
t
2
y k(x, y),

and using that (−∆)
t
2ϕ(y) decays like |y|−n−t at infinity if ϕ is compactly supported, we bound

sup
x∈Rn

‖k̃(x, ·)‖Lr(Rn) <∞, sup
y∈Rn

‖k̃(·, y)‖Lr(Rn) <∞

17



for every r ∈ [1,∞]. Then, by a straightforward adaption of Young’s convolution inequality, if
1 + 1

q = 1
p + 1

r we get

‖T (−∆)
t
2 f‖Lq(Rn) ≤

(
sup
x∈Rn

‖k̃(x, ·)‖Lr(Rn) + sup
y∈Rn

‖k̃(·, y)‖Lr(Rn)

)
‖f‖Lp(Rn)

= Cθ1,θ2,t,p,q ‖f‖Lp(Rn).

In some special cases we need to compute the constant in the Lemma above.

Lemma 3.7. For any p ∈ [1,∞], q ∈ [1,∞), any ρ > 0, k ≥ 2, s ∈ (0, n), we have the following
estimate for any f ∈ S(Rn),

‖Is(θA
2kρ

(−∆)
t
2 f)‖Lp(Bρ) ≺ (2kρ)

s−t−n
q ρ

n
p ‖f‖Lq(Rn). (39)

Similarly, for any g ∈ C∞c (Bρ),

‖(−∆)
t
2 (θA

2kρ
Isg)‖Lq′ (Rn) ≺ (2kρ)

s−t−n
q ρ

n
p ‖g‖Lp′ (Bρ).

Proof. The second estimate follows from the first one by duality. Indeed

‖(−∆)
t
2 (θA

2kρ
Isg)‖Lq′ (Rn) ≺ sup

f∈S(Rn),‖f‖Lq(Rn)≤1

∫
Rn
f (−∆)

t
2 (θA

2kρ
Isg) dx

= sup
f∈S(Rn),‖f‖Lq(Rn)≤1

∫
Rn
Is(θA

2kρ
(−∆)

t
2 f) g dx

≺ (2kρ)
s−t−n

q ρ
n
p ‖g‖Lp′ (Rn),

where we used integration by parts twice, cf. (46), and (39).
The estimate (39) for p ∈ [1,∞) follows via Hölder’s inequality from the case p =∞ which

we shall now prove. Up to scaling we can take ρ = 1 and then (39) reduces to

‖Is(θA
2k

(−∆)
t
2 f)‖L∞(B1) ≺ (2k)

s−t−n
q ‖f‖Lq(Rn). (40)

For k = 2 (40) follows from Lemma 3.6:

‖Is(θA4(−∆)
t
2 f)‖L∞(B1) ≤ C1‖f‖Lq(Rn),

with C1 depending on s, t, n, q and the chosen cut-off function θB1 (fixed in Definition 3.3). The
case k > 2 follows from the case k = 2 by scaling:

‖Is(θA
2k+2

(−∆)
t
2 f)‖L∞(B1) ≤ ‖Is(θA2k+2

(−∆)
t
2 f)‖L∞(B

2k
)

= (2k)s−t‖Is(θA4(−∆)
t
2 f(2k·))‖L∞(B1)

≤ C1(2k)s−t‖f(2k·)‖Lq(Rn)

= C1(2k)
s−t−n

q ‖f‖Lq(Rn).

Considering above θA
2kρ
g instead of θA

2kρ
we also have the following:
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Lemma 3.8. For any ρ > 0, p ∈ (1,∞)

‖Is(θA
2kρ
g(−∆)

n
4 f)‖Lp(Bρ) ≺ max

t∈[0,n
2

]
‖(−∆)

t
2 g‖L2(Rn)(2

kρ)t−
n
2

+s−nρ
n
p ‖f‖L2(Rn),

for any f, g ∈ S(Rn).

Proof. By duality, the claim follows if we show for any ϕ ∈ C∞c (Bρ)

‖(−∆)
n
4 (θA

2kρ
g(Isϕ))‖L2(Rn) ≺ max

t∈[0,n
2

]
‖(−∆)

t
2 g‖L2(Rn)(2

kρ)t−
n
2

+s−mρ
n
p ‖ϕ‖Lp′ (Rn). (41)

By the definition of the three-term-commutator Hn
2
, Hölder inequality for a small t > 0, and

the related estimates, see Theorem 3.9,

‖(−∆)
n
4 (θA

2kρ
g(Isϕ))‖L2(Rn) ≺‖(−∆)

n
4 g‖L2(Rn) ‖θA2kρ

Isϕ‖L∞(Rn)

+ ‖g‖
L

2n
n−2t (Rn)

‖(−∆)
n
4 (θA

2kρ
Isϕ)‖

L
n
t (Rn)

+ ‖Hn
2
(g, θA

2kρ
(Isϕ))‖L2(Rn)

≺‖(−∆)
n
4 g‖L2(Rn) ‖θA2kρ

Isϕ‖L∞(Rn)

+ ‖g‖
L

2n
n−2t (Rn)

‖(−∆)
n
4 (θA

2kρ
Isϕ)‖

L
n
t (Rn)

+ ‖(−∆)
n
4 g‖L2(Rn) ‖(−∆)

n
4 (θA

2kρ
Isϕ)‖L2(Rn)

By the Sobolev inequality,

‖g‖
L

2n
n−2t (Rn)

≺ ‖(−∆)
t
2 g‖L2(Rn),

and from Lemma 3.5 with suppϕ ⊂ Bρ

‖θA
2kρ
Isϕ‖L∞(Rn) ≺ (2kρ)s−n‖ϕ‖L1(Rn) ≺ (2kρ)s−nρ

n
p′ ‖ϕ‖Lp′ (Rn).

The remaining terms can be estimated with Lemma 3.7, and (41) follows.

Let for t > 0 the three term commutator given as

Ht(a, b) := (−∆)
t
2 (ab)− b(−∆)

t
2a− a(−∆)

t
2 b.

A version similar to H was first was introduced in [9]. For subsequent similar results and
extended arguments see also [8, 31],[4, Lemma A.5],[11].

Theorem 3.9. Given p ∈ (1,∞), t ≥ 0, p1, p2 ∈ (1, nt ] satisfying

1

p
=

1

p1
+

1

p2
− t

n
,

it holds

‖Ht(a, b)‖Lp(Rn) ≺ ‖(−∆)
t
2a‖Lp1 (Rn) ‖(−∆)

t
2 b‖Lp2 (Rn), for a, b ∈ S(Rn).
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A Appendix

A.1 The Riesz transform and Riesz potential

We define the Riesz potential of u for s ∈ (0, n) and u ∈ S(Rn)

Isu := | · |s−n ∗ u,

By the density of the Schwartz class S(Rn) in Lp(Rn), the Riesz potential Is can be extended

to an operator mapping Lp(Rn) into L
np
n−s (Rn) whenever p, np

n−s ∈ (1,∞). Up to a constant,

the Riesz potential Is is the inverse of the fractional laplacian (−∆)
s
2 , in the sense that for a

constant cn,s ∈ R
(−∆)

s
2 Isf = Is(−∆)

s
2 f = cn,sf ∀f ∈ S(Rn).

The Riesz transform R = (R1, . . . ,Rn) is defined as

Ru(x) :=

∫
Rn

x− y
|x− y|n+1

u(y) dy, u ∈ S(Rn),

and by density can be extended to a continuous operator from Lp(Rn) into itself:

‖Ru‖Lp(Rn) ≤ cp,n‖u‖Lp(Rn) for u ∈ Lp(Rn). (42)

One crucial properties of the Riesz transform is the that

n∑
i=1

RiRi = cn Id, (43)

and
R(−∆)

1
2 f = cn∇f, u ∈ S(Rn). (44)

We also recall the following property:

Lemma A.1 (“Integration by parts”). For any f ∈ Lp(Rn), g ∈ Lp′(Rn), p ∈ [1,∞] so that
Rf ∈ Lp(Rn), Rg ∈ Lp′(Rn) it holds∫

Rn
Rf g dx = −

∫
Rn
f Rg dx. (45)

For any f ∈ Lp(Rn), g ∈ Lp′(Rn), p ∈ (1,∞) so that (−∆)
s
2 f ∈ Lp(Rn), (−∆)

s
2 g ∈ Lp′(Rn),∫

Rn
(−∆)

s
2 f g dx =

∫
Rn
f (−∆)

s
2 g dx. (46)

Note that together (45) and (46) imply the usual integration by parts formula∫
Rn
∇f g dx = c

∫
Rn
R(−∆)

1
2 f g dx = −c

∫
Rn
f R(−∆)

1
2 g dx = −

∫
Rn
f ∇g dx.
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A.2 Lorentz spaces and Sobolev inequality

Definition A.2. For 1 < p <∞ and 1 ≤ q ≤ ∞, we define the Lorentz space L(p,q)(Rn) as the
space of measurable functions f for which

‖f‖L(p,q) := p1/q‖λ|{|f | > λ}|1/p‖Lq( dλ
λ

) <∞

It is important to notice that L(p,p) = Lp and L(p,q) ⊂ L(p,r) if r ≥ q.

Proposition A.3 (Sobolev inequality). Let 1 < p < n
α and 1 ≤ r ≤ ∞. If f ∈ L(p,q)(Rn), then

Iαf ∈ L(q,r)(Rn) for q = np
n−αp . Moreover, there exists C > such that

‖Iαf‖L(p,r)(Rn) ≤ C‖f‖L(q,r)(Rn).

For p = 1, Iα maps L1(Rn) into L(q,∞)(Rn) for q = n
n−α . For p = n

α , Iα is bounded from L(p,1)

into L∞(Rn).

From [3, Corollary 6.16] we have

Proposition A.4. Iα is a bounded linear operator from L logr L(Rn) to L( n
n−α ,

1
r

)(Rn) whenever
r ≤ 1, α ∈ (0, n).

A.3 Interior estimates

The following are a few estimates which could be seen as Lp-theory for the fractional Laplacian.
Since we only need interior estimates, the proofs are long, but elementary – just relying on the
definitions of Riesz potential, Riesz transform and fractional Laplacian.

Lemma A.5. Let Ω ⊂ Rn be open. Then for any h ∈ H
n
2 (Rn) satisfying∫

Rn
(−∆)

n
4 h (−∆)

n
4 ϕdx = 0 ∀ϕ ∈ C∞c (Ω), (47)

we have h ∈ C∞loc(Ω), and for any compact set K b Ω and any ` ∈ N0, α ∈ (0, 1] we have

[∇`h]C0,α(K) ≤ C`,α,K,Ω ‖(−∆)
n
4 h‖L2(Rn).

Proof. The smoothness h, i.e. h ∈ C∞loc(Ω), follows via an approximation argument from the a
priori estimates below. Notice that (47) can be rewritten as∫

Rn
∇h · ∇(−∆)

n−2
2 ϕdx = 0, ∀ϕ ∈ C∞c (Ω). (48)

Fix now K ⊂⊂ K1 ⊂⊂ K2 ⊂⊂ Ω. For arbitary ψ ∈ C∞c (K1) we have for k ∈ N0,

∆kψ = (−∆)
n−2
2 In−2∆kψ.

Thus, taking a cutoff-function ηK2 ∈ C∞c (Ω), ηK2 ≡ 1 on K2,

∆kψ = (−∆)
n−2
2 (ηK1In−2∆kψ) + (−∆)

n−2
2 ((1− ηK1)In−2∆kψ).

Thus for any ψ ∈ C∞c (K1), using (48) with ϕ := ηK2In−2∆kψ, we get∫
Rn
∇h · ∇∆kψ dx =

∫
Rn
∇h · ∇(−∆)

n−2
2 ((1− ηK2)In−2∆kψ) dx

≤‖∇h‖Ln(Rn)‖∇(−∆)
n−2
2 ((1− ηK2)In−2∆kψ)‖Ln′ (Rn)

≤‖∇h‖Ln(Rn)‖(−∆)
n−1
2 ((1− ηK2)In−2∆kψ)‖Ln′ (Rn)

≤CK1,K2 ‖(−∆)
n
4 h‖L2(Rn) ‖ψ‖L1(Rn).
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The second-to-last step follows again from ∇ = R(−∆)
1
2 and because the Riesz transform R is

bounded on Ln
′
. In the last step we used that the support of 1−ηK2 and ψ are disjoint to apply

Lemma 3.6, and Sobolev inequality. Classical regularity theory of elliptic PDE ensures that h
belongs to any Sobolev space W `,p

loc (K1) for any ` ∈ N, p ∈ (1,∞) together with the estimates

‖h‖W `,p(K) ≤ C`,p,K,Ω (‖(−∆)
n
4 h‖L2(Rn) + ‖h‖L2(Rn)) ≺ ‖h‖H n

2 (Rn)
,

and
‖∇h‖W `+1,p(K) ≤ C`,p,K,Ω ‖(−∆)

n
4 h‖L2(Rn)

The latter implies via the Morrey-Sobolev imbedding that for any α ∈ (0, 1), l ∈ N0

[∇`h]C0,α(K) ≤ C`,α,K,Ω ‖(−∆)
n
4 h‖L2(Rn).

Lemma A.6. Let Ω be an open set of Rn. Then for any h ∈ H
n
2 (Rn) satisfying∫

Rn
(−∆)

n
4 h (−∆)

n
4 ϕdx =

∫
Rn
fϕ dx ∀ϕ ∈ C∞c (Ω),

and for any ` ∈ {0, 1, . . . , n− 1}, α ∈ (0, 1) we have on any compact K ⊂⊂ Ω,

[∇`h]C0,α(K) ≤ C`,α,Ω,K ‖(−∆)
n
4 h‖L2(Rn) + C`,Ω,K ‖f‖L∞(Ω).

Proof. The proof is very similar to the one of Lemma A.5. Fix again K ⊂⊂ K1 ⊂⊂ K2 ⊂⊂ Ω.

We use that the following equation (note that n − 1 is even and thus (−∆)
n−1
2 is the classical

(n− 1)-Laplacian), ∫
Rn

(−∆)
1
2h∆

n−1
2 ϕdx =

∫
Rn
fϕ dx ∀ϕ ∈ C∞c (Ω).

Elliptic theory implies (−∆)
1
2h ∈Wn−1,p

loc (Ω) for any p ∈ (1,∞), with the estimate

‖(−∆)
1
2h‖Wn−1,p(K2) ≺ ‖f‖L∞(Ω) + ‖(−∆)

1
2h‖Ln(Rn) ≺ ‖f‖L∞(Ω) + ‖(−∆)

n
4 h‖L2(Rn). (49)

Here again we used that (−∆)
1
2h ∈ Ln(Rn) by Sobolev embedding. With this in mind, we can

write ∇h in terms of the Riesz transform R and (−∆)
1
2 ,

∇h = R(ηK1(−∆)
1
2h) +R((1− ηK1)(−∆)

1
2h), (50)

where we have a cutoff function ηK1 ∈ C∞c (K2) and ηK1 ≡ 1 in K1. The first term on the
right-hand side belongs to Wn−1,p(Rn) by (49) and the boundedness of the Riesz transform,
and we have

‖R(ηK1(−∆)
1
2h)‖Wn−1,p(Rn) ≺ ‖f‖∞ + ‖(−∆)

n
4 h‖L2(Rn).

The second term on the right-hand side of (50) is smooth in K, by the disjoint support of χK
and (1− ηK1). Indeed, by Lemma 3.5 for any ` ≥ 0,

‖∇`R((1− ηK1)(−∆)
1
2h)‖L∞(K) ≺ CK,K1 ‖(−∆)

1
2h‖Ln(Rn) ≺ CK,K1 ‖(−∆)

n
4 h‖L2(Rn).

Together, we have shown that for any 0 ≤ ` ≤ n− 1, p ∈ (1,∞),

‖∇h‖W `,p(K) ≺ ‖f‖L∞(Ω) + ‖(−∆)
n
4 h‖L2(Rn).

Now the Sobolev-Morrey embedding gives the claim.
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