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Abstract

We study the conformal metrics on R®*™ with constant Q-curvature
Q@ € R having finite volume, particularly in the case @ < 0. We show that
when Q < 0 such metrics exist in R®*™ if and only if m > 1. Moreover
we study their asymptotic behavior at infinity, in analogy with the case
@ > 0, which we treated in a recent paper. When @ = 0, we show that
such metrics have the form e gg2m, where p is a polynomial such that
2 < degp < 2m — 2 and supgam p < +00. In dimension 4, such metrics
are exactly the polynomials p of degree 2 with lim||_ 4o p(z) = —o0.

1 Introduction and statement of the main the-
orems

Given a constant () € R, we consider the solutions to the equation

(—A)™u = Qe*™  on R?™, (1)
satisfying
1
Q= o 2 gy < 400, (2)
|S m| R2m

Geometrically, if u solves (1) and (2), then the conformal metric g := e?“gpem
has @Q-curvature ng = @ and volume «|S?™|. For the definition of the Q-
curvature and related remarks, we refer to [Marl]. Notice that given a solution
u to (1) and A > 0, the function v := u — 3= log A solves

(=A)™v = A\Qe*™  in R*™,

hence what matters is just the sign of @@, and we can assume without loss of
generality that @ € {0,+(2m — 1)!}.

Every solution to (1) is smooth. When @ = 0, that follows from standard el-
liptic estimates; when @ # 0 the proof is a bit more subtle, see [Mar1, Corollary
8].

For Q > 0, some explicit solutions to (1) are known. For instance every
polynomial of degree at most 2m — 2 satisfies (1) with @ = 0, and the function
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u(x) = logﬁ satisfies (1) with Q@ = (2m — 1)! and @« = 1. This latter
solution has the property that e*“ggem = (771)*gg2m, where 7 : §?™ — R*™ is
the stereographic projection.

For the negative case, we notice that the function w(z) = log ﬁ solves
(—A)™w = —(2m — 1)!e?™ on the unit ball B; C R?™ (in dimension 2 this
corresponds to the Poincaré metric on the disk). However, no explicit entire
solution to (1) with @ < 0 is known, hence one can ask whether such solutions
actually exist. In dimension 2 (m = 1) it is easy to see that the answer is
negative, but quite surprisingly the situation is different in dimension 4 and
higher and we have:

Theorem 1 Fiz Q < 0. For m =1 there is no solution to (1)-(2). For every
m > 2, there exist (several) radially symmetric solutions to (1)-(2).

Having now an existence result, we turn to the study of the asymptotic
behavior at infinity of solutions to (1)-(2) when m > 2, @ < 0, having in mind
applications to concentration-compactness problems in conformal geometry. To
this end, given a solution u to (1)-(2), we define the auxiliary function

2m — 1)!
o(z) = ,M/ log <L)62muw)d% (3)
Tm R2m |z —yl
where 7., = w2, 227 2[(m — 1)!]? is characterized by the following property:

1 1
—) = 50 in R2m.
x
Then (—A)™v = —(2m — 1)le?™*. We prove
Theorem 2 Let u be a solution of (1)-(2) with @ = —(2m — 1)!. Then

u(r) = v(z) + p(2), (4)

where p is a non-constant polynomial of even degree at most 2m — 2. Moreover
there exist a constant a # 0, an integer 1 < 7 < m — 1 and a closed set
Z C §?™~1 of Hausdorff dimension at most 2m — 2 such that for every compact
subset K C S*™~1\Z we have

Jim Alvte) = 0, £=1,...,m—1,
v(t§) = 2alogt+ o(logt), ast — 400,
tHI-P Au(té) = a, (5)

for every € € K uniformly in &. If m = 2, then Z = () and supgzm u < +00.
Finally
‘H‘m inf R, (z) = —o0, (6)
x|—+o0

; — p2u
where Ry, is the scalar curvature of g, := e*" ggam.

Following the proof of Theorem 1, it can be shown that the estimate on the
degree of the polynomial is sharp. Recently J. Wei and D. Ye [WY] showed the
existence of solutions to A%y = 6e** in R* with [;, e**dz < +oo which are not



radially symmetric. It is plausible that also in the negative case non-radially
symmetric solutions exist.
For the case Q = 0 we have

Theorem 3 When Q = 0, any solution to (1)-(2) is a polynomial p with 2 <
degp < 2m — 2 and with

supp < +00.
R2m
In particular in dimension 2 (case m = 1), there are no solutions. In dimension
4 the solutions are exactly the polynomials of degree 2 with lim|,|_, . p(x) = —oo0.
Finally, there exist 1 < j <m —1 and a < 0 such that
lim Alp(z) = a. (7)
|z|— o0

The case when @ > 0, say @ = (2m — 1)!, has been exhaustively treated.
The problem

(—A)™u = (2m — 1)!e*™  on R*™, / e*™dr < +oo (8)
R‘Zm,

admits standard solutions, i.e. solutions of the form u(x) := log ﬁ,

A > 0, zg € R?™ that arise from the stereographic projection and the action
of the M&bius group of conformal diffeomorphisms on $?™. In dimension 2 W.
Chen and C. Li [CL] showed that every solution to (8) is standard. Already in
dimension 4, however, as shown by A. Chang and W. Chen [CC], (8) admits
non-standard solutions. In dimension 4 C-S. Lin [Lin] classified all solutions u
to (8) and gave precise conditions in order for u to be a standard solution in
terms of its asymptotic behavior at infinity.

In arbitrary even dimension, A. Chang and P. Yang [CY] proved that solu-
tions of the form

u(z) = log +&(r ()

14 [af?
are standard, where 7 : 2™ — R2™ is the stereographic projection and ¢ is a
smooth function on S$?™. J. Wei and X. Xu [WX] showed that any solution u
to (8) is standard under the weaker assumption that u(z) = o(|x|?) as |z| — oo,
see also [Xu]. We recently treated the general case, see [Marl], generalizing
the work of C-S. Lin. In particular we proved a decomposition u = p + v as
in Theorem 2 and gave various analytic and geometric conditions which are
equivalent to u being standard.

The classification of the solutions to (8) has been applied in concentration-
compactness problems, see e.g. [LS], [RS], [Mal], [MS], [DR], [Strl], [Str2],
[Ndi]. There is an interesting geometric consequence of Theorems 2 and 3, with
applications in concentration-compactness: In the case of a closed manifold,
metrics of equibounded volumes and prescribed Q-curvatures of possibly varying
sign cannot concentrate at points of negative or zero @-curvature. For instance
we shall prove in a forthcoming paper [Mar2]

Theorem 4 Let (M, g) be a 2m-dimensional closed Riemannian manifold with
Paneitz operator Png satisfying ker Png = {const}, and let up, : M — R be a
sequence of solutions of

Pg2muk + Q£27m — CleWnuk7 (9)



where ng is the Q-curvature of g (see e.g. [Chal), and where the Qy’s are
given continuous functions with Qr — Qg in C°. Assume also that there is a

A > 0 such that
/ e*™uk dvol, < A, (10)
M

for all k. Then one of the following is true.
(i) For every 0 < a < 1, a subsequence is converging in C*™~1:2(M).

(ii) There exists a finite set S = {xD : 1 < i < I} such that uy — —o0 in
L2 (M\S). Moreover

/ Qg dvol, = I(2m — 1)!|5%™|, (11)
M
and
I
Qk€2mude01g - Z(2m - 1)!|52m|5z(i)7 (12)
i=1

in the sense of measures. Finally Qo(z™) >0 for1 <i <1.

In sharp contrast with Theorem 4, on an open domain Q C R?™ (or a
manifold with boundary), m > 1, concentration is possible at points of negative
or zero curvature. Indeed, take any solution u of (1)-(2) with @ < 0, whose
existence is given by Theorem 1, and consider the sequence

ug(z) = u(k(x — x0)) + logk, forxz e

for some fixed 29 € . Then (—A)™uy = Qe?™* and wuy concentrates at g
in the sense that as k — oo we have ug(xg) — 400, up — —oo a.e. in Q and
e?mukdy — a|S?™|§,, in the sense of measures.

The 2 dimensional case (m = 1) is different and concentration at points of
non-positive curvature can be ruled out on open domains too, because otherwise
a standard blowing-up procedure would yield a solution to (1)-(2) with @ <0,
contradicting with Theorem 1.

An immediate consequence of Theorem 4 and the Gauss-Bonnet-Chern for-
mula, is the following compactness result (see [Mar2]):

Corollary 5 In the hypothesis of Theorem 4 assume that either
1. x(M) <0 and dim M € {2,4}, or
2. x(M) <0, dimM > 6 and (M, g) is locally conformally flat,
where x(M) is the Euler-Poincaré characteristic of M. Then only case (i) in

Theorem 4 occurs.

The paper is organized as follows. The proof of Theorems 1, 2 and 3 is
given in the following three sections; in the last section we collect some open
questions. In the following, the letter C' denotes a generic constant, which may
change from line to line and even within the same line.



2 Proof of Theorem 1

Theorem 1 follows from Propositions 6 and 8 below.

Proposition 6 For m =1, Q < 0 there are no solutions to (1)-(2).

Proof. Assume that such a solution u exists. Then, by the maximum principle,
and Jensen’s inequality,

][ udo > u(0), / e2tdo > 21 Re24(0),
OBr
OBr

Integrating in R on [1,4+00), we get

/ e?tdxr = 400,
RZ

contradiction. O

Lemma 7 Let u(r) be a smooth radial function on R™, n > 1. Then there are
positive constants by, depending only on n such that

A™u(0) = bpu®™(0), (13)

u®m) = gi;}f In particular A™u(0) has the sign of u®™(0).

For a proof see [Marl].

Proposition 8 For m > 2, Q < 0 there exist radial solutions to (1)-(2).

Proof. We consider separately the cases when m is even and when m is odd.
Case 1: m even. Let u = u(r) be the unique solution of the following ODE:

A™u(r) = —(2m — 1)le2mu()
uw@+D(0) = 0 0<j<m-1
u(Qj)(O):ozjg() 0<j<m—1,

where ag = 0 and a7 < 0. We claim that the solution exists for all » > 0. To
see that, we shall use barriers, compare [CC, Theorem 2]. Let us define

aq
wy(r) = 77’2, g+ = W4 — U

Then A™g, > 0. By the divergence theorem,

; dAI~1
Agidr = / 2 9 o
Br OBRr dr

Moreover, from Lemma 7, we infer
Alg,(0)>0 for0<j<m-—1,

hence we see inductively that A7g, (r) > 0 for every r such that g (r) is defined
and for 0 < j < m — 1. In particular g+ > 0 as long as it exists.



Let us now define

m—1

. 2
w_(r) = Z Bir® —AIOgH—rQ; g- =u—w_,
i=0

where the (§;’s and A will be chosen later. Notice that

2 2 2m
Amw(r)Am<Alogm) (le)!A<1+r2> .

Since ay < 0,

2
hm ( 1—57‘2 ) "

r—-+00 ema1T2 o +OO’

and taking into account that v < wy, we can choose A large enough, so that

2m
T

2 am mao Tz
(%nD{A<1+ﬁ) _gmen ]Za

A™g (r)

Y

We now choose each (; so that
Alg_(0)>0, 0<j<m-—1,
and proceed by induction as above to prove that g_ > 0. Hence

w—(r) < u(r) < wy(r)

as long as u exists, and by standard ODE theory, that implies that u(r) exists
for all » > 0. Finally

/ e2mullzl) gy < / emenlel® go < +00.
RQm, RQm,

Case 2: m > 3 odd. Let u = u(r) solve

Amu(r) _ (2m - 1)!e2mu(r)
u+t(0) =0 0<j<m-1
u®)(0) = a; <0 0<ji<m-—-1,

where the «;’s have to be chosen. Set

wa(r) = B —r* — log g = wy —u,

1472’

2
=), hence
T

where 3 < 0 is such that e~ < (1+ z

2 1472

m - 5 €_T2+ﬁ Z 0 forall r > 0.
r



Then, as long as g+ > 0, we have

@2m —1)! Kl fﬂ)% _ e2mu<r>}

2 2m
Z (me 1)||:<H——2> 62mw+(r):| ZO
T

Choose now the a;’s so that, u(”(0) < wfi) (0), for 0 < i < m — 1. From
Lemma 7, we infer that

A™gy(r)

Algi(0)>0, 0<i<m-—1,

and we see by induction that gy > 0 as long as it is defined. As lower barrier,
define

w— (T) = Z 6’Lr2ia g—=u—-w-,
where the 3;’s are chosen so that A’g_(0) > 0. Then, observing that
A™g_(r) = (2m — 1)le2™u() >,

as long as u is defined, we conclude as before that g_ > 0 as long as it is defined.
Then u is defined for all times. )
Let R > 0 be such that, for every r > R, wy (r) < —%. Then

/ ezmuuw\)dzg/ e2mu(\z\>dz+/ e < 4o,
R2m Br R2m\Bpg

3 Proof of Theorem 2

The proof of Theorem 2 is divided in several lemmas. The following Liouville-
type theorem will prove very useful.

Theorem 9 Consider h : R® — R with A™h = 0 and h < u — v, where
e’ € LY(R™) for some p > 0, (—v)* € L'(R™). Then h is a polynomial of
degree at most 2m — 2.

Proof. As in [Marl, Theorem 5], for any x € R?*™ we have

- C
D@ < s My
BR(I)
C 20
= ~FEmoi ][h(y)dy—i—W ][h+dy (14)
BR(CE) BR(I)

and
h(y)dy = O(R*™72), as R — oo.

Br(z)



Then

C
][ htdy < ][ utdy + C ][(—v)+dy§ ][ ep“dy-i-ﬁ,

BR(I) BR(CE) BR(CE) BR(I)

hS R

and both terms in (14) divided by R*™~1 go to 0 as R — oc. O

Lemma 10 Let u be a solution of (1)-(2). Then, for |x| > 4
v(z) < 2alog|z| + C. (15)

Proof. As in [Marl, Lemma 9], changing v with —uv. O

Lemma 11 For any € > 0, there is R > 0 such that for |x| > R,

(2m —1)!

m

v(x) > (2a - %) log x| + / log & — y|e?™ W dy. (16)
Bi(z)

Moreover

(—v)* € LY(R*™). (17)

Proof. To prove (16) we follow [Lin], Lemma 2.4. Choose Ry > 0 such that

1 2 €
e ™"dr > a — —,
[S2m| Br, 16
and decompose
R?*™ = Bp, UA; U A,
A = {yeR¥™ 20z —y| < |z[,|y] > Ro},
Ay = {yeR* 2z —y|>|z|,|y| > Ro}.

Next choose R > 2 such that for || > R and |y| < Ry, we have 1og% >

log |z| — €. Then, observing that (2m+)'|52m‘ = 2, we have for |z| > R

2m — 1)! — 2m — 1)!
(2m ) / log |2 y|62mu(y)dy (log || — 1i6) (2m ) / e?mudy
BRO ,Ym BRO

Ym |yl
g
(2a - g) log || — C. (18)

Y

Y

Observing that log |z — y| > 0 for y ¢ Bi(z), log|y| < log(2|z|) for y € Ay,
Ja, €mudy < E'ﬁsm‘ and log(2|z|) < 2log|z| for |z| > R, we infer

/ 1ogu62m“(9)dy = / log |z — y|e?™ W dy f/ log |y|e2™* ™) dy
Al |y| A1 Al
> / log [ — yle*™* W) dy — log(2|x|) / > dy
Bl(I) Al
S2m
> / log |z — y|e2m“(y)dy — log || el | (19)
B (x) 8



Finally, for y € As, |z| > R we have that ‘I‘;‘y‘ > 1, hence

/ log Me%“@)dy > —log(4) / e*™idy > —Ce. (20)
Ao |yl Ag

Putting together (18), (19) and (20), and possibly taking R even larger, we
obtain (16). From (16) and Fubini’s theorem

1
/ (—v)tdr < C / / X|z—y| <1108 T—— 2™ W) dyda:
R27m\ Br R2m JR2m |SC y|

1
C e2mu(y) / log dxdy
R27 Bi(y) |z — |

< C/ 2 W) dy < 0.
R‘Z‘n’z,

Since v € C*°(R*™), we conclude that [ (—v)*dx < oo and (17) follows. [

Lemma 12 Let u be a solution of (1)-(2), with m > 2. Then u = v + p, where
p s a polynomial of degree at most 2m — 2.

Proof. Let p:=u —v. Then A™p = 0. Apply (17) and Theorem 9. O

Lemma 13 Let p be the polynomial of Lemma 12. Then if m = 2, there exists
0 > 0 such that
p(z) < =6z + C. (21)

In particular lim |, p(x) = —occ and degp = 2. For m > 3 there is a (possibly

empty) closed set Z C S*™~1 of Hausdorff dimension dimH(Z) < 2m — 2 such
that for every K C S?*™~\Z closed, there exists 6 = 6(K) > 0 such that

p(z) < =8|z +C  for % € K. (22)

Consequently degp is even.

Proof. From (17), we infer that there is a set Ay of finite measure such that
v(x) > —C in R*™\ Ag. (23)

Case m = 2. Up to a rotation, we can write

4
p(x) = Z(bﬁrz2 + cix;) + bo.
i=1
Assume that b;, > 0 for some 1 < iy < 4. Then on the set
Ay = {z e R* : |a;| <1 for i # ig, cigxi, > 0}

we have p(z) > —C. Moreover |A;| = +o00. Then, from (23) we infer

/ etdr > / 2P dy > A1\ Ag| = +00, (24)
R4 A1\ Ao



contradicting (2). Therefore b; < 0 for every ¢ and (21) follows at once.

Case m > 3. From (2) and (23) we infer that p cannot be constant. Write

p(t&) =) ai(Ot',  d:=degp,

d
=0

where for each 0 < i < d, a; is a homogeneous polynomial of degree i or a; = 0.
With a computation similar to (24), (2) and (23) imply that aq(€) < 0 for each
¢ € §?m=1. Moreover d is even, otherwise aq(¢) = —aq(—€) < 0 for every
¢ € §?m~1 which would imply aq = 0. Set

Z ={¢c S*™ a4 =0}
We claim that dim’*(Z) < 2m — 2. To see that, set
Vi={z e R* : qq(z) =0} ={t& : t>0, £€ Z}.

Since V is a cone and Z = V N S?™ 1, we only need to show that dimH(V) <
2m — 1. Set

Vii={x € R*™ : qq(z) = ... = Viag(x) =0, ViTlay(x) #0}.

Noticing that V; = ) for i > d (otherwise ag = 0), we find V = U} V;. By the
implicit function theorem, dim’* (Vi) <2m —1 for every ¢ > 0 and the claim is
proved.

Finally, for every compact set K C S?™~1\ Z, there is a constant § > 0 such
that a4(¢) < —3, and since d > 2, (22) follows. O

Corollary 14 Any solution u of (1)-(2) with m =2, Q < 0 is bounded from
above.

Proof. Indeed u = v + p and, for some § > 0,
v(z) < 2aloglz| +C, p(x) < —dlz* + C.

O

Lemma 15 Let v : R*™ — R be defined as in (3) and Z as in Lemma 13.
Then for every K C S?™~1\Z compact we have

lim A" Iy(t€) =0, j=1,....,m—1 (25)

t——4o0

for every & € K uniformly in &; for every € > 0 there is R = R(e, K) > 0 such
that, fort > R, ¢ € K,
v(t€) > (2a —¢)logt (26)

Proof. Fix K € §?m~1\Z compact and set C = {t£ : t > 0,£ € K}. For any
c>0,1<j<2m—1,

eQmu(y)
———dy— 0 as|z|]— o0 (27)
R2m\ B, (o) 1T — Y[¥

10



by dominated convergence. Choose a compact set K C S§2m=1\ 7 such that
K C int(K) c $*™~!. Since u < C(K) on Czz by Lemma 10 and Lemma 13,
we can choose 0 = o(g) > 0 so small that

e2mu - 1 ~
——dy < C(K / ————dy < C(K)e, forax e Ck, |z|large,
/B,,(z) |z — y[? () B, () |7 — Y% () =

where || is so large that B,(x) C Cz. Therefore

e?mu

(—1)7 T ATy (2) = C’/ T—:dy — 0, forz €Ck, as |z — oo,
Rr2m [T —y|*

We have seen in Lemma 11, that for any € > 0 there is R > 0 such that for
|| > R

(2m —1)!

v(x) > (2a - g) log || + P

/ log |z — y|62m“(y)dy, (28)
Bi(x)

and (26) follows easily by choosing K as above and observing that u < C(K)
on C, hence on By (x) for € Cx with |z| large enough. O

Proof of Theorem 2. The decomposition u = v+ p and the properties of v and p
follow at once from Lemmas 10, 12, 13 and 15; (6) follow as in [Marl, Theorem
2]. As for (5), let j be the largest integer such that A/p #£ 0. Then A/Tlp =0
and from Theorem 9 we infer that degp = 27, hence A/p = a # 0. O

4 The case Q=0

Proof of Theorem 3. From Theorem 9, with v = 0, we have that u is a polynomial
of degree at most 2m — 2. Then, as in [Marl, Lemma 11], we have

supu < 400,
R2m

and, since u cannot be constant, we infer that degu > 2 is even. The proof of
(7) is analogous to the case Q < 0, as long as we do not care about the sign
of a. To show that a < 0, one proceeds as in [Marl, Theorem 2]. For the case
m = 2 one proceeds as in Lemma 13, setting v = 0 and Ay = 0. O

Example. One might believe that every polynomial p on R?™ of degree at most

2m — 2 with [, €¥"Pdx < oo satisfies lim|,|_,o p(z) = —00, as in the case
m = 2. Consider on R?™, m > 3 the polynomial u(z) = —(1 + 2%)|Z|?, where
Z = (x2,...,Tom). Then A™y =0 and

/ e2Mu gy — // 672m(1+z?)|5|2d'17dx1
R2m R JR2m—-1
d 12 o~
- / #mil / e 2P g5 < 40
R (1+23)72 R2m—1

On the other hand, limsup, _. u(z) = 0.

11



5 Open questions

Open Question 1 Does the claim of Corollary 14 hold for m > 2?2 In other
words, is any solution u to (1)-(2) with Q < 0 bounded from above?

This is an important regularity issue, in particular with regard to the be-
havior at infinity of the function v defined in (3). If supgem © < +00, then one
can take Z = ) in Theorem 2, as in the case @ > 0, see [Marl, Theorem 1].

Definition 16 Let PZ™ be the set of polynomials p of degree at most 2m—2 on
R?™ such that e*™P € L'(R?™). Let P3™ be the set of polynomials p of degree
at most 2m — 2 on R®™ such that there exists a solution u = v+ p to (1)-(2)
with Q > 0. Similarly for P2™ with Q < 0.

Related to the first question is the following

Open Question 2 What are the sets P3™, P3™? Is it true that P§™ C P3™
and P3™ C p?m¢

J. Wei and D. Ye [WY] proved that Pj C P} (and actually more). Consider
now on R?™, m > 3, the polynomial

pa) = -1 +a})[F? T=(22,...,%2m).

As seen above, €2™P € L1(R*™), hence p € Pg™. Assume that p € P?™ as well,
i.e. there is a function v = v + p satisfying (1)-(2) and @ < 0. Then we claim

that supgem v = 0o. Assume by contradiction that w is bounded from above.
Then (15) and (16) imply that

v(z) = 2alog x| + o(log |z]), as |z| — cc.
Therefore,

lim wu(x1,0,...,0) = lim 2alogz; = oo,
T1—00 T1—00

contradiction.

Open Question 3 Fven in the case that u is not bounded from above, is it
true that one can take Z = () in Theorem 2 for m > 3 also?

For instance, in order to show that v(z) = 2alog|z| 4+ o(log|z|) as |z| — 400,
thanks to (16), it is enough to show that

/ log |z — yle*™ @ dy = o(log|z|), as [a] — +oo,
By (z)

which is true if supgem u < 0o, but it might also be true if supgem u = oo.

Open Question 4 What values can the a given by (1)-(2) assume for a fized
Q7

As usual, it is enough to consider @ € {0,£(2m — 1)!}. When m =1, Q = 1,
then o = 1, see [CL]. When m = 2, @ = 6, then « can take any value in (0, 1],
as shown in [CC]. Moreover o cannot be greater than 1 and the case o = 1
corresponds to standard solutions, as proved in [Lin]. For the trivial case @ = 0,
« can take any positive value, and for the other cases we have no answer.

12
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