A note on n-axially symmetric harmonic maps from B^{3} to S^{2} minimizing the relaxed energy

Luca Martinazzi*
Centro di Ricerca Matematica Ennio De Giorgi
Scuola Normale Superiore, Pisa
luca.martinazzi@sns.it

November 25, 2010 Revised version: May 5, 2011

Abstract

For any $n \geq 2$ we provide an explicit example of an n-axially symmetric map $u \in H^{1}\left(B_{2}, S^{2}\right) \cap C^{0}\left(\bar{B}_{2} \backslash \bar{B}_{1}\right)$, where $B_{r}=\left\{p \in \mathbb{R}^{3}:|p|<r\right\}$, with $\left.\operatorname{deg} u\right|_{\partial B^{2}}=0$, "strictly minimizing in B_{1} " the relaxed Dirichlet energy of Bethuel, Brezis and Coron $$
F\left(u, B_{2}\right):=\frac{1}{2} \int_{B_{2}}|\nabla u|^{2} d x d y d z+4 \pi \Sigma\left(u, B_{2}\right)
$$ and having $\Sigma\left(u, B_{2}\right)>0,\left.u\right|_{B_{1}} \not \equiv$ const. Here $\Sigma\left(u, B_{2}\right)$ is (in a generalized sense) the lenght of a minimal connection joining the topological singularities of u. By "strictly minimizing in B_{1} " we intend that $F\left(u, B_{2}\right)<F\left(v, B_{2}\right)$ for every $v \in H^{1}\left(B_{2}, S^{2}\right)$ with $\left.v\right|_{B_{2} \backslash B_{1}}=\left.u\right|_{B_{2} \backslash B_{1}}$ and $v \not \equiv u$.

This result, which we shall also rephrase in terms of Cartesian currents (following Giaquinta, Modica and Souček) stands in sharp contrast with a results of Hardt, F-H. Lin and Poon for the case $n=1$, and partially answers a long standing question of Giaquinta, Modica and Souček. In particular it is a first example of a minimizer of the relaxed energy having non-trivial minimal connection. We explain how this relates to the regularity of minimizers of F.

1 Introduction

The relaxed energy of Bethuel, Brezis and Coron

Consider a map $u \in H^{1}\left(B_{2}, S^{2}\right)=\left\{v \in H^{1}\left(B_{2}, \mathbb{R}^{3}\right):|v|=1\right.$ a.e. $\}$ such that $\left.u\right|_{\partial B_{2}} \in$ $C^{0}\left(\partial B_{2}, S^{2}\right) \cap H^{1}\left(\partial B_{2}, S^{2}\right)$ and $\operatorname{deg}\left(\left.u\right|_{\partial B_{2}}\right)=0$. The relaxed Dirichlet energy of u was introduced by Bethuel, Brezis and Coron [1] as

$$
F\left(u, B_{2}\right):=\frac{1}{2} \int_{B_{2}}|\nabla u|^{2} d x d y d z+4 \pi \Sigma\left(u, B_{2}\right),
$$

with

$$
\Sigma\left(u, B_{2}\right):=\frac{1}{4 \pi} \sup _{\substack{\xi::_{2} \rightarrow \mathbb{R} \\\|\nabla \xi\|_{\infty} \leq 1}}\left\{\int_{B_{2}} \mathbf{D}(u) \cdot \nabla \xi d x d y d z-\int_{\partial B_{2}} \mathbf{D}(u) \cdot \nu \xi d \mathcal{H}^{2}\right\},
$$

[^0](here $\nu(p)=\frac{p}{|p|}$ is the outward unit normal to ∂B_{2}) and
$$
\mathbf{D}(u):=\left(u \cdot \frac{\partial u}{\partial y} \wedge \frac{\partial u}{\partial z}, u \cdot \frac{\partial u}{\partial z} \wedge \frac{\partial u}{\partial x}, u \cdot \frac{\partial u}{\partial x} \wedge \frac{\partial u}{\partial y}\right)
$$

The term $\Sigma\left(u, B_{2}\right)$ is a generalization of the idea of minimal connection, already studied by Brezis, Coron and Lieb [3] in the sense that if u is smooth away from finitely many points $\left\{P_{i}, N_{i}: 1 \leq i \leq k\right\} \subset B_{2}$ and for ε small one has $\left.\operatorname{deg} u\right|_{\partial B_{\varepsilon}\left(P_{i}\right)}=1$ and $\left.\operatorname{deg} u\right|_{\partial B_{\varepsilon}\left(N_{i}\right)}=-1$ then

$$
\begin{equation*}
\Sigma\left(u, B_{2}\right)=\min _{\sigma \in S_{k}} \sum_{i=1}^{k}\left|P_{i}-N_{\sigma(i)}\right|, \quad S_{k}:=\{\text { Permutations of }\{1,2, \ldots, k\}\} \tag{1}
\end{equation*}
$$

see also [1, p. 37-38]. As proven in [1, Thms. 2-3], F is the relaxation in the sense of Lebesgue of the Dirichlet energy $D\left(u, B_{2}\right):=\frac{1}{2} \int_{B_{2}}|\nabla u|^{2} d x d y d z$, i.e. given $u \in H^{1}\left(B_{2}, S^{2}\right)$ as above we have
$F\left(u, B_{2}\right)=\inf \left\{\liminf _{k \rightarrow \infty} D\left(u_{k}, B_{2}\right): u_{k} \rightharpoonup u \operatorname{in} H^{1}, u_{k} \in H^{1} \cap C^{0}\left(\bar{B}_{2}, S^{2}\right),\left.u_{k}\right|_{\partial B_{2}}=\left.u\right|_{\partial B_{2}}\right\}$.
In particular F is sequentially weakly lower semicontinuous in $H^{1}\left(B_{2}, S^{2}\right)$ in the sense that

$$
u_{k} \rightharpoonup u \text { in } H^{1}\left(B_{2}, S^{2}\right) \text { and }\left.u_{k}\right|_{\partial B_{2}}=\left.u\right|_{\partial B_{2}} \quad \Rightarrow \quad F\left(u, B_{2}\right) \leq \liminf _{k \rightarrow \infty} F\left(u_{k}, B_{2}\right)
$$

Definition 1 Given $u \in H^{1}\left(B_{2}, S^{2}\right)$ with $\left.u\right|_{\partial B_{2}} \in H^{1} \cap C^{0}\left(\partial B_{2}, S^{2}\right)$ and $\left.\operatorname{deg} u\right|_{\partial B_{2}}=0$ we say that u minimizes F in B_{1} if $F\left(u, B_{2}\right) \leq F\left(v, B_{2}\right)$ for every $v \in H^{1}\left(B_{2}, S^{2}\right)$ with $v=u$ in $B_{2} \backslash B_{1}$.

An immediate consequence of the semicontinuity of F is that given $\varphi \in H^{1}\left(B_{2}, S^{2}\right)$ with $\left.\varphi\right|_{\partial B_{2}} \in H^{1} \cap C^{0}\left(\partial B^{2}, S^{2}\right)$ and $\left.\operatorname{deg} \varphi\right|_{\partial B_{2}}=0$ we can always find a minimizer $u \in$ $H^{1}\left(B_{2}, S^{2}\right)$ of F in B_{1} with $u=\varphi$ in $B_{2} \backslash B_{1}$.

Understanding the regularity of such a minimizer is instead a more subtle and widely open problem, to which we want to contribute in this paper. Before doing that, we will recall the approach of Giaquinta, Modica and Souček to the relaxed energy.

The relaxed energy of Giaquinta, Modica and Souček

Later Giaquinta, Modica and Souček [8] introduced a different way of relaxing the Dirichlet energy, in the context of Cartesian currents. Given a map $u \in H^{1}\left(B_{2}, S^{2}\right)$ and a 1dimensional integer multiplicity rectifiable current L in B_{2}, we shall say that the current (in $\left.B_{2} \times S^{2} \subset \mathbb{R}^{6}\right) T:=\mathcal{G}(u)+L \times \llbracket S^{2} \rrbracket$ is a Cartesian current if

$$
\begin{equation*}
\partial \mathcal{G}(u)=-\partial L \times \llbracket S^{2} \rrbracket \quad \text { in } B_{2} \times S^{2} \tag{2}
\end{equation*}
$$

where $\mathcal{G}(u)=\llbracket\left\{(p, u(p)) \in B_{2} \times S^{2}: p \in B_{2}\right\} \rrbracket$ denotes the 3 -dimensional current given by integration over the graph of u, see [10]. Following [7], [8] and [9] we call cart ${ }^{2,1}\left(B_{2}, S^{2}\right)$ the set of such currents and set for T as above

$$
\mathcal{D}\left(T, B_{2}\right):=\frac{1}{2} \int_{B_{2}}|\nabla u|^{2} d x d y d z+4 \pi \mathbf{M}(L)
$$

where $\mathbf{M}(L)$ denotes the mass of L. As proven in [9, Theorem 2], \mathcal{D} is the relaxed Dirichlet energy, in the sense that if $\varphi \in C^{\infty}\left(B_{2}, S^{2}\right), T \in \operatorname{cart}^{2,1}\left(B_{2}, S^{2}\right)$ and $T\left\llcorner\left(\left(B_{2} \backslash \bar{B}_{1}\right) \times S^{2}\right)=\right.$ $\mathcal{G}\left(\left.\varphi\right|_{B_{2} \backslash \bar{B}_{1}}\right)$, then there exists a sequence of functions $u_{k} \in C^{\infty}\left(B_{2}, S^{2}\right)$ with

$$
u_{k}=\varphi \text { in } B_{2} \backslash \bar{B}_{1}, \quad \mathcal{G}\left(u_{k}\right) \rightharpoonup T \text { weakly as currents, } \quad \frac{1}{2} \int_{B_{2}}\left|\nabla u_{k}\right|^{2} d x \rightarrow \mathcal{D}\left(T, B_{2}\right)
$$

Moreover $\mathcal{D}\left(\cdot, B_{2}\right)$ is sequentially lower semicontinuous with respect to the weak convergence of currents in $\operatorname{cart}^{2,1}\left(B_{2}, S^{2}\right)$.

Definition 2 We say that $T \in \operatorname{cart}^{2,1}\left(B_{2}, S^{2}\right)$ is a minimizer of \mathcal{D} in B_{1} if $\mathcal{D}\left(T, B_{2}\right) \leq$ $\mathcal{D}\left(\tilde{T}, B_{2}\right)$ for every $\tilde{T} \in \operatorname{cart}^{2,1}\left(B_{2}, S^{2}\right)$ such that $T\left\llcorner\left(\left(B_{2} \backslash \bar{B}_{1}\right) \times S^{2}\right)=\tilde{T}\left\llcorner\left(\left(B_{2} \backslash \bar{B}_{1}\right) \times S^{2}\right)\right.\right.$.

Again semicontinuity of \mathcal{D} implies that for any $T \in \operatorname{cart}^{2,1}\left(B_{2}, S^{2}\right)$ there exists a minimizer T_{0} of \mathcal{D} in B_{1} with $T_{0}\left\llcorner\left(B_{2} \backslash \bar{B}_{1}\right) \times S^{2}=T\left\llcorner\left(B_{2} \backslash \bar{B}_{1}\right) \times S^{2}\right.\right.$.

The relation between \mathcal{D} and F was studied in [9]: Given $u \in H^{1}\left(B_{2}, S^{2}\right)$ with $\left.u\right|_{\partial B_{2}}$ smooth and of degree 0 , there exists a 1-dimensional integer multiplicity rectifiable current L in B_{2} which minimizes $\mathbf{M}(L)$ among the i.m. rectifiable currents satisfying (2) and $(\partial L)\left\llcorner\partial B_{2}=0\right.$. Moreover $\mathbf{M}(L)=\Sigma\left(u, B_{2}\right)$. Therefore $F\left(u, B_{2}\right)=\mathcal{D}(\mathcal{G}(u)+L \times$ $\left.\llbracket S^{2} \rrbracket, B_{2}\right)$. In this sense, the current L generalizes the notion of minimal connection of Brezis, Coron and Lieb and $\mathbf{M}(L)$ provides a natural extension of the length of a minimal connection given by (1).

An important difference between F and \mathcal{D} is that $F\left(\cdot, B_{2}\right)$ depends only on u, but the term $\Sigma\left(u, B_{2}\right)$ is non-local. The definition of $\mathcal{D}\left(\cdot, B_{2}\right)$ is local instead, but it depends on the couple (u, L) and not on u only. In order to discuss regularity issues, this second definition turns out to be more convenient because regularity is a local notion. On the other hand, the above considerations show that the two approaches are basically equivalent. In particular if $\mathcal{G}(u)+L \times \llbracket S^{2} \rrbracket \in \operatorname{cart}^{2,1}\left(B_{2}, S^{2}\right)$ is a minimizer of \mathcal{D} in B_{1} in the sense of Definition 2 with $\operatorname{supp} L \Subset B_{2},\left.u\right|_{\partial B_{2}} \in H^{1} \cap C^{0}\left(\partial B_{2}, S^{2}\right)$ and $\left.\operatorname{deg} u\right|_{\partial B_{2}}=0$, then u is a minimizer of F in B_{1} in the sense of Definition 1 and conversely, if u is a minimizer of F in B_{1}, then $\mathcal{G}(u)+L \times \llbracket S^{2} \rrbracket$ is a minimizer of \mathcal{D} in B_{1} if we choose L minimal under conditions (2) and $(\partial L)\left\llcorner\partial B_{2}=0\right.$. In both cases $F\left(u, B_{2}\right)=\mathcal{D}\left(\mathcal{G}(u)+L \times \llbracket S^{2} \rrbracket, B_{2}\right)$.

The regularity of minimizers and our example

Remember that Schoen and Uhlenbeck [17] proved that a map $u \in H^{1}\left(B_{2}, S^{2}\right)$ minimizing the Dirichlet energy D in B_{1} (in the sense of Definition 1 with D instead of F) is smooth in B_{1} away from a discrete set (see also [15]). Their result is sharp as shown by Hardt and F-H. Lin [12], who constructed minimizers of D with singular sets finite but arbitrarily large. The theorem of Schoen and Uhlenbeck cannot be applied to the present situation since minimizers of F are not necessarily minimizers of the Dirichlet energy.

Using a monotonicity formula Giaquinta, Modica and Souček [9] proved that if $T=$ $\mathcal{G}(u)+L \times \llbracket S^{2} \rrbracket \in \operatorname{cart}^{2,1}\left(B_{2}, S^{2}\right)$ is a minimizer of \mathcal{D} in B_{1}, then the support of $L\left\llcorner B_{1}\right.$ has Hausdorff dimension at most 1. It is easy to see that $\left.u\right|_{B_{1}}$ is a stationary harmonic map away from $\operatorname{supp}\left(L\left\llcorner B_{1}\right)\right.$, and from a theorem of Evans [4] it follows that u is smooth away from a set of dimension at most 1 . While this result is much weaker than the one of Schoen and Uhlenbeck, we remark that to our knowledge no example has been so far
provided of a minimizer of F having singularities (contrary to the case of the Dirichlet energy, where we have the examples of [12]).

In fact Hardt, F-H. Lin and Poon [13] were able to give a complete regularity theory for the functional F restricted to the class of axially symmetric maps. A map $u \in H^{1}\left(B_{2}, S^{2}\right)$ is said to be n-axially symmetric (or simply axially symmetric if $n=1$) if

$$
u(r, \theta, z)=(\cos (n \theta) \sin (\varphi(r, z)), \sin (n \theta) \sin (\varphi(r, z)), \cos (\varphi(r, z))),
$$

where (r, θ, z) are cylindrical coordinates in \mathbb{R}^{3} and φ is a function which determines u completely (compare [11]). Similarly an n-axially symmetric Cartesian current in $B_{2} \times S^{2}$ will be a current of the form $T=\mathcal{G}(u)+L \times \llbracket S^{2} \rrbracket \in \operatorname{cart}^{2,1}\left(B_{2}, S^{2}\right)$, where u is n-axially symmetric, the support of L is a subset of the z-axis and its multiplicity at each point is an integer multiple of n. We shall call $\mathcal{A}^{(n)}\left(B_{2}, S^{2}\right)$ the set of such currents.

Hardt, Lin and Poon studied the case $n=1$ and proved (among many other things) that any $T=\mathcal{G}(u)+L \times \llbracket S^{2} \rrbracket \in \mathcal{A}^{(1)}\left(B_{2}, S^{2}\right)$ minimizing \mathcal{D} in B_{1} among axially symmetric currents has $L\left\llcorner B_{1}=0\right.$ unless $\left.u\right|_{B_{1}} \equiv$ const, and from this they deduced that the singular set of $\left.u\right|_{B_{1}}$ is a discrete subset of $z-$ axis $\cap B_{1}$. (This result is sharp in that they also gave examples where the minimizers must have singularities, but we remark that these are minimizers among axially symmetric currents and not among all currents.) Their clever proof strongly relies on a dipole construction [13, Lemma 7.1]: assuming that $L\left\llcorner B_{1} \neq 0\right.$, they can remove a piece of $L\left\llcorner B_{1}\right.$, replace it with a "dipole" similar to those introduced in [3], and prove that some energy could be saved, contradicting minimality.

Both in Giaquinta, Modica and Souček's and in Hardt, Lin and Poon's regularity results, proving smallness of the vertical part $L\left\llcorner B_{1}\right.$ is crucial, and this suggests the following strategy to prove regularity of a minimizer u of F in B_{1} (in the sense of Definition 1):

1. Fix L (1-d i.m. rectifiable current as above) minimal satisfying (2) and $(\partial L)\left\llcorner\partial B_{2}=0\right.$ and consider $\mathcal{G}(u)+L \times \llbracket S^{2} \rrbracket$, which is now a minimizer of \mathcal{D} in B_{1} in the sense of Definition 2.
2. Prove that $L\left\llcorner B_{1}=0\right.$ using a generalization of the dipole construction of [3] and [13] as follows. Assume that $L\left\llcorner B_{1} \neq 0\right.$ and for simplicity that $L\left\llcorner B_{1}\right.$ contains a straight segment and that u around this segment behaves almost like an n-axially symmetric map; then remove a part of this segment and modify u is the spirit of [13, Lemma 7.1] (for instance using the refined dipole construction of [16]) reducing the energy but still preserving condition (2), contradiction.
3. $L\left\llcorner B_{1}=0\right.$ implies that u is stationary in B_{1}, hence Evans' result implies that u is smooth away from a set of \mathcal{H}^{1}-measure 0 .
4. If possible prove even more regularity for u.

In this work we show that the above project fundamentally fails at step 2 because a generalization of the dipole construction of [13] to the n-axially symmetric case with $n \geq 2$ is impossible! This is an immediate consequence of Theorem 1 below. Define for $\alpha>0$

$$
\begin{equation*}
T_{0}:=\mathcal{G}\left(u_{0}\right)+L_{0} \times \llbracket S^{2} \rrbracket \in \mathcal{A}^{(n)}\left(B_{2}, S^{2}\right), \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{0}(r, \theta, z):=\Pi^{-1}\left(\alpha r^{n}(\cos (n \theta), \sin (n \theta))\right) \in C^{\infty}\left(\bar{B}_{2}, S^{2}\right), \quad L_{0}:=-n \llbracket z-a x i s \rrbracket\left\llcorner B_{2}\right. \tag{4}
\end{equation*}
$$

Here $\Pi: S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\} \rightarrow \mathbb{R}^{2} \cup\{\infty\}$ is the stereographic projection, given by

$$
\Pi(x, y, z)=\frac{(x, y)}{1+z}
$$

and $\llbracket z-a x i s \rrbracket$ is the current given by integration along the $z-a x i s=\{(0,0, z): z \in \mathbb{R}\}$, with orientation set up so that, setting $u_{\varepsilon}: B_{2} \rightarrow S^{2}$ as

$$
u_{\varepsilon}(r, \theta, z):= \begin{cases}\Pi^{-1}\left(\alpha r^{n}(\cos (n \theta), \sin (n \theta))\right) & \text { for } r \geq \varepsilon \\ \Pi^{-1}\left(\alpha \varepsilon^{2 n} r^{-n}(\cos (n \theta), \sin (n \theta))\right) & \text { for } r \leq \varepsilon\end{cases}
$$

one has $\mathcal{G}\left(u_{\varepsilon}\right) \in \mathcal{A}^{(n)}\left(B_{2}, S^{2}\right)$ and as $\varepsilon \downarrow 0$ we have $\mathcal{G}\left(u_{\varepsilon}\right) \rightharpoonup T_{0}$ as currents in $B_{2} \times S^{2}$.
Theorem 1 For any $n \geq 2$ there is $0<\alpha_{0} \leq \frac{1}{4}$ such that for all $\alpha \in\left[0, \alpha_{0}\right]$ the current T_{0} defined in (3)-(4) is the unique minimizer of $\mathcal{D}\left(\cdot, B_{2}\right)$ in

$$
\mathcal{A}_{T_{0}}^{(n)}:=\left\{T \in \mathcal{A}^{(n)}\left(B_{2}, S^{2}\right): T\left\llcorner\left(\left(B_{2} \backslash \overline{B_{1}}\right) \times S^{2}\right)=T_{0}\left\llcorner\left(\left(B_{2} \backslash \overline{B_{1}}\right) \times S^{2}\right)\right\} .\right.\right.
$$

Lemma 7.1 of [13] implies at once that for $n=1$ our current T_{0} is not minimizing in $\mathcal{A}_{T_{0}}^{(1)}$, and if this Lemma could be generalized to the case $n \geq 2$ it would contradict Theorem 1. The fundamental difference between the cases $n=1$ and $n \geq 2$ is that when $n=1$, for any minimizer $T=\mathcal{G}(u)+L \times \llbracket S^{2} \rrbracket \in \mathcal{A}^{(1)}\left(B_{2}, S^{2}\right)$ of \mathcal{D} in B_{1} one has that $\widetilde{\nabla} u:=(\partial u / \partial x, \partial u / \partial y)$ cannot vanish indentically on open subsets of the $z-a x i s \cap B_{1}$ ([13, Lemma 7.3]), and at points in $\operatorname{supp} L \cap B_{1}$ with $\widetilde{\nabla} u \neq 0$ one can remove a piece of L and of the original map and, replacing them with the dipole constructed in [13, Lemma 7.1] (compare with [3, Section III]) one saves an energy proportional to $|\widetilde{\nabla} u|^{2}$ (compare also [2]), hence producing a new current in $\mathcal{A}_{T}^{(1)}\left(B_{2}, S^{2}\right)$ with smaller energy, contradicting the minimality of T. In our example $\widetilde{\nabla} u_{0} \equiv 0$ on the z-axis and the expected energy gain due to the dipole replacement is smaller than the energy necessary to glue the dipole to the original map.

Coming back to Step 2 of the regularity program outlined above, if $L\left\llcorner B_{1} \neq 0\right.$ contains a segment and ∇u vanishes along this segment (an occurrence very difficult to rule out in general), then we can expect to be essentially in the situation of Theorem 1 and we cannot use minimality to get a contradiction. This remark shows that in order to prove regularity of minimizers of F (or of \mathcal{D}) one has to work close to the topological singularities of u, i.e. close to $\operatorname{supp} \partial L$, and not in the "interior" of the minimal connection $(\operatorname{supp} L \backslash \operatorname{supp} \partial L)$, which might prove very challenging.

Statement of Theorem 1 in terms of the F energy

Theorem 1 can be reformulated in terms of the F energy as follows. Define the cones

$$
C^{+}:=\left\{(r, \theta, z) \in B_{2}: z>1,0 \leq r<z-1\right\}, \quad C^{-}:=-C^{+}=\left\{p \in \mathbb{R}^{3}:-p \in C^{+}\right\}
$$

and set $\tilde{u}_{0}:=u_{0}$ on $\Omega \backslash\left(C^{+} \cup C^{-}\right)$, where u_{0} is as in (4). On C^{+}we define

$$
\tilde{u}_{0}(r, \theta, z):=\Pi^{-1}\left(\alpha(z-1)^{2 n} r^{-n}(\cos (n \theta), \sin (n \theta))\right)
$$

On C^{-}we set $\tilde{u}_{0}(r, \theta, z):=\tilde{u}_{0}(r, \theta,-z)$. This way

$$
\tilde{u}_{0} \in H^{1}\left(B_{2}, S^{2}\right) \cap C^{0}\left(\bar{B}_{2} \backslash\{(0,0, \pm 1)\}\right) \cap H^{1}\left(\partial B_{2}, S^{2}\right)
$$

and

$$
\left.\operatorname{deg} \tilde{u}_{0}\right|_{\partial B_{2}}=0,\left.\quad \operatorname{deg} \tilde{u}_{0}\right|_{\partial B_{1 / 2}(0,0, \pm 1)}=\mp n
$$

(this construction was inspired by the dipole of [3, Section III] and a conversation with H. Brezis). Theorem 1 is essentially equivalent to the following.

Theorem 2 The map \tilde{u}_{0} minimizes $F\left(\cdot, B_{2}\right)$ in the set

$$
\mathcal{A}_{\tilde{u}_{0}}^{(n)}=\left\{u \in H^{1}\left(B_{2}, S^{2}\right): u \text { is } n \text {-axially symmetric and } u=\tilde{u}_{0} \text { in } B_{2} \backslash B_{1}\right\} .
$$

Notice that $\Sigma\left(\tilde{u}_{0}\right)=2$ (the minimal connection joining the singular points $(0,0, \pm 1)$ goes all the way from $(0,0,-1)$ to $(0,0,1)$), while in the case $n=1$ the result of Hardt, Lin and Poon implies that \tilde{u}_{0} is not a minimizer and that a minimizer u is smooth in $\bar{B}_{1} \backslash\{(0,0, \pm 1)\}$ by a simple extention of $[13$, Thm. 8.2$]$ and $\left.u\right|_{\bar{B}_{1}}$ has singularities at $(0,0, \pm 1)$ of degree ± 1 which "topologically" cancel the singularities of $\left.\tilde{u}_{0}\right|_{B_{2} \backslash B_{1}}$ in the sense that (recalling that $\left.\left.u\right|_{\partial B_{1}}=\left.\tilde{u}_{0}\right|_{\partial B_{1}} \in C^{0}\left(\partial B_{1}, S^{2}\right)\right)$
$\left.\operatorname{deg} u\right|_{\partial\left(B_{1 / 2}((0,0, \pm 1)) \cap B_{1}\right)}= \pm 1,\left.\quad \operatorname{deg} u\right|_{\partial\left(B_{1 / 2}((0,0, \pm 1)) \backslash B_{1}\right)}=\mp 1,\left.\quad \operatorname{deg} u\right|_{\partial B_{1 / 2}((0,0, \pm 1))}=0$ and $\Sigma(u)=0$.

Some notation and formulas

For an open set $\Omega \subset \mathbb{R}^{2}$ and a function $u \in W^{1,2}\left(\Omega, S^{2}\right)$ we set $\widehat{u}=\Pi \circ u$ and we define the Dirichlet energy

$$
\begin{equation*}
E(u, \Omega):=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x d y=2 \int_{\Omega} \frac{|\nabla \widehat{u}|^{2}}{\left(1+|\widehat{u}|^{2}\right)^{2}} d x d y \tag{5}
\end{equation*}
$$

and the area counted with multiplicity

$$
\begin{equation*}
A(u, \Omega):=\int_{\Omega}|J u| d x d y=4 \int_{\Omega} \frac{|J \widehat{u}|}{\left(1+|\widehat{u}|^{2}\right)^{2}} d x d y \tag{6}
\end{equation*}
$$

where $J u$ denotes the Jacobian determinant of u. Since $|\nabla u|^{2} \geq 2|J u|$ one has

$$
\begin{equation*}
E(u, \Omega) \geq A(u, \Omega) \tag{7}
\end{equation*}
$$

with equality holding if and only if u is conformal.
Assume now that $\Omega=D_{s}:=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<s^{2}\right\}$ and u is n-axially symmetric, i.e. for a function $f:[0, s] \rightarrow \overline{\mathbb{R}}$ we can write in polar coordinates

$$
\begin{equation*}
u(r, \theta)=\Pi^{-1}(f(r)(\cos (n \theta), \sin (n \theta))) \tag{8}
\end{equation*}
$$

Then a simple computation shows

$$
\begin{equation*}
\frac{1}{2}|\nabla \widehat{u}|^{2}=\frac{\left|f^{\prime}\right|^{2}}{2}+\frac{n^{2} f^{2}}{2 r^{2}} \geq \frac{n f\left|f^{\prime}\right|}{r}=|J \widehat{u}| \tag{9}
\end{equation*}
$$

Lemma 3 If $f:[s, t] \rightarrow[0, \infty]$ is any function with $0 \leq s<t, f(s)=a, f(t)=b$ $\left(\lim _{r \uparrow t} f(r)=\infty\right.$ if $\left.b=\infty\right), a \leq b$ and $u \in W^{1,2}\left(B_{t} \backslash B_{s}\right)$ is as in (8), then

$$
\begin{equation*}
A\left(u, D_{t} \backslash D_{s}\right) \geq 4 \pi n \frac{b^{2}}{1+b^{2}}-4 \pi n \frac{a^{2}}{1+a^{2}}, \quad\left(\frac{b^{2}}{1+b^{2}}=1 \text { if } b=\infty\right) \tag{10}
\end{equation*}
$$

The inequality is an equality if and only if f is monotone. An analogous statement applies when $a>b$ (possibly with $a=\infty$).

Proof. Assume first $0<b<\infty$. Then we compute, using (6) and (9),

$$
\begin{aligned}
A\left(u, D_{t} \backslash D_{s}\right) & =4 \pi n \int_{s}^{t} \frac{2 f\left|f^{\prime}\right|}{\left(1+f^{2}\right)^{2}} d r \geq 4 \pi n \int_{s}^{t} \frac{2 f f^{\prime}}{\left(1+f^{2}\right)^{2}} d r \\
& =4 \pi n\left[-\frac{1}{1+f^{2}}\right]_{s}^{t}=\frac{4 \pi n b^{2}}{1+b^{2}}-\frac{4 \pi n a^{2}}{1+a^{2}}
\end{aligned}
$$

where the inequality is strict if and only if $f^{\prime}<0$ on a set of positive measure, i.e. if f is not monotone. When $b=\infty$ the same proof applies, up to a simple approximation procedure. The case $a>b$ is similar.
In the following C will denote a large positive constant which may change from line to line.

2 Proof of Theorem 1

Consider the open cylinder $\Sigma:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}<1,-1<z<1\right\}$. Since $B_{1} \subset \Sigma \Subset B_{2}$, it suffices to prove that T_{0} minimizes

$$
\mathcal{D}(T, \Sigma):=\frac{1}{2} \int_{\Sigma}|\nabla u|^{2} d x d y d z+4 \pi \mathbf{M}(L\llcorner\Sigma)
$$

over $\mathcal{A}_{T_{0}, \Sigma}^{(n)}:=\left\{T \in \mathcal{A}^{(n)}\left(B_{2}, S^{2}\right): T=T_{0}\right.$ in $\left.\left(B_{2} \backslash \bar{\Sigma}\right) \times S^{2}\right\}$. This will simplify the notation.

The proof proceeds by contradiction. Let from now on $n \geq 2$ be fixed and let us assume that there exists a current $T=\mathcal{G}(u)+L \times \llbracket S^{2} \rrbracket \in \mathcal{A}_{T_{0}, \Sigma}^{(n)}$ with $\mathcal{D}(T, \Sigma) \leq \mathcal{D}\left(T_{0}, \Sigma\right)$ and $T \neq T_{0}$. Since u is n-axially symmetric, we can find a function f such that

$$
u(r, \theta, z)=\Pi^{-1}(f(r, z)(\cos (n \theta), \sin (n \theta)))
$$

Some preliminary lemmas

Lemma 4 We have $L=-n \llbracket I \rrbracket$ for some measurable set $I \subset z-$ axis $\cap B_{2}$.
Proof. The proof is analogous to the one of [13, Lemma 4.1] for the 1-axially symmetric case, with the following natural modifications. In Section 2 of [13] the 1-axially symmetric $\operatorname{maps} \Lambda(x)=\frac{\left(x_{1}, x_{2}, x_{3}\right)}{|x|}$ and $\Psi(x)=\frac{\left(x_{1}, x_{2},-x_{3}\right)}{|x|}$ from $\mathbb{R}^{3} \backslash\{0\}$ into S^{2} should be replaced by the n-axially symmetric maps $\Lambda^{(n)}:=R^{(n)} \circ \Lambda$ and $\Psi^{(n)}:=R^{(n)} \circ \Psi$, where $R^{(n)}: S^{2} \rightarrow S^{2}$ is the map

$$
R^{(n)}(\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi)=(\cos (n \theta) \sin \varphi, \sin (n \theta) \sin \varphi, \cos \varphi)
$$

Notice that $\operatorname{deg}\left(\pm\left.\Lambda^{(n)}\right|_{S^{2}}\right)= \pm n$ and $\operatorname{deg}\left(\pm\left.\Psi^{(n)}\right|_{S^{2}}\right)=\mp n$. With this in mind, the statements and proofs of Lemma 2.1, Lemma 2.2 and Lemma 4.1 of [13] can be immediately adapted to the n-axially symmetric case.

Up to modifying I on a set of measure 0 , we can and do assume that every point of I is a Lebesgue point of I with respect to $\mathcal{H}^{1}\llcorner z-$ axis, i.e.

$$
\begin{equation*}
\lim _{r \downarrow 0} \frac{\mathcal{H}^{1}\left(I \cap B_{r}(\xi)\right)}{r}=1, \quad \text { for every } \xi \in I . \tag{11}
\end{equation*}
$$

Lemma 5 Set $Z:=\bar{I} \backslash I$. Then $\mathcal{H}^{1}(Z)=0$.
Proof. Since $I \cap\left(B_{2} \backslash \bar{\Sigma}\right)=z-$ axis $\cap\left(B_{2} \backslash \bar{\Sigma}\right)$, we have $Z \subset \bar{\Sigma}$. Assume by contradiction that $\mathcal{H}^{1}(Z)>0$ and let $\xi \in Z \cap \Sigma$ be a Lebesgue point of Z (with respect to $\mathcal{H}^{1}\llcorner Z$) such that

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{1}{r} \int_{B_{r}(\xi)}|\nabla u|^{2} d x d y d z=0 . \tag{12}
\end{equation*}
$$

Such a point exists because (12) is true for \mathcal{H}^{1}-almost every $\xi \in z-$ axis $\cap B_{2}$, by $|\nabla u|^{2} \in$ $L_{\text {loc }}^{1}\left(\mathbb{R}^{3}\right)$ and a standard covering argument, see e.g. [5, Section 2.4.3], or [6, 2.10.19(3)]. Then by the monotonicity argument given in the proof of Theorem 5 of [9], one has $\mathcal{H}^{1}\left(I \cap B_{r_{0}}(\xi)\right)=0$ for $r_{0}>0$ small enough, hence $I \cap B_{r_{0}}(\xi)=\emptyset$ by (11). This contradicts $\xi \in \bar{I}$.

Lemma 6 There is a set $J \subset\left(z-\right.$ axis $\left.\cap B_{2}\right) \backslash \bar{I}$, such that $\mathcal{H}^{1}\left(\left(z-\right.\right.$ axis $\left.\left.\cap B_{2}\right) \backslash(\bar{I} \cup J)\right)=0$ and

$$
\begin{equation*}
\lim _{r \rightarrow 0} f(r, z)=+\infty, \quad \text { for }(0,0, z) \in J \tag{13}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\lim _{r \rightarrow 0} f(r, z)=0, \quad \text { for } \mathcal{H}^{1} \text {-a.e. }(0,0, z) \in I \cap B_{2} . \tag{14}
\end{equation*}
$$

Proof. Since it is obvious that (14) applies for $(0,0, z) \in B_{2} \backslash \bar{\Sigma}$, we will focus on the case $(0,0, z) \in \Sigma$, i.e. $-1<z<1$. We first claim that, for almost every $z \in(-1,1),\left.u\right|_{D_{1} \times\{z\}}$ is continuous. Indeed, as shown for instance in [18, Section 4] (in the case $n=1$, but the case $n>1$ is identical), u satisfies

$$
\begin{equation*}
-\Delta u=|\nabla u|^{2} u \quad \text { in } \Sigma, \tag{15}
\end{equation*}
$$

in the sense of distribution. It is well known, see e.g. [14, Lemma 3.2.10], that the righthand side of (15) belongs to the Hardy space $\mathcal{H}_{\text {loc }}^{1}(\Sigma)$, hence $\nabla^{2} u \in L_{\text {loc }}^{1}(\Sigma)$ by elliptic estimates. By a Fubini-type argument, we infer then that

$$
\left.\left(\nabla^{2} u\right)\right|_{D_{1} \times\{z\}} \in L_{\mathrm{loc}}^{1}\left(D_{1}\right) \quad \text { for almost every } z \in(-1,1)
$$

which implies $\left.u\right|_{D_{1} \times\{z\}} \in C_{\mathrm{loc}}^{0}\left(D_{1}\right)$, by the embedding $W_{\text {loc }}^{2,1}\left(D_{1}\right) \hookrightarrow C_{\text {loc }}^{0}\left(D_{1}\right)$. Since u is smooth away from the z-axis, see e.g. [13, Lemma 5.1] (where again only the case $n=1$ is treated, but the same proof applies for any $n \geq 1$), we have in fact that $\left.u\right|_{D_{1} \times\{z\}} \in C^{0}\left(D_{1}\right)$ for a.e. $z \in(-1,1)$, as claimed.

Let $J \subset\left(z-\right.$ axis $\left.\cap B_{1}\right) \backslash \bar{I}$ be the set of points $(0,0, z)$ which are Lebesgue density points of $\left(z-\right.$ axis $\left.\cap B_{1}\right) \backslash \bar{I}$ (with respect to the \mathcal{H}^{1} measure), such that $\left.u\right|_{D_{1} \times\{z\}} \in C^{0}\left(D_{1}\right)$ and

$$
\begin{equation*}
\partial\left(\mathcal{G}\left(\left.u\right|_{\Sigma(z)}\right)\right)\left\llcorner\Sigma=\mathcal{G}\left(\left.u\right|_{D_{1} \times\{z\}}\right), \quad \Sigma(z):=D_{1} \times(z, 1) \subset \Sigma\right. \tag{16}
\end{equation*}
$$

The slicing property (16) is satisfied for almost every $z \in(-1,1)$, since $\mathcal{G}(u)$ is a normal current, see e.g. [10, Prop. 1, Sec. 2.2.5], so $\mathcal{H}^{1}\left(\left(z-\right.\right.$ axis $\left.\left.\cap B_{2}\right) \backslash(\bar{I} \cup J)\right)=0$.

We now claim that (13) holds true. Fix $z \in(-1,1)$ with $(0,0, z) \in J$. First of all the continuity of $\left.u\right|_{D_{1} \times\{z\}}$ implies

$$
\lim _{r \rightarrow 0} f(r, z)=+\infty \quad \text { or } \quad \lim _{r \rightarrow 0} f(r, z)=0
$$

Since T is a Cartesian current, the degree of the 2-dimensional current

$$
\partial\left(T\llcorner\Sigma(z))=\partial\left(\mathcal{G}\left(\left.u\right|_{\Sigma(z)}\right)\right)+\partial\left(\left(L\llcorner\Sigma(z)) \times \llbracket S^{2} \rrbracket\right)=\mathcal{G}\left(\left.u\right|_{\partial \Sigma(z)}\right)-n \llbracket(0,0, z) \rrbracket \times \llbracket S^{2} \rrbracket\right.\right.
$$

must be zero (see e.g. [8, pag. 468]), and this rules out the possibility $\lim _{r \rightarrow 0} f(r, z)=0$. This completes the proof of (13), and the proof of (14) is completely analogous.

Strategy of the proof

Assume first that $L=L_{0}:=-n \llbracket z-a x i s \rrbracket\left\llcorner B_{2}\right.$. Then $\mathcal{D}(T, \Sigma) \leq \mathcal{D}\left(T_{0}, \Sigma\right)$ is equivalent to

$$
\frac{1}{2} \int_{\Sigma}|\nabla u|^{2} d x d y d z \leq \frac{1}{2} \int_{\Sigma}\left|\nabla u_{0}\right|^{2} d x d y d z
$$

and by (7) we have for a.e. $z \in(-1,1)$ that $\left.u\right|_{D_{1} \times\{z\}} \in W^{1,2}\left(D_{1}\right) \cap C^{0}\left(D_{1}\right)$ and

$$
\begin{equation*}
E\left(u, D_{1} \times\{z\}\right) \geq A\left(u, D_{1} \times\{z\}\right) \geq A\left(u_{0}, D_{1} \times\{z\}\right)=E\left(u_{0}, D_{1} \times\{z\}\right)=4 \pi n \frac{\alpha^{2}}{1+\alpha^{2}} \tag{17}
\end{equation*}
$$

where the first inequality is strict unless $\left.u\right|_{D_{1} \times\{z\}}$ is conformal by (7), in the second one we used that $\alpha \in(0,1)$ and Lemma 3, the first equality follows from the conformality of u_{0}, and the second equality follows from Lemma 3 and the fact that $f_{0}(r)=\alpha r^{n}$ is monotone. Then it easily follows that $\left.u\right|_{D_{1} \times\{z\}}=\left.u_{0}\right|_{D_{1} \times\{z\}}$ for a.e. $z \in(-1,1)$, hence $u=u_{0}$ and $T=T_{0}$.

Assume now that $L \neq L_{0}$. Then the set J defined in Lemma 6 has positive \mathcal{H}^{1}-measure. As before, we write $z-$ axis $\cap B_{2}=\bar{I} \cup J \cup N$, where $\mathcal{H}^{1}(N)=0$. Define for $(0,0, z) \in J$

$$
\psi(z):=4 \pi n+\frac{4 \pi n \alpha^{2}}{1+\alpha^{2}}-\frac{1}{2} \int_{D_{1} \times\{z\}}|\widetilde{\nabla} u|^{2} d x d y, \quad \widetilde{\nabla}:=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)
$$

The quantity $\psi(z)$ measures the maximal (because it ignores the z-derivative) energy gain (possibly negative) which we can expect by replacing u_{0} with u in $D_{1} \times\{z\}$ and removing the vertical part $n \llbracket(0,0, z) \rrbracket \times \llbracket S^{2} \rrbracket$. We must have $\psi(z)>0$ for some $(0,0, z) \in J$, otherwise

$$
\begin{aligned}
\mathcal{D}(T, \Sigma)> & \int_{(0,0, z) \in I \cap B_{1}}\left(\frac{1}{2} \int_{D_{1} \times\{z\}}|\widetilde{\nabla} u|^{2} d x d y\right) d z+4 \pi n \mathcal{H}^{1}\left(I \cap B_{1}\right) \\
& +\int_{(0,0, z) \in J}\left(\frac{1}{2} \int_{D_{1} \times\{z\}}|\widetilde{\nabla} u|^{2} d x d y\right) d z \\
\geq & \left(\frac{4 \pi n \alpha^{2}}{1+\alpha^{2}}+4 \pi n\right)\left(\mathcal{H}^{1}\left(I \cap B_{1}\right)+\mathcal{H}^{1}(J)\right)=\mathcal{D}\left(T_{0}, \Sigma\right),
\end{aligned}
$$

where the first inequality is strict because the integrals on the right don't take into account the z-derivative, which cannot vanish identically if $J \neq \emptyset$, and in the second inequality we used (17) for $(0,0, z) \in I \cap B_{1}$. Now we can choose $\left(0,0, z_{1}\right) \in J$ such that

$$
\begin{equation*}
\psi\left(z_{1}\right) \geq \frac{1}{2} \sup _{(0,0, z) \in J} \psi(z)>0 \tag{18}
\end{equation*}
$$

In the next section we will prove that $\psi\left(z_{1}\right) \leq 0$, contradiction.

The energy estimates

Lemma 7 Let

$$
a:=\min _{r \in(0,1]} f\left(r, z_{1}\right) \leq \alpha
$$

Then $a>0$,

$$
\begin{equation*}
\psi\left(z_{1}\right) \leq \frac{8 \pi n a^{2}}{1+a^{2}} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2} \int_{\Sigma}\left|\frac{\partial u}{\partial z}\right|^{2} d x d y d z \leq \frac{32 \pi n a^{2}}{1+a^{2}} \tag{20}
\end{equation*}
$$

Proof. Assume $a \geq 0$ and take any $r \in(0,1]$ such that $f\left(r, z_{1}\right)=a$. Then Lemma 3 and (13) yield

$$
\begin{aligned}
\frac{1}{2} \int_{D_{1} \times\left\{z_{1}\right\}}|\widetilde{\nabla} u|^{2} d x d y & \geq A\left(u,\left(D_{1} \backslash D_{r}\right) \times\left\{z_{1}\right\}\right)+A\left(u, D_{r} \times\left\{z_{1}\right\}\right) \\
& \geq\left(\frac{4 \pi n \alpha^{2}}{1+\alpha^{2}}-\frac{4 \pi n a^{2}}{1+a^{2}}\right)+\left(4 \pi n-\frac{4 \pi n a^{2}}{1+a^{2}}\right)
\end{aligned}
$$

and (19) follows at once. If $a=0$ this yields $\psi\left(z_{1}\right) \leq 0$, contradiction. Similarly if $a<0$ choose $0<r_{1}<r_{2}<1$ such that $f\left(r_{1}, z_{1}\right)=f\left(r_{2}, z_{1}\right)=0$ and $f\left(r, z_{1}\right) \geq 0$ for $r \in\left(0, r_{1}\right) \cup\left(r_{2}, 1\right)$, and apply Lemma 3 on $\left(D_{1} \backslash D_{r_{2}}\right) \times\left\{z_{1}\right\}$ and on $D_{r_{1}} \times\left\{z_{1}\right\}$ separately to get again $\psi\left(z_{1}\right) \leq 0$. As for (20), for $(0,0, z) \in I$ and $0 \leq \alpha<1,(17)$ and (18) yield

$$
\begin{aligned}
\frac{1}{2} \int_{\Sigma}\left|\frac{\partial u}{\partial z}\right|^{2} d x d y d z & =\mathcal{D}(T, \Sigma)-\frac{1}{2} \int_{\Sigma}|\widetilde{\nabla} u|^{2} d x d y d z-4 \pi n \mathcal{H}^{1}\left(I \cap B_{1}\right) \\
& \leq \mathcal{D}\left(T_{0}, \Sigma\right)-\frac{1}{2} \int_{\Sigma}|\widetilde{\nabla} u|^{2} d x d y d z-4 \pi n \mathcal{H}^{1}\left(I \cap B_{1}\right) \\
& \leq \int_{(0,0, z) \in J} \psi(z) d z \leq 2 \psi\left(z_{1}\right) \mathcal{H}^{1}(J) \leq 4 \psi\left(z_{1}\right)
\end{aligned}
$$

and the conclusion follows from (19).
We have seen that the shape of the profile of $\left.u\right|_{D_{1} \times\left\{z_{1}\right\}}$, in particular of the infimum of $f\left(\cdot, z_{1}\right)$, determines the constraint (20) on the z-derivative of u. We shall now see how (20) in turn implies a constraint on the shape of u and consequently a loss of conformality which, for α small enough and $n \geq 2$, forces $\psi\left(z_{1}\right)<0$. This will be the desired contradiction which proves that $L=L_{0}$ and completes the proof of Theorem 1.

Lemma 8 Assume that $0<\alpha \leq \frac{1}{4}$ and set

$$
s:=\inf \left\{r \in(0,1): f\left(r, z_{1}\right)=\frac{1}{2}\right\}
$$

Then we have $s \leq C_{0}$ a for a fixed positive constant C_{0}.
Proof. We have for $0<\alpha \leq \frac{1}{4}$ and for $r \in(0, s]$

$$
f\left(r, z_{1}\right) \geq \frac{1}{2}, \quad f(r,-1)=\alpha r^{2} \leq \frac{1}{4}
$$

hence, by Cauchy-Schwartz's inequality,

$$
\int_{-1}^{z_{1}}\left|\frac{\partial u(r, z)}{\partial z}\right|^{2} d z \geq \frac{1}{z_{1}+1}\left(\int_{-1}^{z_{1}}\left|\frac{\partial u(r, z)}{\partial z}\right| d z\right)^{2} \geq \frac{1}{z_{1}+1}\left|u\left(r, z_{1}\right)-u(r,-1)\right|^{2} \geq \frac{1}{C}
$$

Set $\Sigma_{s}=\{(r, \theta, z) \in \Sigma: r<s\}$. Then

$$
\int_{\Sigma_{s}}\left|\frac{\partial u}{\partial z}\right|^{2} d x d y d z \geq \frac{s^{2}}{C}
$$

which together with (20) implies our claim.

Proposition 9 For any $n \geq 2$ there is $\alpha_{0} \in(0,1 / 4]$ such that if $0<\alpha \leq \alpha_{0}$ and $u \in W^{1,2}\left(D_{1}, S^{2}\right)$ has the form

$$
u(r, \theta)=\Pi^{-1}(f(r)(\cos (n \theta), \sin (n \theta)))
$$

with

$$
f(1)=\alpha, \quad \lim _{r \rightarrow 0} f(r)=+\infty, \quad \min _{0 \leq r \leq 1} f(r)=a, \quad s:=\inf \left\{r \in(0,1]: f(r)=\frac{1}{2}\right\} \leq C_{0} a
$$

then

$$
\begin{equation*}
\frac{1}{2} \int_{D_{1}}|\nabla u|^{2} d x d y>4 \pi n+\frac{4 \pi n \alpha^{2}}{1+\alpha^{2}} \tag{21}
\end{equation*}
$$

Before proving this key proposition, let us notice that it completes the proof of Theorem 1. Indeed we can apply it to $\left.u\right|_{D_{1} \times\left\{z_{1}\right\}}$ (hence $f\left(r, z_{1}\right)$ will play the role of $f(r)$ in Proposition 9) and (21) yields $\psi\left(z_{1}\right)<0$.
Proof of Proposition 9. In the following several formulas will be more transparent if we write b instead of $1 / 2$, but the reader should keep in mind that b is fixed. We should also remember that $0<a \leq \alpha$ and α is small. Moreover we will often use (7) and Lemma 3.
Step 1. We can easily estimate

$$
\begin{equation*}
E\left(u, D_{s}\right)=\frac{1}{2} \int_{D_{s}}|\nabla u|^{2} d x d y \geq A\left(u, D_{s}\right)=4 \pi n-\frac{4 \pi n b^{2}}{1+b^{2}} \tag{22}
\end{equation*}
$$

To estimate $E\left(u, D_{1} \backslash D_{s}\right)$ we can assume that $f \leq 1$ in $D_{1} \backslash D_{s}$. Indeed if $f\left(r_{0}, z_{1}\right)=1$ for some $r_{0} \in(s, 1)$, we clearly have

$$
\begin{aligned}
E\left(u, D_{1} \backslash D_{s}\right) & =E\left(u, D_{r_{0}} \backslash D_{s}\right)+E\left(u, D_{1} \backslash D_{r_{0}}\right) \geq A\left(u, D_{r_{0}} \backslash D_{s}\right)+A\left(u, D_{1} \backslash D_{r_{0}}\right) \\
& \geq\left(2 \pi n-\frac{4 \pi n b^{2}}{1+b^{2}}\right)+\left(2 \pi n-\frac{4 \pi n \alpha^{2}}{1+\alpha^{2}}\right)
\end{aligned}
$$

This and (22) imply (21) for α small enough. From now on we shall assume that $f \leq 1$ in $D_{1} \backslash D_{s}$.
Step 2. Pick any $\tilde{s} \in(s, 1]$ such that $f(\tilde{s})=a$. There exists a function $v \in W^{1,2}\left(D_{1} \backslash D_{s}\right)$ of the form

$$
\begin{equation*}
v(r, \theta)=\Pi^{-1}(h(r)(\cos (n \theta), \sin (n \theta))) \tag{23}
\end{equation*}
$$

for some $h \in W^{1,2}([s, 1])$ which minimizes the energy

$$
\begin{equation*}
E\left(v, D_{1} \backslash D_{s}\right)=\frac{1}{2} \int_{D_{1} \backslash D_{s}}|\nabla v|^{2} d x d y=4 \pi \int_{s}^{1} \frac{\left|h^{\prime}\right|^{2}+\frac{n^{2}}{r^{2}} h^{2}}{\left(1+h^{2}\right)^{2}} r d r \tag{24}
\end{equation*}
$$

among all functions $\tilde{v} \in W^{1,2}\left(D_{1} \backslash D_{s}\right)$ (with corresponding $\tilde{h} \in W^{1,2}([s, 1])$ as in (23)) satisfying $a \leq \tilde{h} \leq 1, \tilde{h}(s)=b, \tilde{h}(\tilde{s})=a$ and $\tilde{h}(1)=\alpha$. Indeed the functional in (24) is coercive and the imposed conditions (which are convex) are preserved under the weak convergence in $W^{1,2}$.

We claim that $h^{\prime} \leq 0$ in $[s, \tilde{s}]$ and $h^{\prime} \geq 0$ in $[\tilde{s}, 1]$. Indeed, if for points $s \leq s_{1}<s_{2}<$ $s_{3} \leq \tilde{s}$ we have $h\left(s_{1}\right)=h\left(s_{3}\right)<h\left(s_{2}\right)$, we can modify h by setting $h \equiv h\left(s_{1}\right)$ on $\left[s_{1}, s_{3}\right]$. This would decrease the energy, as one can see by inspecting the right-hand side of (24), using that the function $h \rightarrow h^{2} /\left(1+h^{2}\right)^{2}$ is strictly increasing for $h \in[0,1]$. One can do the same in $[\tilde{s}, 1]$.

Since $E\left(u, D_{1} \backslash D_{s}\right) \geq E\left(v, D_{1} \backslash D_{s}\right)$, it is enough to estimate the energy of v. We have

$$
\begin{equation*}
A\left(v, D_{1} \backslash D_{s}\right)=A\left(v, D_{\tilde{s}} \backslash D_{s}\right)+A\left(v, D_{1} \backslash D_{\tilde{s}}\right)=\frac{4 \pi n b^{2}}{1+b^{2}}-\frac{8 \pi n a^{2}}{1+a^{2}}+\frac{4 \pi n \alpha^{2}}{1+\alpha^{2}} \tag{25}
\end{equation*}
$$

and the proof is complete if we can prove that for α small enough and $a \in(0, \alpha]$ we have

$$
\begin{equation*}
(E-A)\left(v, D_{1} \backslash D_{s}\right)>\frac{8 \pi n a^{2}}{1+a^{2}} \tag{26}
\end{equation*}
$$

Step 3. We now reduce the proof of (26) to a simpler problem. From (5), (6) and (9) we infer

$$
\begin{align*}
(E-A)\left(v, D_{1} \backslash D_{s}\right) & =\int_{D_{1} \backslash D_{s}} \frac{\left(2\left|h^{\prime}\right|^{2}+\frac{2 n^{2}}{r^{2}} h^{2}-4 \frac{n}{r}\left|h^{\prime}\right| h\right)}{\left(1+h^{2}\right)^{2}} d x d y \\
& =\int_{D_{1} \backslash D_{s}} \frac{2\left(\left|h^{\prime}\right|-\frac{n}{r} h\right)^{2}}{\left(1+h^{2}\right)^{2}} d x d y \tag{27}\\
& =4 \pi \int_{s}^{1} \frac{\left(\left|h^{\prime}(r)\right|-\frac{n}{r} h(r)\right)^{2}}{\left(1+h(r)^{2}\right)^{2}} r d r
\end{align*}
$$

Since $0 \leq h \leq 1$ on $D_{1} \backslash D_{s}$, we have $1 \leq\left(1+h^{2}\right)^{2} \leq 4$ in (27). Then, considering what we know about v and h, to estimate $(E-A)\left(v, D_{1} \backslash D_{s}\right)$ up to a multiplicative constant it is enough to estimate the infimum of

$$
I(g)=\int_{s}^{1}\left(\left|g^{\prime}(r)\right|-\frac{n}{r} g(r)\right)^{2} r d r
$$

over

$$
\mathcal{C}:=\left\{g \in W^{1,2}([s, 1]): g(s)=b, g(1)=\alpha, g(\tilde{s})=a, g^{\prime} \leq 0 \text { on }[s, \tilde{s}], g^{\prime} \geq 0 \text { on }[\tilde{s}, 1]\right\} .
$$

Since I is coercive on \mathcal{C} (because $a \leq g \leq b=1 / 2$ for $g \in \mathcal{C}$) and \mathcal{C} is convex and closed with respect to the $W^{1,2}$-topology, it is possible to find a function g_{0} which minimizes I over \mathcal{C}. Since $h \in \mathcal{C}$

$$
\begin{equation*}
(E-A)\left(v, D_{1} \backslash D_{s}\right) \geq \pi I(h) \geq \pi I\left(g_{0}\right) \tag{28}
\end{equation*}
$$

and it remains to estimate $I\left(g_{0}\right)$.
Step 4. We shall now explicitly compute g_{0}. Consider the set

$$
\mathcal{C}_{1}:=\left\{g \in W^{1,2}([s, \tilde{s}]): g(s)=b, g(\tilde{s})=a, g^{\prime} \leq 0\right\}
$$

Then $\left.g_{0}\right|_{[s, \tilde{s}]} \in \mathcal{C}_{1}$ and it minimizes

$$
\tilde{I}(g):=\int_{s}^{\tilde{s}}\left(g^{\prime}(r)+\frac{n}{r} g(r)\right)^{2} r d r
$$

over \mathcal{C}_{1}, where we used that $\left|g^{\prime}\right|=-g^{\prime}$ for $g \in \mathcal{C}_{1}$. The functional \tilde{I} is strictly convex over \mathcal{C}_{1}, hence if we can find a critical point \tilde{g} of \tilde{I} in \mathcal{C}_{1}, then it has to be the unique minimizer $\left.g_{0}\right|_{[s, \tilde{s}]}$. By a critical point in \mathcal{C}_{1}, we mean a function $\tilde{g} \in \mathcal{C}_{1}$ such that

$$
\begin{equation*}
\left.\frac{d}{d \varepsilon} \tilde{I}(\tilde{g}+\varepsilon \varphi)\right|_{\varepsilon=0^{+}}:=\lim _{\varepsilon \downarrow 0} \frac{I(\tilde{g}+\varepsilon \varphi)-I(\tilde{g})}{\varepsilon} \geq 0, \quad \text { for any } \varphi:=g-\tilde{g}, g \in \mathcal{C}_{1} \tag{29}
\end{equation*}
$$

The inequality in (29) is due to the fact that \mathcal{C}_{1} is not a vector space and \tilde{g} might belong to $\partial \mathcal{C}_{1}$.

For $t>s$ to be chosen, consider the function

$$
\eta_{t}(r)=A_{t} r^{n}+\frac{B_{t}}{r^{n}}, \quad A_{t}=\frac{a t^{n}-b s^{n}}{t^{2 n}-s^{2 n}}, \quad B_{t}=\frac{s^{n} t^{n}\left(b t^{n}-a s^{n}\right)}{t^{2 n}-s^{2 n}}
$$

which satisfies $\eta_{t}(s)=b, \eta_{t}(t)=a$. There is exactly one value $t_{0}>s$ for which $\eta_{t_{0}}^{\prime}\left(t_{0}\right)=0$. Indeed any such t_{0} satisfies

$$
\begin{equation*}
t_{0}^{2 n}=\frac{B_{t_{0}}}{A_{t_{0}}}=\frac{s^{n} t_{0}^{n}\left(b t_{0}^{n}-a s^{n}\right)}{a t_{0}^{n}-b s^{n}} \quad \text { if } a t_{0}^{n}-b s^{n}>0 \tag{30}
\end{equation*}
$$

hence

$$
\begin{equation*}
a t_{0}^{2 n}-2 b s^{n} t_{0}^{n}+a s^{2 n}=0 \tag{31}
\end{equation*}
$$

Then we compute

$$
t_{0 \pm}^{n}=\left(\frac{b}{a} \pm \sqrt{\left(\frac{b^{2}}{a^{2}}-1\right)}\right) s^{n}=\frac{b}{a}\left(1 \pm \sqrt{\left(1-\frac{a^{2}}{b^{2}}\right)}\right) s^{n}
$$

Then, since we want $t_{0}>s$, we have

$$
\begin{equation*}
\left.t_{0}^{n}=t_{0+}^{n}=\frac{b}{a}\left(1+\sqrt{\left(1-\frac{a^{2}}{b^{2}}\right)}\right) s^{n}=\frac{b}{a}\left(2-\frac{1}{2} \frac{a^{2}}{b^{2}}+o\left(a^{2} / b^{2}\right)\right)\right) s^{n} \tag{32}
\end{equation*}
$$

with $\frac{o\left(a^{2} / b^{2}\right)}{a^{2} / b^{2}} \rightarrow 0$ as $a / b \rightarrow 0$. This way also the condition $a t_{0}^{n}-b s^{n}>0$ in (30) is satisfied.
If $t_{0} \geq \tilde{s}$ set $\tilde{g}=\eta_{\tilde{s}}$. Then $\eta_{\tilde{s}}^{\prime} \leq 0$ on $[s, \tilde{s}]$. Indeed $\eta_{\tilde{s}}^{\prime}(\tilde{s}) \leq 0$, since this is equivalent to $a \tilde{s}^{2 n}-2 b s^{n} \tilde{s}^{n}+a s^{2 n} \leq 0$, which follows from (31) and $t_{0-} \leq s<\tilde{s} \leq t_{0+}$. But $\eta_{\tilde{s}}^{\prime}(r) \leq 0$
is equivalent to $r^{2 n} \leq B_{\tilde{s}} / A_{\tilde{s}}$ and we have proven this for $r=\tilde{s}$, hence it also holds for $0<r<\tilde{s}$.

If $t_{0}<\tilde{s}$, set $\tilde{g}=\eta_{t_{0}}$ on $\left[s, t_{0}\right]$ and $\tilde{g} \equiv a$ on $\left[t_{0}, \tilde{s}\right]$. Again it is clear that $\tilde{g}^{\prime} \leq 0$.
In both cases we have $\tilde{g} \in \mathcal{C}_{1}$ and we claim that \tilde{g} satisfies (29). In fact, assuming first $t_{0}<\tilde{s}$, we have for φ as in (29)

$$
\begin{aligned}
\left.\frac{d}{d \varepsilon} \tilde{I}(\tilde{g}+\varepsilon \varphi)\right|_{\varepsilon=0^{+}} & =2 \int_{s}^{\tilde{s}}\left(\tilde{g}^{\prime}+\frac{n}{r} \tilde{g}\right)\left(\varphi^{\prime}+\frac{n}{r} \varphi\right) r d r \\
& =2 \int_{s}^{t_{0}}\left(-\left(r \tilde{g}^{\prime}\right)^{\prime}+\frac{n^{2}}{r} \tilde{g}\right) \varphi d r+2 \int_{t_{0}}^{\tilde{s}} \frac{n^{2}}{r} \tilde{g} \varphi d r
\end{aligned}
$$

where we used the condition $\tilde{g}^{\prime}\left(t_{0}\right)=0$ in the integration by parts. The last integral is non-negative since $\varphi \geq 0$ in $\left[t_{0}, \tilde{s}\right]$, being $\tilde{g}=a$ and $g \geq a$ in that interval. As for the first integral on the right-hand side, it vanishes, since for $t>0$

$$
\begin{equation*}
-\left(r \eta_{t}^{\prime}(r)\right)^{\prime}+\frac{n^{2}}{r} \eta_{t}(r)=0 \quad \text { for } r \in(0, \infty) \tag{33}
\end{equation*}
$$

If $t_{0} \geq \tilde{s},(29)$ follows at once from (33). Then (29) is proven and $\tilde{g}=\left.g_{0}\right|_{[s, \tilde{s}]}$.
An analogous procedure can be done on $[\tilde{s}, 1]$, assuming $\tilde{s}<1$ (if $\tilde{s}=1$, then $a=\alpha$ and, setting $\tau_{0}=1$, one has $g_{0} \equiv a=\alpha$ on $\left[t_{0}, \tau_{0}\right]$; then jump to Step 5) and minimizing

$$
\bar{I}(g):=\int_{\tilde{s}}^{1}\left(g^{\prime}(r)-\frac{n}{r} g(r)\right)^{2} r d r
$$

over

$$
\mathcal{C}_{2}:=\left\{g \in W^{1,2}([\tilde{s}, 1]): g(\tilde{s})=a, g(1)=\alpha, g^{\prime} \geq 0\right\}
$$

We consider for $0<\tau<1$

$$
\zeta_{\tau}(r)=A_{\tau}^{\prime} r^{n}+\frac{B_{\tau}^{\prime}}{r^{n}}, \quad A_{\tau}^{\prime}=\frac{\alpha-a \tau^{n}}{1-\tau^{2 n}}, B_{\tau}^{\prime}=\frac{\tau^{n}\left(a-\alpha \tau^{n}\right)}{1-\tau^{2 n}}
$$

so that $\zeta_{\tau}(\tau)=a, \zeta_{\tau}(1)=\alpha$, and we compute $\tau_{0} \leq 1$ such that $\zeta_{\tau_{0}}^{\prime}\left(\tau_{0}\right)=0$. This gives $\tau_{0}^{2 n}=\frac{B_{\tau_{0}}^{\prime}}{A_{\tau_{0}}^{\prime}}$, hence

$$
\begin{equation*}
\tau_{0 \pm}^{n}=\frac{\alpha}{a}\left(1 \pm \sqrt{1-\frac{a^{2}}{\alpha^{2}}}\right), \quad \tau_{0}^{n}=\tau_{0-}^{n}=\frac{\alpha}{a}\left(1-\sqrt{1-\frac{a^{2}}{\alpha^{2}}}\right) \tag{34}
\end{equation*}
$$

where we chose the minus sign because $\tau_{0} \leq 1$ (simple algebraic computations show that $\tau_{0-} \leq 1$, with equality if and only if $a=\alpha$). As before if $\tau_{0} \leq \tilde{s}$ we set $\bar{g}=\zeta_{\tilde{s}}$, if $\tilde{s}<\tau_{0}<1$ we set $\bar{g}=\zeta_{\tau_{0}}$ on $\left[\tau_{0}, 1\right]$ and $\bar{g} \equiv a$ on $\left[\tilde{s}, \tau_{0}\right]$, if $\tau_{0}=1$ we set $\bar{g} \equiv a=\alpha$ on $[\tilde{s}, 1]$. Then again \bar{g} minimizes \bar{I} over \mathcal{C}_{2}, hence $\bar{g}=\left.g_{0}\right|_{[\tilde{s}, 1]}$.
Step 5. We have completely determined g_{0} (depending on a, α, s and \tilde{s} only). In particular we have proven that $g_{0} \equiv a$ on $\left[t_{0}, \tau_{0}\right]$.

We now prove that $t_{0} / \tau_{0} \rightarrow 0$ as $\alpha \rightarrow 0$ and complete the proof of (26). First of all notice that (32) and Lemma 8 imply (keeping in mind that $b=1 / 2$)

$$
\begin{equation*}
t_{0}^{n} \leq C a^{n-1} \tag{35}
\end{equation*}
$$

To estimate τ_{0} we go back to (34) and write $\beta=(a / \alpha)^{2} \in(0,1]$. We claim that

$$
\begin{equation*}
\tau_{0}^{n}=\frac{1}{\sqrt{\beta}}(1-\sqrt{1-\beta}) \geq \frac{\sqrt{\beta}}{C}=\frac{1}{C} \frac{a}{\alpha} \tag{36}
\end{equation*}
$$

where C is fixed. Indeed this reduces to prove that

$$
\varphi(\beta):=\frac{1}{\beta}(1-\sqrt{1-\beta}) \geq \frac{1}{C} \quad \text { for } \beta \in(0,1]
$$

which is obvious since $\varphi>0$ in $(0,1]$ and $\lim _{\beta \downarrow 0} \varphi(\beta)=\frac{1}{2}$. Since $n \geq 2$, from (35) and (36) we infer

$$
\begin{equation*}
\frac{t_{0}}{\tau_{0}} \leq C\left(\alpha a^{n-2}\right)^{\frac{1}{n}} \rightarrow 0 \quad \text { as } \alpha \rightarrow 0 \tag{37}
\end{equation*}
$$

Then we have with (28)

$$
(E-A)\left(v, D_{1} \backslash D_{s}\right) \geq \pi I\left(g_{0}\right) \geq \pi \int_{t_{0}}^{\tau_{0}}\left(\frac{n a}{r}\right)^{2} r d r \geq \pi n^{2} a^{2} \log \frac{\tau_{0}}{t_{0}}=\frac{a^{2}}{o(1)}
$$

with $o(1) \rightarrow 0$ as $\alpha \rightarrow 0$, and (26) holds true if $0<\alpha \leq \alpha_{0}=\alpha_{0}(n)$.

3 Proof of Theorem 2

Theorem 2 can be proven essentially as Theorem 1 after fixing a minimal connection. Here instead we show how to deduce it from Theorem 1, to emphasize that the two theorems are equivalent (and similarly one could also deduce Theorem 1 from Theorem 2).

Let u be a minimizer of $F\left(\cdot, B_{2}\right)$ in $\mathcal{A}_{\tilde{u}_{0}}^{(n)}$. It follows from [13] that $\left.u\right|_{\bar{B}_{1}}$ is smooth away from the z-axis. Now fix L minimizing the 1-dimensional mass in the set of 1-dimensional currents satisfying $(\partial L)\left\llcorner\partial B_{2}=0\right.$ and (2). Such a minimizer exists because the above set is closed with respect to the weak convergence of currents. We first claim that $L= \pm n \llbracket I \rrbracket$ for an \mathcal{H}^{1}-measurable set $I \subset z-$ axis $\cap B_{1}$, so that $T:=\mathcal{G}(u)+L \times \llbracket S^{2} \rrbracket \in \mathcal{A}^{(n)}\left(B_{2}, S^{2}\right)$. Indeed it follows from the generalization of Lemma 4.1 of [13] to the case $n \geq 2$ (see the proof of Lemma 4 above), that $L= \pm n \llbracket I \rrbracket$ for an \mathcal{H}^{1}-measurable set $I \subset z-$ axis $\cap B_{2}$, but since $\left.u\right|_{\bar{B}_{2} \backslash \bar{B}_{1}} \in C^{\infty}$ and $(\partial L)\left\llcorner\partial B_{2}=0\right.$, it follows from (2) that supp $L \cap\left(\bar{B}_{2} \backslash \bar{B}_{1}\right)=\emptyset$ by the constancy theorem.

Now we prove that T minimizes $\mathcal{D}\left(\cdot, B_{2}\right)$ in $\mathcal{A}_{T}^{(n)}$. Define

$$
\begin{aligned}
\tilde{T} & =T-T\left\llcorner\left(\left(B_{2} \backslash \bar{B}_{1}\right) \times S^{2}\right)+T_{0}\left\llcorner\left(\left(B_{2} \backslash \bar{B}_{1}\right) \times S^{2}\right)\right.\right. \\
& =T-\mathcal{G}\left(\left.\tilde{u}_{0}\right|_{B_{2} \backslash \bar{B}_{1}}\right)+T_{0}\left\llcorner\left(\left(B_{2} \backslash \bar{B}_{1}\right) \times S^{2}\right),\right.
\end{aligned}
$$

where T_{0} is as in Theorem 1. From

$$
\begin{aligned}
\left(\partial \mathcal{G}\left(\left.\tilde{u}_{0}\right|_{B_{2} \backslash \bar{B}_{1}}\right)\right)\left\llcorner\left(B_{2} \times S^{2}\right)\right. & =\mathcal{G}\left(\left.\tilde{u}_{0}\right|_{\partial B_{1}}\right)+n\left(\delta_{(0,0,-1)}-\delta_{(0,0,1)}\right) \times \llbracket S^{2} \rrbracket \\
& =\left(\partial (T _ { 0 } \llcorner (B _ { 2 } \backslash \overline { B } _ { 1 }) \times S ^ { 2 })) \left\llcorner\left(B_{2} \times S^{2}\right)\right.\right.
\end{aligned}
$$

and $(\partial T)\left\llcorner\left(B_{2} \times S^{2}\right)=0\right.$, we infer $(\partial \tilde{T})\left\llcorner B_{2} \times S^{2}=0\right.$, hence \tilde{T} belongs to $\mathcal{A}_{T_{0}}^{(n)}\left(B_{2}, S^{2}\right)$, since we can write it as $\tilde{T}=\mathcal{G}(\tilde{u})+L \times \llbracket S^{2} \rrbracket$ with $\tilde{u}:=u \chi_{B_{1}}+u_{0} \chi_{B_{2} \backslash B_{1}} \in H^{1}\left(B_{2}\right)$, and the condition (2) is satisfied. Clearly \tilde{T} minimizes $\mathcal{D}\left(\cdot, B_{2}\right)$ in $\mathcal{A}_{T_{0}}^{(n)}$. Then by Theorem 1 $\tilde{T}=T_{0}$, hence $u=\tilde{u}_{0}$.

Aknowledgements

I wish to warmly thank Prof. Petru Mironescu for useful remarks on the paper and Prof. Tristan Rivière for many interesting discussions on the topic of relaxed energies.

References

[1] F. Bethuel, H. Brezis, J-M. Coron, Relaxed energies for harmonic maps, in: Progress in nonlinear differential equations and their applications, vol. 4, Birhäuser (1990), 37-52 (Paris 1988).
[2] H. Brezis, J-M. Coron, Large solutions for harmonic maps in two dimensions, Comm. Math. Phys., 92 (1983), 203-215.
[3] H. Brezis, J-M. Coron, E. Lieb, Harmonic maps with defects, Comm. Math. Phys., 107 (1992), 649-705.
[4] L. C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rat. Mech. Anal. 116 (1991), 101-163.
[5] L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, CRC Press, New York (1992).
[6] H. Federer, Geometric measure theory, Springer-Verlag, New York, 1969.
[7] M. Giaquinta, G. Modica, J. Souček, Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal. 106 (1989), 97-159.
[8] M. Giaquinta, G. Modica, J. Souček, Cartesian currents and variational problems for mappings into spheres, Ann. Scuola Norm. Sup. Pisa Serie IV 16 (1989), 393-485.
[9] M. Giaquinta, G. Modica, J. Souček, The Dirichlet energy of mappings with values into the sphere, Manuscripta Math. 65 (1989), 489-507.
[10] M. Giaquinta, G. Modica, J. Souček, Cartesian currents in the calculus of variations. I. Cartesian currents, Springer-Verlag, Berlin, 1998.
[11] R. Hardt, D. Kinderlehrer, F-H. Lin, The variety of configurations of static liquid crystals, in Progress in nonlinear partial differential equations and applications, Vol. 4 pag. 115-132, Birkhäuser 1990.
[12] B. Hardt, F-H. Lin, A remark on H^{1} mappings, Manuscripta Math. 56 (1986), 1-10.
[13] R. Hardt, F-H. Lin, C-C. Poon, Axially symmetric harmonic maps minimizing a relaxed energy, Comm. Pure Appl. Math., 45 (1992), 417-459.
[14] F. HÉlein, Harmonic maps, conservation laws and moving frames, second edition, Cambridge University press (2002).
[15] S. Luckhaus, Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold, Indiana Univ. Math. J. 37 (1988), 349-367.
[16] T. Rivière, Everywhere discontinuous harmonic maps into spheres, Acta Math., 175 (1995), 197-226.
[17] R. Schoen, K. Uhlenbeck, Regularity of minimizing harmonic maps into the sphere, Invent. Math., 78, 89-100, 1984.
[18] D. Zhang, The existence of nonminimal regular harmonic maps from B^{3} into S^{2}, Ann. Scuola Norm. Sup. Pisa Ser. IV, 16 (1989), 355-365.

[^0]: *This work was supported by the Swiss National Fond Grant no. PBEZP2-129520.

