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Let Q C R?>™ be open, bounded and with smooth boundary, and let a
sequence Ap — 07 be given. Consider a sequence (uy)ren of positive smooth
solutions to

(1)

(—A)™uy = Aguge™i in Q
up = 0up =...= 0" lup =0 on 9N.

Solutions to (1) arise from the Adams-Moser-Trudinger inequality [1, 10, 13]:

sup ][em“2dx = ¢o(m) < +o0, (2)
UGH(T(Q), ”uuilén SAl Q
where ¢o(m) is a dimensional constant, and H{*(€2) is the Beppo-Levi space
defined as the completion of C2°(€2) with respect to the norm

3
lullirge o= 1A ulye = ( / A2u|2dx) , ®)

m—1

and we set A%y ;= VA™7 u for m odd. In fact critical points of (2) under
the constraint ||ul|> = A; solve (1). Then we have the following concentration-
compactness result:

Theorem 1 Let (ug) be a sequence of solutions to (1) such that
/ up(—A)"upde = )\k/ uﬁem“idas — A <oo, ask— oo (4)
Q Q
Then either
(i) A =0 and up — 0 in C*™=12(Q), or
(ii) There exists I € N\{0} such that A > IAy, where Ay := (2m — 1)lvol(S*™),
and there is a finite set S = {x(M ... 2D} such that

up, — 0 in sz_l’a(ﬁ\S),

loc
and

T
2
Apuge™ !k — Zai(sx(’i)a a; > Ay

i=1
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Theorem 1 has been proven by Adimurthi and M. Struwe [3] and Adimurthi
and O. Druet [2] in the case m = 1, and by F. Robert and M. Struwe [11] for
m = 2. Recently O. Druet [6] for the case m = 1, and M. Struwe [12] for m = 2
improved the previous results by showing that in case (ii) of Theorem 1 we have
A = LA; for some positive L € N. Whether the same holds true for m > 2 is
still an open question.

Part (ii) of the theorem shows an interesting threshold phenomenon: below
the critical energy level A1 we always have compactness. Moreover A is the total
Q-curvature of the sphere (see [8] for a short discussion of Q-curvature). We
shall briefly explain how this remarkable connection with Riemannian geometry
arises. It is easy to see that if we are not in case (i) of the theorem, then
supq ur — o0 as k — co. Then we blow up, i.e. we define the scaled functions

ne(x) = ug(xg) (up(zr + r12) — ur (k) + log 2,

where xy, is such that uy(xy) = maxq ux and rp, — 0 is a scaling factor suitably
chosen. Then it turns out that

me(x) = mo(x) in CRETHR®™),  (k — 00), (5)

loc

where 79 is a solution of the Liouville-type equation
(=A)™p = (2m — 1)!e*™  on R*™, / 2™ dx < 0. (6)
R27n

We recall (see e.g. [8]) that if 1 solves (—A)™n = Ve2™ on R?™, then the
conformal metric g, := €*"|dz|?> has Q-curvature V, where |dz|? denotes the
Euclidean metric. Now the problem is to understand what is the solution 7y or
(equivalently) what is the conformal metric g,,. A bunch of solution to (6) is
given by the so-called standard solutions

2\

05— A>0.a€R™.
g1+)\2\x—x0|2 o

I\, zo (SL’) =1

These are “spherical” solutions, as the metric e :=0|dz|? can be obtained by
pulling-back the metric of the round sphere S?™ onto R?™ via the stereographic
projection and a Md&bius diffeomorphism.

While Chen and Li [5] proved that in the case m = 1 the only solutions to
(6) are the standard solutions, Chang and Chen [4] show that for any m > 1
(6) possesses many other solutions. Therefore the problem of understanding g
starts to appear quite subtle. In fact we claim the following

Proposition 2 For any m > 1 the function ny given by (5) is a standard
solution to (6).

Proposition 2 yields

2
lim [ Muje™kdx > (2m — 1)!/ Mo dy;
k—oo Jq R2m

= (2m — 1)! ‘/RQm QSQ'deOlgS2m = Al,



This is the basic reason why «; > A; in case (ii) of Theorem 1.

The proof of Proposition 2 is based on a classification result for the solution
0 (6) due to the author [8] and on sharp gradient estimates for uy. Let us start
with the latter.

Proposition 3 For any R >0, 1 <{ <2m — 1 there exists ko such that
uk(xk)/ |Viur|dz < C(Rry)*™ ¢, for all k > k. (7)
Brry, (zr)

FEquivalently
/ |V |dz < CR?™ (8)
Br(0)

The key idea in proving (7) is that
IA™ (ui)| L) < C, (9)
2

so that one can write uj in terms of the Green function for A™ on Q (it is
convenient to work with u7 because (7) is quadratic in uy). Estimate (9) is an
easy consequence of

Proposition 4 For every 1 < £ < 2m — 1, Vfuy, belongs to the Lorentz space
LEC™/E2) () and
IV Ukl 2me,2) < C.

This follows by interpolation theory once we observe that (4) implies that
A™uy, is bounded in the Zygmund space L(log L)z. It is instructive to remark
that if we decided to be a bit sloppy and consider that (4) gives bounds for
A™uy, in L(9), then we would obtain the bounds ||V u || (2m/¢,00) < C (LF>)
being the Marcinkievicz space, or weak-L?). On the other hand those bounds
are too weak to prove (9), hence Proposition 3.

We now turn to the classification result for solutions to (6).

Theorem 5 ([8]) Let n be a solution to (6) and set

2m — 1)!
v(z) = @m =1t < 2m"(y)>dt,
Tm ]R2m |z —y|

where vy, is such that (— A) log \w\ = 0g. Thenn = v+ p, where p is a
polynomial of degree at most 2m 2 and

lim Afv(z) =0, 1<j<m-—1.

|z]— o0
Moreover the following are equivalent:

(i) n is a standard solution,

(i) p is constant.

Moreover if n is not a standard solution there exist 1 < j < m—1 and a constant
a # 0 such that
lim Afn(z) = a. (10)
|z]— o0
Taking the limit in (8) and applying Theorem 5 implies that 7o is a standard
solution.
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