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Abstract

We study conformal metrics on R3, i.e., metrics of the form gu = e2u|dx|2, which
have constant Q-curvature and finite volume. This is equivalent to studying the non-local
equation

(−∆)
3
2u = 2e3u in R3, V :=

∫
R3

e3udx <∞,

where V is the volume of gu. Adapting a technique of A. Chang and W-X. Chen to the
non-local framework, we show the existence of a large class of such metrics, particularly
for V ≤ 2π2 = |S3|. Inspired by previous works of C-S. Lin and L. Martinazzi, who treated
the analogue cases in even dimensions, we classify such metrics based on their behavior at
infinity.

1 Introduction

In this paper, we study existence and asymptotics for solutions of

(−∆)
3
2u = 2e3u in R3 (1)

with
V :=

∫
R3

e3u dx <∞, (2)

where (−∆)
3
2 is interpreted as (−∆)

1
2 ◦ (−∆). To define (−∆)

1
2 v for a function v in R3, we

require throughout the paper that

v ∈ L1/2(R3) :=

{
v ∈ L1

loc(R3) :

∫
R3

|v(x)|
1 + |x|4

dx <∞
}
,

which makes (−∆)
1
2 v be a tempered distribution (see [28]).
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Definition 1. Given a tempered distribution f in R3, we say that u is a solution of (−∆)
3
2u = f

if u ∈W 2,1
loc (R3), ∆u ∈ L1/2(R3) and∫

R3

(−∆u) (−∆)
1
2ϕdx = 〈f, ϕ〉 for every ϕ ∈ S(R3), (3)

where S(R3) is the Schwarz space of rapidly decreasing smooth functions in R3.

Note that the LHS of (3) is finite since ∆u ∈ L1/2(R3) and (33) holds.
Equation (1) is a prescribed Q-curvature equation, in the sense that if a smooth function u

solves
(−∆)

3
2u = Ke3u in R3

for some function K, then the metric gu := e2u|dx|2 (which is a conformal perturbation of the
Euclidean metric |dx|2) has Q-curvature K, see e.g. [6], [8] or [17] and the references therein.
Moreover, the quantity V appearing in (2) is simply the volume of gu.

Problem (1)-(2) is the three dimensional case of the problem

(−∆)
n
2 u = (n− 1)!enu in Rn, V :=

∫
Rn
enudx <∞, (4)

which has been received considerable attentions, particularly in the case n even.
It is well-known that the function w0(x) := log

(
2

1+|x|2

)
is a solution of (4) with V = |Sn|

for any n ≥ 1. Indeed, w0 has the following geometric interpretation: If π : Sn \ {p} → Rn is
the stereographic projection from the sphere Sn = {x ∈ Rn+1 : |x| = 1} minus the south pole
p given by

π(x′, xn+1) =
x′

1 + xn+1
, x′ = (x1, . . . , xn)

and g0 is the round metric on Sn, then

(π−1)∗g0 = e2w0 |dx|2.

Applying the Möbius transformations (translations and dilations) to w0 (or to (π−1)∗g0 to be
more precise), we obtain the functions

wx0,λ(x) = log

(
2λ

1 + λ2|x− x0|2

)
, x0 ∈ Rn, λ > 0, (5)

which also solve (4) with V = |Sn|. Because of their geometric origin, they can be called
spherical solutions.

In dimension 2, where (4) reduces to −∆u = e2u, it was proven by Chen-Li [9] that all
solutions of (4) are spherical. Things are different in higher dimensions as shown by A. Chang
and W-X. Chen [7].
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Theorem A ([7]). For every n ≥ 4 even and V ∈ (0, |Sn|) there exists a (non-spherical)
solution u ∈ C∞(Rn) of (4).

The restriction to n even in Theorem A is essentially technical: for n odd the operator
(−∆)

n
2 is non-local and several difficulties arise. On the other hand, we will show, at least in

dimension 3 that the arguments in [7] can be adapted to the non-local setting.

Theorem 2. For every V ∈ (0, 2π2), Problem (1)-(2) has at least one solution (in the sense of
Definition 1) u ∈ C∞(R3).

It is now natural to try to gather information about the non-spherical smooth solutions pro-
duced by Theorem 2, in particular their behavior at infinity. To do that, let us first recall that the
fundamental solution of (−∆)

3
2 in R3 is

Γ(x) :=
1

2π2
log

(
1

|x|

)
,

i.e. (−∆)
3
2 Γ = δ0 in R3 in the sense of tempered distributions. This follows, e.g., from

∆ log |x| = |x|−2 and Lemma 20 below. Set

α :=
1

π2

∫
R3

e3u dx (6)

and

v(x) :=
1

π2

∫
R3

log

(
|y|
|x− y|

)
e3u(y)dy, (7)

where u is a smooth solution of (1)-(2). The function v looks quite similar to Γ ∗ 2e3u =

Γ ∗ (−∆)
3
2u (except for the additional |y| appearing in the argument of the logarithm, which is

necessary to make the integral in (7) convergent, but which plays no role after one differentiates
v). In fact, as we shall see in Lemma 13 that (−∆)

3
2 v = (−∆)

3
2u, it is reasonable to ask how

u and v are related. Since for any polynomial p of degree at most 2 one has (−∆)
3
2 p = 0, one

could wonder whether u − v = p for a polynomial of degree 0 (a constant), 1 or 2. It turns out
that this is the case, and p is either a constant or a polynomial of degree 2 bounded from above.
Moreover, v exhibits a well-controlled behavior at infinity.

Theorem 3. Let u be a smooth solution of (1) satisfying (2). Then

u = v + p, (8)

where p is a polynomial of degree 0 or 2 bounded from above, v is as in (7). Moreover, v satisfies

lim
|x|→∞

∇`v(x) = 0, for ` = 1, 2, (9)

v(x) = −α log |x|+ o(log |x|), as |x| → ∞, (10)

where α > 0 is given by (6).
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The behavior at infinity of u in terms of the decomposition u = v + p in Theorem 3 can be
used to give necessary and sufficient conditions under which a solution of (1)-(2) is spherical.
This is the content of the following theorem.

Theorem 4. Let u be a smooth solution of (1) satisfying (2). Then the following are equivalent:

(i) u is a spherical solution, i.e. u = wx0,λ as in (5) for some λ > 0, x0 ∈ R3;

(ii) deg p = 0, where p is the polynomial in (8);

(iii) lim|x|→∞∆u(x) = 0;

(iv) u(x) = o(|x|2) as |x| → ∞;

(v) lim inf |x|→+∞Rgu > −∞, where gu = e2u|dx|2, and Rgu is the scalar curvature of gu;

(vi) π∗gu can be extended to a Riemannian metric on S3, where π : S3 \ {p} → R3 is the
stereographic projection and p ∈ S3 is the south pole.

Moreover, if u is not a spherical solution then there exists a constant a > 0 such that

∆u(x)→ −a as |x| → +∞. (11)

Conclusions similar to those of Theorem 3 for solutions of (4) were proven by C-S. Lin
[14] in dimension 4 and by L. Martinazzi [17] in arbitrary even dimension. Also Theorem 4, in
this generality, was proven by Lin in dimension 4 and Martinazzi in arbitrary even dimension,
extending several previous results in [8, 32, 34].

It is also interesting to investigate what values the volume V in (2) can be attained. Accord-
ing to Theorem 2, and in analogy with Theorem A, every value in (0, 2π2) can be attained, and
of course the value V = 2π2 is attained by the spherical solutions. Can V attain values bigger
than the volume of S3? The corresponding question in dimension 4 was answered in the negative
by C-S. Lin [14], which shows that Theorem A is sharp as far as V is concerned.

Theorem B ([14]). For every non-spherical solution of Problem (4) with n = 4 one has V <
|S4|.

Surprisingly, it was recently shown by Martinazzi [21] that in dimension n = 6 it is quite
different and (4) has solutions for V arbitrarily large.

Theorem C ([21]). There exist V∗ > |S6| and V ∗ > 0 such that for every V ∈ (0, V∗] and for
every V ≥ V ∗ there exists a solution of (4) with n = 6.

It turns out that in dimension 3 Problem (4) behaves like in dimension 4 and not like in
dimension 6. More precisely:
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Theorem 5. Let u be a non-spherical smooth solution of (1)-(2). Then V < 2π2.

Let us spend a few words about the potential applications of Theorems 3 and 4. In even
dimension n = 2m, their analogs (compare Problem (4)) have been widely used to prove com-
pactness, quantization and existence results for equations of order 2m with critical growth, such
as the equation

(−∆)mu = λuemu
2
, λ > 0 (12)

satisfied by critical points of some Moser-Trudinger type inequality, see, e.g., [1, 2, 10, 12, 19,
22, 26, 31], or the equation

P 2m
g u+Qg = Qe2mu on a manifold (M2m, g) (13)

which prescribes the Q-curvature of the manifold (M, e2ug), see, e.g., [11, 15, 16, 18, 30], or to
the higher order Liouville equation

(−∆)mu = V e2mu in Ω ⊂ R2m, V ∈ L∞(Ω), (14)

see, e.g., [20, 24, 25, 27, 23]. The main idea is that if a sequence {uk} of solutions (or the
heat flow) of (12), (13) or (14) is not pre-compact, then a suitably blown-up subsequence will
converge strongly (say in C2m

loc (R2m)) to a solution of (4). Then it is understandably important
to know the behavior of the solutions of (4), and in particular to have geometric or analytic con-
ditions which ensure that a solution is spherical. Therefore, we expect that the above Theorems
3 and 4 will be useful in understanding the non-local analogs of (12), (13) and (14) in dimension
3.

The paper is organized as follows. In Section 2 we start with some definitions and results
which will be necessary to give a simple and essentially self-contained (up to Beckner’s inequal-
ities and the Sobolev embeddings) proof of Theorem 2. The proof of Theorem 2 will be then
given in Section 3, and it will follow from Theorem 10. In Section 4 we prove the main lemmas
which will be used to prove Theorems 3, 4 and 5. In the appendix we collect a few definitions
and theorems about the fractional Laplacian.

Acknowledgements: A. Maalaoui and L. Martinazzi were supported in part by the Swiss Na-
tional Science Foundation. J. Xiong was supported in part by the First Class Postdoctoral Sci-
ence Foundation of China (No. 2012M520002).

2 Preliminaries

Let g0 be the standard metric on S3 and ∆g0 be the Laplace-Beltrami operator. Let {λk =
k(k+2), k ∈ N∪{0}} be the eigenvalues of−∆g0 . The eigenspace of λk is of finite dimension
Nk and is spanned by spherical harmonics Y `

k of degree k, where ` = 1, · · · , Nk (see, e.g.,
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[29]). We renormalize them so that ‖Y `
k ‖L2(S3) = 1. The spherical harmonics {Y `

k } form an
orthonormal basis of the Hilbert space L2(S3). In particular, given u ∈ L2(S3) we can write

u =

∞∑
k=0

Nk∑
`=1

u`kY
`
k , u`k ∈ R, (15)

and ‖u‖L2(S3) =
∑

k,`(u
`
k)

2.
One can define an operator P 3

g0 as follows: given u ∈ L2(S3) with spherical harmonics
expansion as in (15) such that

‖u‖2H3(S3) := ‖u‖2L2 +

∞∑
k=1

Nk∑
`=1

|u`k|2(λk + 1)λ2k <∞, (16)

we define

P 3
g0u :=

∞∑
k=0

(λk + 1)
1
2λk

Nk∑
`=1

u`kY
`
k .

Notice that onH3(S3) the operator P 3
g0 coincides with the operator (−∆g0 +1)

1
2 (−∆g0), where

the operator (−∆g0 + 1)
1
2 is also understood in terms of spectral decomposition of the Laplace-

Beltrami operator:

(−∆g0 + 1)
1
2u =

∞∑
k=0

√
λk + 1

Nk∑
`=1

u`kY
`
k , for u as in (15).

Therefore, P 3
g0 is the well-known intertwining operator on S3 (see, e.g., [4]).

Define the space

H
3
2 (S3) =

{
u =

∞∑
k=0

Nk∑
`=1

u`kY
`
k ∈ L2(S3) :

∞∑
k=0

(λk + 1)
1
2λk

Nk∑
`=1

|u`k|2 <∞

}
,

endowed with the seminorm

‖u‖2
Ḣ3/2 :=

∞∑
k=0

(λk + 1)
1
2λk

Nk∑
`=1

|u`k|2

and with the norm
‖u‖2

H3/2 := ‖u‖2L2 + ‖u‖2
Ḣ3/2 .

6



Since the operator P 3
g0 is self-adjoint and non-negative, one can define the operator (P 3

g0)
1
2

for functions u ∈ H
3
2 (S3) as

(P 3
g0)

1
2u =

∞∑
k=1

(λk
√

1 + λk)
1
2

Nk∑
`=1

u`kY
`
k .

Notice that ‖(P 3
g0)

1
2u‖L2 = ‖u‖Ḣ3/2 .

The (fractional) Sobolev embeddings give H
3
2 (S3) ↪→ Lp(S3) for every p ∈ [1,∞) but not

for p =∞, in which case the following inequality is a useful replacement.

Theorem 6 (Theorem 1 in [3]). For every u ∈ H
3
2 (S3) one has

log

(
−
∫
S3
eu−udV0

)
≤ 1

24π2
‖u‖2

Ḣ3/2 , (17)

where −
∫
S3 = 1

|S3|
∫
S3 , u is the average of u on S3 and dV0 is the standard volume element of S3.

Remark: Our statement might appear slightly different from the one in [3]. In [3] the right-hand
side is replaced by 1

12π2

∑∞
k=0 ck

∑
` |u`k|2, where ck = k(k+1)(k+2)

2 . But since λk = k(k + 2)

one sees that ck = λk
√
λk+1
2 . Moreover, in [3] the volume element dξ is the renormalized volume

on the sphere, i.e. dξ = 1
2π2dV0.

We will also use the following compactness property.

Proposition 7. For every p ∈ [1,∞) the map exp : u 7→ eu sends H
3
2 (S3) into Lp(S3) and is

compact.

Proof. For u, v ∈ C∞(S3) we can bound

‖eu − ev‖pLp =

∫ 1

0

d

dt

∫
S3

[eu − etv+(1−t)u]pdV0dt

=

∫
S3

(∫ 1

0
p[eu − etv+(1−t)u]p−1etv+(1−t)udt

)
(u− v)dV0

≤ ||u− v||L2

(∫
S3

(∫ 1

0
p
[
eu − etv+(1−t)u

]p−1
etv+(1−t)udt

)2

dV0

) 1
2

≤ C(p)||u− v||L2

(∫ 1

0

∫
S3
e2(p−1)u+2tv+2(1−t)u + e2p[tv+(1−t)u]dV0dt

) 1
2

≤ C(p, ||u||
H

3
2
, ||v||

H
3
2
)||u− v||L2 ,

(18)
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where the last inequality follows from Theorem 6. Since C∞(S3) is dense in H
3
2 (S3) (this

follows immediately from the spherical harmonics decomposition), it is easy to see that (18)
actually holds for arbitrary u, v ∈ H

3
2 (S3). Then continuity of u 7→ eu from H

3
2 (S3) into

Lp(S3) follows.
For the compactness we first notice that

||∇eu||L1 = ||∇ueu||L1 ≤ ||∇u||L2 ||eu||L2 .

Then by Theorem 6, the boundedness of ||u||
H

3
2

implies the boundedness of ||∇eu||L1 . Now we

can conclude that the map is compact from H
3
2 (S3) into L1(S3) using the compact embedding

of W 1,1(S3) into L1(S3). If we replace u by pu, we have the compactness into Lp(S3).

Definition 8. A weak solution u ∈ H
3
2 (S3) of

P 3
g0u = f

for f ∈ H−
3
2 (S3) the dual of H

3
2 (S3), is a function u ∈ H

3
2 (S3) satisfying∫

S3

(
P 3
g0

) 1
2 u
(
P 3
g0

) 1
2 ϕdV0 = 〈f, ϕ〉 (19)

for every ϕ ∈ H
3
2 (S3), where 〈·, ·〉 is the duality bracket.

Proposition 9. Let u ∈ H
3
2 (S3) be a weak solution of

P 3
g0u+ f = ge3u, (20)

where f ∈ L2(S3) and g ∈ Lp(S3) for some p > 2. Then u ∈ H3(S3).

Proof. By the Beckner’s inequality (17), we have e3u ∈ L
2p
p−2 (S3). Then ge3u ∈ L2(S3).

Hence, P 3
g0u ∈ L

2(S3), which is equivalent to u ∈ H3(S3), as clear from (16).

3 Existence of non-spherical solutions

In this section we will prove Theorem 2. The proof will follow the ideas in [7], and will be a
simple consequence of the following theorem about the prescribed Q-curvature on R3.

Theorem 10. Assume that K ∈ L∞(R3) is positive and satisfies

K(x) = O(|x|−s) as |x| → ∞ for some s > 0. (21)

Then for
µ ∈

(
0,min

{s
6
, 1
})

, (22)
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the problem

(−∆)
3
2w = Ke3w in R3,

∫
R3

Ke3wdx = 2(1− µ)|S3| (23)

has at least one solution w (in the sense of Definition 1). Moreover, w ∈ H3
loc(R3).

Proof. Consider

w0(x) = log

(
2

1 + |x|2

)
,

which is a spherical solution of (1). Set dVµ = e−3µw0◦πdV0 and K̃ = K ◦ π, where π is the
stereographic projection, and consider the functional

J(w) :=

∫
S3

(
1

2
|(P 3

g0)
1
2w|2 + 2(1− µ)w

)
dV0 −

(1− µ)4π2

3
log

(∫
S3
K̃e3wdVµ

)
.

Notice that J(w) is well-defined on H
3
2 (S3) since (22) yields

|K̃e−3µw0◦π| ≤ C1, (24)

and thus,

(1− µ)4π2

3
log

(∫
S3
K̃e3wdVµ

)
≤ (1− µ)4π2

3

(
log

(
−
∫
S3
e3(w−w)dV0

)
+ 3w + log(2π2C1)

)
≤ 1− µ

2

∫
S3
|(P 3

g0)
1
2w|2dV0 + (1− µ)4π2w + C,

(25)

where Beckner’s inequality (17) is used in the last inequality. Since J(w+ c) = J(w) for every
c ∈ R, we can choose a minimizing sequence {wk} ⊂ H

3
2 (S3) such that

wk = −
∫
S3
wkdV0 = 0. (26)

We will show that {wk} is bounded in H
3
2 (S3). From (25) and (26) we obtain

µ

2

∫
S3

∣∣(P 3
g0)

1
2wk

∣∣2dV0 ≤ J(wk) + C.

With the Poincaré inequality

‖wk‖L2 ≤ ‖wk‖Ḣ3/2 = ‖(P 3
g0)1/2wk‖L2 ,
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which follows easily from (26) and the spherical harmonics decomposition, we conclude that
{wk} is bounded in H

3
2 (S3). Hence, it has a subsequence weakly converging in H

3
2 (S3) to a

minimizer u. Indeed, up to a subsequence

lim
k→∞

log

(∫
S3
K̃e3wkdVµ

)
= log

(∫
S3
K̃e3udVµ

)
by (24) and the compactness of w 7→ ew from H

3
2 (S3) to Lp(S3) for every p > 1 in Proposition

7. Moreover, by convexity and weak convergence we have

lim inf
k→∞

∫
S3

(
1

2
|(P 3

g0)
1
2wk|2 + 2(1− µ)wk

)
dV0 ≥

∫
S3

(
1

2
|(P 3

g0)
1
2u|2 + 2(1− µ)u

)
dV0.

This shows that u is a minimizer of J . In particular, u is a weak solution of

P 3
g0u+ 2(1− µ) =

(1− µ)4π2K̃e−3µw0◦πe3u∫
S3 K̃e

3udVµ
,

in the sense of Definition 8. Choose a constant C such that ũ := u+ C satisfies∫
S3
K̃e3ũdVµ = (1− µ)4π2.

Then ũ solves
P 3
g0 ũ+ 2(1− µ) = K̃e−3µw0◦πe3ũ.

By (24) we know that K̃e−3µw0◦π ∈ L∞(S3). Hence, ũ ∈ H3(S3) by Proposition 9. It follows
from Lemma 11 below and∫

R3

Ke3wdx =

∫
S3
K̃e3ũdVµ = (1− µ)4π2

that w := ũ ◦ π−1 + (1− µ)w0 ∈ H3
loc(R3) is a solution of (23).

Lemma 11. If π is the stereographic projection from S3 \ {p} to R3, then the pull back of the
operator (−∆)

3
2 under π is the operator P 3

g0 . More precisely, if u ∈ H3(S3), then

(P 3
g0u) ◦ π−1 = e−3w0(−∆)

3
2 (u ◦ π−1), (27)

in the sense of tempered distributions.

Proof. We know from [5] that (27) holds for u ∈ C∞(S3). For u ∈ H3(S3) it follows from
standard approximations. Notice first that ∆(u◦π−1) ∈ L2(R3). Indeed, if we set U = u◦π−1,
then

|∇2U |2 ≤ C
(
|(∇2u) ◦ π−1|2 1

(1 + |x|2)4
+ |(∇u) ◦ π−1|2 1

(1 + |x|2)3

)
.
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Therefore, if we consider the first term on the right-hand side, we get with Hölder’s inequality
and Sobolev’s embedding∫

R3

(
|(∇2u) ◦ π−1|2e

3
2
w0

)(
e−

3
2
w0(1 + |x|2)−4

)
dx ≤ C||∇2u||2L4 ≤ C‖u‖2H3 .

A similar inequality holds for the second term and we get

‖∆(u ◦ π−1)‖L2(R3) ≤ C‖u‖H3(S3). (28)

Since ∆U ∈ L2(R3) ⊂ L1/2(R3) (by Hölder’s inequality), (−∆)
1
2 (−∆U) is well defined.

Now pick a sequence {uk} ⊂ C∞(S3) such that uk → u in H3(S3). By (27) we have

(P 3
g0uk) ◦ π

−1 = e−3w0(−∆)
3
2 (uk ◦ π−1).

The left hand side converges to (P 3
g0u)◦π−1 in the sense of tempered distribution, sinceP 3

g0uk →
P 3
g0u in L2(S3). On the other hand, (28) implies that

∆(uk ◦ π−1)→ ∆(u ◦ π−1) in L3(R3) and hence in L1/2(R3),

which implies (−∆)
3
2 (uk ◦ π−1) → (−∆)

3
2 (u ◦ π−1) in S ′(R3). Since e−3w0ϕ ∈ S(R3) for

every ϕ ∈ S(R3), we also have e−3w0(−∆)
3
2 (uk ◦ π−1)→ e−3w0(−∆)

3
2 (u ◦ π−1) in the sense

of tempered distributions and the proof is complete.

Proof of Theorem 2. Choose K(x) = 2e−3a|x|
2

for some a > 0. It is clear that K satisfies the
assumptions in Theorem 10 for any positive s. Fix µ = 1 − V

|S3| ∈ (0, 1) and let w be the

corresponding solution of (23). Since (−∆)
3
2 (−a|x|2) = 0, we have that u := w − a|x|2 is a

solution of (1). Moreover,∫
R3

e3udx =
1

2

∫
R3

Ke3wdx = (1− µ)|S3| = V.

Thus, (2) is satisfied. Finally, by noticing that u ∈ H3
loc(R3) ↪→ C1,α

loc (R3) for some α > 0,
we have (−∆)

3
2u = 2e3u ∈ C1,α

loc (R3). By the Schauder estimates for fractional Laplacian
equations (Corollary 24 in the appendix), ∆u ∈ C2,α

loc (Rn), and thus, u ∈ C4,α
loc (Rn) by the

classical Schauder estimates. In particular, e3u ∈ C4,α
loc (Rn). By the bootstrap procedure, we

have that u ∈ C∞(R3).

4 Estimates and technical lemmas

In this section, we establish some estimates for smooth solutions u of (1)-(2).

11



Lemma 12. Let u be a smooth solution of (1)-(2) and v be as in (7). Then there exists a positive
constant C such that for |x| ≥ 4,

−v(x) ≤ α log |x|+ C.

Proof. This is a special case of Lemma 9 in [17] (originally proven in dimension 4 in [14,
Lemma 2.1]).

Lemma 13. Let u be a smooth solution of (1)-(2) and v be as in (7). Then ∆v ∈ L1/2(R3) and

(−∆)
3
2 v = (−∆)

3
2u = 2e3u.

Proof. Differentiating under the integral in (7) we obtain

−∆v(x) = − 1

2π2

∫
R3

f(y)

|x− y|2
dy,

where f := 2e3u ∈ L1(R3). Then the conclusion follows at once from Lemma 20.

Lemma 14. Let w ∈ L1/2(R3) satisfy (−∆)
1
2w = 0 in R3. Then w is a constant.

Proof. The lemma follows from the estimates for w and a scaling argument. By Proposition 21
in the appendix , we have

‖∇2w‖L∞(B1) ≤ C
∫
R3

|w(x)|
1 + |x|4

dx,

where C > 0 is a universal constant. Given x ∈ R3, we choose r > |x| and set wr(y) := w(ry).
Then,

|∇w(x)−∇w(0)| = 1

r

∣∣∣∇wr (x
r

)
−∇wr(0)

∣∣∣ ≤ |x|
r2
‖∇2wr‖L∞(B1).

Since (−∆)
1
2wr = 0 in R3, we have

‖∇2wr‖L∞(B1) ≤ C
∫
R3

|wr(x)|
1 + |x|4

dx = Cr

∫
R3

|w(x)|
r4 + |x|4

dx.

Thus,

|∇w(x)−∇w(0)| ≤ C |x|
r

∫
R3

|w(x)|
r4 + |x|4

dx→ 0 as r →∞.

Then∇w(x) = ∇w(0). Since x was arbitrary,∇w is a constant and w is an affine function. On
the other hand, it is clear that the only affine functions in L1/2(R3) are the constant functions.

12



Proposition 15. Let u be a smooth solution of (1)-(2) and v be as (7). Let p = u− v. Then p is
a polynomial of degree 0 or 2. Moreover, ∆p ≤ 0 and supR3 p <∞.

Proof. It follows from Lemma 13 that (−∆)
3
2 p = 0 in R3. By Lemma 14, ∆p is a constant,

and in particular ∆2p ≡ 0. Taking Lemma 12 and (2) into account it then follows from a
generalization of Liouville’s theorem (see e.g. Theorem 6 in [17]) that p is a polynomial of
degree at most 2. Since u satisfies (2), then p can not be of degree 1, particularly in view of
Lemma 12. The claim supR3 p <∞ follows from Lemma 11 in [17].

It remains to show that ∆p ≤ 0 in R3. We shall adapt some arguments from the proof of
Lemma 2.2 in [14]. By Pizzetti’s formula (see e.g. (10) in [17]) we have for any x0 ∈ R3 and
r > 0,

r2

6
∆p(x0) = −

∫
∂Br(x0)

pdσ − p(x0),

where −
∫

denotes the average. Hence by Jensen’s inequality,

exp

(
r2

2
∆p(x0)

)
≤ e−3p(x0)−

∫
∂Br(x0)

e3pdσ

≤ Ce−3p(x0)r3C−
∫
∂Br(x0)

e3udσ

≤ Ce−3p(x0)r3C−2
∫
∂Br(x0)

e3udσ,

where the estimate of v is used in the second inequality and C is a constant independent of r.
Integrating with respect to r it follows that

r2−3C exp

(
r2

2
∆p(x0)

)
∈ L1([0,∞)).

Hence, ∆p(x0) ≤ 0.

A consequence of Proposition 15 is the following.

Corollary 16. Let u be a smooth solution of (1)-(2). Then

−∆u(x) =
1

π2

∫
R3

e3u(y)

|x− y|2
dy + a, (29)

for some constant a ≥ 0.

Lemma 17. Let u be a smooth solution of (1)-(2). Then 0 ≤ −∆u(x) ≤ A in R3, where A > 0
is a constant depending on u. Consequently, there exists a constant B > 0 depending only on A
and V such that u ≤ B in R3.

13



Proof. It follows from Corollary 16 that u satisfies (29). Then the conclusion follows from
Lemmas 3.1 and 3.2 in [34]. Note that although the statement of Lemma 3.1 in [34] is for
solutions of (29) with a = 0, its proof still works for solutions of (29) with the following mild
changes. The function q(x) defined after (3.8) of [34] is replaced by

q(x) = w(x)− h(x)− p(x),

where p(x) is the polynomial of degree 2 defined in Proposition 15. The bound (3.9) of [34],
now is replaced by

0 ≤ −∆q ≤ V + a.

The bound w(y) = q(y) + h(y) ≤ C + h(y) on page 10 of [34] is replaced by

w(y) = q(y) + h(y) + p(x) ≤ C + h(y),

where we use that supR3 p(x) ≤ C.

Lemma 18. Let u be a smooth solution of (1)-(2) and v be as in (7). Then for any ε > 0 there
exists R > 0 such that for all |x| ≥ R,

−v(x) ≥ (α− ε) log |x|.

Moreover, (9) holds.

Proof. As in the proof of Lemma 2.4 of [14], we can show that for any ε > 0 there exists
R = R(ε) > 0 such that

−v(x) ≥ (α− ε

2
) log |x|+ 1

π2

∫
B1(x)

log |x− y|e3u(y) dy,

whereB1(x) denotes the ball with center x and radius 1. By Lemma 17, the last term is bounded
from below independently of x, which implies that −v(x) ≥ (α− ε) log |x| for large |x|.

Meanwhile, for ` = 1, 2

|∇`v(x)| ≤ C
∫
R3

e3u(y)

|x− y|`
dy

= C

∫
B1(x)

e3u(y)

|x− y|`
dy + C

∫
R3\B1(x)

e3u(y)

|x− y|`
dy

14



Then we bound∫
B1(x)

e3u(y)

|x− y|
dy ≤

∫
B1(x)

e3u(y)

|x− y|2
dy

≤

(∫
B1(x)

1

|x− y|
8
3

dy

)3/4(∫
B1(x)

e12u(y) dy

)1/4

≤ C

(∫
B1(x)

e12v(y)+12p(y) dy

)1/4

→ 0 as |x| → ∞,

since v(x) ≤ (−α+ ε) log |x| and p(x) is bounded from above by Proposition 15. On the other
hand, by the dominated convergence theorem,∫

R3\B1(x)

e3u(y)

|x− y|`
dy → 0 as |x| → ∞, ` = 1, 2,

and (9) follows.

In the proof of Theorem 5 we shall also use the following Pohozaev-type identity, whose
proof can be found in [34, Theorem 2.1].

Lemma 19 ([34]). Let w ∈ C1(R3) solve the integral equation

w(x) =
1

2π2

∫
R3

log

(
|y|
|x− y|

)
K(y)e3w(y)dy, (30)

where K ∈ C1(R3) and Ke3w ∈ L1(R3). Then, setting

α :=
1

2π2

∫
R3

Ke3wdx,

we have
α(α− 2) =

1

3π2

∫
R3

x · ∇K(x)e3w(x)dx. (31)

5 Proof of Theorems 3, 4 and 5

Proof of Theorem 3. It follows from Lemma 12, Proposition 15, and Lemma 18.

Proof of Theorem 4. Clearly (i) implies (ii)-(vi). In view of (8), (9) and (10) it is also easy to see
that (ii), (iii) and (iv) are equivalent. Now if (ii) holds, then u = v + C, i.e. u solves an integral
equation and Theorem 4.1 in [34] implies that u is spherical.
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To prove that either (v) or (vi) imply (i) we assume that (i) does not hold. Then (ii) does not
hold and deg p = 2. Hence |∇p|2 is a polynomial of degree 2. Then

Rgu = −2e−2u(2∆u+ |∇u|2) = −2e−2(v+p)(2∆v + 2∆p+ |∇p|2 + 2∇p · ∇v + |∇v|2).

It follows from (9) at once that lim inf |x|→∞Rgu = −∞, so (vi) does not hold. As for (v), if (i)
fails to hold, then deg p = 2 and from (10) we infer

lim inf
|x|→∞

u(x)

|x|2
< 0.

This implies that π∗(e2u|dx|2) is either discontinuous or vanishes at the point (0, 0, 0,−1) ∈ S3,
and therefore (vi) also fails to hold (see [17] for more details).

Finally, assuming that u is non-spherical one has that (ii) does not hold. So ∆p = const 6= 0
(the case ∆p ≡ 0, together with supR3 p < ∞ would yield p ≡ const by Liouville’s theorem),
and (11) follows at once from ∆u = ∆v + ∆p and (9).

Proof of Theorem 5. The function v(x) satisfies the integral equation (7), which can be written
as

v(x) =
1

2π2

∫
R3

log

(
|y|
|x− y|

)
K(y)e3v(y)dy,

where
K(x) = 2e3(u−v) = 2e3p(x)

and p is the polynomial given by Theorem 3. Since u is non-spherical, we have that p is not a
constant and, up to a translation

p(x) = −
3∑
i=1

aix
2
i + c0

for some coefficients ai ≥ 0 not all vanishing. In particular

x · ∇p(x) ≤ 0, x · ∇p(x) 6≡ 0.

This of course implies
x · ∇K(x) ≤ 0, x · ∇K(x) 6≡ 0.

It follows from (31) that α < 2, i.e.

2 >
1

|S3|

∫
R3

2e3pe3vdx =
2

|S3|

∫
R3

e3udx =
2V

|S3|
.
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A The fractional Laplacian in Rn

If σ ∈ (0, 1) and u belongs to the Schwarz space S of rapidly decreasing smooth functions in
Rn, then (−∆)σu is defined by

̂(−∆)σu(ξ) = |ξ|2σû(ξ),

where
f̂(ξ) = F(f)(ξ) :=

1

(2π)n/2

∫
Rn
f(x)e−ix·ξdx

denotes the Fourier transform. An equivalent definition is the following:

(−∆)σu(x) := Cn,σP.V.

∫
Rn

u(x)− u(y)

|x− y|n+2σ
dy, (32)

where the right-hand side is defined in the sense of the principal value. One can see that (32)
makes sense for classes of functions larger than the Schwarz space, for instance for functions in
C2σ+α
loc (Rn) ∩ Lσ(Rn) for some α > 0, where

Lσ(Rn) :=

{
u ∈ L1

loc(Rn) :

∫
Rn

|u(x)|
1 + |x|n+2σ

dx <∞
}
,

and C2σ+α
loc (Rn) := C0,2σ+α

loc (Rn) for 2σ + α ≤ 1 and C2σ+α
loc (Rn) := C1,2σ−1+α

loc (Rn) for
2σ + α > 1. We denote ‖u‖Lσ(Rn) =

∫
Rn

|u(x)|
1+|x|n+2σ dx. Observing that

sup
Rn

(1 + |x|n+2σ)|(−∆)σϕ(x)| < +∞ for ϕ ∈ S, (33)

and that (−∆)σ : S → S is symmetric, as shown in [28], one can define (−∆)σu by duality for
functions u ∈ Lσ(Rn) as a tempered distribution via the relation

〈(−∆)σu, ϕ〉 =

∫
Rn
u(x)(−∆)σϕ(x)dx for every ϕ ∈ S. (34)

That for u ∈ C2σ+α
loc (Rn) ∩ Lσ(Rn) the definitions (32) and (34) coincide is shown in [28,

Proposition 2.4].
The following lemma is well-known, but we include a proof here for convenience and com-

pleteness.

Lemma 20. The function K(x) := 1
2π2|x|2 is a fundamental solution of (−∆)

1
2 in R3 in the

sense that for every f ∈ L1(R3) we have K ∗ f ∈ L1/2(R3) and

(−∆)
1
2 (K ∗ f) = f, (35)

in the sense of (34).
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Proof. First of all, it follows easily from Theorem 5.9 in [13] that (35) holds if we assume
f ∈ C∞c (R3).

Secondly, we notice that, if f ∈ L1 then K ∗ f ∈ L1/2(R3). Indeed,

K(x) =
1

2π2|x|2
χB1 +

1

2π2|x|2
χR3\B1

=: K1(x) +K2(x),

and K1 ∈ L
3
2
−ε(R3), K2 ∈ L

3
2
+ε(R3) for any ε > 0. Hence, by Young’s inequality

K ∗ f ∈ L
3
2
−ε(R3) + L

3
2
+ε(R3) ⊂ L1/2(R3),

where the last inclusion follows from Hölder’s inequality.
Lastly, if f ∈ L1(R3) we take a sequence (fk) ⊂ C∞c (R3) with fk → f in L1(R3). Then

for every ϕ ∈ S we have

(I)k := 〈(−∆)
1
2 (K ∗ fk), ϕ〉 = 〈fk, ϕ〉 → 〈f, ϕ〉 as k →∞.

SinceK ∗f = K1∗f+K2∗f ∈ L
3
2
−ε+L

3
2
+ε, we haveK1∗fk → K1∗f in L

3
2
−ε, and thus, in

L1/2(R3) by Hölder’s inequality. Similarly,K2 ∗fk → K2 ∗f in L1/2(R3), andK ∗fk → K ∗f
in L1/2(R3). By (33), we find

(I)k = 〈K ∗ fk, (−∆)
1
2ϕ〉 → 〈K ∗ f, (−∆)

1
2ϕ〉.

Hence, we conclude that (−∆)
1
2 (K ∗ f) = f in the sense of (34).

A.1 Schauder estimates

The following proposition should be well-known, but we include here an elementary proof of
the estimate (36) which was used in Section 4.

Let Ω be a domain in Rn and f ∈ L1(Ω). We say that u ∈ Lσ(Rn) is a solution of
(−∆)σu = f in Ω if∫

Rn
u (−∆)σϕdx =

∫
Rn
f ϕdx for every ϕ ∈ C∞c (Ω).

Proposition 21. If u ∈ Lσ(Rn) for some σ ∈ (0, 1) and (−∆)σu = 0 in B2r for some r > 0,
then u ∈ C∞(B2r). Moreover, for every k ∈ N the following estimate holds:

‖∇ku‖L∞(Br) ≤
Cn,σ,k
rk

(
r2σ
∫
Rn\B2r

|u(x)|
|x|n+2σ

dx+
‖u‖L1(B2r)

rn

)
, (36)

where Cn,σ,k is a positive constant depending only on n, σ and k.
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Notice that the right-hand sides of (36) are equivalent to Cn,σ,k,α,r‖u‖Lσ for every fixed r
and, although this term is more compact, it is not scale invariant with respect to r.

For the proof of this proposition we will use a couple of results from [28]. Following the
notations of Silvestre [28] we set Φ(x) =

Cn,σ
|x|n−2σ the fundamental solution of (−∆)σ and we

construct Γ from Φ by modifying Φ only in B1 so that Γ ∈ C∞(Rn). Via a rescaling, we
consider for λ > 0 the function

Γλ(x) =
1

λn−2σ
Γ
(x
λ

)
,

and also define γλ(x) := (−∆)σΓλ(x). Notice that

γλ(x) =
1

λn
γ1

(x
λ

)
. (37)

By [28, Prop. 2.7] γλ ∈ C∞(Rn). We will need the following two results:

Proposition 22 ([28], Prop. 2.12). For |x| > λ, we have

γλ(x) =

∫
Bλ(0)

Φ(y)− Γλ(y)

|x− y|n+2σ
dy. (38)

Proposition 23 ([28], Prop. 2.22). Assume that u ∈ Lσ(Rn) such that (−∆)σu = 0 in Ω ⊂ Rn.
Then u ∈ C0(Ω) and u(x) = u ∗ γλ(x) for every x ∈ Ω and λ ∈ (0,dist(x, ∂Ω)).

We remark that, although our definition of Γ (hence of Γλ and γλ) is slightly different from
the one in [28], the proofs of the above propositions go through with almost no change.

Proof of Proposition 21. The proof uses Proposition 23 and a standard convolution argument.
For every k ∈ N∪{0}, we have from Proposition 23 that∇ku = u ∗∇kγλ (we use the notation
that∇0 is the identity operator) in Br for λ = r/2. Hence, for x ∈ Br,

|∇ku(x)| ≤
∫
Rn\B2r

|u(y)||∇kγλ(x− y)|dy +

∫
B2r

|u(y)||∇kγλ(x− y)|dy =: I + II.

Notice that

1

|x− y − z|n+2σ+k
≤ 1

(|y| − r − λ)n+2σ+k
≤

Cn,σ,k
|y|n+2σ+k

, |y| > 2r, |x| < r, |z| < λ =
r

2
.

Then we have, by differentiating (38),

|∇kγλ(x− y)| ≤ Cn,σ,k
∫
Bλ

|Φ(z)− Γλ(z)|
|x− y − z|n+2σ+k

dz ≤
Cn,σ,kλ

2σ

|y|n+2σ+k
, |y| > 2r, |x| < r, λ =

r

2
.
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It follows that

I ≤ Cn,σr2σ−k
∫
Rn\B2r

|u(y)|
|y|n+2σ

dy.

As for II , notice that (37) implies∇kγλ = λ−n−k∇kγ1
(
x
λ

)
, from which one bounds

II ≤ Cn,σ,k‖∇kγr/2‖L∞
∫
B2r

|u(y)|dy ≤
Cn,σ,k
rn+k

‖u‖L1(B2r).

The proof of (36) is completed.

Corollary 24. Suppose u ∈ Lσ(Rn) for some σ ∈ (0, 1) and (−∆)σu = f in B2 for some f ∈
Ck,α(B2), where α ∈ (0, 1), k ∈ N ∪ {0} and α+ 2σ is not an integer. Then u ∈ Ck,α+2σ(B1)
(Ck,β(B1) = Ck+1,β−1(B1) if β > 1). Moreover,

‖u‖Ck,α+2σ(B1) ≤ Cn,σ,k
(∫

Rn

|u(x)|
1 + |x|n+2σ

dx+ ‖f‖Ck,α(B2)

)
,

where Cn,σ,k is a positive constant depending only on n, σ and k.

Proof. This can be proven similarly as in Proposition 2.8 of [28], by using the estimates in
Proposition 21.
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[22] L. MARTINAZZI, M. STRUWE, Quantization for an elliptic equation of order 2m with
critical exponential non-linearity , Math Z. 270 (2012), 453-487.

[23] L. MARTINAZZI, M. PETRACHE, Asymptotics and quantization for a mean-field equation
of higher order, Comm. Partial Differential Equation 35 (2010), 1-22.

[24] F. ROBERT, Concentration phenomena for a fourth order equation with exponential
growth: the radial case, J. Differential Equations 231 (2006), 135-164.

[25] F. ROBERT, Quantization effects for a fourth order equation of exponential growth in di-
mension four, Proc. Roy. Soc. Edinburgh Sec. A 137 (2007), 531-553.

[26] F. ROBERT, M. STRUWE, Asymptotic profile for a fourth order PDE with critical expo-
nential growth in dimension four, Adv. Nonlin. Stud. 4 (2004), 397-415.

[27] F. ROBERT, J. WEI, Asymptotic behavior of a fourth order mean field equation with
Dirichlet boundary condition, Indiana Univ. Math. J. 57 (2008), 2039-2060.

[28] SILVESTRE, L., Regularity of the obstacle problem for a fractional power of the Laplace
operator. Comm. Pure Appl. Math. 60 (2007), no. 1, 67-112.

[29] E. M. STEIN, Singular integrals and differentiability properties of functions. Princeton

21



Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.
[30] M. STRUWE, A flow approach to Nirenberg’s problem, Duke Math. J. 128(1) (2005), 19-

64.
[31] M. STRUWE, Quantization for a fourth order equation with critical exponential growth,

Math. Z. 256 (2007), 397-424.
[32] J. WEI, X. XU, Classification of solutions of higher order conformally invariant equations,

Math. Ann 313 (1999), 207-228.
[33] J. WEI, X. XU, Prescribing Q-curvature problem on Sn, J. Funct. Anal. 257 (2009), no.

7, 1995–2023.
[34] X. XU, Uniqueness and non-existence theorems for conformally invariant equations, J.

Funct. Anal. 222 (2005), no. 1, 1–28.

T. Jin
Department of Mathematics, The University of Chicago
5734 S. University Avenue, Chicago, IL 60637, USA
Email: tj@math.uchicago.edu

A. Maalaoui
Department of Mathematics and Computer Science, University of Basel
Rheinsprung 21 CH-4051, Basel, Switzerland
Email: ali.maalaoui@unibas.ch

L. Martinazzi
Department of Mathematics and Computer Science, University of Basel
Rheinsprung 21 CH-4051, Basel, Switzerland
Email: luca.martinazzi@unibas.ch

J. Xiong
Beijing International Center for Mathematical Research, Peking University
Beijing 100871, China
Email: jxiong@math.pku.edu.cn

22


	Introduction
	Preliminaries
	Existence of non-spherical solutions
	Estimates and technical lemmas
	Proof of Theorems 3, 4 and 5
	The fractional Laplacian in Rn
	Schauder estimates


