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Let Ω ⊂ R2m be open, bounded and with smooth boundary, and let a
sequence λk → 0+ be given. Consider a sequence (uk)k∈N of positive smooth
solutions to {

(−∆)muk = λkukemu2
k in Ω

uk = ∂νuk = . . . = ∂m−1
ν uk = 0 on ∂Ω.

(1)

Solutions to (1) arise from the Adams-Moser-Trudinger inequality [1, 10, 13]:

sup
u∈Hm

0 (Ω), ‖u‖2
Hm

0
≤Λ1

∫
Ω

emu2
dx = c0(m) < +∞, (2)

where c0(m) is a dimensional constant, and Hm
0 (Ω) is the Beppo-Levi space

defined as the completion of C∞c (Ω) with respect to the norm

‖u‖Hm
0

:= ‖∆m
2 u‖L2 =

( ∫
Ω

|∆m
2 u|2dx

) 1
2

, (3)

and we set ∆
m
2 u := ∇∆

m−1
2 u for m odd. In fact critical points of (2) under

the constraint ‖u‖2 = Λ1 solve (1). Then we have the following concentration-
compactness result:

Theorem 1 Let (uk) be a sequence of solutions to (1) such that∫
Ω

uk(−∆)mukdx = λk

∫
Ω

u2
kemu2

kdx → Λ < ∞, as k →∞. (4)

Then either

(i) Λ = 0 and uk → 0 in C2m−1,α(Ω), or

(ii) There exists I ∈ N\{0} such that Λ ≥ IΛ1, where Λ1 := (2m− 1)!vol(S2m),
and there is a finite set S = {x(1), . . . , x(I)} such that

uk → 0 in C2m−1,α
loc (Ω\S),

and

λku2
kemu2

k ⇀
I∑

i=1

αiδx(i) , αi ≥ Λ1.
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Theorem 1 has been proven by Adimurthi and M. Struwe [3] and Adimurthi
and O. Druet [2] in the case m = 1, and by F. Robert and M. Struwe [11] for
m = 2. Recently O. Druet [6] for the case m = 1, and M. Struwe [12] for m = 2
improved the previous results by showing that in case (ii) of Theorem 1 we have
Λ = LΛ1 for some positive L ∈ N. Whether the same holds true for m > 2 is
still an open question.

Part (ii) of the theorem shows an interesting threshold phenomenon: below
the critical energy level Λ1 we always have compactness. Moreover Λ1 is the total
Q-curvature of the sphere (see [8] for a short discussion of Q-curvature). We
shall briefly explain how this remarkable connection with Riemannian geometry
arises. It is easy to see that if we are not in case (i) of the theorem, then
supΩ uk →∞ as k →∞. Then we blow up, i.e. we define the scaled functions

ηk(x) := uk(xk)(uk(xk + rkx)− uk(xk)) + log 2,

where xk is such that uk(xk) = maxΩ uk and rk → 0 is a scaling factor suitably
chosen. Then it turns out that

ηk(x) → η0(x) in C2m−1
loc (R2m), (k →∞), (5)

where η0 is a solution of the Liouville-type equation

(−∆)mη = (2m− 1)!e2mη on R2m,

∫
R2m

e2mηdx < ∞. (6)

We recall (see e.g. [8]) that if η solves (−∆)mη = V e2mη on R2m, then the
conformal metric gη := e2η|dx|2 has Q-curvature V , where |dx|2 denotes the
Euclidean metric. Now the problem is to understand what is the solution η0 or
(equivalently) what is the conformal metric gη0 . A bunch of solution to (6) is
given by the so-called standard solutions

ηλ,x0(x) = log
2λ

1 + λ2|x− x0|2
, λ > 0, x0 ∈ R2m.

These are “spherical” solutions, as the metric e2ηλ,x0 |dx|2 can be obtained by
pulling-back the metric of the round sphere S2m onto R2m via the stereographic
projection and a Möbius diffeomorphism.

While Chen and Li [5] proved that in the case m = 1 the only solutions to
(6) are the standard solutions, Chang and Chen [4] show that for any m > 1
(6) possesses many other solutions. Therefore the problem of understanding η0

starts to appear quite subtle. In fact we claim the following

Proposition 2 For any m > 1 the function η0 given by (5) is a standard
solution to (6).

Proposition 2 yields

lim
k→∞

∫
Ω

λku2
kemu2

kdx ≥ (2m− 1)!
∫

R2m

e2mη0dx

= (2m− 1)!
∫

R2m

QS2mdvolgS2m = Λ1,
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This is the basic reason why αi ≥ Λ1 in case (ii) of Theorem 1.
The proof of Proposition 2 is based on a classification result for the solution

to (6) due to the author [8] and on sharp gradient estimates for uk. Let us start
with the latter.

Proposition 3 For any R > 0, 1 ≤ ` ≤ 2m− 1 there exists k0 such that

uk(xk)
∫

BRrk
(xk)

|∇`uk|dx ≤ C(Rrk)2m−`, for all k ≥ k0. (7)

Equivalently ∫
BR(0)

|∇`ηk|dx ≤ CR2m−`. (8)

The key idea in proving (7) is that

‖∆m(u2
k)‖L1(Ω) ≤ C, (9)

so that one can write u2
k in terms of the Green function for ∆m on Ω (it is

convenient to work with u2
k because (7) is quadratic in uk). Estimate (9) is an

easy consequence of

Proposition 4 For every 1 ≤ ` ≤ 2m − 1, ∇`uk belongs to the Lorentz space
L(2m/`,2)(Ω) and

‖∇`uk‖(2m/`,2) ≤ C.

This follows by interpolation theory once we observe that (4) implies that
∆muk is bounded in the Zygmund space L(log L)

1
2 . It is instructive to remark

that if we decided to be a bit sloppy and consider that (4) gives bounds for
∆muk in L1(Ω), then we would obtain the bounds ‖∇`uk‖(2m/`,∞) ≤ C (L(p,∞)

being the Marcinkievicz space, or weak-Lp). On the other hand those bounds
are too weak to prove (9), hence Proposition 3.

We now turn to the classification result for solutions to (6).

Theorem 5 ([8]) Let η be a solution to (6) and set

v(x) :=
(2m− 1)!

γm

∫
R2m

log
(

|y|
|x− y|

e2mu(y)

)
dt,

where γm is such that (−∆)m 1
γm

log 1
|x| = δ0. Then η = v + p, where p is a

polynomial of degree at most 2m− 2 and

lim
|x|→∞

∆jv(x) = 0, 1 ≤ j ≤ m− 1.

Moreover the following are equivalent:

(i) η is a standard solution,

(ii) p is constant.

Moreover if η is not a standard solution there exist 1 ≤ j ≤ m−1 and a constant
a 6= 0 such that

lim
|x|→∞

∆jη(x) = a. (10)

Taking the limit in (8) and applying Theorem 5 implies that η0 is a standard
solution.
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