Mariano Giaquinta Luca Martinazzi

> An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs

> > Second edition

Mariano Giaquinta Scuola Normale Superiore Piazza dei Cavalieri, 7 56126, Pisa (Italy)

Luca Martinazzi Rutgers University 110 Frelinghuysen Road Piscataway NJ 08854-8019 (United States of America)

Preface to the first edition

Initially thought as lecture notes of a course given by the first author at the Scuola Normale Superiore in the academic year 2003-2004, this volume grew into the present form thanks to the constant enthusiasm of the second author.

Our aim here is to illustrate some of the relevant ideas in the theory of regularity of linear and nonlinear elliptic systems, looking in particular at the context and the specific situation in which they generate. Therefore this is not a reference volume: we always refrain from generalizations and extensions. For reasons of space we did not treat regularity questions in the linear and nonlinear Hodge theory, in Stokes and Navier-Stokes theory of fluids, in linear and nonlinear elasticity; other topics that should be treated, we are sure, were not treated because of our limited knowledge. Finally, we avoided to discuss more recent and technical contributions, in particular, we never entered regularity questions related to variational integrals or systems with general growth p.

In preparing this volume we particularly took advantage from the references [6] [37] [39] [52], from a series of unpublished notes by Giuseppe Modica, whom we want to thank particularly, from [98] and from the papers [109] [110] [111].

We would like to thank also Valentino Tosatti and Davide Vittone, who attended the course, made comments and remarks and read part of the manuscript.

Part of the work was carried out while the second author was a graduate student at Stanford, supported by a Stanford Graduate Fellowship.

Preface to the second edition

This second edition is a deeply revised version of the first edition, in which several typos were corrected, details to the proofs, exercises and examples were added, and new material was covered. In particular we added the recent results of T. Rivière [88] on the regularity of critical points of conformally invariant functionals in dimension 2 (especially 2-dimensional harmonic maps), and the partial regularity of stationary harmonic maps following the new approach of T. Rivière and M. Struwe [90], which avoids the use of the moving-frame technique of F. Hélein. This gave us the motivation to briefly discuss the limiting case p = 1 of the L^p -estimates for the Laplacian, introducing the Hardy space \mathcal{H}^1 and presenting the celebrated results of Wente [112] and of Coifman-Lions-Meyer-Semmes [22].

Part of the work was completed while the second author was visiting the Centro di Ricerca Matematica Ennio De Giorgi in Pisa, whose warm hospitality is gratefully acknowledged.

Contents

Pı	refac	e to the first edition	iii
Pı	refac	e to the second edition	\mathbf{v}
1	Har	monic functions	1
	1.1	Introduction	1
	1.2	The variational method	2
		1.2.1 Non-existence of minimizers of variational integrals	3
		1.2.2 Non-finiteness of the Dirichlet integral	4
	1.3	Some properties of harmonic functions	5
	1.4	Existence in general bounded domains	11
		1.4.1 Solvability of the Dirichlet problem on balls: Pois-	
		son's formula	12
		1.4.2 Perron's method \ldots	12
		1.4.3 Poincaré's method	15
2	Dir	ect methods	17
	2.1	Lower semicontinuity in classes of Lipschitz functions	18
	2.2	Existence of minimizers	19
		2.2.1 Minimizers in $\operatorname{Lip}_k(\Omega)$	19
		2.2.2 A priori gradient estimates	20
		2.2.3 Constructing barriers: the distance function	23
	2.3	Non-existence of minimizers	25
		2.3.1 An example of Bernstein	25
		2.3.2 Sharpness of the mean curvature condition	27
	2.4	Area of graphs with zero mean curvature	30
	2.5	The relaxed area functional in BV	32
		2.5.1 BV minimizers for the area functional	33
3	Hill	pert space methods	37
	3.1	The Dirichlet principle	37
	3.2	Sobolev spaces	39
		3.2.1 Strong and weak derivatives	39

		3.2.2 Poincaré inequalities	-1
		3.2.3 Rellich's theorem	3
		3.2.4 The chain rule in Sobolev spaces	6
		3.2.5 The Sobolev embedding theorem	8
		3.2.6 The Sobolev-Poincaré inequality	9
	3.3	Elliptic equations: existence of weak solutions 4	9
		3.3.1 Dirichlet boundary condition	0
		3.3.2 Neumann boundary condition	1
	3.4	Elliptic systems: existence of weak solutions	3
		3.4.1 The Legendre and Legendre-Hadamard ellipticity	
		$conditions \ldots 5$	3
		3.4.2 Boundary value problems for very strongly elliptic	-
		systems	64
		3.4.3 Strongly elliptic systems: Gårding's inequality 5	5
1	L ² -1	regularity: the Caccionnoli inequality 6	1
т	<u> </u>	The simplest case: harmonic functions	1
	4.1	Caccioppoli's inequality for alliptic systems	'1 2
	4.2	The difference quotient method	:1
	4.0	$4.3.1$ Interior L^2 -estimates 6	6
		4.3.2 Boundary regularity 6	:0
	4.4	The hole filling technique	פי פי
	4.4		2
5	\mathbf{Sch}	auder estimates 7	5
	5.1	The spaces of Morrey and Campanato	5
		5.1.1 A characterization of Hölder continuous functions . 7	8
	5.2	Constant coefficients: two basic estimates	60
		5.2.1 A generalization of Liouville's theorem 8	32
	5.3	A lemma	32
	5.4	Schauder estimates for systems in divergence form 8	3
		5.4.1 Constant coefficients $\ldots \ldots \ldots \ldots \ldots \ldots $ 8	3
		5.4.2 Continuous coefficients	6
		5.4.3 Hölder continuous coefficients 8	7
		5.4.4 Summary and generalizations 8	8
		5.4.5 Boundary regularity	;9
	5.5	Schauder estimates for systems in non-divergence form 9	2
		5.5.1 Solving the Dirichlet problem 9	3
6	Son	ne real analysis 9	7
	6.1	Distribution function and interpolation 9	17
		6.1.1 The distribution function	17
		6.1.2 Riesz-Thorin's theorem	9
		6.1.3 Marcinkiewicz's interpolation theorem 10)1
	6.2	Maximal function and Calderòn-Zygmund 10)3
		6.2.1 The maximal function 10	12

		6.2.2 Calderon-Zygmund decomposition argument	107
	6.3	<i>BMO</i>	110
		6.3.1 John-Nirenberg lemma I	111
		6.3.2 John-Nirenberg lemma II	117
		6.3.3 Interpolation between L^p and BMO	120
		6.3.4 Sharp function and interpolation $L^p - BMO$	121
	6.4	The Hardy space \mathcal{H}^1	125
		6.4.1 The duality between \mathcal{H}^1 and BMO	128
	6.5	Reverse Hölder inequalities	129
		6.5.1 Gehring's lemma	130
		6.5.2 Reverse Hölder inequalities with increasing support	132
7	L^p -t	heory	137
	7.1	L^p -estimates	137
		7.1.1 Constant coefficients	137
		7.1.2 Variable coefficients: divergence and non-divergence	
		case	138
		7.1.3 The cases $p = 1$ and $p = \infty$	140
		7.1.4 Wente's result \ldots	142
	7.2	Singular integrals	145
		7.2.1 The cancellation property and the Cauchy principal	
		value	147
		7.2.2 Hölder-Korn-Lichtenstein-Giraud theorem	149
		7.2.3 L^2 -theory	152
		7.2.4 Calderón-Zygmund theorem	156
	7.3	Fractional integrals and Sobolev inequalities	161
8	The	e regularity problem in the scalar case	167
	8.1	Existence of minimizers by direct methods	167
	8.2	Regularity of critical points of variational integrals	171
	8.3	De Giorgi's theorem: essentially the original proof	174
	8.4	Moser's technique and Harnack's inequality	186
	8.5	Still another proof of De Giorgi's theorem	191
	8.6	The weak Harnack inequality	194
	8.7	Non-differentiable variational integrals	199
9	Par	tial regularity in the vector-valued case	205
	9.1	Counterexamples to everywhere regularity	205
		9.1.1 De Giorgi's counterexample	205
		9.1.2 Giusti and Miranda's counterexample	206
		9.1.3 The minimal cone of Lawson and Osserman	206
	9.2	Partial regularity	207
		9.2.1 Partial regularity of minimizers	207
		9.2.2 Partial regularity of solutions to quasilinear elliptic	
		systems	211

		9.2.3	Partial regularity of solutions to quasilinear elliptic	
			systems with quadratic right-hand side	214
		9.2.4	Partial regularity of minimizers of non-differentiable	
			quadratic functionals	220
		9.2.5	The Hausdorff dimension of the singular set	226
10	Har	monic	maps	229
	10.1	Basic 1	naterial	229
		10.1.1	The variational equations	230
		10.1.2	The monotonicity formula	232
	10.2	Giaqui	nta and Giusti's regularity results	233
		10.2.1	The main regularity result	233
		10.2.2	The dimension reduction argument	234
	10.3	Schoen	and Uhlenbeck's regularity results	241
		10.3.1	The main regularity result	241
		10.3.2	The dimension reduction argument	249
		10.3.3	The stratification of the singular set	258
	10.4	Regula	rity of 2-dimensional weakly harmonic maps	264
		10.4.1	Hélein's proof when the target manifold is S^n	265
		10.4.2	Rivière's proof for arbitrary target manifolds	267
		10.4.3	Irregularity of weakly harmonic maps in dimension	
			3 and higher	279
	10.5	Regula	rity of stationary harmonic maps	279
	10.6	The H	odge-Morrey decomposition	287
		10.6.1	Decomposition of differential forms	288
		10.6.2	Decomposition of vector fields	289
11	A su	irvey o	of minimal graphs	293
	11.1	Geome	try of the submanifolds of \mathbb{R}^{n+m}	293
		11.1.1	Riemannian structure and Levi-Civita connection .	293
		11.1.2	The gradient, divergence and Laplacian operators .	295
		11.1.3	Second fundamental form and mean curvature	297
		11.1.4	The area and its first variation	299
		11.1.5	Area-decreasing maps	305
	11.2	Minim	al graphs in codimension 1	306
		11.2.1	Convexity of the area; uniqueness and stability $\ . \ .$	306
		11.2.2	The problem of Plateau: existence of minimal gra-	
			phs with prescribed boundary	309
		11.2.3	A priori estimates	312
		11.2.4	Regularity of Lipschitz continuous minimal	
			graphs	315
		11.2.5	The a priori gradient estimate of Bombieri, De Giorgi	
			and Miranda	316
		11.2.6	Regularity of BV minimizers of the area functional	321
	11.3	Regula	rity in arbitrary codimension	325

11.3.1	Blow-ups, blow-downs and minimal cones	325
11.3.2	Bernstein-type theorems	329
11.3.3	Regularity of area-decreasing minimal graphs	339
11.3.4	Regularity and Bernstein theorems for Lipschitz min-	
	imal graphs in dimension 2 and 3	340
11.4 Geome	etry of Varifolds	341
11.4.1	Rectifiable subsets of \mathbb{R}^{n+m}	341
11.4.2	Rectifiable varifolds	344
11.4.3	First variation of a rectifiable varifold	346
11.4.4	The monotonicity formula	347
11.4.5	The regularity theorem of Allard	349
11.4.6	Abstract varifolds	351
11.4.7	Image and first variation of an abstract varifold	352
11.4.8	Allard's compactness theorem	353
Bibliography		355
Index		363

Chapter 1

Harmonic functions

We begin by illustrating some aspects of the classical model problem in the theory of elliptic regularity: the Dirichlet problem for the Laplace operator.

1.1 Introduction

From now on Ω will be a bounded, connected and open subset of \mathbb{R}^n .

Definition 1.1 Given a function $u \in C^2(\Omega)$ we say that u is

- harmonic if $\Delta u = 0$
- subharmonic if $\Delta u \geq 0$
- superharmonic if $\Delta u \leq 0$,

where

$$\Delta u(x) := \sum_{\alpha=1}^{n} D_{\alpha}^{2} u(x), \qquad D_{\alpha} := \frac{\partial}{\partial x^{\alpha}}$$

is the Laplacian operator.

Exercise 1.2 Prove that if $f \in C^2(\mathbb{R})$ is convex and $u \in C^2(\Omega)$ is harmonic, then $f \circ u$ is subharmonic.

Throughout this chapter we shall study some important properties of harmonic functions and we shall be concerned with the problem of the existence of harmonic functions with prescribed boundary value, namely with the solution of the following *Dirichlet problem*:

$$\begin{array}{ll}
\Delta u = 0 & \text{in } \Omega \\
u = g & \text{on } \partial\Omega
\end{array}$$
(1.1)

in $C^2(\Omega) \cap C^0(\overline{\Omega})$, for a given function $g \in C^0(\partial \Omega)$.

1.2 The variational method

The problem of finding a harmonic function with prescribed boundary value $g \in C^0(\partial\Omega)$ is tied, though not equivalent (see section 1.2.2), to the following one: find a minimizer u for the functional \mathcal{D}

$$\mathcal{D}(u) = \frac{1}{2} \int_{\Omega} |Du|^2 dx \tag{1.2}$$

in the class

$$\mathcal{A} = \{ u \in C^2(\Omega) \cap C^0(\overline{\Omega}) : u = g \text{ on } \partial \Omega \}.$$

The functional \mathcal{D} is called *Dirichlet integral*.

In fact, formally, if a minimizer u exists, then the first variation of the Dirichlet integral vanishes:

$$\left. \frac{d}{dt} \mathcal{D}(u+t\varphi) \right|_{t=0} = 0$$

for all smooth compactly supported functions φ in Ω ; an integration by parts then yields

$$\begin{split} 0 &= \frac{d}{dt} \mathcal{D}(u + t\varphi) \Big|_{t=0} \\ &= \int_{\Omega} \nabla u \cdot \nabla \varphi dx \\ &= -\int_{\Omega} \Delta u \varphi dx, \quad \forall \varphi \in C_0^{\infty}(\Omega), \end{split}$$

and by the arbitrariness of φ we conclude $\Delta u = 0$, which is the Euler-Lagrange equation for the Dirichlet integral: minimizers of the Dirichlet integral are harmonic.

This was stated as an equivalence by Dirichlet and used by Riemann in his geometric theory of functions.

Dirichlet's principle: A minimizer u of the Dirichlet integral in Ω with prescribed boundary value g always exists, is unique and is a harmonic function; it solves

$$\begin{cases} \Delta u = 0 & \text{in } \Omega \\ u = g & \text{on } \partial \Omega. \end{cases}$$
(1.3)

Conversely, any solution of (1.3) is a minimizer of the Dirichlet integral in the class of functions with boundary value g.

Dirichlet saw no need to prove this principle; however, as we shall see, in general Dirichlet's principle does not hold and, in the circumstances in which it holds, it is not trivial.

Figure 1.1: The function u_n as defined in (1.4)

1.2.1 Non-existence of minimizers of variational integrals

The following examples, the first being a classical example of Weierstrass, show that minimizers to a variational integral need not exist.

1. Consider the functional

$$\mathcal{F}(u) = \int_{-1}^{1} (x\dot{u})^2 dx$$

defined on the class of Lipschitz functions

$$\mathcal{A} = \{ u \in \operatorname{Lip}([-1,1]) : u(-1) = -1, u(1) = 1 \}.$$

The following sequence of functions in \mathcal{A}

$$u_n(x) := \begin{cases} -1 & \text{for } x \in [-1, -\frac{1}{n}] \\ 1 & \text{for } x \in [\frac{1}{n}, 1] \\ nx & \text{for } x \in [-\frac{1}{n}, \frac{1}{n}] \end{cases}$$
(1.4)

shows that $\inf_{\mathcal{A}} \mathcal{F} = 0$, but evidently \mathcal{F} cannot attain the value 0 on \mathcal{A} .

2. Consider

$$\mathcal{F}(u) = \int_0^1 (1 + \dot{u}^2)^{\frac{1}{4}} dx,$$

defined on

$$\mathcal{A} = \{ u \in \operatorname{Lip}([0,1]) : u(0) = 1, u(1) = 0 \}.$$

The sequence of functions

$$u(x) = \begin{cases} 1 - nx & \text{for } x \in [0, \frac{1}{n}] \\ 0 & \text{for } x \in [\frac{1}{n}, 1] \end{cases}$$

shows that $\inf_{\mathcal{A}} \mathcal{F} = 1$. On the other hand, if $\mathcal{F}(u) = 1$, then u is constant, thus cannot belong to \mathcal{A} .

3. Consider the area functional defined on the unit ball $B_1 \subset \mathbb{R}^2$

$$\mathcal{F}(u) = \int_{B_1} \sqrt{1 + |Du|^2} dx,$$

defined on

$$\mathcal{A} = \{ u \in \text{Lip}(B_1) : u = 0 \text{ on } \partial B_1, u(0) = 1 \}.$$

As $\mathcal{F}(u) \geq \pi$ for every $u \in \mathcal{A}$, the sequence of functions

$$u(x) = \begin{cases} 1 - n|x| & \text{for } |x| \in [0, \frac{1}{n}] \\ 0 & \text{for } |x| \in [\frac{1}{n}, 1] \end{cases}$$

shows that $\inf_{\mathcal{A}} \mathcal{F} = \pi$. On the other hand if $\mathcal{F}(u) = \pi$ for some $u \in \mathcal{A}$, then u is constant, thus cannot belong to \mathcal{A} .

1.2.2 Non-finiteness of the Dirichlet integral

We have seen that a minimizer of the Dirichlet integral is a harmonic function. In some sense the converse is not true: we exhibit a harmonic function with *infinite* Dirichlet integral.

The Laplacian in polar coordinates on \mathbb{R}^2 is

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}$$

and it is easily seen that $r^n \cos n\theta$ and $r^n \sin n\theta$ are harmonic functions. Now define on the unit ball $B_1 \subset \mathbb{R}^2$

$$u(r,\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} r^n (a_n \cos n\theta + b_n \sin n\theta).$$

Provided

$$\sum_{n=1}^{\infty} (|a_n| + |b_n|) < \infty,$$

the series converges uniformly, while its derivatives converge uniformly on compact subsets of the ball, so that u belongs to $C^{\infty}(B_1) \cap C^0(\overline{B}_1)$ and is harmonic.

The Dirichlet integral of u is

$$\mathcal{D}(u) = \frac{1}{2} \int_0^{2\pi} d\theta \int_0^1 (|\partial_r u|^2 + \frac{1}{r^2} |\partial_\theta u|^2) r dr = \frac{\pi}{2} \sum_{n=1}^\infty n(a_n^2 + b_n^2).$$

Thus, if we choose $a_n = 0$ for all $n \ge 0$, $b_n = 0$ for all $n \ge 1$, with the exception of $b_{n!} = n^{-2}$, we obtain

$$u(r,\theta) = \sum_{n=1}^{\infty} r^{n!} n^{-2} \sin(n!\theta),$$

and we conclude that $u \in C^{\infty}(B_1) \cap C^0(\overline{B}_1)$, it is harmonic, yet

$$\mathcal{D}(u) = \frac{\pi}{2} \sum_{n=1}^{\infty} n^{-4} n! = \infty.$$

In fact, every function $v \in C^{\infty}(B_1) \cap C^0(\overline{B}_1)$ that agrees with the function u defined above on ∂B_1 has *infinite* Dirichlet integral.

1.3 Some properties of harmonic functions

Proposition 1.3 (Weak maximum principle) If $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ is subharmonic, then

$$\sup_{\Omega} u = \max_{\partial \Omega} u;$$

If u is superharmonic, then

$$\inf_{\Omega} u = \min_{\partial \Omega} u.$$

Proof. We prove the proposition for u subharmonic, since for a superharmonic u it is enough to consider -u. Suppose first that $\Delta u > 0$ in Ω . Were $x_0 \in \Omega$ such that $u(x_0) = \max_{\overline{\Omega}} u$, we would have $u_{x^i x^i}(x_0) \leq 0$ for every $1 \leq i \leq n$. Summing over i we would obtain $\Delta u(x_0) \leq 0$, contradiction.

For the general case $\Delta u \ge 0$ consider the function $v(x) = u(x) + \varepsilon |x|^2$. Then $\Delta v > 0$ and, by what we have just proved, $\sup_{\Omega} v = \max_{\partial\Omega} v$. On the other hand, as $\varepsilon \to 0$, we have $\sup_{\Omega} v \to \sup_{\Omega} u$ and $\max_{\partial\Omega} v \to \max_{\partial\Omega} u$.

Exercise 1.4 Similarly, prove the following generalization of Proposition 1.3: let $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfy

$$\sum_{\alpha,\beta=1}^{n} A^{\alpha\beta} D_{\alpha\beta} u + \sum_{\alpha=1}^{n} b^{\alpha} D_{\alpha} u \ge 0,$$

where $A^{\alpha\beta}, b^{\alpha} \in C^0(\overline{\Omega})$ and $A^{\alpha\beta}$ is *elliptic*: $\sum_{\alpha,\beta=1}^n A^{\alpha\beta} \xi_{\alpha} \xi_{\beta} \geq \lambda |\xi|^2$, for some $\lambda > 0$ and every $\xi \in \mathbb{R}^n$. Then

$$\sup_{\Omega} u = \max_{\partial \Omega} u$$

Remark 1.5 The continuity of the coefficients in Exercise 1.4 is necessary. Indeed Nadirashvili gave a counterexample to the maximum principle with $A^{\alpha\beta}$ elliptic and bounded, but discontinuous, see [82].

Proposition 1.6 (Comparison principle) Let $u, v \in C^2(\Omega) \cap C^0(\overline{\Omega})$ be such that u is subharmonic, v is superharmonic and $u \leq v$ on $\partial\Omega$. Then $u \leq v$ in Ω .

Proof. Since u - v is subharmonic with $u - v \leq 0$ on $\partial\Omega$, from the weak maximum principle, Proposition 1.3, we get $u - v \leq 0$ in Ω .

Clearly

$$u \le v + \max_{\partial \Omega} |u - v|$$
 on $\partial \Omega$,

consequently:

Corollary 1.7 (Maximum estimate) Let u and v be two harmonic functions in Ω . Then

$$\sup_{\Omega} |u - v| \le \max_{\partial \Omega} |u - v|.$$

Corollary 1.8 (Uniqueness) Two harmonic functions on Ω that agree on $\partial\Omega$ are equal.

Proposition 1.9 (Mean value inequalities) Suppose that $u \in C^2(\Omega)$ is subharmonic. Then for every ball $B_r(x) \in \Omega$

$$u(x) \leq \int_{\partial B_r(x)} u(y) d\mathcal{H}^{n-1}(y),^1 \tag{1.5}$$

$$u(x) \le \int_{B_r(x)} u(y) dy.$$
(1.6)

If u is superharmonic, the reverse inequalities hold; consequently for u harmonic equalities are true.

Proof. Let u be subharmonic. From the divergence theorem, for each

¹by $f_A f(x)dx$ we denote the average of f on A i.e., $\frac{1}{|A|} \int_A f(x)dx$. Similarly $f_A f d\mathcal{H}^{n-1} = \frac{1}{\mathcal{H}^{n-1}(A)} \int_A f d\mathcal{H}^{n-1}$.

 $\rho \in (0, r]$ we have

$$0 \leq \int_{B_{\rho}(x)} \Delta u(y) dy$$

$$= \int_{\partial B_{\rho}(x)} \frac{\partial u}{\partial \nu}(y) d\mathcal{H}^{n-1}(y)$$

$$= \int_{\partial B_{1}(0)} \frac{\partial u}{\partial \rho}(x + \rho y) \rho^{n-1} d\mathcal{H}^{n-1}(y)$$

$$= \rho^{n-1} \frac{d}{d\rho} \int_{\partial B_{1}(0)} u(x + \rho y) d\mathcal{H}^{n-1}(y)$$

$$= \rho^{n-1} \frac{d}{d\rho} \left(\frac{1}{\rho^{n-1}} \int_{\partial B_{\rho}(x)} u(y) d\mathcal{H}^{n-1}(y) \right)$$

$$= n \omega_{n} \rho^{n-1} \frac{d}{d\rho} \int_{\partial B_{\rho}(x)} u(y) d\mathcal{H}^{n-1}(y),$$

(1.7)

where $\omega_n := |B_1|$. This implies that the last integral is non-decreasing and, since

$$\lim_{\rho \to 0} \int_{\partial B_{\rho}(x)} u(y) d\mathcal{H}^{n-1}(y) = u(x),$$

(1.5) follows. We leave the rest of the proof for the reader.

Corollary 1.10 (Strong maximum principle) If $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ is subharmonic (resp. superharmonic), then it cannot attain its maximum (resp. minimum) in Ω unless it is constant.

Proof. Assume u is subharmonic and let $x_0 \in \Omega$ be such that $u(x_0) = \sup_{\Omega} u$. Then the set

$$S := \{x \in \Omega : u(x) = u(x_0)\}$$

is closed because u is continuous and is open thanks to (1.6). Since Ω is connected we have $S = \Omega$.

Remark 1.11 If u is harmonic, the mean value inequality is also a direct consequence of the representation formula (1.11) below.

Exercise 1.12 Prove that if $u \in C^2(\Omega)$ satisfies one of the mean value properties, then it is correspondigly harmonic, subharmonic or superharmonic.

Exercise 1.13 Prove that if $u \in C^0(\Omega)$ satisfies the mean value equality

$$u(x) = \int_{B_r(x)} u(y) dy, \quad \forall B_r(x) \subset \Omega$$

then $u \in C^{\infty}(\Omega)$ and it is harmonic.

[Hint: Regularize u with a family $\varphi_{\varepsilon} = \rho_{\varepsilon}(|x|)$ of mollifiers with radial simmetry and use the mean value property to prove that $u * \rho_{\varepsilon} = u$ in any $\Omega_0 \Subset \Omega$ for ε small enough.]

Proposition 1.14 Consider a sequence of harmonic functions u_j that converge locally uniformly in Ω to a function $u \in C^0(\Omega)$. Then u is harmonic.

Proof. The mean value property is stable under uniform convergence, thus holds true for u, which is therefore harmonic thanks to Exercise 1.13. \Box

Remark 1.15 Being harmonic is preserved under the weaker hypothesis of weak L^p convergence, $1 \le p < \infty$, or even of the convergence is the sense of distributions. This follows at once from the so-called Weyl's lemma.

Lemma 1.16 (Weyl) A function $u \in L^1_{loc}(\Omega)$ is harmonic if and only if

$$\int_{\Omega} u \Delta \varphi dx = 0, \quad \forall \varphi \in C^{\infty}_{c}(\Omega).$$

Proof. Consider a family of radial mollifiers ρ_{ε} , i.e. $\rho_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \rho(\varepsilon^{-1}x)$, where $\rho \in C^{\infty}(\mathbb{R}^n)$ is radially symmetric, $\operatorname{supp}(\rho) \subset B_1$ and $\int_{B_1} \rho(x) dx = 1$. Define $u_{\varepsilon} = u * \rho_{\varepsilon}$. Then, from the standard properties of convolution we find

$$\begin{split} \int_{\Omega} u_{\varepsilon} \Delta \varphi dx &= \int_{\Omega} u(\Delta \varphi * \rho_{\varepsilon}) dx \\ &= \int_{\Omega} u \Delta (\varphi * \rho_{\varepsilon}) dx \\ &= 0, \qquad \text{for every } \varphi \in C_{c}^{\infty}(\Omega_{\varepsilon}), \end{split}$$

where

$$\Omega_{\varepsilon} := \{ x \in \Omega : \operatorname{dist}(x, \partial \Omega) > \varepsilon \}$$

In particular $\Delta u_{\varepsilon} = 0$ on Ω_{ε} . Now fix R > 0 and let $0 < \varepsilon \leq \frac{1}{2}R$. We have by Fubini's theorem

$$\begin{split} \int_{\Omega_{\varepsilon}} |u_{\varepsilon}(y)| dy &\leq \int_{\Omega_{\varepsilon}} \frac{1}{\varepsilon^{n}} \int_{\Omega} \rho\left(\frac{|x-y|}{\varepsilon}\right) |u(x)| dx dy \\ &\leq \int_{\Omega} |u(x)| dx. \end{split} \tag{1.8}$$

Here we may assume that $u \in L^1(\Omega)$, since being harmonic is a local property. By the mean value property applied with balls of radius $\frac{R}{2}$ and (1.8), we obtain that the u_{ε} are uniformly bounded in $\Omega_{R/2}$. They are also locally equicontinuous in Ω_R because for $x_0 \in \Omega_R$ and $x_1, x_2 \in B_{\frac{R}{2}}(x_0)$, still by the mean-value property,

$$\begin{aligned} |u_{\varepsilon}(x_{1}) - u_{\varepsilon}(x_{2})| &\leq \frac{2^{n}}{\omega_{n}R^{n}} \int_{B_{\frac{R}{2}}(x_{1})\Delta B_{\frac{R}{2}}(x_{2})} |u_{\varepsilon}(x)| dx \\ &\leq \frac{2^{n}}{\omega_{n}R^{n}} \sup_{B_{R}(x_{0})} |u_{\varepsilon}| \cdot \max\left(B_{\frac{R}{2}}(x_{2})\Delta B_{\frac{R}{2}}(x_{1})\right) \end{aligned}$$

where

$$B_{\frac{R}{2}}(x_1)\Delta B_{\frac{R}{2}}(x_2) := \Big(B_{\frac{R}{2}}(x_1)\backslash B_{\frac{R}{2}}(x_2)\Big) \cup \Big(B_{\frac{R}{2}}(x_2)\backslash B_{\frac{R}{2}}(x_1)\Big).$$

By Ascoli-Arzelà's theorem (Theorem 2.3 below), we can extract a sequence u_{ε_k} which converges uniformly in Ω_R to a continuous function vas $k \to \infty$ and $\varepsilon_k \to 0$, which is harmonic thanks to Exercise 1.13. But u = v almost everywhere in Ω_R by the properties of convolutions, hence u is harmonic in Ω_R . Letting $R \to 0$ we conclude.

Proposition 1.17 Given $u \in C^0(\Omega)$, the following facts are equivalent:

(i) For every ball $B_R(x) \Subset \Omega$ we have

$$u(x) \leq \int_{\partial B_R(x)} u(y) d\mathcal{H}^{n-1}(y);$$

(ii) for every ball $B_R(x) \subseteq \Omega$ we have

$$u(x) \leq \int_{B_R(x)} u(y) dy;$$

(iii) for every $x \in \Omega$, $R_0 > 0$, there exist $R \in (0, R_0)$ such that $B_R(x) \Subset \Omega$ and

$$u(x) \le \int_{B_R(x)} u(y) dy; \tag{1.9}$$

- (iv) for each $h \in C^0(\Omega)$ harmonic in $\Omega' \Subset \Omega$ with $u \le h$ on $\partial \Omega'$, we have $u \le h$ in Ω' ;
- (v) $\int_{\Omega} u(x) \Delta \varphi(x) dx \ge 0, \ \forall \varphi \in C_c^{\infty}(\Omega), \ \varphi \ge 0.$

Proof. Clearly (i) implies (ii) and (ii) implies (iii). (iii) \Rightarrow (iv): Since h satisfies the mean value property the function w := u - h satisfies

$$w(x) \leq \int_{B_R(x)} w(y) dy$$
 for all balls $B_R(x) \subset \Omega'$ s.t. (1.9) holds.

Then

$$\sup_{\Omega'} w = \max_{\partial \Omega'} w \le 0,$$

the first identity following exactly as in the proof of Corollary 1.10. (iv) \Rightarrow (i): Let $B_R(x) \in \Omega$, and choose *h* harmonic in $B_R(x)$ and h = u in $\Omega \setminus B_R(x)$. This can be done by Proposition 1.24 below. Then

$$u(x) \le h(x) = \oint_{\partial B_R(x)} h d\mathcal{H}^{n-1} = \oint_{\partial B_R(x)} u d\mathcal{H}^{n-1}$$

The equivalence of (v) to (ii) can be proved by mollifying u, compare Exercise 1.13.

Often a continuous function satisfying one of the conditions in Proposition 1.17 is called *subharmonic*.

Exercise 1.18 Use Proposition 1.17 to prove the following:

- 1. A finite linear combination of harmonic functions is harmonic.
- 2. A positive finite linear combination of subharmonic (resp. superharmonic) functions is a subharmonic (resp. superharmonic) function.
- 3. The supremum (resp. infimum) of a finite number of subharmonic (resp. superharmonic) functions is a subharmonic (resp. superharmonic) function.

Theorem 1.19 (Harnack inequality) Given a non-negative harmonic function $u \in C^2(\Omega)$, for every ball $B_{3r}(x_0) \Subset \Omega$ we have

$$\sup_{B_r(x_0)} u \le 3^n \inf_{B_r(x_0)} u.$$

Proof. By the mean value property, Proposition 1.9, and from $u \ge 0$ we get that for $y_1, y_2 \in B_r(x_0)$

$$u(y_1) = \frac{1}{\omega_n r^n} \int_{B_r(y_1)} u dx$$

$$\leq \frac{1}{\omega_n r^n} \int_{B_{2r}(x_0)} u dx$$

$$= \frac{3^n}{\omega_n (3r)^n} \int_{B_{2r}(x_0)} u dx$$

$$\leq \frac{3^n}{\omega_n (3r)^n} \int_{B_{3r}(y_2)} u dx$$

$$= 3^n u(y_2).$$

-	-	-	
L			
L			

Theorem 1.20 (Liouville) A bounded harmonic function $u : \mathbb{R}^n \to \mathbb{R}$ is constant.

Proof. Define $m = \inf_{\mathbb{R}^n} u$. Then $u - m \ge 0$ and by Harnack's inequality, Theorem 1.19,

$$\sup_{B_R} (u-m) \le 3^n \inf_{B_R} (u-m), \quad \forall R > 0.$$

Letting $R \to \infty$, the term on the right tends to 0 and we conclude that $\sup_{\mathbb{R}^n} u = m$.

Proposition 1.21 Let u be harmonic (hence smooth by Exercise 1.13) and bounded in $B_R(x_0)$. For r < R we may find constants c(k, n) such that

$$\sup_{B_r(x_0)} |\nabla^k u| \le \frac{c(k,n)}{(R-r)^k} \sup_{B_R(x_0)} |u|.$$
(1.10)

Exercise 1.22 Prove Proposition 1.21.

[Hint: First prove (1.10) for k = 1 using the mean-value identity (it might be easier to start with the case r = R/2 and then use a covering or a scaling argument). Then notice that each derivative of u is harmonic and use an inductive procedure.]

Proposition 1.23 Let (u_k) be an equibounded sequence of harmonic functions in Ω , i.e. assume that $\sup_{\Omega} |u_k| \leq c$ for a constant c independent of k. Then up to extracting a subsequence $u_k \to u$ in $C^{\ell}_{loc}(\Omega)$ for every ℓ , where u is a harmonic function on Ω .

Proof. This follows easily from Proposition 1.21 and the Ascoli-Arzelà theorem (Theorem 2.3 below), with a simple covering argument. \Box

1.4 Existence in general bounded domains

Before dealing with the existence of harmonic functions is general domains we state a classical representation formula providing us with the solution of the Dirichlet problem (1.1) on a ball.

1.4.1 Solvability of the Dirichlet problem on balls: Poisson's formula

Proposition 1.24 (H.A. Schwarz or S.D. Poisson) Let $a \in \mathbb{R}^n$, r > 0 and $g \in C^0(\partial B_r(a))$ be given and define the function u by

$$u(x) := \begin{cases} \frac{r^2 - |x - a|^2}{n\omega_n r} \int_{\partial B_r(a)} \frac{g(y)}{|x - y|^n} d\mathcal{H}^{n-1}(y) & x \in B_r(a) \\ g(x) & x \in \partial B_r(a). \end{cases}$$
(1.11)

Then $u \in C^{\infty}(B_r(a)) \cap C^0(\overline{B_r(a)})$ and solves the Dirichlet problem

$$\begin{cases} \Delta u = 0 & \text{in } B_r(a) \\ u = g & \text{on } \partial B_r(a) \end{cases}$$

Proof. We only sketch it. By direct computation we see that u is harmonic. For the continuity on the boundary assume, without loss of generality, that a = 0 and define

$$K(x,y) := \frac{r^2 - |x|^2}{n\omega_n r |x - y|^n}, \quad x \in B_r(0), \ y \in \partial B_r(0).$$

One can prove that

$$\int_{\partial B_r(0)} K(x, y) d\mathcal{H}^{n-1}(y) = 1, \quad \text{for every } x \in B_r(0).$$

Let $x_0 \in \partial B_r(0)$ and for any $\varepsilon > 0$ choose δ such that $|g(x) - g(x_0)| < \varepsilon$ if $x \in \partial B_r(0) \cap B_{\delta}(x_0)$. Then, for $x \in B_r(0) \cap B_{\delta/2}(x_0)$,

$$\begin{aligned} |u(x) - g(x_0)| &\leq \left| \int_{\partial B_r(0)} K(x,y) [g(y) - g(x_0)] d\mathcal{H}^{n-1}(y) \right| \\ &\leq \int_{\partial B_r(0) \cap B_{\delta}(x_0)} K(x,y) |g(y) - g(x_0)| d\mathcal{H}^{n-1}(y) \\ &+ \int_{\partial B_r(0) \setminus B_{\delta}(x_0)} K(x,y) |g(y) - g(x_0)| d\mathcal{H}^{n-1}(y) \\ &\leq \varepsilon + \frac{(r^2 - |x|^2) r^{n-2}}{\left(\frac{\delta}{2}\right)^n} 2 \sup_{\partial B_r(0)} |g|. \end{aligned}$$

Hence $|u(x) - g(x_0)| \to 0$ as $x \to x_0$.

1.4.2 Perron's method

We now present a method for solving the Dirichlet problem (1.1).

Given an open bounded domain $\Omega \subset \mathbb{R}^n$ and $g \in C^0(\partial \Omega)$ define

$$S_{-} := \{ u \in C^{2}(\Omega) \cap C^{0}(\overline{\Omega}) : \Delta u \ge 0 \text{ in } \Omega, \ u \le g \text{ on } \partial \Omega \};$$
$$S_{+} := \{ u \in C^{2}(\Omega) \cap C^{0}(\overline{\Omega}) : \Delta u \le 0 \text{ in } \Omega, \ u \ge g \text{ on } \partial \Omega \}.$$

These sets are non-empty, since g is bounded and constant functions are harmonic: $u \equiv \sup_{\Omega} g$ and $v \equiv \inf_{\Omega} g$ belong to S_+ and S_- respectively. We also observe that, by the comparison principle, $v \leq u$ for each $v \in S_-$ and $u \in S_+$. We define

$$u_*(x) = \sup_{u \in S_-} u(x), \quad u^*(x) = \inf_{u \in S_+} u(x).$$

and shall

- 1. prove that both u_* and u^* are harmonic;
- 2. find conditions on Ω in order to have $u_*, u^* \in C^0(\overline{\Omega})$ and $u_* = u^* = g$ on $\partial \Omega$.

This is referred to as *Perron's method*.

Step 1. It is enough to prove that u_* is harmonic in a generic ball $B \subset \Omega$. Fix $x_0 \in B$. By the definition of u_* we may find a sequence $v_j \in S_-$ such that $v_j(x_0) \to u_*(x_0)$. Define

$$v'_j := \max(v_1, \dots, v_j) \in S_-,$$
$$v''_j := P_B v'_j,$$

where $P_B v'_j$ is obtained by (1.11) as the harmonic extention of v'_j on B matching v'_j on ∂B . Observe that by definition (v'_j) is an increasing sequence and, by the maximum principle, (v''_j) is increasing as well. Since the sequence (v''_j) is equibounded and increasing it converges locally uniformly in B to a harmonic function h thanks to Proposition 1.23.

Observe that $h \leq u_*$ and $h(x_0) = u_*(x_0)$. We claim that $h = u_*$ in B. If $h(z) < u_*(z)$ for some $z \in B$, choose $w \in S_-$ such that w(z) > h(z)and define $w_j = \max\{v''_j, w\}$. Also define w'_j and w''_j as done before with v'_j and v''_j . Again we have that $w''_j \to \tilde{h}$ for some harmonic function \tilde{h} . From the definition it is easy to prove that $v''_j \leq w''_j$, thus $h \leq \tilde{h}$ and $h(x_0) = \tilde{h}(x_0)$. By the strong maximum principle, this implies $h = \tilde{h}$ on all of B. This is a contradiction because

$$\hat{h}(z) = \lim w_i''(z) \ge w(z) > h(z) = \hat{h}(z).$$

This proves that $h = u_*$ and then u_* is harmonic in B, hence in all of Ω since B was arbitrary. Clearly the same proof applies to u^* .

Step 2. The functions u^* and u_* need not achieve the boundary data g, and in general they don't.

Definition 1.25 A point $x_0 \in \partial \Omega$ is called regular if for every $g \in C^0(\partial \Omega)$ and every $\varepsilon > 0$ there exist $v \in S_-$ and $w \in S^+$ such that $g(x_0) - v(x_0) \leq \varepsilon$ and $w(x_0) - g(x_0) \leq \varepsilon$.

Exercise 1.26 The Dirichlet problem (1.1) has solution for every $g \in C^0(\partial\Omega)$ if and only if each point of $\partial\Omega$ is regular. [Hint: Use Perron's method and prove that $u_* \in C^0(\overline{\Omega})$ and $u_* = g$ on $\partial\Omega$.]

Definition 1.27 Given $x_0 \in \partial\Omega$, an upper barrier at x_0 is a superharmonic function $b \in C^2(\Omega) \cap C^0(\overline{\Omega})$ such that $b(x_0) = 0$ and b > 0 on $\overline{\Omega} \setminus \{x_0\}$. We say that b is a lower barrier if -b is an upper barrier.

Proposition 1.28 Suppose that $x_0 \in \Omega$ admits upper and lower barriers. Then x_0 is a regular point.

Proof. Define $M = \max_{\partial\Omega} |g|$ and, for each $\varepsilon > 0$, choose $\delta > 0$ such that for $x \in \Omega$ with $|x - x_0| < \delta$ we have $|g(x) - g(x_0)| < \varepsilon$. Let b be an upper barrier and choose k > 0 such that $kb(x) \ge 2M$ if $|x - x_0| \ge \delta$ (by compactness $\inf_{\overline{\Omega} \setminus B_{\delta}(x_0)} b > 0$). Then define

$$w(x) := g(x_0) + \varepsilon + kb(x);$$

$$v(x) := g(x_0) - \varepsilon - kb(x)$$

and observe that $w \in S_+$ and $v \in S_-$. Moreover $w(x_0) - g(x_0) = \varepsilon$ and $g(x_0) - v(x_0) = \varepsilon$.

In the following proposition we see that, under suitable hypotheses on the geometry of Ω , the existence of barriers, and therefore of a solution to the Dirichlet problem, is guaranteed.

Proposition 1.29 Suppose that for each $x_0 \in \partial \Omega$ there exists a ball $B_R(y)$ in the complement of Ω such that $\overline{B}_R(y) \cap \overline{\Omega} = \{x_0\}$ (see Figure 1.2). Then every point of $\partial \Omega$ is regular, hence the Dirichlet problem (1.1) is solvable on Ω for arbitrary continuous boundary data.

Proof. For any $x_0 \in \partial \Omega$ and a ball $B_R(y)$ as in the statement of the proposition, consider the upper barrier $b(x) := R^{2-n} - |x - y|^{2-n}$ for n > 2 and $b(x) := \log \frac{|x-y|}{R}$ for n = 2, and the lower barrier -b(x). One can easily verify that $\Delta b = 0$ in $\mathbb{R}^n \setminus \{y\}$.

Exercise 1.30 The hypotesis of Proposition 1.29 is called *exterior sphere condition*. Show that convex domains and C^2 domains satisfy the exterior sphere condition.

Remark 1.31 The Perron method is non-constructive because it doesn't provide any way to find approximate solutions.

Figure 1.2: The exterior sphere condition.

1.4.3 Poincaré's method

We now present a different method of solving the Dirichlet problem (1.1).

Cover Ω with a sequence B_i of balls, i.e. choose balls $B_i \subset \Omega$, $i = 1, 2, 3, \ldots$ such that $\Omega = \bigcup_{i=1}^{\infty} B_i$. Now define the sequence of integers

 $i_k = 1, 2, 1, 2, 3, 1, 2, 3, 4, \dots, 1, \dots, n, \dots$

Given $g \in C^0(\overline{\Omega})$, define the sequence (u_k) by $u_1 := g$ and for k > 1

$$u_k(x) := \begin{cases} u_{k-1}(x) & \text{for } x \in \overline{\Omega} \setminus B_{i_k} \\ P_{i_k} u_{k-1}(x) & \text{for } x \in B_{i_k}, \end{cases}$$

where $P_{i_k}u_{k-1}$ is the harmonic extention on B_{i_k} of $u_{k-1}|_{\partial B_{i_k}}$, given by (1.11).

Proposition 1.32 If each point of $\partial \Omega$ is regular, then u_k converges to the solution u of the Dirichlet problem (1.1).

Proof. Suppose first $g \in C^0(\overline{\Omega})$ subharmonic, meaning that it satisfies the properties of Proposition 1.17. We can inductively prove that u_k is subharmonic and

$$g = u_1 \le u_2 \le \dots u_k \le \dots \le \sup_{\Omega} g.$$

Suppose indeed that u_k is subharmonic (this is true for k = 1 by assumption). Then by the comparison principle $u_{k+1} \ge u_k$, and it is not difficult to prove that u_{k+1} satisfies for instance (iii) or (iv) of Proposition 1.17, hence is subharmonic.

Since, for each i, u_k is harmonic in B_i for infinitely many k, increasing and uniformly bounded with respect to k, by Proposition 1.23 we see that its limit u is a harmonic functions in each ball B_i , hence in Ω . Using barriers it is not difficult to show that u = g on the boundary.

Now suppose that g, not necessarily subharmonic, belongs to $C^2(\mathbb{R}^n)$ and $\Delta g \geq -\lambda$. Then $g_0(x) = g(x) + \frac{\lambda}{2n}|x|^2$ is subharmonic and we may solve the Dirichlet problem with boundary data g_0 . We may also solve the Dirichlet problem with data $\frac{\lambda}{2n}|x|^2$ (that is subharmonic) and by linearity we may solve the Dirichlet problem with data g.

Finally, suppose $g \in C^0(\overline{\Omega})$, which we can think of as continuously extended to \mathbb{R}^n , and regularize it by convolution. For each convoluted function $g_{\varepsilon} \in C^{\infty}(\overline{\Omega})$ we find a harmonic map u_{ε} with $u_{\varepsilon} = g_{\varepsilon} \to g$ uniformly on $\partial\Omega$. Then by the maximum principle, for any sequence $\varepsilon_k \to 0$ we have that (u_{ε_k}) is a Cauchy sequence in $C^0(\overline{\Omega})$, hence it uniformly converges to a harmonic function u which equals g on $\partial\Omega$. \Box

Remark 1.33 The method of Poincaré decreases the Dirichlet integral:

$$\mathcal{D}(g) \ge \mathcal{D}(u_2) \ge \ldots \ge \mathcal{D}(u_k) \ge \ldots \ge \mathcal{D}(u).$$

Consequently if g has a $W^{1,2}$ extension i.e., an extension with finite Dirichlet integral, then the harmonic extension u lies in $W^{1,2}(\Omega)$ (for the definition of $W^{1,2}(\Omega)$ see Section 3.2 below).

On the other hand one can also have

$$\mathcal{D}(g) = \mathcal{D}(u_k) = \infty$$
 for every $k = 1, 2, \dots$

compare section 1.2.2.

Remark 1.34 By Riemann's mapping theorem one can show that, if $\Omega \subset \mathbb{R}^2$ is the interior of a closed Jordan curve Γ , then all boundary points of Ω are regular. Lebesgue has instead exhibited a Jordan domain Ω in \mathbb{R}^3 (i.e. the interior of a homeomorphic image of S^2) where the problem $\Delta u = 0$ in Ω , u = g on $\partial\Omega$ cannot be solved for every $g \in C^0(\partial\Omega)$.