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Preface to the first

edition

Initially thought as lecture notes of a course given by the first author
at the Scuola Normale Superiore in the academic year 2003-2004, this
volume grew into the present form thanks to the constant enthusiasm of
the second author.

Our aim here is to illustrate some of the relevant ideas in the theory of
regularity of linear and nonlinear elliptic systems, looking in particular at
the context and the specific situation in which they generate. Therefore
this is not a reference volume: we always refrain from generalizations and
extensions. For reasons of space we did not treat regularity questions in
the linear and nonlinear Hodge theory, in Stokes and Navier-Stokes theory
of fluids, in linear and nonlinear elasticity; other topics that should be
treated, we are sure, were not treated because of our limited knowledge.
Finally, we avoided to discuss more recent and technical contributions,
in particular, we never entered regularity questions related to variational
integrals or systems with general growth p.

In preparing this volume we particularly took advantage from the ref-
erences [6] [37] [39] [52], from a series of unpublished notes by Giuseppe
Modica, whom we want to thank particularly, from [98] and from the
papers [109] [110] [111].

We would like to thank also Valentino Tosatti and Davide Vittone,
who attended the course, made comments and remarks and read part of
the manuscript.

Part of the work was carried out while the second author was a grad-
uate student at Stanford, supported by a Stanford Graduate Fellowship.



iv



Preface to the second

edition

This second edition is a deeply revised version of the first edition, in which
several typos were corrected, details to the proofs, exercises and examples
were added, and new material was covered. In particular we added the
recent results of T. Rivière [88] on the regularity of critical points of
conformally invariant functionals in dimension 2 (especially 2-dimensional
harmonic maps), and the partial regularity of stationary harmonic maps
following the new approach of T. Rivière and M. Struwe [90], which avoids
the use of the moving-frame technique of F. Hélein. This gave us the
motivation to briefly discuss the limiting case p = 1 of the Lp-estimates
for the Laplacian, introducing the Hardy space H1 and presenting the
celebrated results of Wente [112] and of Coifman-Lions-Meyer-Semmes
[22].

Part of the work was completed while the second author was visiting
the Centro di Ricerca Matematica Ennio De Giorgi in Pisa, whose warm
hospitality is gratefully acknowledged.
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Chapter 1

Harmonic functions

We begin by illustrating some aspects of the classical model problem in
the theory of elliptic regularity: the Dirichlet problem for the Laplace
operator.

1.1 Introduction

From now on Ω will be a bounded, connected and open subset of Rn.

Definition 1.1 Given a function u ∈ C2(Ω) we say that u is

– harmonic if ∆u = 0

– subharmonic if ∆u ≥ 0

– superharmonic if ∆u ≤ 0,

where

∆u(x) :=
n∑

α=1

D2
αu(x), Dα :=

∂

∂xα

is the Laplacian operator.

Exercise 1.2 Prove that if f ∈ C2(R) is convex and u ∈ C2(Ω) is harmonic,
then f ◦ u is subharmonic.

Throughout this chapter we shall study some important properties of
harmonic functions and we shall be concerned with the problem of the
existence of harmonic functions with prescribed boundary value, namely
with the solution of the following Dirichlet problem:

{
∆u = 0 in Ω
u = g on ∂Ω

(1.1)

in C2(Ω) ∩ C0(Ω), for a given function g ∈ C0(∂Ω).
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1.2 The variational method

The problem of finding a harmonic function with prescribed boundary
value g ∈ C0(∂Ω) is tied, though not equivalent (see section 1.2.2), to the
following one: find a minimizer u for the functional D

D(u) =
1

2

∫

Ω

|Du|2dx (1.2)

in the class

A = {u ∈ C2(Ω) ∩ C0(Ω) : u = g on ∂Ω}.

The functional D is called Dirichlet integral.

In fact, formally, if a minimizer u exists, then the first variation of the
Dirichlet integral vanishes:

d

dt
D(u + tϕ)

∣∣∣
t=0

= 0

for all smooth compactly supported functions ϕ in Ω; an integration by
parts then yields

0 =
d

dt
D(u + tϕ)

∣∣∣
t=0

=

∫

Ω

∇u · ∇ϕdx

= −
∫

Ω

∆uϕdx, ∀ϕ ∈ C∞
0 (Ω),

and by the arbitrariness of ϕ we conclude ∆u = 0, which is the Euler-
Lagrange equation for the Dirichlet integral: minimizers of the Dirichlet
integral are harmonic.

This was stated as an equivalence by Dirichlet and used by Riemann
in his geometric theory of functions.

Dirichlet’s principle: A minimizer u of the Dirichlet integral in Ω with
prescribed boundary value g always exists, is unique and is a harmonic
function; it solves {

∆u = 0 in Ω
u = g on ∂Ω.

(1.3)

Conversely, any solution of (1.3) is a minimizer of the Dirichlet integral
in the class of functions with boundary value g.

Dirichlet saw no need to prove this principle; however, as we shall see,
in general Dirichlet’s principle does not hold and, in the circumstances in
which it holds, it is not trivial.
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−1

−1

1

1− 1
n

1
n

Figure 1.1: The function un as defined in (1.4)

1.2.1 Non-existence of minimizers of variational inte-

grals

The following examples, the first being a classical example of Weierstrass,
show that minimizers to a variational integral need not exist.

1. Consider the functional

F(u) =

∫ 1

−1

(xu̇)2dx

defined on the class of Lipschitz functions

A = {u ∈ Lip([−1, 1]) : u(−1) = −1, u(1) = 1}.

The following sequence of functions in A

un(x) :=





−1 for x ∈ [−1,− 1
n ]

1 for x ∈ [ 1n , 1]
nx for x ∈ [− 1

n ,
1
n ]

(1.4)

shows that infA F = 0, but evidently F cannot attain the value 0 on A.

2. Consider

F(u) =

∫ 1

0

(1 + u̇2)
1
4 dx,

defined on

A = {u ∈ Lip([0, 1]) : u(0) = 1, u(1) = 0}.

The sequence of functions

u(x) =

{
1− nx for x ∈ [0, 1

n ]
0 for x ∈ [ 1n , 1]
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shows that infA F = 1. On the other hand, if F(u) = 1, then u is constant,
thus cannot belong to A.

3. Consider the area functional defined on the unit ball B1 ⊂ R2

F(u) =

∫

B1

√
1 + |Du|2dx,

defined on

A = {u ∈ Lip(B1) : u = 0 on ∂B1, u(0) = 1}.

As F(u) ≥ π for every u ∈ A, the sequence of functions

u(x) =

{
1− n|x| for |x| ∈ [0, 1

n ]
0 for |x| ∈ [ 1n , 1]

shows that infA F = π. On the other hand if F(u) = π for some u ∈ A,
then u is constant, thus cannot belong to A.

1.2.2 Non-finiteness of the Dirichlet integral

We have seen that a minimizer of the Dirichlet integral is a harmonic
function. In some sense the converse is not true: we exhibit a harmonic
function with infinite Dirichlet integral.

The Laplacian in polar coordinates on R2 is

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
,

and it is easily seen that rn cosnθ and rn sinnθ are harmonic functions.
Now define on the unit ball B1 ⊂ R2

u(r, θ) =
a0
2

+

∞∑

n=1

rn(an cosnθ + bn sinnθ).

Provided
∞∑

n=1

(|an|+ |bn|) <∞,

the series converges uniformly, while its derivatives converge uniformly on
compact subsets of the ball, so that u belongs to C∞(B1) ∩ C0(B1) and
is harmonic.

The Dirichlet integral of u is

D(u) =
1

2

∫ 2π

0

dθ

∫ 1

0

(|∂ru|2 +
1

r2
|∂θu|2)rdr =

π

2

∞∑

n=1

n(a2n + b2n).
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Thus, if we choose an = 0 for all n ≥ 0, bn = 0 for all n ≥ 1, with the
exception of bn! = n−2, we obtain

u(r, θ) =

∞∑

n=1

rn!n−2 sin(n!θ),

and we conclude that u ∈ C∞(B1) ∩ C0(B1), it is harmonic, yet

D(u) =
π

2

∞∑

n=1

n−4n! = ∞.

In fact, every function v ∈ C∞(B1)∩C0(B1) that agrees with the function
u defined above on ∂B1 has infinite Dirichlet integral.

1.3 Some properties of harmonic functions

Proposition 1.3 (Weak maximum principle) If u ∈ C2(Ω) ∩ C0(Ω)
is subharmonic, then

sup
Ω
u = max

∂Ω
u;

If u is superharmonic, then

inf
Ω
u = min

∂Ω
u.

Proof. We prove the proposition for u subharmonic, since for a superhar-
monic u it is enough to consider −u. Suppose first that ∆u > 0 in Ω. Were
x0 ∈ Ω such that u(x0) = maxΩ u, we would have uxixi(x0) ≤ 0 for every
1 ≤ i ≤ n. Summing over i we would obtain ∆u(x0) ≤ 0, contradiction.

For the general case ∆u ≥ 0 consider the function v(x) = u(x)+ ε|x|2.
Then ∆v > 0 and, by what we have just proved, supΩ v = max∂Ω v.On the
other hand, as ε→ 0, we have supΩ v → supΩ u and max∂Ω v → max∂Ω u.

�

Exercise 1.4 Similarly, prove the following generalization of Proposition 1.3:
let u ∈ C2(Ω) ∩ C0(Ω) satisfy

n∑

α,β=1

AαβDαβu+

n∑

α=1

bαDαu ≥ 0,

where Aαβ, bα ∈ C0(Ω) and Aαβ is elliptic:
∑n

α,β=1A
αβξαξβ ≥ λ|ξ|2, for some

λ > 0 and every ξ ∈ Rn. Then

sup
Ω

u = max
∂Ω

u.
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Remark 1.5 The continuity of the coefficients in Exercise 1.4 is neces-
sary. Indeed Nadirashvili gave a counterexample to the maximum princi-
ple with Aαβ elliptic and bounded, but discontinuous, see [82].

Proposition 1.6 (Comparison principle) Let u, v ∈ C2(Ω) ∩ C0(Ω)
be such that u is subharmonic, v is superharmonic and u ≤ v on ∂Ω.
Then u ≤ v in Ω.

Proof. Since u − v is subharmonic with u − v ≤ 0 on ∂Ω, from the weak
maximum principle, Proposition 1.3, we get u− v ≤ 0 in Ω. �

Clearly

u ≤ v +max
∂Ω

|u− v| on ∂Ω,

consequently:

Corollary 1.7 (Maximum estimate) Let u and v be two harmonic
functions in Ω. Then

sup
Ω

|u− v| ≤ max
∂Ω

|u− v|.

Corollary 1.8 (Uniqueness) Two harmonic functions on Ω that agree
on ∂Ω are equal.

Proposition 1.9 (Mean value inequalities) Suppose that u ∈ C2(Ω)
is subharmonic. Then for every ball Br(x) b Ω

u(x) ≤
∫

∂Br(x)

u(y)dHn−1(y), 1 (1.5)

u(x) ≤
∫

Br(x)

u(y)dy. (1.6)

If u is superharmonic, the reverse inequalities hold; consequently for u
harmonic equalities are true.

Proof. Let u be subharmonic. From the divergence theorem, for each

1by
∫

–A f(x)dx we denote the average of f on A i.e., 1
|A|

∫

A f(x)dx. Similarly
∫

–
A
fdHn−1 = 1

Hn−1(A)

∫

A
fdHn−1.
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ρ ∈ (0, r] we have

0 ≤
∫

Bρ(x)

∆u(y)dy

=

∫

∂Bρ(x)

∂u

∂ν
(y)dHn−1(y)

=

∫

∂B1(0)

∂u

∂ρ
(x+ ρy)ρn−1dHn−1(y)

= ρn−1 d

dρ

∫

∂B1(0)

u(x+ ρy)dHn−1(y)

= ρn−1 d

dρ

(
1

ρn−1

∫

∂Bρ(x)

u(y)dHn−1(y)

)

= nωnρ
n−1 d

dρ

∫

∂Bρ(x)

u(y)dHn−1(y),

(1.7)

where ωn := |B1|. This implies that the last integral is non-decreasing
and, since

lim
ρ→0

∫

∂Bρ(x)

u(y)dHn−1(y) = u(x),

(1.5) follows. We leave the rest of the proof for the reader. �

Corollary 1.10 (Strong maximum principle) If u ∈ C2(Ω) ∩ C0(Ω)
is subharmonic (resp. superharmonic), then it cannot attain its maximum
(resp. minimum) in Ω unless it is constant.

Proof. Assume u is subharmonic and let x0 ∈ Ω be such that u(x0) =
supΩ u. Then the set

S := {x ∈ Ω : u(x) = u(x0)}

is closed because u is continuous and is open thanks to (1.6). Since Ω is
connected we have S = Ω. �

Remark 1.11 If u is harmonic, the mean value inequality is also a direct
consequence of the representation formula (1.11) below.

Exercise 1.12 Prove that if u ∈ C2(Ω) satisfies one of the mean value proper-
ties, then it is correspondigly harmonic, subharmonic or superharmonic.

Exercise 1.13 Prove that if u ∈ C0(Ω) satisfies the mean value equality

u(x) =

∫

Br(x)

u(y)dy, ∀Br(x) ⊂ Ω
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then u ∈ C∞(Ω) and it is harmonic.
[Hint: Regularize u with a family ϕε = ρε(|x|) of mollifiers with radial simmetry
and use the mean value property to prove that u ∗ ρε = u in any Ω0 b Ω for ε
small enough.]

Proposition 1.14 Consider a sequence of harmonic functions uj that
converge locally uniformly in Ω to a function u ∈ C0(Ω). Then u is
harmonic.

Proof. The mean value property is stable under uniform convergence, thus
holds true for u, which is therefore harmonic thanks to Exercise 1.13. �

Remark 1.15 Being harmonic is preserved under the weaker hypothesis
of weak Lp convergence, 1 ≤ p <∞, or even of the convergence is the sense
of distributions. This follows at once from the so-called Weyl’s lemma.

Lemma 1.16 (Weyl) A function u ∈ L1
loc(Ω) is harmonic if and only if

∫

Ω

u∆ϕdx = 0, ∀ϕ ∈ C∞
c (Ω).

Proof. Consider a family of radial mollifiers ρε, i.e. ρε(x) = 1
εn ρ(ε

−1x),
where ρ ∈ C∞(Rn) is radially symmetric, supp(ρ) ⊂ B1 and

∫
B1
ρ(x)dx =

1. Define uε = u ∗ ρε. Then, from the standard properties of convolution
we find

∫

Ω

uε∆ϕdx =

∫

Ω

u(∆ϕ ∗ ρε)dx

=

∫

Ω

u∆(ϕ ∗ ρε)dx

= 0, for every ϕ ∈ C∞
c (Ωε),

where
Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε}.

In particular ∆uε = 0 on Ωε. Now fix R > 0 and let 0 < ε ≤ 1
2R. We

have by Fubini’s theorem

∫

Ωε

|uε(y)|dy ≤
∫

Ωε

1

εn

∫

Ω

ρ

( |x− y|
ε

)
|u(x)|dxdy

≤
∫

Ω

|u(x)|dx.
(1.8)

Here we may assume that u ∈ L1(Ω), since being harmonic is a local
property. By the mean value property applied with balls of radius R

2 and
(1.8), we obtain that the uε are uniformly bounded in ΩR/2. They are also
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locally equicontinuous in ΩR because for x0 ∈ ΩR and x1, x2 ∈ BR
2
(x0),

still by the mean-value property,

|uε(x1)− uε(x2)| ≤ 2n

ωnRn

∫

BR
2
(x1)∆BR

2
(x2)

|uε(x)|dx

≤ 2n

ωnRn
sup

BR(x0)

|uε| ·meas
(
BR

2
(x2)∆BR

2
(x1)

)
,

where

BR
2
(x1)∆BR

2
(x2) :=

(
BR

2
(x1)\BR

2
(x2)

)
∪
(
BR

2
(x2)\BR

2
(x1)

)
.

By Ascoli-Arzelà’s theorem (Theorem 2.3 below), we can extract a se-
quence uεk which converges uniformly in ΩR to a continuous function v
as k → ∞ and εk → 0, which is harmonic thanks to Exercise 1.13. But
u = v almost everywhere in ΩR by the properties of convolutions, hence
u is harmonic in ΩR. Letting R→ 0 we conclude. �

Proposition 1.17 Given u ∈ C0(Ω), the following facts are equivalent:

(i) For every ball BR(x) b Ω we have

u(x) ≤
∫

∂BR(x)

u(y)dHn−1(y);

(ii) for every ball BR(x) b Ω we have

u(x) ≤
∫

BR(x)

u(y)dy;

(iii) for every x ∈ Ω, R0 > 0, there exist R ∈ (0, R0) such that BR(x) b
Ω and

u(x) ≤
∫

BR(x)

u(y)dy; (1.9)

(iv) for each h ∈ C0(Ω) harmonic in Ω′ b Ω with u ≤ h on ∂Ω′, we have
u ≤ h in Ω′;

(v)
∫
Ω
u(x)∆ϕ(x)dx ≥ 0, ∀ϕ ∈ C∞

c (Ω), ϕ ≥ 0.

Proof. Clearly (i) implies (ii) and (ii) implies (iii).
(iii)⇒(iv): Since h satisfies the mean value property the function w :=
u− h satisfies

w(x) ≤
∫

BR(x)

w(y)dy for all balls BR(x) ⊂ Ω′ s.t. (1.9) holds.
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Then
sup
Ω′

w = max
∂Ω′

w ≤ 0,

the first identity following exactly as in the proof of Corollary 1.10.
(iv)⇒(i): Let BR(x) b Ω, and choose h harmonic in BR(x) and h = u in
Ω\BR(x). This can be done by Proposition 1.24 below. Then

u(x) ≤ h(x) =

∫

∂BR(x)

hdHn−1 =

∫

∂BR(x)

udHn−1.

The equivalence of (v) to (ii) can be proved by mollifying u, compare
Exercise 1.13. �

Often a continuous function satisfying one of the conditions in Propo-
sition 1.17 is called subharmonic.

Exercise 1.18 Use Proposition 1.17 to prove the following:

1. A finite linear combination of harmonic functions is harmonic.

2. A positive finite linear combination of subharmonic (resp. superharmonic)
functions is a subharmonic (resp. superharmonic) function.

3. The supremum (resp. infimum) of a finite number of subharmonic (resp.
superharmonic) functions is a subharmonic (resp. superharmonic) func-
tion.

Theorem 1.19 (Harnack inequality) Given a non-negative harmonic
function u ∈ C2(Ω), for every ball B3r(x0) b Ω we have

sup
Br(x0)

u ≤ 3n inf
Br(x0)

u.

Proof. By the mean value property, Proposition 1.9, and from u ≥ 0 we
get that for y1, y2 ∈ Br(x0)

u(y1) =
1

ωnrn

∫

Br(y1)

udx

≤ 1

ωnrn

∫

B2r(x0)

udx

=
3n

ωn(3r)n

∫

B2r(x0)

udx

≤ 3n

ωn(3r)n

∫

B3r(y2)

udx

= 3nu(y2).

�
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Theorem 1.20 (Liouville) A bounded harmonic function u : Rn → R
is constant.

Proof. Define m = infRn u. Then u−m ≥ 0 and by Harnack’s inequality,
Theorem 1.19,

sup
BR

(u−m) ≤ 3n inf
BR

(u −m), ∀R > 0.

Letting R → ∞, the term on the right tends to 0 and we conclude that
supRn u = m. �

Proposition 1.21 Let u be harmonic (hence smooth by Exercise 1.13)
and bounded in BR(x0). For r < R we may find constants c(k, n) such
that

sup
Br(x0)

|∇ku| ≤ c(k, n)

(R − r)k
sup

BR(x0)

|u|. (1.10)

Exercise 1.22 Prove Proposition 1.21.
[Hint: First prove (1.10) for k = 1 using the mean-value identity (it might be
easier to start with the case r = R/2 and then use a covering or a scaling argu-
ment). Then notice that each derivative of u is harmonic and use an inductive
procedure.]

Proposition 1.23 Let (uk) be an equibounded sequence of harmonic func-
tions in Ω, i.e. assume that supΩ |uk| ≤ c for a constant c independent
of k. Then up to extracting a subsequence uk → u in C`

loc(Ω) for every `,
where u is a harmonic function on Ω.

Proof. This follows easily from Proposition 1.21 and the Ascoli-Arzelà
theorem (Theorem 2.3 below), with a simple covering argument. �

1.4 Existence in general bounded domains

Before dealing with the existence of harmonic functions is general domains
we state a classical representation formula providing us with the solution
of the Dirichlet problem (1.1) on a ball.
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1.4.1 Solvability of the Dirichlet problem on balls:

Poisson’s formula

Proposition 1.24 (H.A. Schwarz or S.D. Poisson) Let a ∈ Rn, r >
0 and g ∈ C0(∂Br(a)) be given and define the function u by

u(x) :=





r2 − |x− a|2
nωnr

∫

∂Br(a)

g(y)

|x− y|n dH
n−1(y) x ∈ Br(a)

g(x) x ∈ ∂Br(a).
(1.11)

Then u ∈ C∞(Br(a)) ∩ C0(Br(a)) and solves the Dirichlet problem

{
∆u = 0 in Br(a)
u = g on ∂Br(a)

Proof. We only sketch it. By direct computation we see that u is harmonic.
For the continuity on the boundary assume, without loss of generality, that
a = 0 and define

K(x, y) :=
r2 − |x|2

nωnr|x − y|n , x ∈ Br(0), y ∈ ∂Br(0).

One can prove that

∫

∂Br(0)

K(x, y)dHn−1(y) = 1, for every x ∈ Br(0).

Let x0 ∈ ∂Br(0) and for any ε > 0 choose δ such that |g(x) − g(x0)| < ε
if x ∈ ∂Br(0) ∩Bδ(x0). Then, for x ∈ Br(0) ∩Bδ/2(x0),

|u(x)− g(x0)| ≤
∣∣∣∣
∫

∂Br(0)

K(x, y)[g(y)− g(x0)]dHn−1(y)

∣∣∣∣

≤
∫

∂Br(0)∩Bδ(x0)

K(x, y)|g(y)− g(x0)|dHn−1(y)

+

∫

∂Br(0)\Bδ(x0)

K(x, y)|g(y)− g(x0)|dHn−1(y)

≤ ε+
(r2 − |x|2)rn−2

(
δ
2

)n 2 sup
∂Br(0)

|g|.

Hence |u(x)− g(x0)| → 0 as x→ x0. �

1.4.2 Perron’s method

We now present a method for solving the Dirichlet problem (1.1).
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Given an open bounded domain Ω ⊂ Rn and g ∈ C0(∂Ω) define

S− := {u ∈ C2(Ω) ∩ C0(Ω) : ∆u ≥ 0 in Ω, u ≤ g on ∂Ω};

S+ := {u ∈ C2(Ω) ∩C0(Ω) : ∆u ≤ 0 in Ω, u ≥ g on ∂Ω}.
These sets are non-empty, since g is bounded and constant functions are
harmonic: u ≡ supΩ g and v ≡ infΩ g belong to S+ and S− respectively.
We also observe that, by the comparison principle, v ≤ u for each v ∈ S−
and u ∈ S+. We define

u∗(x) = sup
u∈S−

u(x), u∗(x) = inf
u∈S+

u(x).

and shall

1. prove that both u∗ and u∗ are harmonic;

2. find conditions on Ω in order to have u∗, u∗ ∈ C0(Ω) and u∗ = u∗ =
g on ∂Ω.

This is referred to as Perron’s method.

Step 1. It is enough to prove that u∗ is harmonic in a generic ball B ⊂ Ω.
Fix x0 ∈ B. By the definition of u∗ we may find a sequence vj ∈ S− such
that vj(x0) → u∗(x0). Define

v′j := max(v1, . . . , vj) ∈ S−,

v′′j := PBv
′
j ,

where PBv
′
j is obtained by (1.11) as the harmonic extention of v′j on B

matching v′j on ∂B. Observe that by definition (v′j) is an increasing se-
quence and, by the maximum principle, (v′′j ) is increasing as well. Since
the sequence (v′′j ) is equibounded and increasing it converges locally uni-
formly in B to a harmonic function h thanks to Proposition 1.23.

Observe that h ≤ u∗ and h(x0) = u∗(x0). We claim that h = u∗ in B.
If h(z) < u∗(z) for some z ∈ B, choose w ∈ S− such that w(z) > h(z)
and define wj = max{v′′j , w}. Also define w′

j and w′′
j as done before with

v′j and v′′j . Again we have that w′′
j → h̃ for some harmonic function h̃.

From the definition it is easy to prove that v′′j ≤ w′′
j , thus h ≤ h̃ and

h(x0) = h̃(x0). By the strong maximum principle, this implies h = h̃ on
all of B. This is a contradiction because

h̃(z) = limw′′
j (z) ≥ w(z) > h(z) = h̃(z).

This proves that h = u∗ and then u∗ is harmonic in B, hence in all of
Ω since B was arbitrary. Clearly the same proof applies to u∗.

Step 2. The functions u∗ and u∗ need not achieve the boundary data g,
and in general they don’t.
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Definition 1.25 A point x0 ∈ ∂Ω is called regular if for every g ∈
C0(∂Ω) and every ε > 0 there exist v ∈ S− and w ∈ S+ such that
g(x0)− v(x0) ≤ ε and w(x0)− g(x0) ≤ ε.

Exercise 1.26 The Dirichlet problem (1.1) has solution for every g ∈ C0(∂Ω)
if and only if each point of ∂Ω is regular.
[Hint: Use Perron’s method and prove that u∗ ∈ C0(Ω) and u∗ = g on ∂Ω.]

Definition 1.27 Given x0 ∈ ∂Ω, an upper barrier at x0 is a superhar-
monic function b ∈ C2(Ω) ∩ C0(Ω) such that b(x0) = 0 and b > 0 on
Ω\{x0}. We say that b is a lower barrier if −b is an upper barrier.

Proposition 1.28 Suppose that x0 ∈ Ω admits upper and lower barriers.
Then x0 is a regular point.

Proof. Define M = max∂Ω |g| and, for each ε > 0, choose δ > 0 such
that for x ∈ Ω with |x − x0| < δ we have |g(x) − g(x0)| < ε. Let b be an
upper barrier and choose k > 0 such that kb(x) ≥ 2M if |x− x0| ≥ δ (by
compactness infΩ\Bδ(x0)

b > 0). Then define

w(x) := g(x0) + ε+ kb(x);

v(x) := g(x0)− ε− kb(x)

and observe that w ∈ S+ and v ∈ S−. Moreover w(x0) − g(x0) = ε and
g(x0)− v(x0) = ε. �

In the following proposition we see that, under suitable hypotheses on
the geometry of Ω, the existence of barriers, and therefore of a solution
to the Dirichlet problem, is guaranteed.

Proposition 1.29 Suppose that for each x0 ∈ ∂Ω there exists a ball
BR(y) in the complement of Ω such that BR(y) ∩ Ω = {x0} (see Fig-
ure 1.2). Then every point of ∂Ω is regular, hence the Dirichlet problem
(1.1) is solvable on Ω for arbitrary continuous boundary data.

Proof. For any x0 ∈ ∂Ω and a ball BR(y) as in the statement of the
proposition, consider the upper barrier b(x) := R2−n − |x − y|2−n for

n > 2 and b(x) := log |x−y|
R for n = 2, and the lower barrier −b(x). One

can easily verify that ∆b = 0 in Rn \ {y}. �

Exercise 1.30 The hypotesis of Proposition 1.29 is called exterior sphere con-

dition. Show that convex domains and C2 domains satisfy the exterior sphere
condition.

Remark 1.31 The Perron method is non-constructive because it doesn’t
provide any way to find approximate solutions.
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Ω
x0

BR(y)

Figure 1.2: The exterior sphere condition.

1.4.3 Poincaré’s method

We now present a different method of solving the Dirichlet problem (1.1).
Cover Ω with a sequence Bi of balls, i.e. choose balls Bi ⊂ Ω, i =

1, 2, 3, . . . such that Ω =
⋃∞

i=1 Bi. Now define the sequence of integers

ik = 1, 2, 1, 2, 3, 1, 2, 3, 4, . . . , 1, . . . , n, . . .

Given g ∈ C0(Ω), define the sequence (uk) by u1 := g and for k > 1

uk(x) :=

{
uk−1(x) for x ∈ Ω \Bik

Pikuk−1(x) for x ∈ Bik ,

where Pikuk−1 is the harmonic extention on Bik of uk−1

∣∣
∂Bik

, given by

(1.11).

Proposition 1.32 If each point of ∂Ω is regular, then uk converges to
the solution u of the Dirichlet problem (1.1).

Proof. Suppose first g ∈ C0(Ω) subharmonic, meaning that it satisfies
the properties of Proposition 1.17. We can inductively prove that uk is
subharmonic and

g = u1 ≤ u2 ≤ . . . uk ≤ . . . ≤ sup
Ω
g.

Suppose indeed that uk is subharmonic (this is true for k = 1 by assump-
tion). Then by the comparison principle uk+1 ≥ uk, and it is not difficult
to prove that uk+1 satisfies for instance (iii) or (iv) of Proposition 1.17,
hence is subharmonic.

Since, for each i, uk is harmonic in Bi for infinitely many k, increasing
and uniformly bounded with respect to k, by Proposition 1.23 we see that
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its limit u is a harmonic functions in each ball Bi, hence in Ω. Using
barriers it is not difficult to show that u = g on the boundary.

Now suppose that g, not necessarily subharmonic, belongs to C2(Rn)
and ∆g ≥ −λ. Then g0(x) = g(x) + λ

2n |x|2 is subharmonic and we may
solve the Dirichlet problem with boundary data g0. We may also solve the
Dirichlet problem with data λ

2n |x|2 (that is subharmonic) and by linearity
we may solve the Dirichlet problem with data g.

Finally, suppose g ∈ C0(Ω), which we can think of as continuosly
extended to Rn, and regularize it by convolution. For each convoluted
function gε ∈ C∞(Ω) we find a harmonic map uε with uε = gε → g
uniformly on ∂Ω. Then by the maximum principle, for any sequence
εk → 0 we have that (uεk) is a Cauchy sequence in C0(Ω), hence it
uniformly converges to a harmonic function u which equals g on ∂Ω. �

Remark 1.33 The method of Poincaré decreases the Dirichlet integral:

D(g) ≥ D(u2) ≥ . . . ≥ D(uk) ≥ . . . ≥ D(u).

Consequently if g has aW 1,2 extension i.e., an extension with finite Dirich-
let integral, then the harmonic extension u lies in W 1,2(Ω) (for the defi-
nition of W 1,2(Ω) see Section 3.2 below).

On the other hand one can also have

D(g) = D(uk) = ∞ for every k = 1, 2, . . . ,

compare section 1.2.2.

Remark 1.34 By Riemann’s mapping theorem one can show that, if
Ω ⊂ R2 is the interior of a closed Jordan curve Γ, then all boundary points
of Ω are regular. Lebesgue has instead exhibited a Jordan domain Ω in
R3 (i.e. the interior of a homeomorphic image of S2) where the problem
∆u = 0 in Ω, u = g on ∂Ω cannot be solved for every g ∈ C0(∂Ω).


